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Abstract

The Unified Modeling Language, has become effectively
the standard modeling language for analysis and design of
software systems. However, despite achievements in defin-
ing semi-formal semantics, with a combination of OCL con-
straints and textual descriptions of the UML semantics,
UML is still an informal language. This paper introduces
a tool for developing correct models of distributed and re-
active systems using UML and Rebeca. Rebeca is an actor-
based modeling language supported by a formal verifica-
tion tool. This approach can bridge the gap between soft-
ware development and formal verification by allowing users
to develop their systems using UML and yet getting advan-
tage of formal verification support of Rebeca tools and the-
ory. In this way, we combine two separate approaches to
modeling by adding verification step to software develop-
ment lifecycle. Furthermore, this can make a contribution
to defining rigorous semantics for UML diagrams and to
provide tool support for verification of these diagrams.

1. Introduction

The Unified Modeling Language, UML, while not of-
ficially announced, has become the standard notation for
modeling and documenting software systems and is under
constant evolution by OMG group [24]. The idea of one
standard language for modeling provides many advantages
to software development, such as simplified training and
unified communication between development teams. Fur-
thermore, the UML inspired a new approach to design:
Model Driven Architecture (MDA) [24, 10]. One of the
most important aspects of MDA is code generation which
is to automatically generate as much as possible code from
the input model, leaving only little for the error-prone man-

ual coding [5].

However, there are some drawbacks in UML. First, UML
is complex, thus tools can support only a part of it [16], and
while it was supposed that training will become easier with
aunified language, the actual results are not as desired. Sec-
ond, despite achievements in defining semi-formal seman-
tics with OCL constraints, and even with various studies
toward formalizing semantics [9, 19, 6, 12] of UML, the
language still lacks formal semantics. This can damage the
former perspective of a unified modeling language for all
software systems, since many systems are too critical to be
left unverified. In many cases, developers need to model
their systems with a formal language to make the verifica-
tion in early stages of development possible. One of the
advantages of UML, which can help to surmount its draw-
backs, is the possibility of customization [7]. Because of
large amount of concepts and complexity of UML, usually
the usage of its concepts is restricted by defining UML pro-
files. A profile is a subset of the syntax of UML plus a
number of well-formedness rules. These rules add standard
elements to the subset and specify additional semantics in
natural language. In other words, UML profile is a subset
of UML concepts which is adequate to define our domain.

In our previous studies [1] a new profile for modeling
concurrent reactive systems has been proposed. In this pa-
per, we extended this profile to model reactive components
of large systems, which supports interaction with other sub-
systems. Moreover, we have developed a tool based on
our profile for designing concurrent and distributed systems
consisting of asynchronously communicating reactive ob-
jects in UML. This tool fully supports our profile and con-
fines UML concepts to the one we have used in this profile.
Using this tool we can convert our models to Rebeca, an
actor-based language for modeling and verification of reac-
tive systems. The Rebeca to Java converter can help us to
generate Java code from our models. Consequently, there



would be a path from UML model to executable code that
supports verification via Rebeca. With this approach devel-
opers don’t need to be involved in all complexities of UML
diagrams, and they also don’t need to be concerned about
intricacies of any formal language since the complete code
can be generated from their models.

2. Related Work

There have been many UML profiles proposed to OMG
[24], and some of these profiles have became standard[25].
CORBA allows applications to communicate with each
other regardless of the location and design, the UML pro-
file for CORBA which is a standard profile provides means
for expressing the semantics of CORBA IDL (Interface De-
scription Language) using UML artifacts, which enable ex-
pressing these artifacts with UML tools. UML Profile for
Enterprise Application Integration (EAI) [25] provides a
metadata interchange standard for information about ac-
cessing application interfaces to simplify application inte-
gration. There is a UML profile for relational database
[20]. Key, secondary key, table, and file are examples of
stereotypes proposed in this profile. Omega is a UML pro-
file for embedded and real-time systems based on formal
techniques [23]. TURTLE [4] is another UML profile ded-
icated to the modeling and formal validation of real-time
systems. TURTLE defines a set of operators and diagrams
addressing the need for analyzing, designing and deploy-
ing temporally constrained systems. Formal semantics of
TURTLE relies on RT-LOTOS which is a formal descrip-
tion technique based on process algebra. TTool [4] is a free
toolkit for editing and validating TURTLE / UML diagrams.

