Analysing Timed Rebeca Using McErlang

Haukur Kristinsson Ali Jafari Ehsan Khamespanah
Reykjavik University Reykjavik University University of Tehran, Reykjavik
haukurk@ru.is alil1@ru.is University

Brynjar Magnusson
Reykjavik University
brynjar07@ru.is

Abstract

Although timed actor-based models attracted more attention
in the recent years, there is not much done on analyzing
and model checking of such systems. The actor-based lan-
guage, Timed Rebeca, was introduced to model distributed
and asynchronous systems with timing constraints, and a
supporting tool was developed for automated translation of
Timed Rebeca models to Erlang. The translated code can be
executed using McErlang. In this paper, we propose exten-
sions for Timed Rebeca language to improve the usability of
the language. Designers can now develop models expressing
more complex behaviors by calling Erlang custom functions
and using lists. Moreover, to be able to use the new version
of McErlang which supports timing constructs of Timed Re-
beca we changed the mapping and the tool accordingly. This
gives us the possibility of model checking and simulation
of Timed Rebeca models for the first time. We can use the
safety monitors in McErlang to verify safety properties in the
model. Also, statistical methods are applied to the simulation
results to reason about the system behavior. We examine the
typical case study of elevators to show the applicability of
our technique and tool.

Keywords Model Checking, Simulation, Actors, Erlang,
Rebeca, Real-time Systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

SPLASH 13, October 27-28, 2013 - Indianapolis, Indiana, USA..

Copyright (© 2005 ACM [to be supplied]. .. $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

e.khamespanah@ut.ac.ir,
ehsan13Q@ru.is

Marjan Sirjani
Reykjavik University
marjan@ru.is

1. Introduction

In analyzing real-time systems, performance evaluation is a
complementary issue to functional verification. Therefore,
analysis techniques should consider both correctness and
performance to guarantee quality of systems. Different for-
mal timed models have been proposed for modeling and
verification of real-time systems. On the other hand, differ-
ent approaches have been suggested for performance evalu-
ation of real-time systems. Numerical analysis and simula-
tion techniques that are based on statistical methods are two
widely used approaches for performance evaluation. In this
work, we provide a unified analysis technique and toolset for
both verification of correctness and performance evaluation
of real-time distributed systems with asynchronous message
passing.

A well-established paradigm for modeling the functional
behavior of distributed systems with asynchronous message
passing is the actor model. This model was originally intro-
duced by Hewitt [9] and then elaborated by Agha [2, 3] and
Talcott [15]. Although actors are attracting more and more
attention both in academia and industry, little work has been
done on timed actors and even less on analyzing timed actor-
based models. To address the specification and verification
of real-time systems, a few timed actor-based modeling lan-
guages such as RT-synchronizer [19] and Timed Rebeca [1]
were proposed.

Background. The Reactive Objects Language, Re-
beca [25], is an actor based modeling language which can be
used in a model-driven methodology, in which the designer
builds an abstract model where each component is a reactive
object communicating through non-blocking asynchronous
messages. Rebeca is an operational interpretation of the ac-
tor model with formal semantics and model-checking tools
[10, 24]. Timed Rebeca [1] is proposed as an extension of
Rebeca language with time constraints and analysis support.

The formal semantics of Timed Rebeca was offered using
Structural Operational Semantics (SOS) rules [17].

In the first implementation of Timed Rebeca, a tool was
developed to translate Timed Rebeca models to Erlang pro-
grams automatically, and McErlang [7] was used to simulate
the translated Erlang program [1]. At that time, McErlang, a
model checking and simulation tool for Erlang, did not sup-
port model checking of Erlang program with timing features.
In the untimed version of McErlang, simulation takes place
by simply executing the Erlang program, and the reason for
using McErlang is the monitors provided by this tool. By
using monitors one can stop the execution by observing an
erroneous state or unexpected behavior in the program, it is
also possible to collect the necessary data during the execu-
tion. This tool can be used to run multiple simulations for
different settings of parameters in a Timed Rebeca model,
and then the results of the executions can be employed to
select the most appropriate values for the parameters. This
version of McErlang is not efficient for timed models since
the progress of time is modeled by the system time, a model
with an average size takes a long time to be executed.

Contribution. In this work, we extended the previous ver-
sion of Timed Rebeca to improve its usability, and also to
be able to use the timed version of McErlang which is re-
cently developed [6]. To improve the usability of Timed Re-
beca, the language is extended to support list data structure
and capability of calling custom functions from Erlang, this
way the effort for modeling more complicated systems us-
ing Timed Rebeca is decreased. Moreover a function named
checkpoint is added to the language to be able to provide
more data to McErlang and hence get more valuable data in
the analysis.

Based on the timed version of McErlang, we changed the
mapping of timing primitives of Timed Rebeca models to
Erlang presented in [1], and we adjusted the implementation
of the tool accordingly. As stated in [6], during the devel-
opment of McErlang with timed semantics there has been a
close collaboration between the two teams. So, the timed se-
mantics of McErlang supports the timing features of Timed
Rebeca very well. Now, using the checkpoint functions we
are able to model check and simulate Timed Rebeca models
by McErlang.

The approach employed in the timed version of McErlang
is inspired by Lamport’s approach to real-time model check-
ing [13]. The McErlang team used the idea of maximum-
time-elapse for progress of time. The timer is increased
based on the time of the occurrence of the next event, so, we
have a jump to the next value for the timer instead of hav-
ing a tick function to increase the timer by one. Finding the
next event is not difficult in Erlang, as all the real-time com-
putations are encountered within receive statements where
timeouts are defined (in an optional after clause). Hence,
simulation of Timed Rebeca models is much more efficient

comparing to the previous work where McErlang basically
executed the Erlang programs.

Applications. Since its introduction, Timed Rebeca is used
in different areas. One example is in analyzing different rout-
ing algorithms and scheduling policies in NoC (Network on
Chip) designs, specially the GALS (Globally Asynchronous
Locally Synchronous) NoC [20, 21]. Another example is
schedulability analysis of distributed real-time sensor net-
work applications, more specifically a real-time continuous
sensing application for structural health monitoring in [14],
which is an ongoing project. Another ongoing project is on
evaluating different dispatching policies in clouds where we
have priorities and deadlines in MapReduce clusters, based
on the work in [8]. The extensions provided by the work pre-
sented in this paper can help in modeling more complicated
designs, and also collect more useful data during simulation
runs.

Comparing to others. Comparing to Erlang which is a
functional actor-based programming language, Rebeca is an
imperative actor-based modeling language. So, by using Re-
beca while respecting the actor programming style you can
write your code in an imperative style which is more familiar
to most of the programmers nowadays. Moreover, by using
Rebeca you are using a model-driven development approach.
You can start by small models and use model checking and
simulation to find possible correctness problems in your core
algorithms, and also find how to improve the performance by
changing some parameters while the code is still small, un-
derstandable, and easily manageable.

