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1: The actor waits if there is no message

in its mailbox.

Actors 1
The Actor model is a well-established paradigm for modeling distributed

and asynchronous component-based systems. This model was originally

introduced by Hewitt as an agent-based language where goal directed

agents did logical reasoning [1]. Subsequently, the actor model developed

as a model of concurrent computation for open distributed systems

where actors are the concurrently executing entities [2]. It is used in

distributed computing, concurrent systems, and parallel processing to

model and manage the flow of control and communication among

different components of a system.

Actors are units of concurrency, with no shared variables, communicating

via asynchronous message passing. Actor provides services that may be

requested via messages from other actors. A message is buffered until

the provider is ready to execute the message. As a result of processing

a message, an actor may change its internal state and send messages to

other actors, including itself. Thus, the general behavior of each actor is

an infinite loop of taking a message from the mailbox and executing the

corresponding routine
1
. This way, actors based systems can be assumed

as event-driven systems, such that the message passing among actors

constitutes events, and consuming an event is realized by serving a

received message.

An event graph is a powerful tool for modeling interactions of actors.

The event graph model represents events (e.g., messages, state changes)

and their causal/temporal relationships. In a given event graph, nodes

are events and edges denote dependencies (e.g., “event A caused event

B”). It often used to model causality, ordering, or data flow in an event

based system. As mentioned before, in the Actor Model, messages sent

between actors can be treated as events. These events form the nodes

of an event graph, with edges reflecting how one message triggers

subsequent messages. The message passing among actors creates causal

chains (e.g., actor A sends a message to B, which then sends to C). An

event graph can explicitly model these chains too. The event graph helps

represent the flow of messages and how message can be associated with

actors, providing a clear way to track the progression of events and

the interactions between different components of a system. Here, we

use event graph to model sequence of messages in the system and how

they are associated with actors, then model it using the Rebeca family

modeling languages.

An event graph is a directed graph where the graph nodes represent

events in a system. Edges correspond to causing other events [3]. Jagged

incoming edges denote an initial event. Edges can optionally be associated

with a boolean condition for causing an event and/or a time delay which

means that an event will be caused after the delay. Figure 1.1 shows an

example of an event graph where EventA causes EventB after a delay of t

time units and if condition cond is true. In the same way, EventB causes

EventC unconditionally. In this figure EventA is associated with Actor 1
and two events EventB and EventC are associated with Actor 2.



4 1 Actors

Figure 1.1: Example of an event graph
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For the better understanding of how actors can be used for modeling a

system, we developed a simple running example. This system is defined

as a single railway bridge, which is connected to two ground railways on

each side. Each of the railways on the ground is used for trains traveling

in one direction, so, only one train is allowed to be on the bridge from

each side. As the bridge has only one railway, trains arriving from each

direction can not pass simultaneously. The bridge controller system, is a

system to signal the trains to stop or pass from the bridge. The controller

gets notified when a train arrives from each side, and when the train

leaves the bridge.

In the first step we model the bridge control system using the event graph,

shown in Figure 1.2. In this event graph, the reachBridge message is

the initial message and serving it causes asking for arrival to the bridge.

Based on the current state of the bridge, it may allow the train to pass,

realized by sending youMayPass. A train on the bridge sends leave

message to inform the controller that it leaves the bridge. The controller

sends passed to the train to confirm that leaving is completed. To model

the periodic behavior of the system, trains retry to pass the bridge as

soon as passing the bridge.

Figure 1.2: The event graph of the bridge

controller system

reach
Bridge arrive

Train youMay
Pass

leavepassed

Bridge
Controller

bridge
IsFree
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2.1 What is Rebeca

Rebeca [4, 5] is a class-based, imperative interpretation of the actor model.

Rebeca has been designed in an effort to facilitate the verification process

for practitioners who are not experts in formal methods. From one point

of view Rebeca as a Java-like language, it is easy to use for software

engineers, and from another point of view it is a modeling language with

formal semantics and formal verification support. A model in Rebeca

consists of concurrently executing reactive objects, rebecs.

Computation takes place by asynchronous message passing between

actors and execution of the corresponding message servers of messages.

Each message is put in the queue of the receiver actor and specifies a

unique method to be invoked when the message is serviced. In Rebeca,

each actor has a unique thread of control. An actor takes a message from

its queue and executes the corresponding message server then takes

another message. There is no intra-actor concurrency, meaning that the

execution of a message server must be completed before the executing

actor takes the next message from its mailbox. To make the behavior

of the models more deterministic, we assume that two messages sent

from one actor to another are delivered to the receiver’s mailbox in order.

This arbitrary ordering of actors is a source of nondeterminism in the

behavior of the model in Rebeca.

The core of Rebeca modeling language is intentionally kept simple and

the language with simple constructs is called Core Rebeca. For various

purposes, several extensions have been proposed, including Timed

Rebeca [6] for the domain of real-time systems, Hybrid Rebeca [7] for

the domain of cyber-physical systems, pRebeca [8] for modeling and

analysis of probabilistic systems, and PTRebeca [9] for probabilistic timed

systems. Rebeca is equipped Afra [10] as an Eclipse-based modeling and

verification development environment for Core Rebeca, Timed Rebeca,

and Probabilistic Timed Rebeca.

2.2 The Structure of Core Rebeca Models

A Rebeca model mainly consists of a number of reactive class definitions,

which define the behavior of the classes of the actors in the model,

as well as a main block that defines the instances of the actor classes.

The simplified Rebeca model of the running example is presented in

Listing 2.1. In this Rebeca model, there are two classes of actors: Train

and BridgeController.

The main block in lines 9-12 defines one instance of each class and

specifies arguments passed as known rebec identifiers and parameters

of constructors. We will talk about constructors and known rebecs in the

following section.
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1: The size of the queue is bounded to

prevent the creation of infinite transition

systems and makes analysis of models

possible.

2: Known actors can also be used if there

is a need to examine the sender of mes-

sages. An example of using known re-

becs for this purpose is presented in List-

ing 2.15.

3: A default constructor does not have

any input parameter and statements.

Listing 2.1: The structure of the Rebeca

model of the bridge control system

1 reactiveclass Train(2) {

2 /* Reactive class definition */

3 }

5 reactiveclass BridgeController(2) {

6 /* Reactive class definition */

7 }

9 main {

10 BridgeController controller():();

11 Train train1(controller):(1);

12 }

An instance of a reactive class is an actor in the system (which is also

called a rebec). Each actor has a mailbox, which is a bounded FIFO

queue for Core Rebeca. Although in the actor model, the queue length is

unbounded, in Rebeca, the maximum queue size has to be defined in the

class definition
1
. This size shall be indicated in parenthesis next to the

reactive class name, as shown in line 1, i.e. queue size of 2 for actors of

type Train.

2.2.1 Reactive Class Definition

The class definitions of Train and BridgeController reactive classes

are presented in Listing 2.2. In a class definition, there are two variable

definition blocks: knownrebecs and statevars. Known rebecs block

contains references to actors which the actors instantiated from this

reactive class are allowed to send messages to
2
. As shown in line 3, the

actors of type Train are allowed to send messages to an actor of type

BridgeController using bc variable. The binding of known rebecs is

performed in the main block. As shown in line 44, controller is put in

the first parenthesis of the definition of train1 as its only known rebec.

In the case of having more than one known rebecs, a comma-separated

list of variables is put in the first parenthesis. The statevars block contains

variable definitions which are needed for holding the state of an actor.

The state of the actors of type Train is presented by an id, mentioned

in line 6. The state of BridgeController is presented by the number of

trains on the bridge, shown in line 25. BridgeController does not have

a known rebec.

After these two variable definition sections, method definitions are

presented. Modelers are allowed to guarantee the initialization of the

actors’ state variables by providing constructor methods. If a reactive class

has a constructor, it is called automatically when actors are instantiated

from this reactive class in the main section. In Rebeca, the name of the

constructor is the same as the name of the reactive class. The constructor

may have input parameters to allow a modeler to specify the initialization

values of actors. lines 9 to 11 shows the constructor definition of Train.

This constructor has one input parameter and the value of this parameter

is set in the second parenthesis in line 44. Note that in the case of not

having a constructor definition, a default constructor is added to the

reactive class definition
3
.
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4: From access control point of view, con-

structors and message servers of a reac-

tive class can be assumed as public meth-

ods and local methods, state variables,

and known rebecs as protected.

The reactive class also contains message-handling methods. These meth-

ods are called message servers of this reactive class and their duty is to

serve the incoming messages. In addition to message servers which are

defined using the keyword msgsrv, local methods can also be defined

in the body of a reactive class. Local methods are private methods of

the reactive class and can be called by constructors, message servers,

and other local methods of the reactive class which contain them. A

method call can result in a return value to the caller
4
. The same as

constructors, definitions of message servers and local methods can

have input parameters. In this document, we are using method to refer

to any of the message servers, local methods, and constructors. List-

ing 2.2 shows that Train has three messages servers and one constructor.

BridgeController has two message servers and one local method, i.e.

updateNumberOfTrainsOnTheBridge.