In addition, many works have been done on formal se-
mantics of UML. There are two common approaches in
this field: UML formalization, and translation to formal
languages. In the first approach, in order to formalize the
UML, mathematical theories are used [16]. In [9] authors
worked on algebraic specifications of OMT object model
diagrams. Lano and Bicarregui in [13] have specified a pos-
sible semantic for a large part of the UML using structured
theories in a simple temporal logic. The semantic model
of UML used in their work is based on the set-theoretic
Z-based model of syntropy. In the second approach, for-
mal semantics can be given to UML by introducing a map-
ping from UML diagrams to an established formal method
or language. Examples of this approach are the mapping of
UML into Object-Z which is an object oriented formal spec-
ification language for modeling computing systems [16],
and B, a formal method that is based around abstract ma-
chine notation [8].

Furthermore, in the area of modeling reactive systems
a lot of researches have been done. In [17], in order to
bridge the gap between system model and program code,

state charts and SWITCH-technology are used to develop
reactive object oriented programs. In [18], a way for graph-
ical design of reactive systems using state charts, is intro-
duced which translates state charts into the Abstract Ma-
chine Notation (AMN) of the B method. In [10], a UML
profile for development of distributed reactive systems is
introduced which is also based on state charts.

3. Rebeca Modeling Language

Rebeca [2], Reactive Objects Language, is an actor-
based language for modeling and verifying concurrent and
distributed systems. Rebeca is designed in an effort to
bridge the gap between formal verification approaches and
real applications. It is also a platform for developing object-
based concurrent systems in practice. The key features of
Rebeca are: using actor-based concepts for the specification
of reactive systems and their communications, providing a
formal semantics for the model, providing a tool for model
checking Rebeca code and using abstraction techniques to
reduce the state space in model checking.

Rebeca is supported by Rebeca Verifier tool, as a front-
end, to translate codes into existing model-checker lan-
guages to verify their properties [3]. In addition, Rebeca
direct model checker is now under development [15]. For a
formal verification method, more than a model, there should
be a specification language to embody correctness require-
ments. Here, temporal logic is used to specify safety and
progress properties which are based on state variables of
each rebec (reactive object) in the model [2].

Rebeca model is similar to the actor model in that it
has independent active objects, and asynchronous message
passing. These objects are reactive and self-contained. We
call each of them a rebec, for reactive object. Computation
takes place by message passing and execution of the cor-
responding methods of messages. Each message specifies
a unique method to be executed when the message is ser-
viced. Each rebec has a buffer, called a queue (or inbox),
for arriving messages. This queue has a queue length that
has been defined in the reactive class definition, and it is
the number of messages that the rebec can buffer. When
a message at the head of a queue of a rebec is serviced,
its method is invoked and the message is deleted from the
queue. Each rebec is instantiated from a reactive class, 're-
activeclass’, and has a single thread of execution. We define
a model, representing a set of rebecs, as a closed system. A
Rebeca code is consisted of definition of reactive classes
and a ’main’ part. In the main part rebecs are instantiated
from reactive classes. Each reactive class consists of known
objects, state variables and a set of message servers. Known
objects of a rebec, ’knownrebecs’, are those rebecs that this
rebec can send them messages. All message servers, 'ms-
gsrv’, of a reactive class can use its state variables, but they



are not public to be used by other reactive classes. The set of
state variables, identified by keyword ’statevars’, are vari-
ables which represent the state of the rebec. It is required
that every reactive class definition has at least one message
server named ’initial’ which is put in the queue when a re-
bec is instantiated. In declaring a rebec, the bindings to its
known rebecs is specified in its parameter list.

4. ReUML: The UML Profile for Modeling Re-
active Systems

Since UML is customizable, we can introduce ReUML
(Reactive UML) as a new profile for modeling concurrent
and distributed systems. In addition, as Rebeca is an object-
based language the mapping from UML diagrams to Re-
beca models is natural. In the following we will discuss
this mapping briefly; details of the profile and mappings are
discussed in [1].