Two of the mostly used timed modeling languages are
UPPAAL [26] and real-time Maude [16]. UPPAAL is an
integrated tool environment for modeling, validation and
verification of real-time systems modeled as networks of
timed automata [4], extended with data types (bounded inte-
gers, arrays etc.). The tool is currently the most well-known
model checker for real-time systems. The modeling lan-
guages used by Timed Rebeca and UPPAAL differs greatly,
while Rebeca has a programming-like syntax UPPAAL uses
automata. UPPAAL is more convenient for modeling sys-
tems with synchronous agents while Timed Rebeca focuses
on distributed and asynchronous agents. Modeling message
queue can cause state explosion in UPPAAL very quickly.
The verification tools are different in Timed Rebeca and UP-
PALL. The type of properties supported by UPPALL and
Timed Rebeca is different. Timed properties can be checked
in UPPAAL while in Timed Rebeca timed properties are not
supported. In Timed Rebeca safety properties are checked
which are explained in more details in Section 4.

Real-time Maude is a language accompanying with a tool
supporting the formal specification and analysis of real-time
and hybrid systems. The specification formalism is based on
rewriting logic, and emphasizes generality and ease of spec-
ification, and is suitable to specify object-oriented real-time
systems. The tool offers a wide range of analysis techniques,

including timed rewriting for simulation purposes, and time-
bounded linear temporal logic model checking. Timed Re-
beca and Real-Time Maude are different in the computa-
tional paradigms that they naturally support. Timed Rebeca
is based on actor based model of computation while you are
free in your modeling style using real-time Maude. Timed
Rebeca benefits from its similarity with other commonly
used programming languages and is more susceptible to get
used by modelers without intimate knowledge of the formal
methods.

Regarding other analysis techniques and tools for Rebeca,
a new approach was proposed for schedulability and dead-
lock freedom analysis of Timed Rebeca models in [11]. Au-
thors proposed notion of floating time transition system for
which the formal definition is presented. Authors defined a
bisimulation relation between this transition system and the
transition system derived from SOS rules of Timed Rebeca
[1]. They developed a verification tool based on floating time
transition system and integrated it in Afra tool-set [18]. Afra
is an integrated environment for modeling and verification
of Rebeca models. Although the proposed approach covers
two important safety properties of distributed real-time sys-
tems, the performance evaluation of Timed Rebeca models is
not supported. In addition, the verification of Timed Rebeca
models is restricted to schedulability and deadlock freedom
properties.

The rest of the paper is organized as follows. Section
2 gives a brief introduction to Timed Rebeca. Considering
Timed Rebeca language presented in [1], Section 3 defines a
new mapping for timing primitives of Timed Rebeca to Er-
lang while adapting to timed extensions of McErlang. It also
includes new features added to Timed Rebeca language to
increase its usability. Section 4 explains how safety moni-
tors in McErlang can be used to verify safety properties of
Timed Rebeca models. Section 5 describes how Timed Re-
beca models can be simulated by McErlang. The result is a
dataset including useful information about system behavior
to which different analysis methods can be applied. Section
6 explains a typical example of elevator. We model check
and simulate the elevator model to investigate the efficiency
of different scheduling algorithms for it. Finally, Section 7
concludes the paper.

2. Timed Rebeca

Timed Rebeca is proposed as an extension to Rebeca, for
modeling and verification of real-time distributed systems
[1]. Rebeca [23, 25] is an actor-based language for model-
ing and verifications of reactive systems with asynchronous
communication among actors, called rebecs. Each rebec
has an unbounded buffer, called message queue, for its ar-
riving messages. Each rebec takes a message, that can be
considered as an event from the top of its message queue,
and execute its corresponding message server (also called a
method).

In Timed Rebeca model, each rebec has its own local
clock, but there is also a notion of global time based on
synchronized distributed clocks of the rebecs. Instead of a
message queue for each rebec, there exists a bag contain-
ing all the arrival messages of each rebec. Messages that are
sent to a rebec are put in its message bag together with their
arrival time, called time tag, and deadline. Methods are exe-
cuted atomically, but passing of time during the execution of
methods can be modeled. In addition, communication delay
and deadline for execution of messages can be defined in the
model. The timing primitives that are added to the Rebeca
syntax to support these features are delay, deadline, and af-
ter. The descriptions of these constructs are in the following.

e Delay: delay(t), where t is a positive natural number,
increases the value of the local clock of the respective
rebec by the amount ¢.

e Deadline: rm() deadline(t), where r denotes a rebec
name, m denotes a method name of r and ¢ is a natu-
ral number, means that the message m is sent to the rebec
r and it is put in the message bag. After ¢ units of time
the message is not valid any more and is purged from the
bag. Deadlines are used to model message expirations
(timeouts).

After: nm() after(t), where r denotes a rebec name, m
denotes a method name of r and 7 is a natural number,
means that the message m is sent to the rebec r and it
is put in the message bag. The message cannot be taken
from the bag before ¢ time units is passed. After primitive
is used to model network delays in delivering a message
to the destination. It also can be used to model periodic
events.

An example of a Timed Rebeca model is shown in List-
ing 1. This is a model of a single server queueing system.
The model consists of two reactive classes: ArrivalProcess
and Server. As shown in Line 7, The instance of ArrivalPro-
cess sends a message to the instance of Server to be put in
the queue of the server. As specified by after primitive in the
send statement, it takes one time unit to deliver the message
to the server, and as specified by deadline primitive it should
be served in two time units to prevent the timeout. The state-
ment delay(2) in line 8 shows that some process is taking
place that takes two units of time. After the delay the re-
bec sends a message to itself to model its periodic behavior.
Server has a queue, defined as a variable of type /ist in line
15, which stores the requests that are sent to the rebec. List
is one of the extensions of Timed Rebeca language which is
explained in Section 3.3. Requests are served in lines 24 and
25 of serverinit message server. Sending message to itself in
line 27 models periodic behavior of the server.

reactiveclass ArrivalProccess(2) {
knownrebecs { Server srv; }
statevars { int token; }

msgsrv initial() { token = 1; self.sendRequest(); }

msgsrv sendRequest() {
srv.queue(token) after(1) deadline(2);//Send token to Server
delay(2); //Process delay
token = token + 1; //Increment Token
self.sendRequest () after (5); //Periodic task definition

}

}

reactiveclass Server(2) {

knownrebecs { ArrivalProcess proc; }

statevars { list<int> gserver; }

msgsrv initial() { self.serveinit(); }

msgsrv queue(int tok) {
gserver.insert (tok);
delay(1);

//Insert token to Server Queue
//Process delay

msgsrv serverinit() {
if (gserver.size() > 0) {
int reqToken = gserver.first(); //Take the first request
delay(1); //Processing time
self.serverinit() after(1); //Periodic task
}
}
main {
ArrivalProccess proc(srv):();
Server srv(proc):();

}

R

Listing 1. Timed Rebeca model - Single server queueing
system. An extended version of this Timed Rebeca model is
shown in Section 5.

3. Mapping for Timed Rebeca Models

In this section, we explain the mapping algorithm for Timed
Rebeca models to Erlang while conforming new timed fea-
tures of McErlang. When the first version of Timed Rebeca
was proposed in [1], McErlang did not provide timed seman-
tics. We also explain new features added to Timed Rebeca
language to make it more convenient to use. New features
include checkpoint, calling custom functions, and list data
structure which are explained in more details in Section 3.3.