Listing 2.2: The class definition of Train

and BridgeController of the bridge

control system

1 reactiveclass Train(2) {

2 knownrebecs {

3 BridgeController bc;

4 }

5 statevars {

6 byte id;

7 }

8

9 Train(byte myId) {

10 /* Constructor definition statements*/

11 }

12 msgsrv reachBridge() {

13 /* Message server definition statements*/

14 }

15 msgsrv youMayPass() {

16 /* Message server definition statements*/

17 }

18 msgsrv passed() {

19 /* Message server definition statements*/

20 }

21 }

23 reactiveclass BridgeController(2) {

24 statevars {

25 byte trainsOnTheBridge;

26 }

27

28 BridgeController() {

29 /* Constructor definition statements*/

30 }

31 msgsrv arrive() {

32 /* Message server definition statements*/

33 }

34 msgsrv leave() {

35 /* Message server definition statements*/

36 }

37 void updateNumberOfTrainsOnTheBridge(byte value) {

38 /* Local method definition statements*/

39 }

40 }

42 main {

43 BridgeController controller():();

44 Train train1(controller):(1);
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Attention

The state variables of reactive classes

and parameters of message servers

can not be floating-point variables.

Attention

Only one-dimensional arrays are al-

lowed to be used as the type of pa-

rameters of message servers and lo-

cal methods.

45 }

2.2.2 Variable Types

The primitive types in Rebeca are presented in Table 2.1. It includes

boolean, numerical, and floating-point types with different ranges. The

definition of these types is the same as that of in Java. Names of defined

reactive classes are also assumed as type names. These variables are

called reference to actor variables.

Table 2.1: Primitive types in Rebeca.

Primitive Type Size Minimum Maximum

boolean 1 bit — —

byte 8 bits −128 +127

short 16 bits −2
15 +2

15 − 1

int 32 bits −2
31 +2

31 − 1

float 32 bits IEEE754 IEEE754

void — — —

Arrays can be defined in a Rebeca model. The length of an array should

be specified in its declaration. As an example, x is an array of bytes with

length 3 in the following declaration:

byte[3] x;

An array is indexed from 0. So there are three indexes for the above

declaration, namely 0, 1, and 2. The elements of an array can be accessed as

in general-purpose programming languages. For example, x[2] denotes

the last element of the array. Arrays have strict type checking in Rebeca,

i.e. if a message server is willing to accept a variable of type byte[2], a

variable of type byte[3] cannot be passed to it. Rebeca supports multi-

dimensional array definition too. As an example, y is a two-dimensional

array of int variables in the following declaration:

int[4][5] y;

2.2.3 Expressions

The logical and arithmetic expressions in Rebeca are similar to Java, and

the syntax is not included here. One can refer to Java documents for the

syntax. The set of acceptable operators is given in Table 2.2. We should

emphasize that casting in Rebeca is the same as in Java.

Non-deterministic expressions are the only expressions which are not in

Java. The evaluation of the expression ?(𝑒1 , 𝑒2 , · · · , 𝑒𝑛) does not result in

one value. The result of the evaluation of each of 𝑒𝑖 ’s is the possible value

of this expression. In Rebeca, 𝑒𝑖 can be an expression which should be

determined at compile time and different options of the non-deterministic

expression have the same type. Based on this definition, the following

expressions are valid non-deterministic expressions.
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Operation operators Description

Arithmatic

+ − ∗ \
% mod

++ −−

Assignment

=

+= −= /= ∗= %=

Conditional ? : ternary condition

Logic

&& logical and

| | logical or

!

& bitwise and

| bitwise or

Comparative

> < <= >=
== equality

! = inequality

Cast like Java

Non-deterministic ?(e1 , e2 , · · · )
Instance Of instanceof like Java

Table 2.2: Arithmetic and logic operators

in Rebeca

?(1, 2)

?(true, false)

?(1.1, 2.6, 3.7)

?(1 + 4, 2, 9)

and the following non-deterministic expressions are invalid because of

having inconsistent value types and can not be determined at the compile

time.

?(1, 2, false)

?(2 + a, 3)

2.2.4 Statements

Methods in Rebeca contain one or more statements. There are differ-

ent types of statements in Rebeca, including local variable declaration,

assignment, conditional statement, for-loop and while-loop statement,

method call, sending message, return, continue, and break statements.

Local Variable Declaration

In many cases, a method needs to work with a variable that is not a part

of its corresponding actor’s state. We call these variables local variables.

These variables are declared locally in methods and the value is accessible

only in the method context. The possible types of local variables are

presented in Table 2.1.

Assignment Statement

Using assignment expression, a modeler is able to assign a value to state

variables and local variables. Note that assigning new values to known
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5: self in Rebeca is the same as this in

Java.

rebecs is not allowed in Rebeca.

Conditionals Statement

The if-else and switch conditional statements have been added to Rebeca

and its syntax is like Java. The keywords if, else, switch, case, break,

and default have been added too. The case expression will be valid if

its value is determined at compile time.

Loops

In Rebeca, for-loop and while-loop constructs are introduced with the

same syntax as in Java. To facilitate the loop iteration, break and continue

keywords are included too.

Sending Message

The sending message statement is the same as the method calls of objects

in Java, i.e. a reference to an actor followed by the name of one of its

message servers. Reference to the actor can be one of the following:

▶ known rebec: one of the known rebecs can be used as a reference

to the target actor.

▶ state variables: one of the state variables of a reactive class can be

used as a reference to the target actor.

▶ input parameter: one of the input parameters of a local method or

message server can be used as a reference to the target actor.

▶ self: the keyword self is used as a reference to the actor that the

method has been called for
5
. You can treat the self just like any

other object reference.

▶ sender: there is a predefined variable named sender in Rebeca.

The receiver of a message can get a reference to the sender of the

message by accessing the value of the variable sender. Note that

to send a message using sender keyword, it has to be cast to one

of the reactive class types. This keyword can also be used in the

conditional statement using equality and inequality keywords to

compare its value with another variable.

Local Method Call and Returning a Value

A local method call statement is realized by using the name of the local

method followed by a parenthesis containing its required parameters. A

local method in Rebeca has to return a value using the return keyword

and its syntax is the same as Java (except local methods with void return

type).
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2.3 The Model of the Bridge Control System
with Statements

Listing 2.3 presents the model of the bridge control system in which

its methods contain corresponding statements. Here, the constructor

of Train initializes a train by setting its id to the given parameter

value as well as sending itself a reachBridge message. The message

server reachBridge of Train first decides nondeterministically between

arriving at the bridge or trying again later (lines 14 and 15. Request for

arrival is modeled by sending arrival message to the corresponding

BridgeController (denoted by the reference variable bc). The effect of

sending a message is appending the message to the message queue of

the receiving actor (sometimes called its mailbox).

Upon receiving an arrival message, the bridge controller updates the

value of the number of trains on the bridge and sends an acknowledgment

to the train to allow it to be on the bridge. Note that updating the value

of trainsOnTheBridge takes place in lines 37 and 41 by calling the local

method updateNumberOfTrainsOnTheBridge.

Listing 2.3: The complete Core Rebeca

model of the bridge control system

1 reactiveclass Train(2) {

2 knownrebecs {

3 BridgeController bc;

4 }

5 statevars {

6 byte id;

7 }

8

9 Train(byte myId) {

10 id = myId;

11 self.reachBridge();

12 }

13 msgsrv reachBridge() {

14 boolean isReached = ?(true, false);

15 if(isReached)

16 bc.arrive();

17 else

18 self.reachBridge();

19 }

20 msgsrv youMayPass() {

21 self.passed();

22 }

23 msgsrv passed() {

24 bc.leave();

25 }

26 }

28 reactiveclass BridgeController(2) {

29 statevars {

30 byte trainsOnTheBridge;

31 }

32

33 BridgeController() {

34 trainsOnTheBridge = 0;;

35 }

36 msgsrv arrive() {

37 updateNumberOfTrainsOnTheBridge(+1);

38 ((Train)sender).youMayPass();
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39 }

40 msgsrv leave() {

41 updateNumberOfTrainsOnTheBridge(-1);

42 }

43 void updateNumberOfTrainsOnTheBridge(byte value) {

44 trainsOnTheBridge += value;

45 }

46 }

48 main {

49 BridgeController controller():();

50 Train train1(controller):(1);

51 }

2.4 Analysis of Core Rebeca Models

Afra [10] is the graphical user interface for modeling and analysis of

Rebeca family models. Afra user interface consists of five main sections

which are, the projects browser, model and property editor, model-

checking result view, and counterexample and its details views. An

overview of Afra is depicted in Figure 2.1. Afra generates transition

systems of given models and analyzes them against given correctness

conditions. Transition systems are basically directed graphs where nodes

represent the states of the system, and edges model how transitions

among states take place. This way, a state can be assumed as a snapshot

of the system at a certain moment of its behavior [11]. Considering the

running example, a state of this model indicates valuations of the state

variables of train1 and controller, in addition to their queues content

at that moment. Transitions specify the way that the system evolves from

one state to another state. In the case of the running example, a transition

shows how serving a message of an actor changes the values of its state

variables and what the newly sent messages are.

Correctness conditions in Afra are presented as a set of propositional

logic expressions (correctness invariants) and a set of temporal logic

formulae in the form of LTL [11, 12]. Afra analyzes models against a set of

predefined correctness invariants, together with user-defined correctness

conditions. The predefined correctness invariants are:

▶ Deadlock Avoidance: there is no state that all of the queues of

actors are empty,

▶ Queue Overflow Avoidance: there is no condition in which an actor

wants to send a message to another actor that its queue is full,

▶ No Access to Null Reference: access to all of the reference-to-actor

variables is safe. Reference-to-actor variables can be set to null. In

this case, upon access to a reference-to-actor variable which is set

to null, the violation of this correctness condition is reported.

