
Formal Verification of Cyber-Physical Systems

Marjan Sirjani
Cyber-Physical Systems Analysis Group
Mälardalen University
Västerås, Sweden

Feb. 19, 2024
NTNU: Norwegian University of Science and
Technology
Trondheim, Norway

Acknowledgment: Edward Lee, UC Berkeley
Acknowledgment: All the Rebeca Team

Background

Recent Projects and experience with industry
• Serendipity: Secure and Dependable Platforms for Autonomy (SSF- 2018-2024), VCE

• SACSys: Safe and Secure Adaptive Collaborative Systems (KKS - 2019-2024), VCE, Volvo
GTO, Volvo Cars, ABB Robotics

• DPAC: Dependable Platforms for Autonomous systems and Control (KKS – 2015-2023), 12
companies …

82

• Distributed Systems and Actors since 2000
• Carolyn Talcott (SRI), Gul Agha (UIUC) since 2005

• Concurrency Theory and Formal verification since 2000
• Mohammad Reza Mouasavi (King’s College London), Christel Baier (UT

Dresden) since 2003
• Coordination Languages since 2003

• Farhad Arbab, Frank de Boer, Jan Rutten (CWI) since 2003
• Timed and Cyber-Physical Systems since 2007

• Edward Lee (UC Berkeley) since 2015

Cyber-Physical Systems Everywhere!

83

PLCs Cabinet

W
a

te
r

T
a

n
k
s

R
e

v
e

rs
e

 O
s
m

o
s
is

 (
R

O
)

U
n

it

Industrial Automation Interoperable Medical Devices

Automotive Software

Quarry Fleet
Management

Complex Systems: Connected via
network, and Time-Sensitive

84Volvo Cars Driver Assistance Systems
https://www.volvocars.com/intl/v/car-safety/driver-assistance

Vehicle-2-Everything(V2X) Communication

https://www.volvocars.com/intl/v/car-safety/driver-assistance

Complex Systems: Connected via
network, and Time-Sensitive

85Volvo Cars Driver Assistance Systems
https://www.volvocars.com/intl/v/car-safety/driver-assistance

Vehicle-2-Everything(V2X) Communication

https://www.volvocars.com/intl/v/car-safety/driver-assistance

Complex Systems: Connected via
network, and Time-Sensitive

86
ABB Robotics
https://applicationbuilder.robotics.abb.com/en/home

Collaboration of Robots and Humans

https://applicationbuilder.robotics.abb.com/en/home

87

https://theintercept.com/2023/01/10/tesla-crash-footage-autopilot/
https://www.youtube.com/watch?v=WYpzk6TEViQ

Can We Trust Self-Driving Cars?
Tesla’s new “Full Self-Driving” feature decided to
change lanes and then brakes and stops on the Bay Bridge

https://theintercept.com/2023/01/10/tesla-crash-footage-autopilot/
https://www.youtube.com/watch?v=WYpzk6TEViQ

88
https://theintercept.com/2023/01/10/tesla-crash-footage-autopilot/
https://www.youtube.com/watch?v=WYpzk6TEViQ

TESLA CRASH - An eight-car pileup on Nov. 24, 2022, on San Francisco’s Bay Bridge.
Photo: California Highway Patrol

Tesla’s new “Full Self-Driving” feature decided to
changes lanes and then brakes and stops on the Bay Bridge

https://theintercept.com/2023/01/10/tesla-crash-footage-autopilot/
https://www.youtube.com/watch?v=WYpzk6TEViQ

89
https://theintercept.com/2023/01/10/tesla-crash-footage-autopilot/
https://www.youtube.com/watch?v=WYpzk6TEViQ

TESLA CRASH - An eight-car pileup on Nov. 24, 2022, on San Francisco’s Bay Bridge.
Photo: California Highway Patrol

Tesla’s new “Full Self-Driving” feature decided to
changes lanes and then brakes and stops on the Bay Bridge

https://theintercept.com/2023/01/10/tesla-crash-footage-autopilot/
https://www.youtube.com/watch?v=WYpzk6TEViQ

Much older incidents

NASA's Toyota Study (US Dept. of Transportation, 2011)
found that Toyota software was “untestable.”

90

Possible
victim of

unintended
acceleration

Industrial robot crushes man to death in South
Korean distribution centre
Nov. 10, 2023

Machine identified man
inspecting it as one of the
boxes it was stacking

BUT …
Cyber-Physical Systems are helping …

• Smart cars help!
• Our not very smart car prevented a few

accidents already!

92

BUT …
Cyber-Physical Systems are helping …

• Smart cars help!
• Our not very smart car prevented a few

accidents already!

93We just need better methods to assure safety.

Example: What if you have two tasks where the
order is important?

What happens
when you forget
to disarm the
airplane doors!

The Telegraph, 9 Sept. 2015
https://www.telegraph.co.uk/travel/news/What-happens-when-you-forget-to-disarm-the-plane-doors/
From Professor Edward Lee, UC Berkeley

Physics, Software, Network

95

Cockpit
Control Door Control

N
et

w
or

k disarmdisarm
open open

A module that can
receive either of two
messages:
1. “open”
2. “disarm”
Assume the state is
closed and armed.

Using Software instead of the pilot and the cabin crew, and a network
in between.

Cyber-Physical Systems: Control Physical Components using
Software through Network

Concurrency and timing problems.

Physics, Software, Network

96

Embedded
Vision System

Cockpit
Control Door Control

N
et

w
or

k disarmdisarm
open open

A module that can
receive either of two
messages:
1. “open”
2. “disarm”
Assume the state is
closed and armed.

Using Software instead of the pilot and the cabin crew, and a network
in between.

Cyber-Physical Systems: Control Physical Components using
Software through Network

Concurrency and timing problems.

Physics, Software, Network

97

Embedded
Vision System

Cockpit
Control Door Control

N
et

w
or

k disarmdisarm
open open

A module that can
receive either of two
messages:
1. “open”
2. “disarm”
Assume the state is
closed and armed.

Using Software instead of the pilot and the cabin crew, and a network
in between.

Cyber-Physical Systems: Control Physical Components using
Software through Network

Concurrency and timing problems.

Physics, Software, Network

98

Embedded
Vision System

Cockpit
Control Door Control

N
et

w
or

k

disarm

disarmdisarm
open open

A module that can
receive either of two
messages:
1. “open”
2. “disarm”
Assume the state is
closed and armed.

Using Software instead of the pilot and the cabin crew, and a network
in between.

Cyber-Physical Systems: Control Physical Components using
Software through Network

Concurrency and timing problems.

Physics, Software, Network

99

Embedded
Vision System

Cockpit
Control

Fire Detection
System

Door Control

N
et

w
or

k

disarm

disarmdisarm
open

open

open

A module that can
receive either of two
messages:
1. “open”
2. “disarm”
Assume the state is
closed and armed.

Using Software instead of the pilot and the cabin crew, and a network
in between.

Cyber-Physical Systems: Control Physical Components using
Software through Network

Concurrency and timing problems.

Automotive infotainment system model

100

Example: Automotive Infotainment and Trusted Environment System model
Philipp Eisner (AVL Austria)

Thanks to Stefan Marksteiner (AVL Austria)

We have Complex Cyber-Physical Systems

Automotive infotainment system model

101

EBMC

CTD

BMS

ESteer

ADCU
MIHub

Head
Unit

TCUPTCM
AC Coolant

Pressure

Acceleration
Pedal

Switch ESP

Brake Ped.

Inertial

Steering
Angle

RearCam

SVC Rear

SVC Front

SVC Right

SVC Left

E-Call

Interior
Camera

Speaker
System

Steering
Actuator

Brake
Preuusre

RR

CAN

CAN

CAN

CAN

Infotainment

Body
Vehicle

Drivetrain

Example: Automotive Infotainment and Trusted Environment System model
Philipp Eisner (AVL Austria)

Thanks to Stefan Marksteiner (AVL Austria)

We have Complex Cyber-Physical Systems

Handlers

…

State

Buffer

Take

Thread

Handlers

…

State

Buffer

Take

Thread

Cloud

Edge

…

Cyber-Physical Systems

Systems of
Cyber-Physical Systems

Open, connected, heterogeneous
Dynamic, and Time-Sensitive

We have Complex Cyber-Physical Systems Nowadays

Handlers

…

State

Buffer

Take

Thread

We need Robust Development Methods

Formal Verification of Cyber Physical
Systems

103

104

Real World
Problem

Model

Executable
Program

Abstraction

Refinem
ent

Model Checking: A Robust Analysis Technique
If an Operator is too close then the
Robot should stand still.

If the Train is running then
the Doors should be Closed.

Properties

?

?

? Model Checking

105

Real World
Problem

Model

Executable
Program

Abstraction

Refinem
ent

Model Checking: A Robust Analysis Technique
If an Operator is too close then the
Robot should stand still.

If the Train is running then
the Doors should be Closed.