3.1 Timed Semantics of McErlang

Here, we briefly explain timed semantics of McErlang intro-
duced in [6] which will be used in the new mapping of Timed
Rebeca models to Erlang. Erlang handles time with the use
of after as a timeout clause in a receive statement as Listing 2
shows. When a process reaches a receive expression, it looks
for the oldest message in the mailbox of the process to match
it with any of the patterns, for example with Pattern;. Also,
the corresponding guard, i.e. Guard; should be satisfied. If
no pattern is matched and TimeoutValue is reached then the
expression TimeoutExpression is evaluated. The timing fea-
tures of Timed Rebeca, delay, deadline, and after can all be
modeled using the after and timeout in Erlang.

receive
Patternl when Guardl -> Expri;

PatternN when GuardN -> ExprN;
after

TimeoutValue -> TimeoutExpression
end

Listing 2. Erlang syntax of a receive with timeout.

Handling non-timed and timed actions. 1In Timed Rebeca,
during model checking or simulation we have to respect the
order of execution of rebecs based on the order implied by
the timing specified in delay and after primitives. In McEr-
lang no order of execution is respected based on delays. A
naive mapping to Erlang may overlook this difference in
the semantics. Urgent constructs in McErlang are defined to
give us the behavior that is consistent with the semantics of
Timed Rebeca. In Erlang it is possible to assign urgency,
or a maximum waiting time of zero to a receive statement
with no timeout clause. This makes all non-timed message
passing (actions) in the translated code to only happen in-
stantaneously, or infinitely fast as stated in McErlang ref-
erences. Furthermore, the semantics of McErlang state that
the time cannot advance if there is a transition (message) en-
abled with maximum waiting time of zero. In a similar way,
urgency can be assigned to non-zero timeouts which forces
respecting of the order.

Timestamps. In McErlang with timed semantics a new
API mce_erl_time is introduced to provide the definition and
manipulation of timestamps. This new API has the following
functions.

e now(): returns the current time.
e nowRef(): stores the current time in a clock reference.
e was(Ref): returns the time stored in a clock reference.

¢ forget(Ref): stops a stored clock reference.

Some points should be considered in using this APL
The absolute values returned from calls to now() can not
be used by the program. They can only be compared with
the previously recorded clocks, i.e., relative comparisons are
permitted that shows how much time has elapsed since an
event happened.

3.2 Adapting Timed Rebeca with Timed Semantics of
McErlang

The timed version of McErlang proposed in [6] makes the
formal verification of timed programs written in Erlang pro-
gramming language possible. In timed semantics, timed ac-
tions, i.e. actions with timeout clause, are ordered based on
the timeout value while untimed actions, i.e. actions without
timeout clause, are executed infinitely fast.

Timing primitives of delay and after in Timed Rebeca
are mapped to receive statement with timeout clause in Er-
lang. There are two main point to consider regarding the
new timed semantics of McErlang. Firstly, the mapping
algorithm of timing features in Timed Rebeca to Erlang
should be changed according to new timed features of McEr-
lang like timestamps. Secondly, new mapping algorithm for
Timed Rebeca models should make the correct order of ex-
ecution of actions possible. In the following paragraphs we
explain these two points in more details.

N U A W —

© N U B W —

Mapping timing primitives of Timed Rebeca to Erlang In
the previous Timed Rebeca mapping to Erlang, function
now() was used to obtain the current time by using system
clock [1]. Timed behaviors like sending messages with dead-
line, after, and delay statements were implemented in terms
of the system clock. In our new mapping, we use the same
concepts as described in [1] but with a few differences in im-
plementation. We use clock references accessible from API
mce_erl_time to map timed actions from Timed Rebeca to
Erlang.

Message send in Timed Rebeca is translated to a regu-
lar message send in Erlang. Instead of tagging the message
with the local time of the sender, we utilize a clock reference
which is sent as a parameter to the receiver. The clock ref-
erence is obtained from calling nowRef{) and stored in the
variable TT. The clock can be remembered later for relative
comparisons by calling was(Ref). Message send also con-
sists of some other information for the receiver such as dead-
line, message name, and parameters as illustrated in Listing
3. The default value for deadline is inf (standing for infinity)
which denotes no deadline.

messagesend(Sender, Rebec, Msg, Params, Deadline) ->
% Start a clock reference and save it to TT
TT = nowRef(),
spawn(fun () ->
Rebec ! {{Sender, TT, Deadline}, Msg, Params}
end) .

Listing 3. Pseudo McErlang code for message send

After receiving a message, its deadline should be checked
by the receiver before processing it. The timestamp of the
message is the local time of the sender when sending the
message and can be remembered using function was(Ref).
The local time of the receiver when receiving the message
can be obtained by function nowRef{). So, if the message
has not been expired, this condition deadline+was(ref) <
nowRef() should be satisfied.

In Timed Rebeca semantics, a message with the after
statement should be put in the message bag of the receiver,
and it can not be taken from the bag before the specified time
has elapsed. In mapping to Erlang, a function is spawned and
waits for the specified amount of time before sending the
message. The function is an empty receive statement with
a timeout clause, and sending the message is placed in the
timeout clause as demonstrated in Listing 4.

messagesend (Sender, After, Rebec, Msg, Params, Deadline) ->
TT = nowRef(),
spawn(fun () ->
% Delay Process By "After".
recieve
after(Timeunits) ->
Rebec ! {{Sender, TT, Deadline}, Msg, Params}
end) .

Listing 4. Pseudo McErlang code for message send with
After

DR W —

The delay statement makes the local time of a rebec
advances with the specified amount of time. In Erlang, the
delay is translated to the receive statement including just
a timeout value as shown in Listing 5. Since there is no
pattern in the receive statement, the timeout clause (after
clause) will be executed after the specified time. As stated
in [6], the function mce_erl:urgent(MaximumWait) can be
used to determine the urgency of a state, i.e., how much
the process can stay in this state. So, we use the urgent
function in the McErlang code to make the delayed process
run immediately after the timeout expires.

timedelay(Timeunits) ->
% McErlang Urgent Delay
urgent (Timeunits),
% Delay by Timeunits
receive
after (Timeunits) -> ok
end.

Listing 5. Pseduo McErlang code for a message with Delay

Performing timed and untimed actions in the correct se-
quence In Timed Rebeca, the execution order of messages
are specified with respect to the values of primitives delay
and after. Messages with no accompanying timing primi-
tives are called untimed messages. We explained the corre-
sponding Erlang code of Timed Rebeca statements includ-
ing: delay statement, sending untimed messages, and send-
ing messages with an after primitive. To execute messages
in the correct order based on Timed Rebeca semantics, we
should take into account more considerations in correspond-
ing Erlang codes as follows.

e messages without timeout clause in Erlang (messages
without after in Timed Rebeca) should be executed in-
finitely fast (immediately).

e messages with timeout clause in Erlang (delays or mes-
sages with after in Timed Rebeca) should be executed
immediately after the timeout expires. The messages are
ordered based on their timeout.