▶ Safe Access to Arrays Elements: There is no out-of-bound access to

the elements of arrays.

In the case of violation of the above-mentioned correctness invariants in

a state of a Rebeca model, its corresponding counterexample is shown

in Afra. A counterexample is a trace of states of the model that starts

from the initial state of the model and ends in the state that violates
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Figure 2.1: Afra: the graphical user interface of modeling and analysis of Rebeca family models

correctness invariants. The same happens for the violation of user-defined

correctness invariants.

As shown in Figure 2.2, the model of Listing 2.3 has a trace which results

in the violation of deadlock avoidance assertion. It is because of the fact

that after one round of execution, train1 passed the bridge and nothing

happens after that. To avoid this assertion violation, we have to modify

the model to let it continue its execution. Passing the bridge periodically

is one of the solutions to this requirement. This can be realized by sending

the reachBridge message to train1 after passing the bridge, as shown

in line 5 of Listing 2.4. In this listing, only the parts that are modified in

comparison with the code of Listing 2.3 are shown. The “...” symbols at

the beginning of each part are representatives of not-modified codes.

Listing 2.4: The modified version of the

bridge control system which does not

have deadlock

1 reactiveclass Train(2) {

2 ...

3 msgsrv passed() {

4 bc.leave();

5 self.reachBridge();

6 }

7 }

Applying this modification fixes the deadline of the model and a transition

system with 7 states is generated by Afra for this model. This transition

system is shown in Figure 2.3. In the initial state of the transition system

(the state S0), the only actor which has a message in its queue is train1

and it can start serving the reachBridge message. But, S0 has two

outgoing transitions with the same label, i.e. train1.reachBridge. It is

because of the fact that there is a nondeterministic assignment in the

reachBridge message server and executing this message server results

in two different behaviors. In one of them train1 sends reachBridge to
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Figure 2.2: The analysis result viewer of Afra which reports having deadlock in the model and presents the counterexample of the

violation of this correctness invariant

6: As mentioned before, the queues of

actors in Core Rebeca follow FIFO policy.

So, although controller in S6 has two

messages in its message queue, the ear-

liest received message has to be served

and there is one possible action in S6. As

a result, there is one outgoing transition

in S6.

itself and in the other one it sends arrive to controller. In the states S1,

train1 successfully sent arrive to the bridge controller and waits for the

response of the bridge controller. In the state S5, both the train and bridge

controller have one message in their queues. So, either of them can start

serving its received message and S5 has to have two different outgoing

transitions. But, train1 has reachBridge in its message queue, which

contains a non-deterministic assignment with two alternative values. So,

there are three different outgoing transitions from S5. In S6, the bridge

controller has two messages in its queue. As controller is the only actor

which has a message in its queue, it starts serving the leave message
6
.

In the second step of developing the model of the bridge control system,

we add more trains to the model and try to examine its correctness

properties. The only needed modification for this goal is shown in line 4

of Listing 2.5. As depicted in Figure 2.4, this model violates queue overflow
avoidance correctness invariant. There is an execution trace in this model

that results in trying to send messages to controller with a full queue.

To resolve this issue, the queue size of BridgeController has to be

increased to four to satisfy all of the predefined correctness invariants

for the model of two trains.

Listing 2.5: The modified version of the

bridge control system which have two

trains

1 main {

2 BridgeController controller():();

3 Train train1(controller):(1);

4 Train train2(controller):(2);

5 }
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Figure 2.3: The transition system of the model of the bridge control system after resolving the violation of deadlock avoidance property.

The content of states S0, S1, S5, and S6 are shown in detail in gray boxes. In each box, the valuation of state variables and queue contents

of actors are shown.

Exercise 2.4.1 Set the size of the queue of BridgeController to three

instead of four. Verify the model in Afra and try to find an interpretation

for the newly reported counterexample.

In addition to the predefined correctness invariants, we want to make sure

that the bridge controller provides safe passage of trains. By safe passage

we mean there is no scenario in the model that more than one train passes

the bridge simultaneously. This correctness property can be presented

as a correctness invariant in the model using assertion method. As

shown in line 5 of Listing 2.6, the desired invariant is presented in

a boolean-valued expression and given as the input parameter of the

assertion method. In the case of the evaluation of the given parameter

to false, Afra reports a counterexample to show the violation of the

given correctness invariant, depicted in Figure 2.5.

Listing 2.6: The modified version of

the bridge control system which the

safe passage of trains is presented us-

ing assertion method

1 reactiveclass BridgeController(4) {

2 ...

3 msgsrv arrive() {

4 updateNumberOfTrainsOnTheBridge(+1);

5 assertion(trainsOnTheBridge <= 1);

6 ((Train)sender).youMayPass();

7 }

8 }

More complex correctness properties of a model have to be specified in

the property file of the model. To illustrate how correctness properties

are defined in property files, we remove line 5 of Listing 2.6 and try to

define an invariant for safe passage in the property file. Listing 2.7 shows

the structure of specifying correctness properties in the property file.
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Figure 2.4: The analysis result viewer of Afra which reports having queue overflow in the model after adding a new train and presents

the counterexample of the violation of this correctness invariant

Listing 2.7: The structure of defining

complex correctness properties in a prop-

erty file

1 property {

2 define {

3 // Defining atomic propositions

4 }

5 Assertion {

6 // Correctness specifications in assertion format

7 }

8 LTL {

9 // Correctness specifications in LTL format

10 }

11 }

A property specification has three parts. In the first part, the atomic propo-

sitions are specified. Atomic propositions will be used in the definition of

correctness properties, defined by its name and a boolean expression as

its value. The expression corresponds to an atomic proposition is defined

using the specifiers of the state variables of actors. For example, line 3 of

Listing 2.8 expresses an atomic proposition which considers the number

of trains on the bridge.

Listing 2.8: Defining safe passage of

trains in a property file

1 property {

2 define {

3 AtMostOneTrain = controller.trainsOnTheBridge < 2;
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Figure 2.5: The analysis result viewer of Afra which reports the violation of the user-defined correctness invariant in the model

4 }

5 Assertion {

6 SafePass : AtMostOneTrain;

7 }

8 }

The second part of a property file contains user-defined correctness

invariants, defined by its name and a boolean expression as its value.

Clauses of the boolean expressions are user-defined atomic propositions

(defined in the define section) which can be combined by standard

boolean operators to produce more complex expressions. Core Rebeca

supports &&, ||, and ! as symbols of and, or, and negation logical operators,

respectively. Back to the running example, the safe passage property can

be simply defined by AtMostOneTrain clause without using additional

boolean operator, as depicted in line 6 of Listing 2.8. Model checking

against this property results in reporting a counterexample the same as

the counterexample of Figure 2.5. To provide safe passage for trains, the

model has to be modified as shown in Listing 2.9. In this implementation

of the system, the bridge controller allows passage of trains only if

the number of trains on the bridge is zero. Afra generates a transition

system with 40 states and 113 transitions for this model and reports the

correctness of the model considering both predefined and user-defined

correctness invariants.
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7: More details about LTL are presented

in Appendix ??

Listing 2.9: The modified version of the

bridge control system which provides

safe passage of trains

1 reactiveclass BridgeController(4) {

2 ...

3 msgsrv arrive() {

4 if(trainsOnTheBridge == 0) {

5 updateNumberOfTrainsOnTheBridge(+1);

6 ((Train)sender).youMayPass();

7 } else {

8 ((Train)sender).reachBridge();

9 }

10 }

11 }

There is a set of complex correctness properties which can not be specified

by invariants. To support this set of correctness properties, Afra provides

verification of models against linear temporal logic (LTL) properties
7
.

The third part of the property file contains LTL correctness formulae.

An LTL formula over a set of atomic propositions is defined by its name

and the combination of logical expressions and LTL modalities as the

following:

▶ 𝑝: is the label of an atomic proposition which is defined in the

define part,

▶ G(𝜙): represents □𝜙 LTL formula (always) which 𝜙 is another LTL

formula,

▶ f(𝜙): represents ^ 𝜙 LTL formula (eventually) which 𝜙 is another

LTL formula,

▶ U(𝜙,𝜓): represents 𝜙 U𝜓 LTL formula (until) which 𝜙 an 𝜓 are

another LTL formulae,

▶ 𝜙 | |𝜓: represents 𝜙 ∨𝜓 LTL formula which 𝜙 an 𝜓 are another LTL

formulae,

▶ 𝜙&&𝜓: represents 𝜙 ∧ 𝜓 LTL formula which 𝜙 an 𝜓 are another

LTL formulae,

▶ !𝜙: represents ¬𝜙 LTL formula which 𝜙 is another LTL formula.

Back to the running example, one of the desired correctness properties

of the bridge control system is avoiding starvation in allowing trains to

pass the bridge. To define an LTL specification to examine this property,

some minor modifications to the model have to be applied. The message

server arrive is modified by adding an input parameter to it whose

value is the identifier of the train that wants to pass the bridge. If

the bridge decides to allow a train to pass, store the identifier of the

train in the lastTrainOnTheBridge state variable as shown in line 17 of

Listing 2.10.