Properties

?

?

? Model Checking

106

Model Checking: Prove Properties

M

Model
Checker

p → F q
yes

no

φ

Error Trace

If an Operator is too close
then the Robot should stand
still.

If the Train is running then
the Doors should be Closed.

Formal Verification

107

CCS

SMV

Java
 C

Modeling languages

RML
Timed Automata

CSP

Promela

FDR

NuSMV

Spin

Java PathFinder

Bandera

SLAM

Abstract

Mathematical

Too heavy
Not always
formal

Verification Techniques:
• Deduction

• Model checking

Programming languages

Petri net

needs high expertise

causes state explosion

Different approaches for Modeling and Verification

108

UPPAAL

109

Our choice for modeling: Actors

– A reference model for concurrent computation
– Consisting of concurrent, distributed active

objects

• Proposed by Hewitt as an agent-based language (MIT, 1971)
• Developed by Agha as a concurrent object-based language (Illinois,

since 1984)
• Formalized by Talcott (with Agha, Mason and Smith): Towards a

Theory of Actor Computation (CONCUR 1992)

110

Our choice for modeling: Actors

– A reference model for concurrent computation
– Consisting of concurrent, distributed active

objects

• Proposed by Hewitt as an agent-based language (MIT, 1971)
• Developed by Agha as a concurrent object-based language (Illinois,

since 1984)
• Formalized by Talcott (with Agha, Mason and Smith): Towards a

Theory of Actor Computation (CONCUR 1992)

Friendly to the modeler and to the network systems

Actor-based Language Rebeca

Based on Hewitt actors

Concurrent reactive objects

Java like syntax

Rebeca: Reactive object language (Sirjani, Movaghar, 2001)
Timed Rebeca: 2008

§ Communication:
§ Asynchronous message

passing: non-blocking send
§ Unbounded message queue

for each rebec (in theory)
§ No explicit receive

§ Computation:
§ Take a message from top of

the queue and execute it
§ Event-driven

Actor-based Language Rebeca
An actor:
• Message servers
• State Variables
• A message queue

Actor-1

Based on Hewitt actors

Concurrent reactive objects

Java like syntax

Rebeca: Reactive object language (Sirjani, Movaghar, 2001)
Timed Rebeca: 2008

§ Communication:
§ Asynchronous message

passing: non-blocking send
§ Unbounded message queue

for each rebec (in theory)
§ No explicit receive

§ Computation:
§ Take a message from top of

the queue and execute it
§ Event-driven

Actor-based Language Rebeca
An actor:
• Message servers
• State Variables
• A message queue

Actor-1

C

Based on Hewitt actors

Concurrent reactive objects

Java like syntax

Rebeca: Reactive object language (Sirjani, Movaghar, 2001)
Timed Rebeca: 2008

§ Communication:
§ Asynchronous message

passing: non-blocking send
§ Unbounded message queue

for each rebec (in theory)
§ No explicit receive

§ Computation:
§ Take a message from top of

the queue and execute it
§ Event-driven

Actor-based Language Rebeca
An actor:
• Message servers
• State Variables
• A message queue

Actor-1

C

M,N

Based on Hewitt actors

Concurrent reactive objects

Java like syntax

Rebeca: Reactive object language (Sirjani, Movaghar, 2001)
Timed Rebeca: 2008

§ Communication:
§ Asynchronous message

passing: non-blocking send
§ Unbounded message queue

for each rebec (in theory)
§ No explicit receive

§ Computation:
§ Take a message from top of

the queue and execute it
§ Event-driven

Actor-based Language Rebeca
An actor:
• Message servers
• State Variables
• A message queue

Actor-1

C

M,N

queue

Based on Hewitt actors

Concurrent reactive objects

Java like syntax

Rebeca: Reactive object language (Sirjani, Movaghar, 2001)
Timed Rebeca: 2008

§ Communication:
§ Asynchronous message

passing: non-blocking send
§ Unbounded message queue

for each rebec (in theory)
§ No explicit receive

§ Computation:
§ Take a message from top of

the queue and execute it
§ Event-driven

Actor-based Language Rebeca
An actor:
• Message servers
• State Variables
• A message queue

Actor-1 Actor-2

C

M,N

queue queue

Based on Hewitt actors

Concurrent reactive objects

Java like syntax

Rebeca: Reactive object language (Sirjani, Movaghar, 2001)
Timed Rebeca: 2008

§ Communication:
§ Asynchronous message

passing: non-blocking send
§ Unbounded message queue

for each rebec (in theory)
§ No explicit receive

§ Computation:
§ Take a message from top of

the queue and execute it
§ Event-driven

Actor-based Language Rebeca
An actor:
• Message servers
• State Variables
• A message queue

Actor-1 Actor-2

A B
C

M,N

queue queue

Based on Hewitt actors

Concurrent reactive objects

Java like syntax

Rebeca: Reactive object language (Sirjani, Movaghar, 2001)
Timed Rebeca: 2008

§ Communication:
§ Asynchronous message

passing: non-blocking send
§ Unbounded message queue

for each rebec (in theory)
§ No explicit receive

§ Computation:
§ Take a message from top of

the queue and execute it
§ Event-driven

Actor-based Language Rebeca
An actor:
• Message servers
• State Variables
• A message queue

Actor-1 Actor-2

A B
C

M,N X,Y,Z

queue queue

Based on Hewitt actors

Concurrent reactive objects

Java like syntax

Rebeca: Reactive object language (Sirjani, Movaghar, 2001)
Timed Rebeca: 2008

§ Communication:
§ Asynchronous message

passing: non-blocking send
§ Unbounded message queue

for each rebec (in theory)
§ No explicit receive

§ Computation:
§ Take a message from top of

the queue and execute it
§ Event-driven

Actor-based Language Rebeca
An actor:
• Message servers
• State Variables
• A message queue

Actor-1 Actor-2

A B
C

X,Y,Z

C

M,N

queue queue

Based on Hewitt actors

Concurrent reactive objects

Java like syntax

Rebeca: Reactive object language (Sirjani, Movaghar, 2001)
Timed Rebeca: 2008

§ Communication:
§ Asynchronous message

passing: non-blocking send
§ Unbounded message queue

for each rebec (in theory)
§ No explicit receive

§ Computation:
§ Take a message from top of

the queue and execute it
§ Event-driven

Actor-based Language Rebeca
An actor:
• Message servers
• State Variables
• A message queue

Actor-1 Actor-2

A B
C

A

X,Y,Z

C

M,N

queue queue

Based on Hewitt actors

Concurrent reactive objects

Java like syntax

Rebeca: Reactive object language (Sirjani, Movaghar, 2001)
Timed Rebeca: 2008

§ Communication:
§ Asynchronous message

passing: non-blocking send
§ Unbounded message queue

for each rebec (in theory)
§ No explicit receive

§ Computation:
§ Take a message from top of

the queue and execute it
§ Event-driven

Actor-based Language Rebeca
An actor:
• Message servers
• State Variables
• A message queue

Actor-1 Actor-2

A B
C

X,Y,ZA

C

M,N

queue queue

Based on Hewitt actors

Concurrent reactive objects

Java like syntax

Rebeca: Reactive object language (Sirjani, Movaghar, 2001)
Timed Rebeca: 2008

§ Communication:
§ Asynchronous message

passing: non-blocking send
§ Unbounded message queue

for each rebec (in theory)
§ No explicit receive

§ Computation:
§ Take a message from top of

the queue and execute it
§ Event-driven

Actor-based Language Rebeca
An actor:
• Message servers
• State Variables
• A message queue

Actor-1 Actor-2

A B
C

B

X,Y,ZA

C

M,N

queue queue

Based on Hewitt actors

Concurrent reactive objects

Java like syntax

Rebeca: Reactive object language (Sirjani, Movaghar, 2001)
Timed Rebeca: 2008

§ Communication:
§ Asynchronous message

passing: non-blocking send
§ Unbounded message queue

for each rebec (in theory)
§ No explicit receive

§ Computation:
§ Take a message from top of

the queue and execute it
§ Event-driven

Actor-based Language Rebeca
An actor:
• Message servers
• State Variables
• A message queue

Actor-1 Actor-2

A B
C

X,Y,ZAB

C

M,N

queue queue

Based on Hewitt actors

Concurrent reactive objects

Java like syntax

Rebeca: Reactive object language (Sirjani, Movaghar, 2001)
Timed Rebeca: 2008

§ Communication:
§ Asynchronous message

passing: non-blocking send
§ Unbounded message queue

for each rebec (in theory)
§ No explicit receive

§ Computation:
§ Take a message from top of

the queue and execute it
§ Event-driven

Actor-based Language Rebeca
An actor:
• Message servers
• State Variables
• A message queue