Using timed extensions in McErlang, we can change the
way in which timed and untimed actions are treated. We can
use the function mce_erl:urgent(MaximumWait) to specify
the urgency of actions. To execute the untimed actions in-
finitely fast, the MaximumWait parameter is set to zero. To
execute the timed actions immediately after their timeout ex-
pires, the MaximumWait parameter is set to the value of time-
out. Since the urgency of actions are defined, actions can be
ordered by using function timeRestrict.

3.3 New Extensions of Timed Rebeca Language

We added some capabilities to Timed Rebeca in order to in-
crease the modeling power of the language. These additions
include list data structure, capability of calling custom func-
tions from Erlang language, and checkpoints. Table 1 shows
the abstract mapping of Timed Rebeca extensions to Erlang.

Checkpoint functions can be used in both simulation and
model checking. They are considered as a marker in the code
that indicates important events. Checkpoints are used to pass
the necessary and useful information of a state to the tool. A
checkpoint has two mandatory arguments: label and term.
Label is an arbitrary name which is defined by the modeler
and is used to refer to a checkpoint. Term are variables that
are added to the checkpoint function as its arguments. Terms
are used to pass necessary information to the checkpoint
function such that it can be retrieved during simulation or
model checking.

Timed Rebeca Syntax Erlang / McErlang

list < int > N; — Erlang list data type as a
variable with name NN.

erlang. func(Vh,...,V,); — Call to function func

with parameters Vi,...,V,,.
checkpoint(L,T1(,1s,....Tn)); — Erlang Output Function

for simulation.

L and 7; are the arguments.
checkpoint(L,T1 (T2, ...,T)); — McErlang probe

for model checking.

L and T; are its

label and term respectively.

Table 1. Abstract mapping of Timed Rebeca extensions to
Erlang and McErlang, where func is the name of a func-
tion, L is a label for a checkpoint, and 7} is the term of a
checkpoint (a state or a local variable name). When doing
model checking 7; is used to define a term of the generated
McErlang probe.

Another notable extension in Timed Rebeca language is
calling custom functions from models. The benefit of this ap-
proach is that a modeler can define functions in Erlang lan-
guage and then call them from the Timed Rebeca model. For
example, in Timed Rebeca there is no function for searching
a list. So, this function can be defined in Erlang and be called
in Timed Rebeca model. Using this extension, Timed Re- 9
beca language has the same programming power as Erlang
language. 12

Applications in which implementing buffers or queues :i
are essential, like for schedulers, can be modeled by using '
list data structure added to Timed Rebeca language. The :3
elements of a list are of the type of integer. They can be 1
defined inside message servers as a local variable or as a ;J,
state variable. Some useful functions are defined in order to 2!

be able to manipulate elements of a list. z

© N9 U B W —

4. Model Checking Timed Rebeca Models

MCcErlang provides two types of model checking facilities
for verification of safety properties and Linear Temporal
Logic (LTL) formulas, using safety monitors and biichi mon-
itors respectively. In this work safety monitors are used for
corresponding Erlang code of Timed Rebeca models in order
to verify safety properties of Timed Rebeca models. For a

given Erlang program, a safety monitor is defined as a func-
tion which is called after creation of each state of the model.
If the content of the state is invalid, the safety monitor re-
ports the state as an erroneous state.

4.1 Checking Safety Properties

To define safety properties, McErlang allows safety moni-
tors to access both states of program and the sequence of ac-
tions, as labels of transitions among states, but the values of
program variables are not allowed to be accessed. However,
the safety properties of Timed Rebeca models are defined
based on the value of variables. We should translate the vari-
ables of Timed Rebeca model in a way to be accessible in
safety monitors. To this end, when model checking, check-
points are translated to McErlang probes, which are accessi-
ble by monitors. As we discussed in Section 3.3, the value of
intended variables are passed as arguments to checkpoints.
Also, the occurrence of interesting events can be specified
using checkpoints.

4.2 Defining Safety Monitors

In this subsection, we explain two predefined safety moni-
tors for Timed Rebeca models and present a framework for
defining monitors in McErlang, using checkpoints.

Deadlock monitor Detecting deadlock in non-terminating
systems is essential. The predefined monitor in Listing 6 can
be used to investigate the deadlock of Timed Rebeca models.
As lines 13 to 20 of Listing 6 show, deadlock is detected by
checking the status of processes. If status of all the processes
is marked as blocked, deadlock is reported.

monitorType() -> safety.
init(State) -> {ok,State}.

stateChange(State,MonState,_) ->
case is_deadlocked(State) of
true -> deadlock;
false -> {ok, MonState}
end.

is_deadlocked(State) ->

State#tstate.ether =:= [] andalso
case mce_erl:allProcesses(State) of
[1 -> false;

Processes ->
case mce_utils:find(fun (P) ->
P#process.status =/= blocked end,
Processes) of
{ok, _} -> false;
no -> true
end
end.

Listing 6. McErlang - Deadlock monitor

Maximum Queue Length Monitor Although in theory
message queues are unbounded in Timed Rebeca, but in
model checking and simulation we need a maximum length
for each queue to keep the state space bounded. Trying to put
messages beyond the queue size of a rebec results in queue
over flow error in Timed Rebeca models. The predefined

maximum queue-size monitor in McErlang can be used to
monitor the size of a rebec’s queue. As lines 7 to 10 of List-
ing 7 show, if a queue of any process exceeds its maximum
size, a violation is reported by the monitor. The maximum
queue size is specified by parameter MaxQueueSize.

Z 5 0 0 u o kW —

monitorType() -> safety.
init (MaxQueueSize) -> {ok,MaxQueueSize}.

stateChange(State, MaxQueueSize, _) ->
case mce_utils:find
(fun (P) -> length(P#process.queue) > MaxQueueSize end,
mce_erl:allProcesses(State)) of
{ok, P} -> {exceeds, P};
_ -> {ok, MaxQueueSize}
end.

% Usage: checkpoint(Label, Term);

% Note: Dropped message have "drop" label so its mot needed.

CheckpointLabel = checkpoint_label, / Not needed for checking
ezpired message probes.

CheckpointTerm =
not_applicable_when_using_checkLabelCheckPoint,

% EOF

Actions = actions(Stack),
checkLabelCheckPoint (Actions, CheckpointLabel).

Listing 7. McErlang - MaxQueue monitor

User-defined Monitor for Checkpoint The purpose of
defining checkpoints in Timed Rebeca model is the veri-
fication of safety properties using McErlang. User-defined
monitors return satisfied if a state which the monitor exam-
ines satisfies the required conditions. Otherwise it returns
violation. Listing 8 shows a template for user defined moni-
tors in which checkpoints are used to verify a property. The
monitor returns satisfied if checkpoint with the specified
label CheckpointLabel cannot be detected, otherwise a vio-
lation will be reported. Looking for a checkpoint in actions
is performed by function checkLabelCheckPoint as shown
in line 14. We also developed some other functions to make
definition of monitors easier. The signature of each function
signature and a brief explanation are listed in the following.

e Checking if a dropped event happens for a message
server, because of the deadline missed.