Listing 2.10: The modified version of

the bridge control system which enabled

defining starvation avoidance property

1 reactiveclass Train(2) {

2 msgsrv reachBridge() {

3 bc.arrive(id);

4 }

5 ...

6 }

8 reactiveclass BridgeController(4) {

9 statevars {

10 byte trainsOnTheBridge;
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8: As described in Appendix ??, a coun-

terexample of a LTL correctness property

is a trace of execution which ends in a

loop.

11 byte lastTrainOnTheBridge;

12 }

13

14 msgsrv arrive(byte trainId) {

15 if(trainsOnTheBridge == 0) {

16 updateNumberOfTrainsOnTheBridge(+1);

17 lastTrainOnTheBridge = trainId;

18 ((Train)sender).youMayPass();

19 } else {

20 ((Train)sender).reachBridge();

21 }

22 }

23 ...

24 }

Using this variable, the starvation avoidance property can be defined

in the property file. As shown in Listing 2.11, two atomic propositions

are defined to capture passing the bridge by train1 and train2. Using

these atomic propositions, the LTL formula NoStarvation is defined to

ensure that in all states, both trains eventually pass the bridge. Model

checking of the model against NoStarvation reports the counterexample

of Figure 2.6. This counterexample shows a cycle in which infinite

execution of the model in this cycle results in violation of NoStarvation8
.

The reported counterexample illustrates that there is an execution trace

(the cycle of states 18, 19, 20, 21, and 81) that train1 sends arrivemessage

to controller as passes the bridge, but non-deterministic behavior of

train2 in reachBridge results in assigning false to isReached and no

try to pass the bridge.

Listing 2.11: Defining safe passage of

trains and starvation avoidance in the

property file

1 property {

2 define {

3 AtMostOneTrain = controller.trainsOnTheBridge < 2;

4 FirstTrainOnTheBridge = controller.lastTrainOnTheBridge == 1;

5 SecondTrainOnTheBridge = controller.lastTrainOnTheBridge == 2;

6 }

7 Assertion {

8 SafePass : AtMostOneTrain;

9 }

10 LTL {

11 NoStarvation : G(F(FirstTrainOnTheBridge) &&

F(SecondTrainOnTheBridge));

12 }

13 }

To resolve this problem the described LTL property has to be modified.

The modified version which is shown in Listing 2.13 illustrates that if a

train wants to pass the bridge, the bridge controller has to allow it. So,

remaining in the loop of not trying to pass the bridge in reachBridge

does not violate the NoStarvation property. Note that as the Rebeca

expression engine does not support implies operator, an expression

in the form of 𝜙 → 𝜓 has to be expressed in the form of ¬𝜙 ∨ 𝜓
expression. So, in the definition of the NoStarvation instead of using the

sub-formula FirstTrainWantsToPass → F(FirstTrainOnTheBridge,

we used (!FirstTrainWantsToPass) || F(FirstTrainOnTheBridge)

expression.
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Figure 2.6: A part of the counterexample

which reports the violation of the LTL

correctness property of NoStarvation in

the model

Applying this modification in the property file requires adding the

wantsToPass variable to the model as shown in Listing 2.13.

Listing 2.12: Defining safe passage of

trains and starvation avoidance in the

property file

1 property {

2 define {

3 AtMostOneTrain = controller.trainsOnTheBridge < 2;

4 FirstTrainOnTheBridge = controller.lastTrainOnTheBridge == 1;

5 SecondTrainOnTheBridge = controller.lastTrainOnTheBridge == 2;

6 FirstTrainWantsToPass = train1.wantsToPass;

7 SecondTrainWantsToPass = train2.wantsToPass;

8 }

9 Assertion {

10 SafePass : AtMostOneTrain;

11 }

12 LTL {

13 NoStarvation : G(

14 ((!FirstTrainWantsToPass) || F(FirstTrainOnTheBridge)) &&

15 ((!SecondTrainWantsToPass) || F(SecondTrainOnTheBridge))

16 );

17 }

18 }

Listing 2.13: The modified version of

the bridge control system which enabled

defining starvation avoidance property

in way that if a train wants to pass the

bridge, it will be allowed

1 reactiveclass Train(2) {

2 knownrebecs {

3 BridgeController bc;

4 }

5 statevars {

6 byte id;

7 boolean wantsToPass;

8 }

10 msgsrv reachBridge() {

11 boolean isReached = ?(true, false);

12 if(isReached) {

13 bc.arrive(id);

14 wantsToPass = true;

15 } else
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Figure 2.7: A part of the counterexample

which reports the violation of the LTL

correctness property of NoStarvation
in the model because of the unfair al-

gorithm of associating resources in the

bridge controller

16 self.reachBridge();

17 }

18 msgsrv passed() {

19 wantsToPass = false;

20 bc.leave();

21 self.reachBridge();

22 }

23 ...

24 }

Model checking the modified version of the model after applying the

mentioned modifications, reports another counterexample which is

shown in Figure 2.7. The loop of states 11, 12, 13, 14, 15, 16, 17 shows an

execution loop in which train1 passes the bridge infinitely, but all of

the requests of train2 are rejected by the bridge controller as train2

always sends its requests after train1. Having a fair algorithm for the

association of resources in the bridge controller requires allowing train2

to pass the bridge after train1, as it already sent its request.

Resolving this problem requires storing the identifier of the train that

its request is rejected by the bridge controller, then allowing it to pass

the bridge as soon as the bridge is free. Two variables rejectedTrainId

and rejectedTrain are defined in Listing 2.14 to store the mentioned

information. Consequently, two message servers arrive and leave have

to be modified to update and use the values of the mentioned two

variables in the case of rejecting the request of a train. Verification of the

model of Listing 2.14 reports satisfaction NoStarvation LTL property in

a transition system with 287 states and 1596 transitions.

Listing 2.14: The modified parts of the

bridge control system of Listing 2.10

which resolves starvation in the model

1 reactiveclass BridgeController(4) {

2 statevars {

3 byte trainsOnTheBridge;

4 byte lastTrainOnTheBridge;

5 byte rejectedTrainId;

6 Train rejectedTrain;

7 }
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8 ...

9 msgsrv arrive(byte trainId) {

10 if(trainsOnTheBridge == 0) {

11 updateNumberOfTrainsOnTheBridge(+1);

12 lastTrainOnTheBridge = trainId;

13 ((Train)sender).youMayPass();

14 } else {

15 rejectedTrain = (Train)sender;

16 rejectedTrainId = trainId;

17 }

18 }

19 msgsrv leave() {

20 updateNumberOfTrainsOnTheBridge(-1);

21 if(rejectedTrain != null) {

22 ((Train)rejectedTrain).youMayPass();

23 updateNumberOfTrainsOnTheBridge(+1);

24 lastTrainOnTheBridge = rejectedTrainId;

25 rejectedTrain = null;

26 }

27 }

28 }

Exercise 2.4.2 The proposed modification of Listing 2.14 only supports

having two trains. Use Afra to illustrate why it does not support having

three or more trains. Try to modify the model to support three or more

trains.

2.5 Case Studies

In the following, different case studies are presented to get more familiar

with how modeling and analysis of actor based systems is performed

using Core Rebeca.

2.5.1 Dining Philosophers

There is a group of philosophers sitting at a round table. Between

each adjacent pair of philosophers is a chopstick. In other words, the

chopsticks are equal to philosophers number. Each philosopher does two

activities: think and eat. The philosopher thinks for a while, and then stops

thinking and becomes hungry. When the philosopher becomes hungry,

he cannot eat until he owns the chopsticks to his left and right sides.

When the philosopher is done the eating, he puts down the chopsticks

and begins thinking again. The model of dining philosophers problem

that philosophers are communicating asynchronously is presented in

Listing 2.15.

Listing 2.15: The Rebeca model of the

Dining Philosophers problem

1 reactiveclass Philosopher(3) {

2 knownrebecs {

3 Chopstick chpL, chpR;

4 }

5 statevars {

6 boolean eating;
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7 }

8 Philosopher() {

9 eating = false;

10 self.think();

11 }

12 msgsrv think() {

13 chpL.request();

14 }

15 msgsrv permit() {

16 if (sender == chpL) {

17 chpR.request();

18 } else {

19 self.eat();

20 }

21 }

22 msgsrv eat() {

23 eating = true;

24 self.leave();

25 }

26 msgsrv leave() {

27 eating = false;

28 chpL.release();

29 chpR.release();

30 self.think();

31 }

32 }

34 reactiveclass Chopstick(3) {

35 knownrebecs {

36 Philosopher philL, philR;

37 }

38 statevars {

39 boolean lAssign, rAssign, leftReq, rightReq;

40 }

41 Chopstick() {

42 lAssign = false;

43 rAssign = false;

44 leftReq = false;

45 rightReq = false;

46 }

48 msgsrv request() {

49 if (sender == philL) {

50 leftReq = true;

51 if (!rAssign) {

52 lAssign = true;

53 philL.permit();

54 }

55 } else {

56 rightReq = true;

57 if (!lAssign) {

58 rAssign = true;

59 philR.permit();

60 }

61 }

62 }

63 msgsrv release() {

64 if (sender == philL){

65 leftReq = false;

66 lAssign = false;

67 if (rightReq) {

68 rAssign=true;

69 philR.permit();
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70 }

71 }

72 if (sender == philR){

73 rAssign = false;

74 rightReq = false;

75 if (leftReq) {

76 lAssign=true;

77 philL.permit();

78 }

79 }

80 }

81 }

83 main {

84 Philosopher phil0(chp0, chp2):();

85 Philosopher phil1(chp0, chp1):();

86 Philosopher phil2(chp1, chp2):();

88 Chopstick chp0(phil0, phil1):();

89 Chopstick chp1(phil1, phil2):();

90 Chopstick chp2(phil2, phil0):();

91 }

The correctness properties of the dining philosopher model are presented

in Listing 2.16. Using the Safety assertion, mutual exclusion is examined.