Actor-1 Actor-2

A B
C

M,N X,Y,ZAB

queue queue

Based on Hewitt actors

Concurrent reactive objects

Java like syntax

Rebeca: Reactive object language (Sirjani, Movaghar, 2001)
Timed Rebeca: 2008

§ Communication:
§ Asynchronous message

passing: non-blocking send
§ Unbounded message queue

for each rebec (in theory)
§ No explicit receive

§ Computation:
§ Take a message from top of

the queue and execute it
§ Event-driven

Actor-based Language Rebeca
An actor:
• Message servers
• State Variables
• A message queue

Actor-1 Actor-2

A B
C

X,Y,ZM,N

A

B

queue queue

Based on Hewitt actors

Concurrent reactive objects

Java like syntax

Rebeca: Reactive object language (Sirjani, Movaghar, 2001)
Timed Rebeca: 2008

§ Communication:
§ Asynchronous message

passing: non-blocking send
§ Unbounded message queue

for each rebec (in theory)
§ No explicit receive

§ Computation:
§ Take a message from top of

the queue and execute it
§ Event-driven

Actor-based Language Rebeca
An actor:
• Message servers
• State Variables
• A message queue

Actor-1 Actor-2

A B
C

X,Y,ZM,N X,Y,ZB

queue queue

Based on Hewitt actors

Concurrent reactive objects

Java like syntax

Rebeca: Reactive object language (Sirjani, Movaghar, 2001)
Timed Rebeca: 2008

§ Communication:
§ Asynchronous message

passing: non-blocking send
§ Unbounded message queue

for each rebec (in theory)
§ No explicit receive

§ Computation:
§ Take a message from top of

the queue and execute it
§ Event-driven

Actor-based Language Rebeca
An actor:
• Message servers
• State Variables
• A message queue

Actor-1 Actor-2

A B
C

X,Y,ZM,N

B

queue queue

Based on Hewitt actors

Concurrent reactive objects

Java like syntax

Rebeca: Reactive object language (Sirjani, Movaghar, 2001)
Timed Rebeca: 2008

§ Communication:
§ Asynchronous message

passing: non-blocking send
§ Unbounded message queue

for each rebec (in theory)
§ No explicit receive

§ Computation:
§ Take a message from top of

the queue and execute it
§ Event-driven

Actor-based Language Rebeca
An actor:
• Message servers
• State Variables
• A message queue

Actor-1 Actor-2

A B
C

X,Y,ZM,N X,Y,Z

queue queue

Based on Hewitt actors

Concurrent reactive objects

Java like syntax

Rebeca: Reactive object language (Sirjani, Movaghar, 2001)
Timed Rebeca: 2008

§ Communication:
§ Asynchronous message

passing: non-blocking send
§ Unbounded message queue

for each rebec (in theory)
§ No explicit receive

§ Computation:
§ Take a message from top of

the queue and execute it
§ Event-driven

Timed Rebeca (2008)

• An extension of Rebeca for real time systems
modeling
– Computation time (delay)
– Message delivery time (after)
– Periods of occurence of events (after)

– Message expiration (deadline)

FIFO message queues become message bags
containing tagged messages

A simple Timed-Rebeca Model

reactiveclass RC1 (3) {
knownrebecs {
RC2 r2;

}
RC1() {
self.m1();

}
msgsrv m1() {
delay(2);
r2.m2();
delay(2);
r2.m3() after (5);
self.m1() after (10);

}
}

reactiveclass RC2 (4) {
knownrebecs {
RC1 r1;

}
RC2() { }
msgsrv m2() { }

msgsrv m3() { }
}

main {
RC1 r1(r2):();
RC2 r2(r1):();

}

13
1

Project editor

• Ten years of Analyzing Actors: Rebeca Experience (Sirjani, Jaghouri), Carolyn Talcott Festschrift, 70th birthday, LNCS
7000, 2011

• On Time Actors (Sirjani, Khamespanah), Theory and Practice of Formal Methods, Frank de Boer Festschrift, 2016

• Power is Overrated, Go for Friendliness! Expressiveness, Faithfulness and Usability in Modeling -
The Actor Experience, Edward Lee Festschrift, 2017

http://www.rebeca-lang.org/

http://www.rebeca-lang.org/

132

Editor/IDE
Model and

Property editor

Model checking
result view

Counter Example

An example: from Requirements to Code

133

Driver
Control

Passenger

Door Control

N
et

w
or

k

unlockunlock
open

open

open

lock

close close

lock

Marjan Sirjani, Luciana Provenzano, Sara Abbaspour Asadollah, Mahshid Helali Moghadam,
Mehrdad Saadatmand: Towards a Verification-Driven Iterative Development of Software for
Safety-Critical Cyber-Physical Systems, Journal of Internet Services and Applications, 2021

Train Door Controller

Progress: “close” and “lock”
and then the train can start running

An example: from Requirements to Code

134

Driver
Control

Passenger

Door Control

N
et

w
or

k

unlockunlock
open

open

open

Safety: Do not “open” a locked door

Safety: Do not “unlock” when
train is running

lock

close close

lock

Marjan Sirjani, Luciana Provenzano, Sara Abbaspour Asadollah, Mahshid Helali Moghadam,
Mehrdad Saadatmand: Towards a Verification-Driven Iterative Development of Software for
Safety-Critical Cyber-Physical Systems, Journal of Internet Services and Applications, 2021

Train Door Controller

Progress: “close” and “lock”
and then the train can start running

An example: from Requirements to Code

135

Driver
Control

Passenger

Door Control

N
et

w
or

k

unlockunlock
open

open

open

Safety: Do not “open” a locked door

Safety: Do not “unlock” when
train is running

lock

close close

lock

Marjan Sirjani, Luciana Provenzano, Sara Abbaspour Asadollah, Mahshid Helali Moghadam,
Mehrdad Saadatmand: Towards a Verification-Driven Iterative Development of Software for
Safety-Critical Cyber-Physical Systems, Journal of Internet Services and Applications, 2021

Train Door Controller

136

Process: Start from the Requirements

Marjan Sirjani, Luciana Provenzano, Sara
Abbaspour Asadollah, Mahshid Helali
Moghadam, Mehrdad Saadatmand:
Towards a Verification-Driven Iterative
Development of Software for Safety-
Critical Cyber-Physical Systems, Journal of
Internet Services and Applications, 2021
https://rebeca-
lang.org/assets/papers/2020/Towards-a-
Verification-Driven-Iterative-
Development-of-Cyber-Physical-
System.pdf

https://rebeca-lang.org/assets/papers/2020/Towards-a-Verification-Driven-Iterative-Development-of-Cyber-Physical-System.pdf
https://rebeca-lang.org/assets/papers/2020/Towards-a-Verification-Driven-Iterative-Development-of-Cyber-Physical-System.pdf
https://rebeca-lang.org/assets/papers/2020/Towards-a-Verification-Driven-Iterative-Development-of-Cyber-Physical-System.pdf
https://rebeca-lang.org/assets/papers/2020/Towards-a-Verification-Driven-Iterative-Development-of-Cyber-Physical-System.pdf
https://rebeca-lang.org/assets/papers/2020/Towards-a-Verification-Driven-Iterative-Development-of-Cyber-Physical-System.pdf

Architecture

137

Architecture

138

Approached

leaveStation()

ap
pr

oa
ch

St
at

io
n(

)

Leaving

Architecture

139

Approached

leaveStation()

ap
pr

oa
ch

St
at

io
n(

)

Leaving

Unlocked &
open locked &

closed
Unlocked &

closed

closeDoor()

lockDoor()openDoor()

unlockDoor()

Architecture as Actors

140

Architecture as Actors

141

Modeled as Door

Architecture as Actors

142

Modeled as Door

Architecture as Actors

143

Modeled as Door

Modeled as Passenger

Architecture as Actors

144

Modeled as Door

Modeled as Passenger

Modeled as Train

Architecture as Actors

145

Modeled as Door

Modeled as Passenger

Modeled as Train
Modeled as Controller

Properties

!Train.running

!Door.isOpen
!Train.running
Door.isOpen

Train.running
!Door.isOpen

Train.running
Door.isOpen

Doors must not be open while the train is running.

REQ ID REQ DESCRIPTION Elicited REQ ID
SSysSpecReq1 GIVEN the train is ready to run

WHEN the driver requests to lock the external doors
THEN all the external doors in the train shall be closed and
locked

SSysReq1

Properties

!Train.running

!Door.isOpen
!Train.running
Door.isOpen

Train.running
!Door.isOpen

Train.running
Door.isOpen

Doors must not be open while the train is running.

REQ ID REQ DESCRIPTION Elicited REQ ID
SSysSpecReq1 GIVEN the train is ready to run

WHEN the driver requests to lock the external doors
THEN all the external doors in the train shall be closed and
locked

SSysReq1

Properties

We want to verify that it is not possible to open
a locked door or lock an open door.

Properties

We want to verify that it is not possible to open
a locked door or lock an open door.