» checkDropMsgsrv(Actions stateActions, Atom ms-
gSrvName)

® Checking if a checkpoint occurs.

» checkLabelCheckPoint(Actions stateActions, Atom
CheckPointLabel)

e Compare the checkpoint ferm with an integer or boolean.

» checkTermMax Value(Actions stateActions, Atom Check-

pointTerm, Int MaxValue)

» checkTermMinValue(Actions stateActions, Atom Check-

pointTerm, Int MinValue)

= checkTermValue(Actions stateActions, Atom Check-
pointTerm, Int SatisfyInt)

» checkTermValue(Actions stateActions, Atom Check-
pointTerm, Boolean SatisfyBool)

monitorType() -> safety.
init(_) -> {ok, satisfied}.

stateChange(_,satisfied,Stack) ->
% Monitor Setup

N

Listing 8. McErlang - A template for user defined monitors
in which Timed Rebeca checkpointus are used

5. Simulation

In addition to the model checking facilities of McErlang, it
provides simulation of Erlang programs. In the simulation
mode, the next state of an Erlang program is determined ran-
domly, by choosing one of the available transitions from the
current state. Therefore, a randomly chosen path of execu-
tion is explored in each run of simulation.

After translating Timed Rebeca model to Erlang program,
McErlang is configured to be used in simulation mode. To
have an accurate understanding of the model’s behavior, data
is gathered from different simulation runs, each of them in-
cluding a different trace. For performance evaluation, statis-
tical methods are applied to the collected data and the results
are used to reason about the behavior of the model.

5.1 Performance Evaluation Toolset

We implement a toolset to provide performance evaluation
of Timed Rebeca models using McErlang. As shown in Fig-
ure 1, the toolset contains three components as the following.

e timedreb2erl: for translating Timed Rebeca models to
Erlang programs.

e timedrebanalysis: to apply statistical analysis methods
to stored information. Different analysis techniques are
implemented in this component.

e timedrebsim: as a simulation wrapper component which
sends required data to other components and stores data
of simulation runs. Modeler can define the number of
simulations as well as the duration of each simulation
run.

Figure 1 shows that timedrebsim component sends Timed
Rebeca models to timedreb2erl component to be translated
to Erlang program. Translated Erlang program is sent to
McErlang for simulation. The generated data from the sim-
ulation is sent to timedrebsim component at run-time. The
timedrebsim component categorizes the simulation data of
different simulation runs in a way to be used by timedreb-
analysis.

We implement two different analysis techniques in com-
ponent timedrebanalysis, called checkpoint analysis and
paired-checkpoint analysis, to provide performance evalu-
ation of Timed Rebeca models. In the next section, we ex-

11
12

13
14

plain how information provided by checkpoints can be used
in timedrebanalysis to achieve performance measures of in-
terest.

Timed Rebeca Model
v

A
timedrebsim
Simulation Wrapper

Phase 2: Executes the
translated Erlang
model with McErlang
and streams it to the
simulation wrapper.

2: McErlang

Execution of

Phase 3: Generated
simulation results

Phase 1: Inputs the
Time Rebeca
model and outputs
the translated
Erlang model

1: timedreb2erl

Translation of the

3: timedrebanalysis
Manipulate simulation

traces
Paired-checkpoint checkpoint
Analysis Results Analysis Results

model translated model

Figure 1. Architecture of analysis tool-set.

5.2 Evaluation of Checkpoints

As we discussed in Section 3.3, checkpoints were added to
Timed Rebeca language to provide needed information for
model checking and simulation. Each checkpoint is trans-
lated to a function such that McErlang can access the value
of variables and be notified of occurrence of events. We anal-
yse models based on information provided by checkpoints.

During the simulation, every time a checkpoint is exe-
cuted the value of terms (variables or any value of available
data types), label, the time of observing the checkpoint and
the name of the rebec including checkpoint are stored for
performance evaluation purposes.

To illustrate the role of checkpoints in performance evalu-
ation of Timed Rebeca models, we extend the model of sin-
gle server queuing system of Listing 1 to a more detailed
one as shown in Listing 9. The performance of such mod-
els is influenced by the policy of serving the requests of
the queues, called queuing policy. Simulation of the Timed
Rebeca model of the queuing system allows us to find the
system’s performance measures including: throughput of the
system, average waiting time in the queue, and server perfor-
mance.

Five different checkpoints are defined in lines 8, 25, 37,
40, and 41 to collect required data for performance eval-
uation of the model. These checkpoints stores data about
when the request is sent to the server, when it is received by
the server, when the server puts the received message in its
queue, when the received message leaves the message queue,
and when the server finishes execution of a message, respec-
tively. Throughput of the queuing system is measured using
the starting checkpoint in line 8 (label requestStart) and the
ending checkpoint in line 40 (label requestFinished). Wait-

O 0 N U B W —

38
39
40

41

ing time of a request in queue is measured using the starting
checkpoint in line 25 (label requestInQueue) and the end-
ing checkpoint in line 37 (label serverBegins). Server per-
formance is measured using the starting checkpoint in line
37 (label serverBegins) and the ending checkpoint in line 40
(label requestFinished).

In the following subsections, we use some of the afore-
mentioned checkpoints to explain how performance evalu-
ation of Timed Rebeca models is achieved by using imple-
mented analysis techniques in component timedrebanalysis.

reactiveclass ArrivalProccess(2) {
knownrebecs { Server srv; }
statevars { int token; }

msgsrv initial() { token = 0; self.send(); }

msgsrv sendRequest() {
checkpoint (requestStart,token); // Start of Request
int DelayArrivalSend = ?7(1,2,9,10); // Non-Deterministic

Delay

delay(DelayArrivalSend); // Delay for Arrival Requests
srv.queue(token); // Send token to Queue of the Server
token = token + 1;
self.sendRequest(); // Iterate

}

}

reactiveclass Server(2) {
knownrebecs { ArrivalProcess proc; }
statevars { boolean serveractive; list<int> gserver; ¥

msgsrv initial() { serveractive = false; }

msgsrv queue(int tok)

checkpoint (requestInQueue,tok); // Mark Queue input
gserver.insert (tok) ;
if (serveractive == false) { // Initiate Server if not
TUnNINg
self.serverinit();
¥
¥
msgsrv serverinit() {
serveractive = true;

if (gserver.size() > 0) {

int reqToken = gserver.first(); // FIFO, take first
request out

gserver.remove (reqToken) ;

checkpoint (serverBegins,reqToken); // Mark request
processing

int processtime = 7(1,2,3,4,5);

delay (processtime); // Non-Deterministic processing time

checkpoint (requestFinished,reqToken); // Mark finished
request

checkpoint (processQueueSize,qserver.size()); // Mark
size of the queue

}
if (qserver.size() > 0) { // Continue processing if queue
not empty
self.serverinit();
} else {
serveractive = false;
¥
¥
}
main {

ArrivalProccess proc(srv):();
Server srv(proc):();

}

L

1

Listing 9. Timed Rebeca model - Single server queueing
system

5.2.1 Paired-checkpoint analysis

The paired-checkpoint method is implemented in the time-
drebanalysis tool. In paired-checkpoint analysis, two check-
points are grouped together. The modeler specifies paired
checkpoints with the use of labels before running the tool.
The elapsed time between observing two paired checkpoints
is important and can show different performance measures.
For example, in Listing 9, checkpoint with label requestin-
Queue shows that the request is enqueued and the checkpoint
with label serverBegins represents that the request is taken
from the queue to be served. Consequently, the passed time
between the occurrence of these two checkpoints is consid-
ered as the waiting time in the queue.