Model checking against this correctness formula, we make sure that it is

impossible that two philosophers access a same chopstick at a same time.

By NoStarvation formula, we make sure that all of the philosophers

can eat infinitely often. Finally, NoDeadlock makes sure that there is no

system-level deadlock in the model. So, in all conditions, at least one of

the philosophers is eating infinitely often.

Listing 2.16: The correctness property

specification of the Rebeca model of the

Dining Philosophers problem

1 property {

2 define {

3 p0eat = phil0.eating;

4 p1eat = phil1.eating;

5 p2eat = phil2.eating;

6 c0s = !(chp0.lAssign && chp0.rAssign);

7 c1s = !(chp1.lAssign && chp1.rAssign);

8 c2s = !(chp2.lAssign && chp2.rAssign);

9 }

11 Assertion {

12 Safety: c0s && c1s && c2s;

13 }

15 LTL {

16 NoStarvation: G(F(p0eat) && F(p1eat) && F(p2eat));

17 NoDeadlock: G(F(p0eat || p1eat || p2eat));

18 }

19 }

Exercise 2.5.1 Define more instances of philosophers in the model. Try

to answer the following questions:

▶ Is there a possibility of queue overflow when more instances are
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defined?

▶ What is the growth rate of the size of the state space in relation

with the number of philosophers?

2.5.2 Leader Election Problem

Leader election problem is selecting a node as a leader in a ring of n

nodes. In this ring, each node has a unique identifier which is supposed

to be an integer number. The leader shall be the node with the least id

among all of the ids. Each node knows its own id and can send messages

to one of the nodes next to it or both of them. The leader is selected by

sending messages to other nodes. At the beginning, each node introduces

itself as the leader to its neighbor(s). Each node compares the id in the

received message to its own leader id, and substitutes its leader id with

the new id received in the case that the received id is less than the current

leader id. If a change is made to a node’s leader id, it will declare this

change to its neighbors by sending messages to them, containing its new

leader id.

The HS algorithm is one of the solutions for the leader election problem.

Using HS algorithm, each node acts in a set of phases. Node i that is

in phase 1, sends a message containing its ID in two directions. These

messages pass through a 2
0

length way (forward-trip) and then return to

the sender (backward-trip). If both of the send messages are returned

to the sender, node i will continue acting in the next phase. In the next

phase, the message will pass through a 2
1

length way, then 2
2

and so on.

The sent messages might not get back to the node. When the message

sent by node i moves outwards this node, every node located in its way

compares its own leader ID to the ID in the message. If their own leader

ID is less than the ID in the message, it will be substituted. If their own

leader ID is greater than it, the message will be ignored. In the case they

are equal, this means that the node has received its own ID, so the node

selects itself as the leader. In the returning way, nothing is done to the

message and it just passes through the nodes. The algorithm terminates

when a node receives its sent messages from both sides with its own ID,

and each message has passed through half of the ring.

The Rebeca code of the HS algorithm is presented in Listing 2.17. Forward-

trip in this code is presented in lines 22 to 38. At the beginning of this

part, if the node receives a message which contains it id, assumes it self

as the leader and informs the other. If it is not this case, if it is the last

node in forward-trip, starts backward-trip by sending back the message

to its sender. Otherwise, the message is send to the next node if its id is

less than the id of the node. Backward-trip is presented in lines 40 to 55.

In this part, if the node receives its id for the first time, it sets the value of

oneResponseIsAlreadyReceived to true. The second receive of its own

id, the node is informed that it survived in this phase, so goes for the

next phase as shown in lines 42 to 45. If the received node is not its own,

the node send it to the next node.

Listing 2.17: The Rebeca model of the

Leader Election problem

1 reactiveclass Node(5) {

2 knownrebecs {

3 Node nodeL;
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4 Node nodeR;

5 }

6 statevars {

7 int id;

8 int phase;

9 boolean oneResponseIsAlreadyReceived;

10 int leaderId;

11 }

12 Node (int myId) {

13 id = myId;

14 phase = 0;

15 oneResponseIsAlreadyReceived = true;

16 leaderId = -1;

17 self.broadcast(id, false, 0);

18 }

20 msgsrv broadcast(int msgId, boolean out, int hopCount) {

21 if(out) {

22 if(msgId == id) {

23 leaderId = id;

24 nodeR.leaderIsElected(id);

25 } else {

26 if(hopCount == 1) {

27 if(msgId < id)

28 ((Node)sender).broadcast(msgId, false, 0);

29 } else {

30 if(msgId < id) {

31 if(sender == nodeL) {

32 nodeR.broadcast(msgId, out, hopCount - 1);

33 } else {

34 nodeL.broadcast(msgId, out, hopCount - 1);

35 }

36 }

37 }

38 }

39 } else {

40 if(msgId == id) {

41 if(oneResponseIsAlreadyReceived) {

42 nodeL.broadcast(id, true, (int)pow(2, phase));

43 nodeR.broadcast(id, true, (int)pow(2, phase));

44 phase++;

45 oneResponseIsAlreadyReceived = false;

46 } else {

47 oneResponseIsAlreadyReceived = true;

48 }

49 } else {

50 if(sender == nodeL) {

51 nodeR.broadcast(msgId, false, 0);

52 } else {

53 nodeL.broadcast(msgId, false, 0);

54 }

55 }

56 }

57 }

58 msgsrv leaderIsElected(int selectedLeaderId) {

59 leaderId = selectedLeaderId;

60 if(leaderId != id)

61 nodeR.leaderIsElected(selectedLeaderId);

62 else

63 self.leaderIsElected(id);

64 }

65 }
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67 main {

68 Node node1(node4,node2):(1);

69 Node node2(node1,node3):(2);

70 Node node3(node2,node4):(3);

71 Node node4(node3,node1):(4);

72 }

The correctness properties of the leader election model are presented in

Listing 2.18. Using the Safety assertion, We make sure that in all of the

states, there is no possibility for selection a wrong node as a leader, even

for a very short period of time. By CorrectLeader formula, we examine

that if node1 decides to announce itself as a leader, eventually all of the

nodes accept it as the leader.

Listing 2.18: The correctness property

specification of the Rebeca model of the

Leader Election problem

1 property {

2 define {

3 newLeaderIsElected = (node1.leaderId == 1);

4 TheSameLeaderIds = (node1.leaderId == node2.leaderId) &&

5 (node2.leaderId == node3.leaderId) &&

6 (node3.leaderId == node4.leaderId);

7 validIdsInNode1 = node1.leaderId == -1 || node1.leaderId == 1;

8 validIdsInNode2 = node2.leaderId == -1 || node2.leaderId == 1;

9 validIdsInNode3 = node3.leaderId == -1 || node3.leaderId == 1;

10 validIdsInNode4 = node4.leaderId == -1 || node4.leaderId == 1;

11 }

12 Assertion {

13 Safety: validIdsInNode1 && validIdsInNode2 && validIdsInNode3

&& validIdsInNode4;

14 }

15 LTL {

16 CorrectLeader : G(!newLeaderIsElected || F(TheSameLeaderIds));

17 }

18 }





1: after can also be used to model pe-

riodic behavior in realtime systems. For

example, if a message server task1 has

to be executed periodically in every 3

units of time, its body has to contains the

statement self.task1() after(3);

Timed Rebeca 3
Timed Rebeca [13] is an extension of Rebeca with time features for

modeling and verification of time-critical systems. In a Timed Rebeca

model, each actor has its own local clock and the local clocks evolve

uniformly. Methods are still executed atomically, however passing time

while executing a method can be modeled. In addition, instead of a

queue for messages, there is a bag of messages for each actor. The size of

message bags is specified the same as setting queue sizes in Core Rebeca.

Three primitives are added to Rebeca to address computation time, message
delivery time, message expiration, and period of occurrence of events features.

These timing primitives are delay, deadline and after.

The delay statement models the passing of time for an actor during the

execution of a message server. The input parameter of delay illustrates

the delay time which can be any kind of integer-valued expression, as

shown in the below examples.

delay(10);

delay(a + 6);

delay(localMethod());

delay(?(1, 4, 5));

The keywords after and deadline can only be used in conjunction with

a message sending statement. The value of the argument of after shows

how long it takes for the message to be delivered to its receiver actor
1
.