150

Reality:
Iterative and Incremental Process

151

Reality:
Iterative and Incremental Process

Less fancy, more painful

152

Approached
& Unlocked

& open

Leaving
Unlocked &

open

Leaving
Unlocked &

closed

Leaving
locked &

closed

Approached
locked &

closed

Approached
Unlocked &

closed

train.leaveStation() after (50)

door.closeD
oor()

door.lo
ckDoor()

train.approachStation() after (239)

do
or

.u
nl

oc
kD

oo
r(

)

door.openDoor()

Approached leaveStation() after (50)
status = false

ap
pr

oa
ch

St
at

io
n(

) a
fte

r (
23

9)
st

at
us

 =
 tr

ue

Leaving

Unlocked &
open locked &

closed
Unlocked &

closed

closeDoor()

lockDoor()openDoor()

unlockDoor()

State Diagrams Train

Door

Controller

Model Checking

153

Process: Continue to Formal Verification

154

Model Checking: Prove Properties

M

Model
Checker

p → F q
yes

no

φ

Error Trace

If an Operator is too close
then the Robot should stand
still.

If the Train is running then
the Doors should be Closed.

reactiveclass Train(10){
knownrebecs{

Controller controller; }
statevars{

boolean status;}

Train(){
status = true;
self.leaveStation();

}
msgsrv leaveStation(){

status = true;
controller.setTrainStatus(status)

after(networkDelayTrain);
self.approachStation() after (runningTime);

}
msgsrv approachStation(){

status = false;
controller.setTrainStatus(status)

after(networkDelayTrain);
self.leaveStation() after(atStationTime);

}
}

reactiveclass Door(15){
knownrebecs{

Controller controller;}
statevars{

boolean isDoorClosed, isDoorLocked;}

Door(){
isDoorClosed = false; isDoorLocked = false;
}

msgsrv closeDoor(){
isDoorClosed = true;
controller.setDoorStatus(isDoorClosed,

isDoorLocked) after(networkDelayDoor);
}
msgsrv lockDoor(){

isDoorLocked = true;
controller.setDoorStatus(…);

}
msgsrv unlockDoor(){…}
msgsrv openDoor(){…}

}

reactiveclass Train(10){
knownrebecs{

Controller controller; }
statevars{

boolean status;}

Train(){
status = true;
self.leaveStation();

}
msgsrv leaveStation(){

status = true;
controller.setTrainStatus(status)

after(networkDelayTrain);
self.approachStation() after (runningTime);

}
msgsrv approachStation(){

status = false;
controller.setTrainStatus(status)

after(networkDelayTrain);
self.leaveStation() after(atStationTime);

}
}

reactiveclass Door(15){
knownrebecs{

Controller controller;}
statevars{

boolean isDoorClosed, isDoorLocked;}

Door(){
isDoorClosed = false; isDoorLocked = false;
}

msgsrv closeDoor(){
isDoorClosed = true;
controller.setDoorStatus(isDoorClosed,

isDoorLocked) after(networkDelayDoor);
}
msgsrv lockDoor(){

isDoorLocked = true;
controller.setDoorStatus(…);

}
msgsrv unlockDoor(){…}
msgsrv openDoor(){…}

}

Approached

leaveStation()

ap
pr

oa
ch

St
at

io
n(

)

Leaving

reactiveclass Train(10){
knownrebecs{

Controller controller; }
statevars{

boolean status;}

Train(){
status = true;
self.leaveStation();

}
msgsrv leaveStation(){

status = true;
controller.setTrainStatus(status)

after(networkDelayTrain);
self.approachStation() after (runningTime);

}
msgsrv approachStation(){

status = false;
controller.setTrainStatus(status)

after(networkDelayTrain);
self.leaveStation() after(atStationTime);

}
}

reactiveclass Door(15){
knownrebecs{

Controller controller;}
statevars{

boolean isDoorClosed, isDoorLocked;}

Door(){
isDoorClosed = false; isDoorLocked = false;
}

msgsrv closeDoor(){
isDoorClosed = true;
controller.setDoorStatus(isDoorClosed,

isDoorLocked) after(networkDelayDoor);
}
msgsrv lockDoor(){

isDoorLocked = true;
controller.setDoorStatus(…);

}
msgsrv unlockDoor(){…}
msgsrv openDoor(){…}

}

Approached

leaveStation()

ap
pr

oa
ch

St
at

io
n(

)

Leaving

reactiveclass Train(10){
knownrebecs{

Controller controller; }
statevars{

boolean status;}

Train(){
status = true;
self.leaveStation();

}
msgsrv leaveStation(){

status = true;
controller.setTrainStatus(status)

after(networkDelayTrain);
self.approachStation() after (runningTime);

}
msgsrv approachStation(){

status = false;
controller.setTrainStatus(status)

after(networkDelayTrain);
self.leaveStation() after(atStationTime);

}
}

reactiveclass Door(15){
knownrebecs{

Controller controller;}
statevars{

boolean isDoorClosed, isDoorLocked;}

Door(){
isDoorClosed = false; isDoorLocked = false;
}

msgsrv closeDoor(){
isDoorClosed = true;
controller.setDoorStatus(isDoorClosed,

isDoorLocked) after(networkDelayDoor);
}
msgsrv lockDoor(){

isDoorLocked = true;
controller.setDoorStatus(…);

}
msgsrv unlockDoor(){…}
msgsrv openDoor(){…}

}

Approached

leaveStation()

ap
pr

oa
ch

St
at

io
n(

)

Leaving

Unlocked &
open locked &

closed
Unlocked &

closed

closeDoor()

lockDoor()openDoor()

unlockDoor()

reactiveclass Train(10){
knownrebecs{

Controller controller; }
statevars{

boolean status;}

Train(){
status = true;
self.leaveStation();

}
msgsrv leaveStation(){

status = true;
controller.setTrainStatus(status)

after(networkDelayTrain);
self.approachStation() after (runningTime);

}
msgsrv approachStation(){

status = false;
controller.setTrainStatus(status)

after(networkDelayTrain);
self.leaveStation() after(atStationTime);

}
}

reactiveclass Door(15){
knownrebecs{

Controller controller;}
statevars{

boolean isDoorClosed, isDoorLocked;}

Door(){
isDoorClosed = false; isDoorLocked = false;
}

msgsrv closeDoor(){
isDoorClosed = true;
controller.setDoorStatus(isDoorClosed,

isDoorLocked) after(networkDelayDoor);
}
msgsrv lockDoor(){

isDoorLocked = true;
controller.setDoorStatus(…);

}
msgsrv unlockDoor(){…}
msgsrv openDoor(){…}

}

Approached

leaveStation()

ap
pr

oa
ch

St
at

io
n(

)

Leaving

Unlocked &
open locked &

closed
Unlocked &

closed

closeDoor()

lockDoor()openDoor()

unlockDoor()

reactiveclass Train(10){
knownrebecs{

Controller controller; }
statevars{

boolean status;}

Train(){
status = true;
self.leaveStation();

}
msgsrv leaveStation(){

status = true;
controller.setTrainStatus(status)

after(networkDelayTrain);
self.approachStation() after (runningTime);

}
msgsrv approachStation(){

status = false;
controller.setTrainStatus(status)

after(networkDelayTrain);
self.leaveStation() after(atStationTime);

}
}

reactiveclass Door(15){
knownrebecs{

Controller controller;}
statevars{

boolean isDoorClosed, isDoorLocked;}

Door(){
isDoorClosed = false; isDoorLocked = false;
}

msgsrv closeDoor(){
isDoorClosed = true;
controller.setDoorStatus(isDoorClosed,

isDoorLocked) after(networkDelayDoor);
}
msgsrv lockDoor(){

isDoorLocked = true;
controller.setDoorStatus(…);

}
msgsrv unlockDoor(){…}
msgsrv openDoor(){…}

}

Approached

leaveStation()

ap
pr

oa
ch

St
at

io
n(

)

Leaving

Unlocked &
open locked &

closed
Unlocked &

closed

closeDoor()

lockDoor()openDoor()

unlockDoor()

reactiveclass controller(10){
knownrebecs{

Door door; }
statevars{

boolean isClosed, isLocked, trainStatus;}

Controller(){
trainStatus = true; isClosed, isLocked = false;
}
msgsrv setDoorStatus(boolean close, lock){

isClosed = close; isLocked = lock;
}
msgsrv setTrainStatus(boolean status){

trainStatus = status;
self.driveController();

}
}

msgsrv driveController(){
if(trainStatus){ // leave the station

if(!isClosed || !isLocked) {
if(!isClosed) {

door.closeDoor() after(nd);
delay(reactionDelay);

}
if(!isLocked) {

door.lockDoor() after(nd);
}

}
}// end of if(trainStatus)
else if(!trainStatus){ // arrive the station

if(isClosed || isLocked) {
if (isLocked) {

door.unlockDoor() after(nd);
delay(reactionDelay);