Two performance measures, the average response time
and the average waiting time, are important and can be mea-
sured by paired-checkpoint analysis. The checkpoints de-
fined in the model can be paired in the timedrebanalysis tool
to extract the interesting information from the data collected
by tool timedrebsim. The corresponding checkpoints in the
model to capture these two performance measures are listed
as follows:

® Response time: the amount of time passed between re-
questing a service and completing the service by the
server. checkpoints with labels requestStart and requestFin-
ished represents the beginning and the end of request
respectively.

e Waiting time: the amount of time that a request waits
in the queue to be served. The checkpoint with label
requestinQueue shows the request arrival to the queue
and the checkpoint with label serverBegins represents the
request departure from the queue.

5.2.2 Checkpoint analysis

Checkpoint analysis is another possible way to provide per-
formance evaluation. In checkpoint analysis, instead of pair-
ing checkpoints, a certain checkpoint is provided to expose
the changes of a particular variable over time. For example,
in the single server queueing system, the number of requests
in the queue, i.e. queue size, is important and can be avail-
able in the simulation results by defining the checkpoint with
label processQueueSize in the model. When a request is en-
queued at run-time, the queue size as well as the present time
is stored in the simulation results.

The timedrebanalysis tool is used to extract useful infor-
mation corresponding to the queue size from simulation re-
sults collected by timedrebsim tool.

Since the resulted information of performance measure-
ment may be very large, we use average moving method
to reduce the dataset for visualization. This well-known

method smooths out short-term fluctuations and highlights
long-term trends of the data [22].

6. Case Study and Experimental Results

sham bokhor

In this section, we show a Timed Rebeca model for an
elevator system in which a centralized coordinator manages
how the requests are dispatched among the elevators, and
also decides on the movements of the elevators. The ap-
proach for dispatching of requests is called scheduling pol-
icy, and the decision on the movement of elevators between
the floors is called movement policy.

We implemented three different scheduling policies,
namely shortest distance, shortest distance with movement
priority, and shortest distance with load balancing, and two
different movement policies, namely up priority, and main-
tain movement. We define four different configurations for
the elevator system, each of them including one of the afore-
mentioned scheduling and movement policies (all the com-
binations are not considered). The complete Rebeca model
for the elevator system and more detailed explanations can
be found at [18] and [12].

To ensure the correctness of the behavior of the model
in each configuration, we first model check the model, then
using simulation, we compare the performance of configura-
tions in terms of expected response time. The proposed tech-
niques introduced in Sections 4 and 5 are applied for model
checking and simulation of the configurations, respectively.

6.1 Model of the Elevator System

Figure 2 shows the event graph of the elevator model. We use
event graph [5] to give a highly abstracted view of events and
their causality relations. Event graphs are widely used for
the explanation of event-based models. The nodes represent
events in a system and the edges represent the causality
relation between events (nodes). Additionally, we add a label
below each node that shows in which reactive class the
event occurs. There are four reactive classes Person, Floor,
Elevator, and Coordinator in the Timed Rebeca model of
the elevator system. Rebecs el/ and e/2 are instantiated from
Elevator as the elevators of the system. Also, rebecs floorl
to floor3, rebec pers, and rebec coord are instantiated from
reactive classes Floor, Person, and Coordinator repectively,
to show two elevators, three floors and one person in the
model. Algorithms which are related to the scheduling and
movement policies are implemented in the message servers
handlerequest and handleElevatorMovement of Coordinator
of the model.

The rebec pers sends the requests randomly to one of the
floors and one of the elevators by sending messages callEl-
evator and requestFloor, as shown in Figure 2. Sending a
message to a floor, i.e. calling callElevator, shows that a per-
son standing in a specified floor presses the button asking for
an elevator to come. This request has to be forwarded to the

l Person

requestFloor

callElevator

handleRequest

oordinator

moveDown

handleElevator-
Movement

Figure 2. Event graph of the centralized elevator system.

appropriate elevator to be served. Sending a request to an el-
evator, i.e. calling requestFloor, implies that a person inside
an elevator desires to go to the requested floor.

6.2 Safety Verification

We use checkpoint monitors as discussed in Section 4, to
verify the safety properties of the model. The first safety
property which is verified to ensure the correctness of the
model is the value of the elevator location. This value must
be within the valid range which is one to three. In Timed
Rebeca model, the checkpoint elevatorLocation is defined
to make the value of elevator locations available for model
checking. To check the maximum and minimum value of
checkpoint elevatorLocation, we use the predefined func-
tions checkTermMaxValue and checkTermMinValue respec-
tively, as shown in Listing 10.

monitorType() -> safety.
init(_) -> {ok, satisfied}.

stateChange(_,satisfied,Stack) ->
Actions = actions(Stack),
checkTermMinValue (Actions,elevatorLocation,0),
checkTermMaxValue (Actions,elevatorLocation,3),
checkTermValue (Actions,elevatoriStopReqInList,-1),
checkTermValue (Actions,elevator2StopReqInList,-1),

Listing 10. Checkpoint monitor for the elevator system
with three floors.

P

10

We are also interested in checking whether the eleva-
tors stop on the floors which are not requested. The pre-
defined function CheckTermValue is used to check whether
the value of checkpoints elevatoriStopReqlnList and eleva-
tor2StopReqlnList equals to -1, which means the elevator
stops on the incorrect floors. The results of model check-
ing of Elevator model, using the mentioned properties, are
shown in Table 2.

Parameter Condition Result

Elevator location | Location 0 > Satisfied
(40929 states) 112.4 seconds

Elevator location | Location < 3 Satisfied
(40929 states) 111.6 seconds

Stop Queue 1 # -1 Satisfied
(40929 states) 110.5 seconds

Stop Queue 2 # -1 Satisfied
(40929 states) 109.5 seconds

Table 2. Safety verification results for the elevator system.

6.3 Simulation

In this section, we explain different scheduling and move-
ment policies which are implemented in message servers
handleRequest and handleElevatorMovement, respectively.
We consider four different scenarios each of them with dif-
ferent scheduling and movement policies. The efficiency of
the proposed scenarios is revealed by comparing the ex-
pected response time of scenarios. The simulation of the sce-
narios take place with the same settings to be able to com-
pare the simulation results.