The deadline shows the timeout for the message, i.e., how long it will

stay valid. The given parameters of after and deadline can be any kind

of integer-valued expressions, as shown in the following examples.

actor1.msgsrv1() after(10);

actor1.msgsrv1() deadline(a + 6);

actor1.msgsrv1() after(4) deadline(3);

actor1.msgsrv1() after(?(2, 3)) deadline(localMethod());

We illustrate the application of these keywords by modifying the first im-

plementation of the running example. Listing 3.1 shows the Timed Rebeca

model of the bridge controller system. The clause after(1) associated

with arrive in line 16 specifies the network delay in communication

between trains and the controller. The same happened in lines 24 and

24. The clause deadline(5) associated with arrive in line 16 illustrates

that this message has to be server prior to passing 5 units of time which

is its execution period. By sending reachBridge in line 17 which will

be delivered to the train after 5 units of time, the recurrent behavior

of the model is specified. In this model, delay(2) in 20 illustrates that

passing the bridge by a train takes 2 units of time. Note that all statements

other than delays are assumed to be executed instantaneously in Timed

Rebeca.

Listing 3.1: The Timed Rebeca model of

the bridge control system

1 reactiveclass Train(3) {
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2 knownrebecs {

3 BridgeController bc;

4 }

5 statevars {

6 byte id;

7 }

8

9 Train(byte myId) {

10 id = myId;

11 self.reachBridge();

12 }

13 msgsrv reachBridge() {

14 boolean isReached = ?(true, false);

15 if(isReached)

16 bc.arrive(id) after(1) deadline(5);

17 self.reachBridge() after(5);

18 }

19 msgsrv youMayPass() {

20 delay(2);

21 self.passed();

22 }

23 msgsrv passed() {

24 bc.leave() after(1);

25 }

26 }

28 reactiveclass BridgeController(10) {

29 statevars {

30 byte trainsOnTheBridge;

31 byte lastTrainOnTheBridge;

32 }

33

34 BridgeController() {

35 trainsOnTheBridge = 0;;

36 }

37 msgsrv arrive(byte trainId) {

38 delay(1);

39 if(trainsOnTheBridge == 0) {

40 updateNumberOfTrainsOnTheBridge(+1);

41 ((Train)sender).youMayPass() after(1);

42 }

43 }

44 msgsrv leave() {

45 updateNumberOfTrainsOnTheBridge(-1);

46 }

47 void updateNumberOfTrainsOnTheBridge(byte value) {

48 trainsOnTheBridge += value;

49 }

50 }

52 main {

53 BridgeController controller():();

54 Train train1(controller):(1);

55 Train train2(controller):(2);

56 Train train3(controller):(3);

57 Train train4(controller):(4);

58 Train train5(controller):(5);

59 }

The same as Core Rebeca, the order of execution of enabled actors in

Timed Rebeca are arbitrary. In Timed Rebeca, an actor is enabled if it is

not busy with handling a message and its message bag has a message
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which its time tag is less than the local time tag of that actor. In the

case of having more than one message which satisfies this condition,

the message with the smallest time tag will be executed. Finally, if there

are more that one message with the smallest time tags, one of them is

nondeterministically selected. When there is no more enabled actor in

the model, the progress of time happens. The amount of time progress is

the smallest value that makes at least one actor enabled.

3.1 Analysis of Timed Rebeca Models

The current version of Afra provides limited facilities for the analysis

of Timed Rebeca models, which is verification against satisfaction of

propositional logic expressions (correctness assertions). Afra analyzes

models against a set of predefined assertions which are the predefined as-

sertions of Core Rebeca models, in addition to deadline-missed avoidance.

Besides the mentioned predefined correctness conditions, Afra supports

verification against user-defined correctness assertions for Timed Rebeca

models. User-defined correctness assertions in Timed Rebeca are defined

the same as user-defined correctness assertions in Core Rebeca. Note that

there is no way to access to the local time of actors in the used-defined

correctness properties.

Model checking of the model of Listing 3.1 shows that there is no assertion

violation in the model by analyzing an state space with more than four

million states. However, having six instances of trains in the model results

in missing the deadline of the execution of arrival messages at time

6.

Exercise 3.1.1 Try to find an interpretation for the missed deadline of

this model using the reported counter example of Afra. Try to fix this

error by changing the timing of the model.

3.2 Case Studies

In the following, different case studies are presented to get more familiar

with how modeling and analysis of actor based systems is performed

using Timed Rebeca.

3.2.1 A Ticket Service System

Listing 3.2 shows the Timed Rebeca model of a ticket service system.

In this system, a client asks a ticket from an agent and the agent tries

to issue a ticket by interacting with a ticket service server. As shown

in the model, receiving a new ticket by a customer result in asking for

the next ticket after 30 units of time. So, the customer shows a periodic

behavior. This model also illustrates that issuing a ticket may takes 2 or

3 units of time as mentioned in the message server requestTicket of

TicketService.
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Listing 3.2: The Timed Rebeca model of

the Ticket Service problem

1 reactiveclass Customer(3) {

2 knownrebecs { Agent agent; }

3 statevars { byte id; }

4 Customer(byte myId) {

5 id = myId;

6 self.try();

7 }

8 msgsrv try() {

9 agent.requestTicket();

10 }

11 msgsrv ticketIssued() {

12 self.try() after(30);

13 }

14 }

15 reactiveclass Agent(10) {

16 knownrebecs { TicketService ticketService; }

17 msgsrv requestTicket() {

18 ticketService.requestTicket((Customer)sender) deadline(24);

19 }

20 msgsrv ticketIssued(Customer customer) {

21 customer.ticketIssued();

22 }

23 }

24 reactiveclass TicketService(10) {

25 msgsrv requestTicket(Customer customer) {

26 delay(?(2, 3));

27 ((Agent)sender).ticketIssued(customer);

28 }

29 }

30 main {

31 Agent a(ts):();

32 TicketService ts():();

33 Customer c1(a):(1);

34 Customer c2(a):(2);

35 }

Exercise 3.2.1 Try to find the maximum number of customer that

the ticket service system can serve without missing deadlines. Try to

change timings to support more clients.

3.2.2 A Toxic Gas Sensing System

The second case study of this section is the model of a lab environment

in which the level of a toxic gas changes over time. If this level rises above

a certain threshold, the scientist’s life of the lab is in danger. Sensors in

the lab constantly measure the amount of toxicity in the air and send the

measurements to a central controller which periodically checks whether

the scientist is in danger. If so, it notifies the scientist about the danger.

The scientist should acknowledge the alarm; if he fails to do so in a timely

manner, the controller notifies a rescue team. When the team reaches

the lab it notifies the controller that the scientist has been rescued. If

the controller does not receive this notification, it is concluded that the

scientist has lost his life.

The Timed Rebeca model of this system is shown in Listing 3.3 and con-

tains four reactive classes: Sensor, Controller, Scientist, and Rescue.
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The sensors periodically measure the level of toxic gas in the environ-

ment (which is modeled by the nondeterministic assignment of line 10).

After sensing, they report the measured data to the only Controller

instance. Upon receiving the measured data from each Sensor (in the

report message server), Controller stores the value in its correspond-

ing location of sensorValues state variable. Periodically, checkSensors

examines if the received values are above the normal. If high toxicity is

detected, Controller alarms Scientist, and schedules a task to check

for receiving the scientist’s acknowledgment (line 38). If the controller

does not receive an ack message from Scientist, the rescue team is

informed. The controller sets a time-out for receiving the rescue notifi-

cation by sending itself a checkRescue message (line 52). Note that all

of the communications among actors in this model takes 1 unit of time,

shown by after(1).

Listing 3.3: The Rebeca model of the

Scientific Lab which may have toxic gas

1 reactiveclass Sensor(2) {

2 knownrebecs { Controller ctrl; }

3 statevars { byte period, id; }

4 Sensor(byte myId, byte myPeriod) {

5 period = myPeriod;

6 id = myId;

7 self.doReport();

8 }

9 msgsrv doReport() {

10 ctrl.report(id, ?(0,1)) after(1);

11 self.doReport() after(period);

12 }

13 }

14 reactiveclass Controller(4) {

15 knownrebecs {

16 Scientist scientist;

17 Rescue rescue;

18 }

19 statevars {

20 byte[2] sensorValues;

21 boolean sciAck, sciRescued, sciDead;

22 int ctrlCheckPeriod, scientistDeadline, rescueDeadline;

23 }

24 Controller() {

25 scientistDeadline = 5;

26 rescueDeadline = 4;

27 ctrlCheckPeriod = 15;

28 self.checkSensors();

29 }

30 msgsrv report(byte id, byte value) {

31 sensorValues[id] = value;

32 }

33 msgsrv checkSensors() {

34 boolean dangerousConditionIsDetected = false;

35 for(int i = 0; i < 2; i++) {

36 if(sensorValues[i] != 0) {

37 scientist.abortPlan() after(1);

38 self.checkSciAck() after(scientistDeadline);

39 dangerousConditionIsDetected = true;

40 break;

41 }

42 }

43 if(!dangerousConditionIsDetected)

44 self.checkSensors() after(ctrlCheckPeriod);
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45 }

46 msgsrv ack() {

47 sciAck = true;

48 }

49 msgsrv checkSciAck() {

50 if (!sciAck) {

51 rescue.go() after(1);

52 self.checkRescue() after(rescueDeadline);

53 }

54 sciAck = false;

55 }

56 msgsrv rescueReached() {

57 sciRescued = true;

58 }

59 msgsrv checkRescue() {

60 if (!sciRescued)

61 sciDead = true;

62 }

63 }

64 reactiveclass Scientist(3) {

65 msgsrv abortPlan() {

66 if(?(true, false))

67 ((Controller)sender).ack() after(1);

68 }

69 }

70 reactiveclass Rescue(3) {

71 msgsrv go() {

72 delay(1);

73 ((Controller)sender).rescueReached() after(1);

74 }

75 }

76 main {

77 Sensor sensor0(ctrl):(0, 10);

78 Sensor sensor1(ctrl):(1, 9);

79 Scientist scientist():();

80 Rescue rescue():();

81 Controller ctrl(scientist, rescue):();

82 }

Exercise 3.2.2 What is the maximum delay time of the rescue team

(mentioned in line 72) which does not result in the death of the scientist?
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Probabilistic Timed Rebeca supports modeling and verification of real-

time systems with probabilistic behaviors [14]. In Probabilistic Timed

Rebeca, the time model is discrete (the same as Timed Rebeca), and dis-

crete probability distributions are used. For Probabilistic Timed Rebeca,

the syntax of Timed Rebeca is extended, considering possible probabilis-

tic aspects that could exist in an actor based system. An actor can exhibit

different alternative behaviors with some probability. Such as a node in

the network which can behave differently in each of the safe or failure

states. Also, messages can be lost in the case of unreliable communication

media [15]. To address the mentioned probabilistic features, probabilistic
expression and pAlt statements are added to the language.