}
if (isClosed) {

door.openDoor() after(nd);
} } …

} 161

reactiveclass controller(10){
knownrebecs{

Door door; }
statevars{

boolean isClosed, isLocked, trainStatus;}

Controller(){
trainStatus = true; isClosed, isLocked = false;
}
msgsrv setDoorStatus(boolean close, lock){

isClosed = close; isLocked = lock;
}
msgsrv setTrainStatus(boolean status){

trainStatus = status;
self.driveController();

}
}

msgsrv driveController(){
if(trainStatus){ // leave the station

if(!isClosed || !isLocked) {
if(!isClosed) {

door.closeDoor() after(nd);
delay(reactionDelay);

}
if(!isLocked) {

door.lockDoor() after(nd);
}

}
}// end of if(trainStatus)
else if(!trainStatus){ // arrive the station

if(isClosed || isLocked) {
if (isLocked) {

door.unlockDoor() after(nd);
delay(reactionDelay);

}
if (isClosed) {

door.openDoor() after(nd);
} } …

} 162

reactiveclass passenger(10){
knownrebecs{

Door door; }
Passenger(){

self.passengerOpenDoor() after(passP);
}
msgsrv passengerOpenDoor(){

door.openDoor();
self.passengerOpenDoor() after(passP);

}
}

main {
Controller controller(door):();
Door door(controller):();
Train train(controller):();
Passenger passenger(door):();

}

163

Model Checking

164

Process: Model Check and Debug

Properties

We want to verify that it is not
possible to open a locked door or lock
an open door.

REQ ID REQ DESCRIPTION Elicited REQ ID
SSysSpecReq1 GIVEN the train is ready to run

WHEN the driver requests to lock the external doors
THEN all the external doors in the train shall be closed and
locked

SSysReq1

Assertion1:
!doorIsOpen && doorIsLocked

166

Model Checking Using Afra

Property File

167

168

Counter Example

Progress Property - Timing
REQ ID REQ DESCRIPTION Elicited REQ

ID
SSysSp
ecReq1

GIVEN the train is ready to run
WHEN the driver requests to lock
the external doors
THEN all the external doors in
the train shall be closed and
locked

SSysReq1

Property:
F train.running

Assertion:
!(trainRunning)

env byte networkDelayDoor = 1;
env byte networkDelayTrain = 3;
env byte reactionDelay = 5;
env byte passengerPeriod = 5;
env int runningTime = 15;
env byte atStationTime = 10;

reactiveclass passenger(10){
knownrebecs{

Door door; }
Passenger(){

self.passengerOpenDoor() after(passP);
}
msgsrv passengerOpenDoor(){

door.openDoor();
self.passengerOpenDoor() after(passP);

}
}

Leave at time 0,
Cannot lock the door and move until time 21

Progress Property - Timing
REQ ID REQ DESCRIPTION Elicited REQ

ID
SSysSp
ecReq1

GIVEN the train is ready to run
WHEN the driver requests to lock
the external doors
THEN all the external doors in
the train shall be closed and
locked

SSysReq1

Property:
F train.running

Assertion:
!(trainRunning)

env byte networkDelayDoor = 1;
env byte networkDelayTrain = 3;
env byte reactionDelay = 5;
env byte passengerPeriod = 5;
env int runningTime = 15;
env byte atStationTime = 10;

reactiveclass passenger(10){
knownrebecs{

Door door; }
Passenger(){

self.passengerOpenDoor() after(passP);
}
msgsrv passengerOpenDoor(){

door.openDoor();
self.passengerOpenDoor() after(passP);

}
}

Leave at time 0,
Cannot lock the door and move until time 21

Model Checking

171

Process:
Proceed to the Implementation

From Requirement to Code:
Lingua Franca

• Using Lingua Franca Language

172

Lohstroh, M., Schoeberl, M., Goens, A., Wasicek, A., Gill, C., Sirjani, M., and Lee, E. A. Actors revisited for time-critical systems.
In Proceedings of the 56th Annual Design Automation Conference 2019, DAC 2019, ACM, pp. 152:1–152:4.

Marjan Sirjani, Edward A. Lee, Ehsan Khamespanah : Model Checking Cyberphysical Systems, Mathematics, 2020

https://github.com/icyphy/lingua-franca/wiki

Led by Prof. Edward Lee
UC Berkeley System

Controller

2

1

P

close

lock

unlock

open

Door

4

3

2

1

P

open

unlock

lock

close

5msec

4msec

7msec

3msec

A twin for Rebeca to
execute the verified
code.

https://github.com/icyphy/lingua-franca/wiki

Train-Door Controller

173

Driver
Control

Train

Door Control

N
et

w
or

k

Train-Door Controller

174

Driver
Control

Train

Door Control

N
et

w
or

klock

Train-Door Controller

175

Driver
Control

Train

Door Control

N
et

w
or

k
move

lock

Train-Door Controller

176

Driver
Control

Train

Door Control

N
et

w
or

k
move

lock
lock

Train-Door Controller

177

Driver
Control

Train

Door Control

N
et

w
or

k
move

move

lock
lock

Progress: “lock”
such that the train can start moving

Train-Door Controller

178

Driver
Control

Train

Door Control

N
et

w
or

k
move

move

lock
lock

Progress: “lock”
such that the train can start moving

Train-Door Controller

179

Driver
Control

Train

Door Control

N
et

w
or

k
move

Safety: The door should be
locked when the train is

moving

move

lock
lock

From Requirement to Code:
Lingua Franca

180
Lohstroh, M., Schoeberl, M., Goens, A., Wasicek, A., Gill, C., Sirjani, M., and Lee, E. A. Actors revisited for time-critical systems.
In Proceedings of the 56th Annual Design Automation Conference 2019, DAC 2019, ACM, pp. 152:1–152:4.

Marjan Sirjani, Edward A. Lee, Ehsan Khamespanah : Model Checking Cyberphysical Systems, Mathematics, 2020

https://github.com/icyphy/lingua-franca/wiki

Led by Prof. Edward Lee
UC Berkeley

https://github.com/icyphy/lingua-franca/wiki

Different Examples: Drivers in an actor
Actors in a network

181

System

Controller

2

1

P

close

lock

unlock

open

Door

4

3

2

1

P

open

unlock

lock

close

5msec

4msec

7msec

3msec

Different Examples: Drivers in an actor
Actors in a network

182

System

Controller

2

1

P

close

lock

unlock

open

Door

4

3

2

1

P

open

unlock

lock

close

5msec

4msec

7msec

3msec

Drivers inside an actor

Different Examples: Drivers in an actor
Actors in a network

183

System

Controller

2

1

P

close

lock

unlock

open

Door

4

3

2

1

P

open

unlock

lock

close

5msec

4msec

7msec

3msec

Drivers inside an actor

Different Examples: Drivers in an actor
Actors in a network

184

System

Controller

2

1

P

close

lock

unlock

open

Door

4

3

2

1

P

open

unlock

lock

close

5msec

4msec

7msec

3msec

Drivers inside an actor

Different Actors in a network

Different Examples: Drivers in an actor
Actors in a network

185

System

Controller

2

1

P

close

lock

unlock

open

Door

4

3

2

1

P

open

unlock

lock

close

5msec

4msec

7msec

3msec

Drivers inside an actor

Different Actors in a network

Different Examples: Drivers in an actor
Actors in a network

186

System

Controller

2

1

P

close

lock

unlock

open

Door

4

3

2

1

P

open

unlock

lock

close

5msec

4msec

7msec

3msec

Drivers inside an actor

Different Actors in a network

Solve by ordering.

Lingua Franca realization
of the train-door example

187

[Sirjani, Lee, Khamespanah,
"Verification of Cyberphysical Systems,"

Mathematics, July 2, 2020]

https://www.mdpi.com/2227-7390/8/7/1068

Lingua Franca

188

Global logical time

Lingua Franca

189

Global logical time

Timestamped events

Lingua Franca

190

Global logical time

Timestamped events

Reactions

Lingua Franca

191

Global logical time

Timestamped events

ReactionsPhysical actions

Lingua Franca

192

Global logical time

Timestamped events

ReactionsPhysical actions

• React to events in timestamp order.

The State Space

193

G ¬ (doorUnlocked ⋀ trainMoving) ?

Model checking using Rebeca
Implementation using Lingua Franca

194

trainNotMoving
doorUnLock
controllerNotMovePresent

trainNotMoving
doorUnLock
controllerMovePresent

S1

S2

trainMoving
doorUnLock
controllerMovePresent

S3

trainNotMoving
doorLock
controllerMovePresent

S4

trainMoving
doorLock
controllerMovePresent

S5

trainMoving
doorLock
controllerMoveNotPresent

S6

S7

trainMoving
doorUnLock
controllerMoveNotPresent

S9

trainNotMoving
doorLock
controllerMoveNotPresent

S8

trainNotMoving
doorUnLock
controllerMoveNotPresent

S10

move

lock

move

move

lock

time += 1

!move

!lock

!lock

!move

trainMoving
doorLock
controllerMovePresent

S1

!move

time += 1
1>>2

More Readable State Space

Note:
• Event and time transitions
• External Events
• Shift in Time
• Different semantics and

implementation platforms

Counterexample!