6.3.1 Scheduling Policy

Shortest distance, shortest distance with movement prior-
ity, and shortest distance with load balancing are three dif-
ferent scheduling policies which are studies in the experi-
ments. Listing 11 in Appendix A shows the message server
handleRequest in which two different requests are handled.
First, the requests sent to a floor are enqueued in the nearest
elevator to the floor based on the shortest distance schedul-
ing policy. Second, the requests sent to an elevator are en-
queued in it.

In the second algorithm which is shown in Listing 12
in Appendix A, both moving direction of the elevator and
shortest distance are taken into account to enqueue the re-
quests in the elevators. In this approach, for assigning a re-
quest to an elevator the moving direction of the elevators has
precedence to the distance of the elevators to the floor from
which the request is sent. For example, in the case that eleva-
torl is not moving towards the requested floor and elevaror2
is moving towards it, although the new request is closer to
elevatorl, it is enqueued in the queue of elevaror2.

The third scheduling policy is implemented as shown in
Listing 13 in Appendix A. Here the main goal is to balance
the number of the requests assigned to the elevators, called

load balancing policy. We also consider the shortest distance
approach. The queue size of elevators has preference to the
distance of request from the elevators. For example, we
suppose that the requested floor is closer to elevator2, and
the queue size of elevatorl is less than the queue size of
elevator2, then the requested floor is enqueued in the queue
ofelevatorl.

6.3.2 Movement policy

We implemented two movement policies which are up prior-
ity and maintain movement. Listing 14 in Appendix A shows
the message server handleElevatorMovement, in which up
priority movement policy is implemented. The policy im-
plies that the elevator attempts to go up first and serve the
requests in the higher floors. This message server updates
the elevator location and simulates its movement between
different floors.

Listing 15 in Appendix A represents the pseudo code of
maintain movement policy. In maintain movement policy, if
the elevator is moving upward (downward) and there are
requests from higher (lower) floors, the elevator will con-
tinue the moving direction and serve the requests, otherwise
it changes its moving direction. In other words, the elevator
responds to all requests on its way.

6.3.3 Simulation Results

As mentioned before, we consider four different configura-
tions in which scheduling and movement policies are differ-
ent:

e configuration 1: scheduling policy: shortest distance,
movement policy: up priority

e configuration 2: scheduling policy: shortest distance,
movement policy: maintain movement

e configuration 3: scheduling policy: shortest distance with
movement priority, movement policy: maintain move-
ment.

e configuration 4: scheduling policy: shortest distance with
load balancing, movement policy: maintain movement.

For each configuration, we used timedrebsim to execute
10 simulations, each with 1500 random floor requests with
delay of 2 time units. Delay of the elevator movement is 2
time units and the delay of an elevator door opening, and
closing is set to a non-deterministic choice of 1, 2, 4 or 6
time units.

The results of analysis of four configurations are shown in
Table 3. It shows that configuration of shortest distance pol-
icy as scheduling policy and maintain movement policy as
movement policy results in the optimum solution among the
suggested configurations. Although shortest distance with
movement priority policy may seem to have better perfor-
mance, experimental results show otherwise.

7. Conclusion

In this paper we presented an extension of Timed Rebeca
language [1] and its supporting tool. The most significant
extension is the definition of checkpoint functions in Timed
Rebeca models. Our extensions in the language as well as
timed extensions in McErlang provide us with model check-
ing and simulation of timed models. A tool has been devel-
oped to translate the Timed Rebeca models to Erlang lan-
guage. The mapping rules of translation from Timed Rebeca
to Erlang, is modified to support timed extensions in McEr-
lang. While model checking, safety monitors in McErlang
can be defined to verify the correctness of models with re-
spect to safety properties.

In the developed tool, McErlang is used to simulate
Timed Rebeca models in which, the next program state is
chosen randomly. Therefore, a random execution path is
searched in each simulation run. To have more accurate
performance analysis, we can run different simulations to
gather data from different traces. The statistical methods are
applied to the collected data to reveal the system behavior.
Two kinds of performance analysis are provided using sta-
tistical methods, which are paired-checkpoint analysis and
checkpoint analysis. In checkpoint analysis, our focus is on
the evolution of a particular parameter during time. For ex-
ample, in a single queueing system the number of requests
in the queue, i.e. queue size, can be investigated. In paired-
checkpoint analysis, we study the difference between two
values, like the duration of waiting, or service.

We evaluate the developed tool and proposed methods on
a typical case study including centralized elevators. We mea-
sure the response time for the requests arriving from each
floor in different scenarios. Each scenario includes differ-
ent scheduling algorithms and movement policies, which are
responsible for assigning the requests to the elevators and
determining how the elevators move between the floors, re-
spectively.

The focus of our future work is on improving the model
checking capabilities. In this work the modeler defines the
monitors in order to verify the safety properties in the model.
Our goal includes the automation of generating monitors
based on a property language. Moreover, we shall try to
cooperate with McErlang team in order to develop a more
efficient algorithm for state space generation, possibly using
coarse-grain transitions.

References

[1] L. Aceto, M. Cimini, A. Inglfsdttir, A. H. Reynisson, S. H.
Sigurdarson, and M. Sirjani. Modelling and Simulation of
Asynchronous Real-Time Systems using Timed Rebeca. In
FOCLASA’11, pages 1-19, 2011.

[2] G. Agha. Actors: A Model of Concurrent Computation in
Distributed Systems. MIT Press, Cambridge, MA, USA, 1990.

[3] G. Agha. The Structure and Semantics of Actor Languages.
In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, edi-

Configuration Expected response Median response Max response Total finished
time (Average) time (Average) time (Average) requests
1 25.93 14.8 271.3 75154
2 16.55 12.8 717.3 96455
3 20.37 16.6 83.6 79069
4 20.46 18.6 67.3 79755

Table 3. Experimental results summary for the different configurations of the elevators system.

tors, Foundations of Object-Oriented Languages, pages 1-59.
Springer-Verlag, Berlin, Germany, 1990.

[4] R. Alur and D. Dill. A Theory of Timed Automata. Theoreti-
cal Computer Science, 126:183-235, 1994. .

[5] A. H. Buss. Modeling with Event Graphs. In Proceedings
of the 28th conference on winter simulation, pages 153-160,
1996.

[6] C. B. Earle and L. Fredlund. Verification of Timed Erlang
Programs Using McErlang. In Proceedings of the 14th joint
IFIP WG 6.1 international conference and Proceedings of the
32nd IFIP WG 6.1 international conference on Formal Tech-
niques for Distributed Systems, FMOODS’12/FORTE’12,
pages 251-267, Berlin, Heidelberg, 2012. Springer-Verlag.
ISBN 978-3-642-30792-8. . URL http://dx.doi.org/10.
1007/978-3-642-30793-5_16.

L.-A. Fredlund and H. Svensson. McErlang: A Model
Checker For a Distributed Functional Programming Lan-
guage. SIGPLAN Not., 42(9):125-136, 2007. ISSN 0362-
1340. .

I. Gupta, B. Cho, M. R. Rahman, T. Chajed, C. L. Abad,
N. Roberts, and P. Lin. Natjam: Eviction Policies For
Supporting Priorities and Deadlines in Mapreduce Clus-
ters. 2009. URL https://www.ideals.illinois.edu/
handle/2142/44871.