In a probabilistic expression, the result value is one of its alternative

with the specified probability. The value of the probabilistic expression

?(𝑝1: 𝑒1 , 𝑝2: 𝑒2 , · · · , 𝑝𝑛: 𝑒𝑛) is 𝑒1 with the probability of 𝑝1, it is 𝑒2 with the

probability of 𝑝2, etc. Here, 𝑝1 . . . 𝑝𝑛 are real value expressions between

0 and 1, and sum up to 1. Note that 𝑝1 . . . 𝑝𝑛 have to be evaluatable in

compile time to make sure that their summation in 1. Using probabilistic

assignments, the value of the timing constructs (delay, after, and

deadline) can also become probabilistic. Considering the following

example, the value of variable delayTime is 1 with the probability of 0.7

and 2 with the probability of 0.3.

delayTime = ?(0.7:1, 0.3:2);

The pAlt statement denotes probabilistic choice between alternative

behaviors. In the pAlt structure, each block of statements may be executed

by the mentioned probabilities. The same as probabilistic expression,

the given probabilities have to be evaluatable in compile time and their

summation has to be 1. Considering the following example, the value

of x may be incremented by one with probability 0.3 or it would be

decremented by one with probability 0.7.

Listing 4.1: The way of using the pAlt

statement in Probabilistic Timed Rebeca

1 msgsrv performingProbabilisticBehavior() {

2 /* Some Statements*/

3 pAlt {

4 prob(0.3): {

5 x=x+1;

6 }

7 prob(0.7): {

8 x=x-1;

9 }

10 }

11 /* Some Statements*/

12 }

We illustrate the application of Probabilistic Timed Rebeca in the extended

version of the running example in Listing 4.2. The pAlt statement in

lines ?? to ?? shows that there is a probability of 0.1 for not sending the
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gathered data to CompUnit (it models the behavior of loosing a massage

in an unreliable communication medium). In this case, the value of after

clause is set to 1. Another probabilistic behavior of this model is in the

computation delay time in line ??.

Listing 4.2: The Probabilistic Timed Re-

beca model of the WSAN application

1 reactiveclass Sensor(3) {

2 knownrebecs{ CompUnit cu; }

3 statevars { int id; }

4 Sensor(int myId) { ... }

5 msgsrv gatherData() {

6 byte data = ?(1,2,3);

7 pAlt

{|\label{listing::probabilistic-timed-rebeca::pAlt::begin}|

8 prob(0.9): {

9 cu.receiveData(data) deadline(3);

10 self.gatherData() after(2);

11 }

12 prob(0.1): {

13 self.gatherData() after(1);

14 }

15 }

16 cu.receiveData(data) deadline(3);

17 self.gatherData() after(2);

18 }|\label{listing::probabilistic-timed-rebeca::pAlt::end}|

19 }

21 reactiveclass CompUnit(3) {

22 knownrebecs { RCD rcd; }

23 statevars { byte receivedDataCounter; }

24 CompUnit() { ... }

25 msgsrv receiveData(byte data) {

26 delay(?(0.6:1, 0.3:2,

0.1:4));|\label{listing::probabilistic-timed-rebeca::delay}|

27 if(isValid(data)

28 rcd.send(data);

29 }

30 bool isValid(byte data) { ... }

31 }

33 reactiveclass Network (3) {

34 msgsrv send(byte data) { ... }

35 }

37 main {

38 Sensor sensor(cu):(1);

39 CompUnit cu(network):();

40 Network network():();

41 }

4.1 Analysis of Probabilistic Timed Rebeca
Models
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5.1 Environment Variables

In Rebeca, modelers are allowed to define constant variables using env

keyword. In Listing 5.1 the network delay between trains and the bridge

controller is set using the NET_DELAY environment variable. The type

of environment variables can be any of primitive types. For the case of

defining arrays, the size of arrays (as a part of state variables) should be

compile-time evaluatable integer expressions.

Listing 5.1: The modified parts of the

Timed Rebeca model of Listing 3.1 which

illustrates how network delays are set

using an environment variable.

1 env int NET_DELAY = 1;

2 reactiveclass Train(3) {

3 ...

4 msgsrv reachBridge() {

5 boolean isReached = ?(true, false);

6 if(isReached)

7 bc.arrive(id) after(NET_DELAY) deadline(5);

8 self.reachBridge() after(5);

9 }

10 msgsrv passed() {

11 bc.leave() after(NET_DELAY);

12 }

13 }

15 reactiveclass BridgeController(10) {

16 ...

17 msgsrv arrive(byte trainId) {

18 delay(1);

19 if(trainsOnTheBridge == 0) {

20 updateNumberOfTrainsOnTheBridge(+1);

21 ((Train)sender).youMayPass() after(NET_DELAY);

22 }

23 }

24 }

5.2 Inheritance and Polymorphism

Like most other object-oriented programming and modeling languages,

Rebeca provides mechanisms for reusing codes through subclassing. A

modeler is able to define a new reactive class as a subclass of an existing

reactive class, using inheritance mechanism. This is stated using extends

keyword followed by the name of the base reactive class, prior to the

queue size declaration. This way, the new reactive class inherits all the

known rebecs, state variables, message servers, and local methods of

the base reactive class. Rebeca also supports polymorphism through

dynamic binding of the message servers. Since a subclass cannot remove

any message server inherited from its superclass, its type is compatible

with that of the superclass. Hence, it is possible to assign an instance of
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Attention

The current version of Afra only sup-

ports declaration of default construc-

tor for super classes.

a subclass to a reference of the superclass. The actual message server

invoked when processing a message is determined by the class of the

receiving actor (not the type of the reference). This allows for improving

code organization and readability as well as the creation of extensible

programs [16] .

Listing 5.2 illustrates how the behavior of trains that contain hazardous

cargo are implemented using inheritance. For the case of trains with

none-hazardous cargo, upon leaving the bridge, other trains are allowed

to pass the bridge. For the case of trains with hazardous cargo, the bridge

has to remain reserved for some amount of time, then other trains are

allowed to pass it, as depicted in the considerSafetyDistance message

server.

Listing 5.2: The Timed Rebeca model of

the bridge control system which contains

hazardous-cargo trains

1 env int NET_DELAY = 1;

2 reactiveclass Train(3) {

3 knownrebecs { BridgeController bc; }

4 statevars { byte id; }

5

6 Train(byte myId) { ... }

7 msgsrv reachBridge() { ... }

8 msgsrv youMayPass() {

9 delay(2);

10 self.passed();

11 }

12 msgsrv passed() {

13 bc.leave() after(NET_DELAY);

14 }

15 }

17 reactiveclass HazardousCargoTrain extends Train (3){

18 HazardousCargoTrain(byte myId) {

19 id = myId;

20 self.reachBridge();

21 }

22 msgsrv passed() {

23 self.considerSafetyDistance();

24 }

25 msgsrv considerSafetyDistance() {

26 delay(5);

27 bc.leave() after(NET_DELAY);

28 }

29 }

31 reactiveclass BridgeController(10) {

32 ...

33 }

35 main {

36 BridgeController controller():();

37 Train train1(controller):(1);

38 Train train2(controller):(2);

39 Train train3(controller):(3);

40 HazardousCargoTrain train4(controller):(4);

41 HazardousCargoTrain train5(controller):(5);

42 }

An abstract reactive class is defined when a modeler wants to manipulate

a set of classes through their common interface. Rebeca provides this by
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enabling abstract message server definition. An abstract message server

has only a declaration and no implementation. A reactive class containing

abstract message servers is called an abstract reactive class. Inheriting

from an abstract reactive class requires providing definitions for all the

abstract message servers in the base reactive class. Otherwise, the derived

reactive class is also abstract, and the compiler forces the modeler to

qualify that reactive class with the abstract keyword. In Listing 5.3, the

new implementation of the bridge control system with the abstract Train

reactive class is presented. Both NormalTrain and HazardousCargoTrain

have to inherit from Train and provide implementation for the passed

message server.