195

G ¬ (doorUnlocked ⋀ trainMoving) ?

Transition diagram using
Timed Rebeca and Afra

196

Verification of Cyberphysical Systems, Marjan
Sirjani, Edward A. Lee and Ehsan Khamespanah,
Mathematics journal, Mathematics, July 2020.

From Timed Rebeca to
Lingua Franca

197

Version June 6, 2020 submitted to Mathematics 9 of 18

of precedence graphs to a Rebeca model in the main can be done with no difficulty and is considered284

as a future work.285

We can also describe part of the mapping using the structure diagram in Figure 2a. The triangle286

with the “P” is the physical action in LF and external message server in Rebeca, the circle is the287

“startup” event in LF and the message sent in the constructor message server in Rebeca, the V-shape288

arrows are reactions in LF and message servers in Rebeca, and the red arrows between the reactions289

(message servers) are dependencies in LF, and priorities in Rebeca.290

The mapping between Reactors and Timed Rebeca is natural and can easily be done. In Lingua291

Franca we can write the body of reactions in any target language that LF supports. In this work we292

write the body of reactions in Rebeca. After the code is model checked and debugged, then the Rebeca293

code needs to be translated to one of the languages supported by LF to be able to execute the LF294

program. Many design problems can be revealed by model checking the abstract model when the295

complicated target code is not yet in place. We can also consider mapping the target codes to Rebeca,296

that is left for the future work.297

Lingua Franca Construct/Features Timed Rebeca Construct/Features
reactor reactiveclass

reaction msgsrv

trigger msgsrv name

state statevars

input msgsrv

output known rebecs

physical action msgsrv

implicit in the topology Priority

main main

instantiation (new) instantiation of rebecs

connection implicit in calling message servers

after after

– delay

Table 1. The mapping between Lingua Franca and Timed Rebeca

5. Logical-time-based and Event-based Semantics298

A transition system model, which is needed for model checking, requires a concept of the “state”299

of a system at a particular “instant in time.” It does not require that “time” be Newtonian time,300

measured in seconds, minutes, and hours and aligned to the Earth’s orbit around the sun. Instead,301

it only requires a concept of simultaneity, where the “state” of the system is the composition of the302

states of its components at a “simultaneous instant,” whatever that means in the model. In Lingua303

Franca, we can define a “simultaneous instant” to be the endpoint when all reactions at a logical time304

have completed. The “state” at that “instant” can be defined to be the combination of the state variable305

valuations of all the reactors at that “instant.” This is the approach commonly used in synchronous306

languages, where transient states during the computation at a logical time are ignored. We call this307

interpretation a logical-time-based semantics.308

To perform verification formally, we need to build a state-transition model of the program. Figure309

4b gives the logical-time-based semantics of the program in Figure 2b. In the initial state, the door310

is unlocked and the train is not moving. This state transition system shows that at each logical time,311

the program will nondeterministically either remain in the same state (indicated by the self-loop312

transitions) or change to the other state. Once the program is in the new state, at subsequent logical313

times, it will similarly nondeterministically remain in the same state or transition back to the initial314

state. This transformation relies on the semantics of Lingua Franca being rooted in the fixed-point315

semantics of synchronous languages [21].316

Verification of Cyberphysical Systems, Marjan
Sirjani, Edward A. Lee and Ehsan Khamespanah,
Mathematics journal, Mathematics, July 2020.

From Timed Rebeca to
Lingua Franca

198

Version June 6, 2020 submitted to Mathematics 9 of 18

of precedence graphs to a Rebeca model in the main can be done with no difficulty and is considered284

as a future work.285

We can also describe part of the mapping using the structure diagram in Figure 2a. The triangle286

with the “P” is the physical action in LF and external message server in Rebeca, the circle is the287

“startup” event in LF and the message sent in the constructor message server in Rebeca, the V-shape288

arrows are reactions in LF and message servers in Rebeca, and the red arrows between the reactions289

(message servers) are dependencies in LF, and priorities in Rebeca.290

The mapping between Reactors and Timed Rebeca is natural and can easily be done. In Lingua291

Franca we can write the body of reactions in any target language that LF supports. In this work we292

write the body of reactions in Rebeca. After the code is model checked and debugged, then the Rebeca293

code needs to be translated to one of the languages supported by LF to be able to execute the LF294

program. Many design problems can be revealed by model checking the abstract model when the295

complicated target code is not yet in place. We can also consider mapping the target codes to Rebeca,296

that is left for the future work.297

Lingua Franca Construct/Features Timed Rebeca Construct/Features
reactor reactiveclass

reaction msgsrv

trigger msgsrv name

state statevars

input msgsrv

output known rebecs

physical action msgsrv

implicit in the topology Priority

main main

instantiation (new) instantiation of rebecs

connection implicit in calling message servers

after after

– delay

Table 1. The mapping between Lingua Franca and Timed Rebeca

5. Logical-time-based and Event-based Semantics298

A transition system model, which is needed for model checking, requires a concept of the “state”299

of a system at a particular “instant in time.” It does not require that “time” be Newtonian time,300

measured in seconds, minutes, and hours and aligned to the Earth’s orbit around the sun. Instead,301

it only requires a concept of simultaneity, where the “state” of the system is the composition of the302

states of its components at a “simultaneous instant,” whatever that means in the model. In Lingua303

Franca, we can define a “simultaneous instant” to be the endpoint when all reactions at a logical time304

have completed. The “state” at that “instant” can be defined to be the combination of the state variable305

valuations of all the reactors at that “instant.” This is the approach commonly used in synchronous306

languages, where transient states during the computation at a logical time are ignored. We call this307

interpretation a logical-time-based semantics.308

To perform verification formally, we need to build a state-transition model of the program. Figure309

4b gives the logical-time-based semantics of the program in Figure 2b. In the initial state, the door310

is unlocked and the train is not moving. This state transition system shows that at each logical time,311

the program will nondeterministically either remain in the same state (indicated by the self-loop312

transitions) or change to the other state. Once the program is in the new state, at subsequent logical313

times, it will similarly nondeterministically remain in the same state or transition back to the initial314

state. This transformation relies on the semantics of Lingua Franca being rooted in the fixed-point315

semantics of synchronous languages [21].316

Verification of Cyberphysical Systems, Marjan
Sirjani, Edward A. Lee and Ehsan Khamespanah,
Mathematics journal, Mathematics, July 2020.

We may have to tweak Afra for different domains.

From Timed Rebeca to
Lingua Franca

Alignment of Time by Lingua Franca

199199
Toward a Lingua Franca for Deterministic Concurrent Systems, Marten Lohstroh, Christian Menard, Soroush Bateni, and Edward A. Lee, ACM
Transactions on Embedded Computing Systems (TECS), 20(4), May 2021.

logical time physical time

Alignment

Lingua Franca suggests a
Paradigm Shift

• Write a deterministic program
• Reduce the risk of bugs
• Have a more predictable system

200

Secure Water Treatment System

201

PLCs Cabinet

W
a

te
r

T
a

n
k
s

R
e

v
e

rs
e

 O
s
m

o
s
is

 (
R

O
)

U
n

it

Potential	attack	points	in	the	SWaT	network	and	components.

Pump1

PLC1

Sensor1Tank1
Valve

l1	,	m1	,	h1

On1	/Off1	

Open/Close

l1	,	m1	,	h1

Sense

PLC2

Sensor2Tank2

l2	,	m2	,	h2

l2	,	m2	,	h2

Sense

RO

Decrease

Increase

Increase

Pump2

PLC3

Sensor3Tank3

l3,	m3	,	h3

On2	/Off2	

l3,	m3	,	h3

Sense

Increase

Increase

Decrease

open_Req/	close_Req	 on_Req	

clean

water

raw

water

Message	passing	between	PLCs	and	actuators/sensors	(wireless	communication),
Message	passing	between	actuators/sensors	and	physical	process	(sensing and	actuation),
Message	passing	between	PLCs	(separate secure	network),

3

1

2 4

5

6

Stage_1 Stage_2 Stage_3

Controller
Physical

Process

Actuator

Sensor

Actors	(cyber-physical
system	components)

3
2

1

4
5

6

Decrease

SWaT

Water Treatment System
Rebeca Model

• Tanks Overflow and
Underflow

203/27

Model Checking
State Transition Diagram

Properties

204/27

Security Analysis

Successful Attack Scenarios
Attack on Communications

205/27

Security Analysis

Attack on Components
Successful Attack Scenarios

Industrial Controller Redundancy
• Controller redundancy!

• Redundancy – hardware multiplication.
• Standby units (backup) ready to resume

incase of primary failure

Redundancy motivation:
Critical applications/domains à
downtime costly

February 19, 2024

Slide 206

Redundant
controllers

Redundant I/O

Redundant
comm.