Like all oriented approach, to model the static design
view of a system, it is necessary to sketch a class diagram. A
class diagram shows a set of classes and collaborations and
their relationships [7]. At first we should define the building
blocks which are classes, and subsequently, we should rec-
ognize and model their behavior and their collaborations.

In Rebeca, rebecs are the only entities constructing our
systems, and reactive classes are used to make a tem-
plate for the behavior of these rebecs. Naturally, objects
are mapped to rebecs, and classes are mapped to reactive
classes. So a class with "reactiveclass’ stereotype, is a tem-
plate for all reactive objects in our model. Each reactive
object has some variables defining its state, in Rebeca vo-
cabulary these are known as state variables. In other words,
attributes of a reactive object are state variables in Rebeca.
Recognizing methods of reactive object, called msgsrv in
Rebeca, is the next step toward systems modeling. There-
fore, each attribute with ’statevar’ stereotype models a state
variable, and each method with 'msgsrv’ stereotype reflects
a message server in our models. Additionally, each reac-
tive class works in collaboration with others. In our reac-
tive and concurrent environment objects are communicating
with message passing. We can represent message sending
with an association between reactive classes. The mapping
between Rebeca and UML to show the static structure of a
reactive system by a class diagram is shown in Table 1.

Given that all software systems consist of objects rather
than classes, in executable models, we need a real snapshot
of the system that shows a set of objects and their relation-
ship. This is the responsibility of an Object diagram in a
model. So, we need to show the object diagram of our reac-
tive system as well.

After describing the static structure, we should define
dynamic behavior of our system. State diagrams are com-
mon tools in modeling reactive systems. However, state

Table 1. Mapping between Rebeca and UML
Constructs

UML Element | Rebeca Element | Stereotype
Class Reactive Class | reactiveclass
Attribute State Variable statevar
Method Message Server msgsrv
Association End | Known Object -

machines are used to show the behavior of objects which
have a lifecycle that is of interest to be modeled. Never-
theless, in an abstract view, each rebec starts in ’idle’ state
and after receiving a message goes to 'waiting’ state wait-
ing for its turn, and then goes to 'running’ state. We can
break running state to sub-states to show the execution of
each method, but Larman, in [11], encourages using state
chart diagrams only for the purpose of illustrating external
and temporal events and the reaction of an object to them,
in Rebeca, dequeueing a message and executing an atomic
message server cannot be considered as an external event.
Moreover, we want to perform formal verification in early
stages of modeling, so we prefer to use sequence diagrams
as they can be extracted in a straight forward way from the
domain. Therefore we chose sequence diagrams. This is
discussed in more details in [1].

In our model, similar to what we usually do in software
engineering, we draw a sequence diagram for each message
server, and we show the sequence of actions invoked by re-
ceiving a message. In each sequence diagram we have one
main rebec and its known objects (because they are the only
possible message receivers). The sequence of actions ini-
tiates by receiving a message from the sender, the rest of
the diagram shows what would happen if the receiver re-
bec gets such a message. In the following case study this
explanations are illustrated.

5. ReUML designer: the Modeling Tool

One of the most difficult phases in software development
is testing. One reason is that typically testing happens after
implementation; If we could get confident that the system
works correct prior to implementation the process would be
considerably easier. To do so, we need to verify our mod-
els. However, complexities of formal modeling languages
and verification process usually limit their usage to critical
systems. As the analysis and design stage of the develop-
ment process mostly uses UML, using it to perform veri-
fication as well, can reduce costs and time of software de-
velopment lifecycle significantly. ReUML helps modelers
to use the defined profile which confines UML concepts to
needed ones. It lets UML modelers to verify their models
without being concerned about details of Rebeca, and it al-
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Figure 2. Tool Architecture

lows Rebeca developers to model their systems with UML
and use automatic code generation. As we can see in Fig-
ure 1, which shows the development process under ReUML,
the software will store a ReUML model in a RUDL docu-
ment (ReUml Description Language). RUDL is an XML
based language to store ReUML models; then RUDL to
Rebeca component of ReUML designer parses RUDL and
generates Rebeca model. We could have used XMI instead
of RUDL, however not all aspects of our models, such as
queue length, can be expressed in XMI, in addition XMI
supports large amount of concepts which are not needed;
Thus using XMI may lead to inefficiency. After model
checking, Rebeca to Java translator can make executable
program.