Listing 5.3: The Timed Rebeca model of

the bridge control system with the Train

abstract reactive class

1 env int NET_DELAY = 1;

2 abstract reactiveclass Train(3) {

3 knownrebecs {

4 BridgeController bc;

5 }

6 statevars {

7 byte id;

8 }

9 msgsrv reachBridge() {

10 boolean isReached = ?(true, false);

11 if(isReached)

12 bc.arrive(id) after(NET_DELAY) deadline(5);

13 self.reachBridge() after(5);

14 }

15 msgsrv youMayPass() {

16 delay(2);

17 self.passed();

18 }

19 abstract msgsrv passed();

20 }

21 reactiveclass NormalTrain extends Train(3) {

22 NormalTrain(byte myId) {

23 id = myId;

24 self.reachBridge();

25 }

26 msgsrv passed() {

27 bc.leave() after(NET_DELAY);

28 }

29 }

31 reactiveclass HazardousCargoTrain extends Train (3){

32 HazardousCargoTrain(byte myId) {

33 id = myId;

34 self.reachBridge();

35 }

36 msgsrv passed() {

37 delay(5);

38 self.considerSafetyDistance();

39 }

40 msgsrv considerSafetyDistance() {

41 bc.leave() after(NET_DELAY);

42 }

43 }

45 reactiveclass BridgeController(10) {

46 ...

47 }
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Attention

In Rebeca, defining multiple in-

terface implementation is allowed,

which can be assumed as a kind of

multiple inheritances.

49 main {

50 BridgeController controller():();

51 Train train1(controller):(1);

52 Train train2(controller):(2);

53 Train train3(controller):(3);

54 HazardousCargoTrain train4(controller):(4);

55 HazardousCargoTrain train5(controller):(5);

56 }

In some cases, there is a need for defining a completely abstract reactive

class, i.e., a reactive class that provides no implementation at all. This

requirement can be realized by defining an interface instead of a

reactive class. Using interfaces allows a modeler to determine message

server names and their argument lists, but no bodies, no known rebecs,

and no state variables. So, it provides only a type, not any implementation.

Interfaces and abstract classes provide more structured way to separate

interface from implementation.

A reactive class is allowed to provide implementation for message servers

of an interface using implements keyword. The reactive class must

provide method definitions for all the message servers of the interface. If

it doesn’t, the reactive class is abstract and it must be explicitly declared

using abstract keyword. An example of using interfaces in Rebeca is

illustrated in Listing 5.4. In this example, an interface is defined for

the bridge controller. Using this interface, in addition to the normal

bridge controller, a new implementation for the bridge controller which

considers the safety requirements of passage of trains with hazardous

cargo can be provided.

Listing 5.4: The Timed Rebeca model

of the bridge control system which

contains the interface declaration

BridgeController

1 abstract reactiveclass Train(3) {

2 knownrebecs {

3 BridgeController bc;

4 }

5 ...

6 }

8 reactiveclass NormalTrain extends Train(3) { ... }

10 reactiveclass HazardousCargoTrain extends Train(3) { ... }

12 interface BridgeController {

13 msgsrv arrive();

14 msgsrv leave();

15 }

17 reactiveclass ConsidersSaferyBridgeController implements

BridgeController (10) {

18 msgsrv arrive() { ... }

19 msgsrv leave() { ... }

20 }

22 main {

23 ConsidersSaferyBridgeController controller():();

24 NormalTrain train1(controller):(1);

25 NormalTrain train2(controller):(2);

26 HazardousCargoTrain train3(controller):(3);
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Attention

Note that using both priority and

globalPriority in a model is not

allowed.

27 HazardousCargoTrain train4(controller):(4);

28 }

5.3 More Deterministic Models

In concurrency theory, nondeterminism serves as a foundational concept

for modeling concurrent systems. Hewitt actors are specifically designed

to facilitate the development of distributed and networked applications.

Recently, there has been a growing trend to incorporate greater deter-

minism into language models, drawing inspiration from synchronous

languages (e.g. Edward Lee et.al. in [17]. Furthermore, many applications

rely on predefined priorities to effectively manage task scheduling. In

this context, we describe how priorities can be integrated as annotations

in Timed Rebeca, enhancing its support for applications that require

structured task ordering.

In Rebeca, the semantics of the language dictate that the execution of

enabled actors occurs in a nondeterministic order. An actor is considered

enabled when it is not busy processing a message and its message

queue is not empty. Each actor has a message queue; where messages

sent from one actor to another are delivered in the same order as they

were sent, ensuring point-to-point, in-order message delivery within

an actor. However, no assumptions can be made regarding the order

of messages sent from different actors. For Timed Rebeca, the order of

handling messages of an actor depends on the time tags of the messages.

When multiple messages have the same time tag, they are handled

in a nondeterministic manner (see [13] for a formal definition of the

semantics).

To enhance the determinism of actor behavior –particularly essential for

real-time and embedded systems– Rebeca allows associating priorities

with actors and message servers. Priorities for actors are specified in

the main code section where actor instances are created from reactive

classes. This way, the execution of enabled actors takes place considering

the associated priorities. Note that associating the same priority level

with actors results in the nondeterministic choice among the actors when

more than one of them are enabled.

In addition to the cases mentioned above, each reactive class is allowed

to prioritize the execution of its message servers. It means that in the case

of receiving two messages with the same time tag, the message server

which is annotated with a higher priority will be executed first. Note

that associating the same priority level with message servers of an actor

results in the nondeterministic choice among the messages when they

have the same time tag.

Finally, in some cases, associating priorities to actors and methods within

classes does not give us the order of execution of methods we are looking

for. Hence, we also added another feature to Timed Rebeca. This is a

flat type of priority throughout the whole model which we call Global
Priority.
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5.3.1 Incorporating Priorities into the Model

In more deterministic version of the bridge controller system of Listing 5.4,

we aim to ensure that trains carrying hazardous cargo are given higher

execution priorities. As depicted in Listing 5.5, two different priority levels

are associated with the actor instances using priority annotations(lines 6

and 8). Having a smaller value for priority annotations means that the

actor has a higher execution priority. In Listing 5.5, the highest priority is

associated with train4 and train5 has the next priority. As no priority is

associated with train1, train2, and train3, they have the same priority

which is the lowest priority.

Listing 5.5: The Timed Rebeca model

of the bridge control system which

contains the interface declaration

BridgeController

1 main {

2 BridgeController controller():();

3 NormalTrain train1(controller):(1);

4 NormalTrain train2(controller):(2);

5 NormalTrain train3(controller):(3);

6 @priority(1)

7 HazardousCargoTrain train4(controller):(4);

8 @priority(2)

9 HazardousCargoTrain train5(controller):(5);

10 }

In Listing 5.6, we prioritize the handling of a leave message over an

arrive in ConsidersSaferyBridgeController. This prioritization is

essential because the controller must ensure that the bridge is cleared

before allowing additional trains to enter.

Listing 5.6: The Timed Rebeca

model of the bridge control system

which contains association of pri-

ority with the message servers of

ConsidersSaferyBridgeController

1 interface BridgeController {

2 msgsrv arrive();

3 msgsrv leave();

4 }

6 reactiveclass ConsidersSaferyBridgeController implements

BridgeController (10) {

7 @priority(2)

8 msgsrv arrive() { ... }

9 @priority(1)

10 msgsrv leave() { ... }

11 }

Similar to the prioritization of actor instances and message servers, the

handling of global priority is achieved through the annotation mecha-

nism. To associate global priority to a message server, @globalPriority

annotation is utilized.

5.3.2 Analysis of Rebeca Models with Priorities

The model checking engine of Afra operates under the assumption that

all actors and methods in the given model have assigned priorities. If an

actor or message server lacks an associated priority, Afra defaults to the

lowest priority for it. During each step of generating the transition system
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(a) The transition system of the bridge controller system that no

priority is associated with actor instances
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(b) The transition system of the bridge controller

system that priorities are associated with actor

instances

Figure 5.1: Comparing transition systems of two implementations of the model the bridge control system, which are no priority is

associated with actors (a) and associating priorities with actors (b).

for a model, Afra selects the highest priority enabled message from the

actor with the highest priority. In instances where multiple methods or

actors share the same priority level, one is chosen nondeterministically.

Figure 5.1 compares the initial segments of the transition systems for

the bridge control system, both with and without associated priorities

for actor instances. As mentioned before, including priorities reduces

nondeterministic choices, resulting in smaller transition systems. As

shown in 5.1(a), there are 10 outgoing transitions from the state S0,

with two transitions for each actor. This is due to the nondeterministic

assignment in the reachBridge message server for both types of trains.

This high branching factor leads to a significantly large transition system,

comprising 5,334,795 states and 13,459,394 transitions.

In contrast, when priorities are assigned to the actors, as shown in

Listing 5.5, the transition system appears as depicted in 5.1(b). In this

case, train4 has the highest priority, so the outgoing transitions of S0

pertain to this actor. At the next step, outgoing transitions of S1 and S2

correspond to the execution of the message server of train5, as it is the

enabled actor with the highest priority among the others. Finally, S3

has seven outgoing transitions due to the presence of four other actors

having the same lowest priority level. This transition system consists of

3,656,612 states and 6,819,689 transitions, which is significantly smaller

than the transition system presented in 5.1(a).
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