From Bjarne Johansson, ABB

Network oriented controllers
• Controller redundancy impact

February 19, 2024

Slide 207

Less specialized HW

More Ethernet and networking

Controller redundancy today:

Fieldbus

Remote I/O

Devices

1oo2

Controller Redundancy
Controller redundancy
synchronization over dedicated
link.

Switch
Remote I/O

Devices

Devices

The trend: Controller redundancy tomorrow:

Controller Redundancy
Controller redundancy
synchronization over network..

From Bjarne Johansson, ABB Industrial Automation

Distributed control systems

Network Reference Point Failure
Detection (NRP FD) algorithm

Johansson et al. (2023)

Slide 208

Inconsistency:
existence of more than one primary controller

Modeling NRP FD using Timed Rebeca

Modeling NRP FD using Timed Rebeca

Modeling NRP FD using Timed Rebeca

S1_0:
 node1Waiting
 node2Waiting

S2_0:
 node1Primary
 node2Waiting

node1.RUNME
 @0

S3_0:
 node1Waiting
 node2Backup

node2.RUNME
 @0

S4_0:
 node1Primary
 node2Waiting

switch1.NEW_NRP
 @0

S5_0:
 node1Primary
 node2Backup

node2.RUNME
 @0

node1.RUNME
 @0

S6_0:
 node1Primary
 node2Waiting

switch2.NEW_NRP
 @0

S7_0:
 node1Primary
 node2Backup

node2.RUNME
 @0

switch1.NEW_NRP
 @0

S8_0:
 node1Primary
 node2Waiting
 switch1NRP

node2.NEW_NRP
 @0

S9_0:
 node1Primary
 node2Backup

node2.RUNME
 @0

switch2.NEW_NRP
 @0

S10_0:
 node1Primary
 node2Backup
 switch1NRP

node2.RUNME
 @0

node2.NEW_NRP
 @0

S11_0:
 node1Primary
 node2Backup
 switch1NRP

time +=1000
 @0

S12_0:
 node1Primary
 node2Backup
 switch1NRP

node1.RUNME
 @1000

S13_0:
 node1Primary
 node2Backup
 switch1NRP

 net1miss1
 net2miss1

node2.RUNME
 @1000

S14_0:
 node1Primary
 node2Backup
 switch1NRP

 net1miss1
 net2miss1

node2.RUNME
 @1000

node1.RUNME
 @1000

S15_0:
 node1Primary
 node2Backup
 switch1NRP

 net1miss1
 net2miss1

time +=5
 @1000

S16_0:
 node1Primary
 node2Backup
 switch1NRP

 net1miss1
 net2miss1

switch1.PINGNRP
 @1005

S17_0:
 node1Primary
 node2Backup
 switch1NRP

 net1miss1
 net2miss1

node1.PINGNRP_RESPONSE
 @1005

S18_0:
 node1Primary
 node2Backup
 switch1NRP

 net1miss1
 net2miss1

time +=495
 @1005

S19_0:
 node1Primary
 node2Backup
 switch1NRP

 net1miss1
 net2miss1

node1.PING_TIMED_OUT
 @1500

S20_0:
 node1Primary
 node2Backup
 switch1NRP

 net1miss1
 net2miss1

time +=1
 @1500

S21_0:
 node1Primary
 node2Backup
 switch1NRP

 net1miss1
 net2miss1

switch1.HEARTBEAT
 @1501

S22_0:
 node1Primary
 node2Backup
 switch1NRP

 net1miss1
 net2miss1

switch3.HEARTBEAT
 @1501

S23_0:
 node1Primary
 node2Backup
 switch1NRP

 net1miss1
 net2miss1

switch3.HEARTBEAT
 @1501

switch1.HEARTBEAT
 @1501

S24_0:
 node1Primary
 node2Backup
 switch1NRP

 net1miss1
 net2miss1

time +=1
 @1501

S25_0:
 node1Primary
 node2Backup
 switch1NRP

 net1miss1
 net2miss1

switch2.HEARTBEAT
 @1502

S26_0:
 node1Primary
 node2Backup
 switch1NRP

 net1miss1
 net2miss1

switch4.HEARTBEAT
 @1502

S27_0:
 node1Primary
 node2Backup
 switch1NRP

 net1miss1
 net2miss1

switch4.HEARTBEAT
 @1502

switch2.HEARTBEAT
 @1502

S28_0:
 node1Primary
 node2Backup
 switch1NRP

 net1miss1
 net2miss1

time +=1
 @1502

S29_0:
 node1Primary
 node2Backup
 switch1NRP

 net2miss1

node2.HEARTBEAT
 @1503

S30_0:
 node1Primary
 node2Backup
 switch1NRP

 net1miss1

node2.HEARTBEAT
 @1503

S31_0:
 node1Primary
 node2Backup
 switch1NRP

node2.HEARTBEAT
 @1503

node2.HEARTBEAT
 @1503

time +=497
 @1503 -> shift(+1000)

Smart Structures

Schedulability Analysis of
Distributed Real-Time Sensor Network Applications
(collaboration with OSL, UIUC, Gul Agha, and Ehsan Khamespanah, UT)

Finding the best configuration

• Modeling the interactions between
• the CPU, sensor and radio within each node
• interactions among the nodes
• tasks belonging to other applications,

middleware services, and operating system
components.

21
3

An Imote2 device
running TinyOS

A Monitored
Structure

Ether

Misc.

Radio Comm.
Device (RCD)Sensor

CPU

Radio Comm.
Device (RCD)

The Actor Model

Counter
Example
Viewer

Counter
Example
Details

Analysis
Result

Model
Editor

Project
Explorer

21
4

http://www.rebeca-lang.org/

http://www.rebeca-lang.org/

215

Network on Chip

216

Design Decisions:
routing algorithms
Buffer length
Memory Allocation

Siamak Mohammadi, Zeinab Sharifi, UT

Zeinab Sharifi, Mahdi Mosaffa, Siamak Mohammadi, and Marjan Sirjani: Functional and
Performance Analysis of Network-on-Chips Using Actor-based Modeling and Formal
Verification, AVoCS, 2013.
https://rebeca-lang.org/assets/papers/2013/Performance-Analysis-of-NoC.pdf

Network Protocols

Deadlock and loop-freedom of
Mobile Adhoc Networks

Behnaz Yousefi, Fatemeh Ghassemi, and Ramtin Khosravi: Modeling and Efficient
Verification of Wireless Ad hoc Networks, volume 29, Issue 6, pp 1051–1086, Formal
Aspects of Computing, 2017.
https://link.springer.com/article/10.1007/s00165-017-0429-z

Fatemeh Ghassemi, Ramtin Khosravi, UT

Design Decisions Bug Check

https://rebeca-lang.org/assets/papers/2013/Performance-Analysis-of-NoC.pdf
https://link.springer.com/article/10.1007/s00165-017-0429-z

Smart Structures

217

Schedulability Analysis of
Distributed Real-Time Sensor
Network: Finding the best
configuration

Gul Agha, OSI, UIUC and Ehsan Khamespanah, UT

Ehsan Khamespanah, Kirill Mechitov, Marjan Sirjani, Gul Agha: Modeling and Analyzing
Real-Time Wireless Sensor and Actuator Networks Using Actors and Model Checking,
Software Tools for Technology Transfer, 2017.
https://rebeca-lang.org/assets/papers/2017/Modeling-and-Analyzing-Real-Time-Wireless-Sensor-
and-Actuator-Networks-Using-Actors-and-Model-Checking.pdf

Smart Transport Hubs

Minimize:
Number of service disruptions
Number of mobility resources in smart
hubs
Cost of mobility for commuters
Travel time for commuters
Travel distance for commuters

Andrea Polini, Francesco De Angelis, Unicam Smart Mobility Lab.

Jacopo de Berardinis, Giorgio Forcina, Ali Jafari, Marjan Sirjani:
Actor-based macroscopic modeling and simulation for smart urban planning. Sci. Comput.
Program. 168: 142-164 (2018)
https://www.sciencedirect.com/science/article/pii/S0167642318303459?via%3Dihub

Performance Optimization Resource Management

https://rebeca-lang.org/assets/papers/2017/Modeling-and-Analyzing-Real-Time-Wireless-Sensor-and-Actuator-Networks-Using-Actors-and-Model-Checking.pdf
https://rebeca-lang.org/assets/papers/2017/Modeling-and-Analyzing-Real-Time-Wireless-Sensor-and-Actuator-Networks-Using-Actors-and-Model-Checking.pdf
https://www.sciencedirect.com/science/article/pii/S0167642318303459?via%3Dihub

Smart Structures

218

Schedulability Analysis of
Distributed Real-Time Sensor
Network: Finding the best
configuration

Gul Agha, OSI, UIUC and Ehsan Khamespanah, UT

Ehsan Khamespanah, Kirill Mechitov, Marjan Sirjani, Gul Agha: Modeling and Analyzing
Real-Time Wireless Sensor and Actuator Networks Using Actors and Model Checking,
Software Tools for Technology Transfer, 2017.
https://rebeca-lang.org/assets/papers/2017/Modeling-and-Analyzing-Real-Time-Wireless-Sensor-
and-Actuator-Networks-Using-Actors-and-Model-Checking.pdf

Not only Safety and Robustness

but also Performance, Cost and

User Satisfaction

Smart Transport Hubs

Minimize:
Number of service disruptions
Number of mobility resources in smart
hubs
Cost of mobility for commuters
Travel time for commuters
Travel distance for commuters

Andrea Polini, Francesco De Angelis, Unicam Smart Mobility Lab.