The component diagram of the ReUML tool is shown in
Figure 2. The three-tier architecture is developed using Java
1.5 to be portable and self dependent. In top level there is
a graphical user interface developed with Swing and AWT
packages. The Logic layer contains objects of the model
and the code generator; this layer has interaction with GUI
as well as RUDL manager. In RUDL manager, SAX and
DOM packages are used to restore and retrieve models from
RUDL documents.

ReUML users have four separate views to construct their
models; each view is associated with one diagram: class di-
agram, object diagram, sequence diagrams, and use case di-
agram. As discussed earlier in section 4, class diagram, ob-
ject diagram, and sequence diagram are needed to generate
Rebeca code. Use case diagram may help us with the gen-
eration of executable program. Each of these views will be
discussed in brief. Beside diagram construction parts, there

is a controller for RUDL document management. Each
RUDL document has at most four types of diagrams two of
which are obligatory in defining a model: class diagram and
object diagram. The software can generate Rebeca code any
time during modeling process. In case of errors user will be
informed with appropriate message.

Use case diagram: Usually software systems have in-
teraction with other systems, layers, or modules, and we
should define these interaction points in our model. Among
UML diagrams, component diagram and use case diagram
may be used for interaction management. Component di-
agrams are used in modeling the physical aspects of orga-
nization and dependencies among a set of components[7].
Use case diagrams are central to modeling the behavior of
a system, a subsystem, or a class. They make systems and
subsystems understandable by presenting an outside view
of how those elements may be used in context[7]. We have
used use case diagram to show functionality, since compo-
nent diagrams are not suitable for design stage. It is not
necessary to draw a use case diagram if we just want to ver-
ify our models. However, some of our rebecs may receive
messages from sources other than rebecs in our model. For
instance, a rebec may receive messages from sensors. cor-
respondingly, it may want to send data to external systems
such as controllers. The tool supports this by allowing to de-
clare a message server as 'Out callable’. A use case shows
the message server and an actor shows the corresponding
caller. Although this has no effect in generated Rebeca code
(we just show it with a comment) in related executable code
these methods are public while others are protected.

Class diagram: A class diagram shows a set of classes,
interfaces, and collaborations. It shows the static design
view of a system [7]. Similarly in our profile, class diagrams
show reactive classes, their state variables, message servers,
queue length, and relationships with other reactive classes.

Object diagram: An object diagram shows a set of ob-
jects and their relationships. Object diagrams represent
static snapshots of instances of the elements found in class
diagrams. These diagrams address the static design view or
static process view of a system as do class diagrams, but
from the perspective of real or prototypical cases [7]. In
our profile this diagram shows rebecs and their bindings to
other rebecs. ReUML designer generates Rebeca code of
the ”main” part from this diagram; A queue length of a class
defined in class diagram can be overwritten in each rebec of
object diagram. This can make significant optimization in
verification process. Although this feature is not supported
in Rebeca verifier at the moment, it can be added to the tool
in future.

Sequence diagram: Sequence diagrams address the dy-
namic view of a system. They show an interaction, con-
sisting of a set of objects and their relationships, includ-
ing the messages that may be dispatched among them [7].



Each sequence diagram shows the dynamic behavior of a
message server, consequently we should draw one for each
message server in order to generate complete code of our
systems. If-then-else structures, assignments, and asyn-
chronous messages with their parameters can be shown in
these diagrams. There is a feature to show synchronous
messages between other systems and our model called ’x-
call’. Any out-callable massage server in our model can be
called from outside. Also, x-calls can be made from our
rebecs to other systems, for example calling a web service
within a message server and getting back an answer. Cur-
rently Rebeca cannot support this feature so the program
replaces these calls in Rebeca code with nondeterministic
assignment from a range of values specified in sequence di-
agram for the return value.

6. Case study

Case study We modeled and verified Alternating Bit Pro-
tocol, ABP, with our tool.

Problem definition: This Protocol is a simple yet effec-
tive protocol for managing the retransmission of lost mes-
sages. The system consists of a sender and a receiver. They
are connected through a channel. Each data message sent by
the sender contains one bit tag, O or 1, as well as message
body and checksum value. The sender sends the message
repeatedly until it receives acknowledge from receiver that
contains the same tag value as the sent message. With the
appropriate acknowledgment, the sender stops sending cur-
rent message and will send the next message with alterna-
tive tag. Whenever the receiver gets a new message, it tests
the checksum value. In the case of a correct message, it will
deliver the message to the application and will send back an
acknowledgment with the same tag value. The receiver will
ignore incorrect messages, and subsequent messages with
same tag value will be simply acknowledged. We must con-
sider that the channel is not reliable and both messages and
acknowledgments are imposed to loss and corruption [14].
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Figure 3. Class diagram

Figure 3 and 4 show the class diagram and object dia-
gram of our model respectively. These diagrams show the

< =reactivedass>>R_App : ReceiverApplication )3

{==reactiveclass = >senderABF | Sender }

{=<reactiveclass ==receiverABP : Receiver T

= <reactiveclass > =network : HetworkLayer

Figure 4. Object diagram

static structure of our design. The model has a Sender, a Re-
ceiver, a NetworkLayer, and a receiver application reactive
classes, with one instance of each. In the model we have
two abstraction. First, sender application is abstracted; we
assumed that sender application has enough data to send.
Second, we omitted the message body and checksum field.
Because they have no effect on modeling. We can assume
corrupted messages as lost messages that won’t be acknowl-
edged. For modeling the dynamic behavior we should use
sequence diagrams which are represented in figures 5 to 8.

< <reactivedass = =self  Sender [ < <reactivedass = =netwark | MebwarkLaver |

Transmit(...}

Getack)

Figure 5. Sender.Send

[ =<reactiveclass==self : Sender )

if{value==seqTag)

[seqTag=!seqTag]
Send()

else

Send()

Figure 6. Sender.ReceiveAck

Figure 5 shows the send message server. Each time
this message server is called the sender transfers the cur-
rent bit to network layer and asks for the last acknowledg-
ment. Sender’s initial message server is put in the queue
when a rebec is instantiated, thus in order to start protocol
we should put a send call in initial message server. When-
ever the sender receives an acknowledgment it checks its
value with current bit. Same value determines successful
transmission, thus the bit will be alternated. This is shown
in figure 6.

Figure 7 shows TransmitRev message server which can
be invoked by receiver to transmit an acknowledgment.
Network randomly drops some of the acknowledgments,
and instead of sending the rest of acknowledgments to
sender it will keep the last one in currentAck state variable
and will pass it to sender whenever sender asks for it. Thus
Network layer’s GetAck message server would be a message
from network layer to sender. The reason for this behavior
is to prevent sender queue from overflowing. Similarly, in
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Transmit message server, network layer drops some of the
messages from sender to receiver and transmits the rest.

Whenever the receiver gets a new bit it checks the value
with last received bit, if the value is different it will pass
it to the application and sends an acknowledgment back to
sender, otherwise it will simply acknowledge the bit. This
is shown in figure 8. Receiver Application gets values from
receiver in Read message server.

The complete ReUML model and Generated Rebeca
code of this example is located at [22]. The model has
been translated to Promela by Rebeca to Promela transla-
tor.Model checking results show that the model is deadlock
free. Also, the Alternating Bit Protocol implies that after
each 1 the receiver will receive a 0 and vice versa. The fol-
lowing LTL properties has been checked with spin model
checker, and both are valid.

1. [] (recBit==1) — ><> (recBit == 0)
2. [] (recBit==1) — ><> (recBit == 0)

7. Conclusions and future works

In this paper we have introduced a new tool for modeling
and verification of distributed systems consisting of reactive
objects which are communicating via asynchronous mes-
sages. The tool supports all features of our previous studies
and introduces new features for development process. As it
is suggested in figure 1, by development of ReUML the path
from UML model to Java code with verification support is
now complete. As a part of future work, we can consider
development of an integrated environment for ReUML, Re-
beca verifier, and Rebeca to Java to enhance modeling, ver-
ification, and executable code generation. Supporting syn-
chronous messages using standard Rebeca, development of
reengineering tool to generate UML models from current
Rebeca codes, and support for using any compatible XML
documents generated by other tools as an input model are
other practical works to be done in the future.
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