Jacopo de Berardinis, Giorgio Forcina, Ali Jafari, Marjan Sirjani:
Actor-based macroscopic modeling and simulation for smart urban planning. Sci. Comput.
Program. 168: 142-164 (2018)
https://www.sciencedirect.com/science/article/pii/S0167642318303459?via%3Dihub

Performance Optimization Resource Management

https://rebeca-lang.org/assets/papers/2017/Modeling-and-Analyzing-Real-Time-Wireless-Sensor-and-Actuator-Networks-Using-Actors-and-Model-Checking.pdf
https://rebeca-lang.org/assets/papers/2017/Modeling-and-Analyzing-Real-Time-Wireless-Sensor-and-Actuator-Networks-Using-Actors-and-Model-Checking.pdf
https://www.sciencedirect.com/science/article/pii/S0167642318303459?via%3Dihub

Air Traffic Control

219

Adaptive Air Traffic Control:
Safe rerouting of airplanes using
Magnifier

Volvo CE Quarry Site

Safe and optimized fleet control

Volvo-CE, Stephan Baumgart and Torbjörn MartinssonUC Berkeley, Edward Lee and Sharif, Ali Movaghar

Maryam Bagheri, Marjan Sirjani, Ehsan Khamespanah, Christel Baier, Ali Movaghar,
Magnifier: A Compositional Analysis Approach for Autonomous Traffic Control,
IEEE Transactions on Software Engineering, 2021
https://rebeca-lang.org/assets/papers/2021/Magnifier-A-Compositional-Analysis-
Approach-for-Autonomous-Traffic-Control.pdf

Marjan Sirjani, Giorgio Forcina, Ali Jafari, Stephan Baumgart, Ehsan Khamespanah, Ali
Sedaghatbaf: An Actor-based Design Platform for System of Systems, IEEE 43th
Annual Computers, Software, and Applications Conference (COMPSAC), 2019
https://rebeca-lang.org/assets/papers/2019/An-Actor-based-Design-Platform-for-System-of-
Systems.pdf

Adaptive Flow ManagementAdaptive Flow Management

https://rebeca-lang.org/assets/papers/2021/Magnifier-A-Compositional-Analysis-Approach-for-Autonomous-Traffic-Control.pdf
https://rebeca-lang.org/assets/papers/2021/Magnifier-A-Compositional-Analysis-Approach-for-Autonomous-Traffic-Control.pdf
https://rebeca-lang.org/assets/papers/2019/An-Actor-based-Design-Platform-for-System-of-Systems.pdf
https://rebeca-lang.org/assets/papers/2019/An-Actor-based-Design-Platform-for-System-of-Systems.pdf

Model-Based Cyber-Security

220

• Runtime monitor to check the
system behavior using a Tiny
Digital Twin

Connected Medical Systems

Local properties of devices are assured by
the vendors at the development time.

Verify the satisfaction of timing
communication requirements.

Helpful for dynamic network configuration
or capacity planning.

John Hatcliff, U. of Kansas, and Fatemeh Ghassemi, UTUC Berkeley, Edward Lee and Sharif, Ali Movaghar

System

Detect/Mitigate

Analyzer/Planner

Controller

Tiny Digital Twin

ExecuteMonitor

MAPE-K architecture
(Monitor- Analysis – Plan – Execute)- Knowledge

In
tr

us
io

n
De

te
ct

io
n

Sy
st

em

Fereidoun Moradi, Maryam Bagheri, Hanieh Rahmati, Hamed Yazdi, Sara Abbaspour
Asadollah, Marjan Sirjani, Monitoring Cyber-Physical Systems using a Tiny Twin to
Prevent Cyber-Attacks, 28th International Symposium on Model Checking of
Software (SPIN), 2022
https://rebeca-lang.org/assets/papers/2022/Monitoring-Cyber-Physical-Systems-Using-a-
Tiny-Twin-to-Prevent-Cyber-Attacks.pdf

Mahsa Zarneshan, Fatemeh Ghassemi, Ehsan Khamespanah, Marjan Sirjani, John Hatcliff:
Specification and Verification of Timing Properties in Interoperable Medical Systems. Log. Methods
Comput. Sci. 18(2) (2022)
https://lmcs.episciences.org/9639

Anomaly Detection Time Analysis

https://rebeca-lang.org/assets/papers/2022/Monitoring-Cyber-Physical-Systems-Using-a-Tiny-Twin-to-Prevent-Cyber-Attacks.pdf
https://rebeca-lang.org/assets/papers/2022/Monitoring-Cyber-Physical-Systems-Using-a-Tiny-Twin-to-Prevent-Cyber-Attacks.pdf
https://lmcs.episciences.org/9639

Final Message

We need both
Robustness

and
Friendliness!!

221

Examples from Industrial Partners

• ABB
• Volvo Construction Equipment
• Volvo Trucks

222

ABB Robotics Example

Arm
moving

 stopped

OmnicoreSensor

MainComputer_M28

RobotSafety_M18

Operator

StandStill_activated
StandStill_inactivated

move_arm
stop_arm

activate_StandStill
deactivate_StandStill

Stop

move_arm
stop_arm

ABB Robotics Example

Arm
moving

 stopped

OmnicoreSensor

MainComputer_M28

RobotSafety_M18

Operator

StandStill_activated
StandStill_inactivated

move_arm
stop_arm

activate_StandStill
deactivate_StandStill

Stop

move_arm
stop_arm

ABB Robotics Example

Arm
moving

 stopped

OmnicoreSensor

MainComputer_M28

RobotSafety_M18

Operator

StandStill_activated
StandStill_inactivated

move_arm
stop_arm

activate_StandStill
deactivate_StandStill

Stop

move_arm
stop_arm

ABB Robotics Example

Arm
moving

 stopped

OmnicoreSensor

MainComputer_M28

RobotSafety_M18

Operator

StandStill_activated
StandStill_inactivated

move_arm
stop_arm

activate_StandStill
deactivate_StandStill

Stop

move_arm
stop_arm

Thanks to Christian Menard (TU Dresden) for this example.

Denso autonomous braking
demonstrating Advanced
Driver-Assistance System
(ADAS) in Oct. 2018 [Reported
in The Daily Times]

ABB Robotics Example

Arm
moving

 stopped

OmnicoreSensor

MainComputer_M28

RobotSafety_M18

Operator

StandStill_activated
StandStill_inactivated

move_arm
stop_arm

activate_StandStill
deactivate_StandStill

Stop

move_arm
stop_arm

Thanks to Christian Menard (TU Dresden) for this example.

Denso autonomous braking
demonstrating Advanced
Driver-Assistance System
(ADAS) in Oct. 2018 [Reported
in The Daily Times]

Volvo CE Example

228

Case study

12

Reference: S. Baumgart, J. Fröberg and S. Punnekkat, "A State-based Extension to STPA for Safety-Critical System-of-Systems," 2019
4th International Conference on System Reliability and Safety (ICSRS), 2019, pp. 246-254

Security analysis

Attack
modelling

Identify system
environment,

assets and data Actor-based model
generator

Attack pattern

STRIDE
approach

Risk
Assessment

Threat
Analysis

Model-checking

Thread report

Security
requirements

System
specification

model

Preparation
Attack
profile

D
FD attack scenario

attack data

Identify
mitigation

TARA

Standard
mitigation

System
specification

Attack
vector

DFC

Volvo Trucks Example

Volvo GPSS
A Generic Photogrametry based Sensor System

Shop
pictures

Volvo
MPS
(PTL)

• ID
• Position
• Orientation

6xrobots

Area 10x16m
9 cameras
3 Jetson Xavier

Volvo Trucks Example

Volvo GPSS
A Generic Photogrametry based Sensor System

Shop
pictures

Volvo
MPS
(PTL)

• ID
• Position
• Orientation

6xrobots

Area 10x16m
9 cameras
3 Jetson Xavier

Volvo Trucks Example

Volvo GPSS
A Generic Photogrametry based Sensor System

Shop
pictures

Volvo
MPS
(PTL)

• ID
• Position
• Orientation

6xrobots

Area 10x16m
9 cameras
3 Jetson Xavier

Thank you!!

232