[9] C. Hewitt. Description and Theoretical Analysis (Using
Schemata) of PLANNER: A Language for Proving Theorems
and Manipulating Models in a Robot. MIT Artificial Intel-
ligence Technical Report 258, Department of Computer Sci-
ence, MIT, Apr. 1972.

[10] M. M. Jaghoori, M. Sirjani, M. R. Mousavi, E. Khamespanah,
and A. Movaghar. Symmetry and Partial Order Reduction
Techniques in Model Checking Rebeca. Acta Informaticae,
47(1):33-66, 2009. .

[11] E. Khamespanah, Z. Sabahi Kaviani, R. Khosravi, M. Sirjani,
and M.-J. Izadi. Timed-rebeca Schedulability and Deadlock-
freedom Analysis Using Floating-time Transition System. In
Proceedings of the 2nd edition on Programming systems, lan-
guages and applications based on actors, agents, and decen-
tralized control abstractions, AGERE! *12, pages 23-34, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1630-9.
URL http://doi.acm.org/10.1145/2414639.2414645.

[12] H. Kristinsson. Event-based Analysis of Real-Time Actor
Models - Master Thesis, Reykjavik University, Iceland, 2012.

[13] L. Lamport. Real-Time Model Checking is Really Simple.
In Proceedings of the 13 IFIP WG 10.5 international con-

ference on Correct Hardware Design and Verification Meth-
ods, CHARME’05, pages 162—175, Berlin, Heidelberg, 2005.

[7

—

[8

—_—

Springer-Verlag. ISBN 3-540-29105-9, 978-3-540-29105-3. .
URL http://dx.doi.org/10.1007/115660548_14.

[14] L. Linderman, K. Mechitov, and B. F. Spencer. TinyOS-
based Real-Time Wireless Data Acquisition Framework for
Structural Health Monitoring and Control. Structural Control
and Health Monitoring, 20(6):10071020, June 2013. .

[15] I. A. Mason and C. L. Talcott. Actor Languages: Their
Syntax, Semantics, Translation, and Equivalence. Theoret-
ical Computer Science, 220(2):409-467, June 1999. ISSN
0304-3975. URL http://www.elsevier.com/cas/tree/
store/tcs/sub/1999/220/2/3170.pdf.

[16] P. C. Olveczky and J. Meseguer. Semantics and Pragmatics
of Real-Time Maude. Higher Order Symbol. Comput., 20(1-
2):161-196, June 2007. ISSN 1388-3690. URL http:
//dx.doi.org/10.1007/s10990-007-9001-5.

[17] G. D. Plotkin. A Structural Approach to Operational Seman-
tics. Technical Report DAIMI FN-19, Computer Science De-
partment, Aarhus University, Aarhus, Denmark, Sept. 1981.

[18] Rebeca. Rebeca homepage. http://www.rebeca-lang.org.

[19] S. Ren and G. Agha. RT-synchronizer: Language Support for
Real-Time Specifications in Distributed Systems. In Work-
shop on Languages, Compilers and Tools for Real-Time Sys-
tems, pages 50-59, 1995.

[20] Z. Sharifi, S. Mohammadi, and M. Sirjani. Comparison of
NoC Routing Algorithms Using Formal Methods. To be
published in proceedings of PDPTA’13, 2013.

[21] Z. Sharifi, M. Mosaffa, S. Mohammadi, and M. Sirjani. Func-
tional and Performance Analysis of Network-on-Chips Using
Actor-based Modeling and Formal Verification. To be pub-
lished in proceedings of AVOCS’13, 2013.

[22] J. S. Simonoff. Smoothing Methods in Statistics. Springer,
1998. ISBN 978-0-387-94716-7.

[23] M. Sirjani and M. M. Jaghoori. Formal Modeling. chapter Ten
Years of Analyzing Actors: Rebeca Experience, pages 20-56.
Springer-Verlag, Berlin, Heidelberg, 2011. ISBN 978-3-642-
24932-7. URL http://dl.acm.org/citation.cfm?id=
2074591.2074596.

[24] M. Sirjani, A. Movaghar, A. Shali, and F. de Boer. Model
Checking, Automated Abstraction, and Compositional Veri-
fication of Rebeca Models. Journal of Universal Computer
Science, 11(6):1054—-1082, 2005.

[25] M. Sirjani, A. Movaghar, A. Shali, and F. de Boer. Modeling
and Verification of Reactive Systems using Rebeca. Funda-
menta Informatica, 63(4):385-410, Dec. 2004.

[26] UPPAAL. UPPAAL Homepage. http://www.uppaal.com.

A. Pseudocode of Policies

msgsrv handleRequst (Floor f)
{
if (sender is instance of Floor) {
if Contains(ElvQueuel,f) || Contains(ElvQueue2,f)
donothing;
else {
if (ElvLocl == f)
Add (ElvQueuel,f);
else if (ElvLoc2 == f)
Add (ElvQueue2,f);
else if (ElvLocl == ElvLoc2){
RandQueue = chooseRand(ElvLoc1,ElvQueue2);
Add (RandQueue,) ;
}
else if (abs(f-ElvLocl) > abs(f-ElvLoc2))
Add (ElvQueue2,f);
else
Add (ElvQueuel,f);
}
¥
else if (sender is instance of Elevator){
if (sender == Elevatorl && ElvLocl != f &&
!Contains (ElvQueuel,f))
Add (ElvQueuel,f);
else if (sender == Elevator2 && ElvLoc2 != f &&
!Contains (ElvQueue2,f))
Add (ElvQueue2,f);
else if (ElvLocl == f || ElvLoc2 == f)
SendMessage (sender, StopAndOpen) ;
¥
// any idle elevators should be started

}

Listing 11. Pseudo code of message server HandleRequest
where the scheduling policy is shortest distance policy.

/* Scheduling policy: Shortest distance policy with movement
priority. */

/* Check if any elevators are already located on the requested

floor */

else if (abs(floor-ElviLoc) > abs(floor-Elv2Loc)){
if (floor > Elv2Location && Elv2Movment==1)
Add (Elv2Queue,floor) ;
else if (floor < Elv2Location && Elv2Movment==-1)
Add (Elv2Queue,floor);
else if (floor > ElviLocation && ElviMovement==1)
Add (ElvQueuel,floor);
else if (floor < ElviLocation && ElviMovement==-1)
Add (ElvQueuel,floor);
else
Add (ElvQueue2,floor);
}
else{
if (floor > ElviLocation && ElviMovment==1)
Add (ElviQueue,floor);
else if (floor < ElviLocation && ElviMovment==-1)
Add (ElviQueue,floor);
else if (floor > Elv2Location && Elv2Movement==1)
Add (ElvQueue2,floor) ;
else if (floor < Elv2Location && Elv2Movement==-1)
Add (ElvQueue2,floor);
else
Add (ElvQueuel,floor);

Listing 12. Timed Rebeca pseudo code for scheduling
policy shortest distance with movement priority. [... | denotes
the deleted code which has been already shown in Listing 11.

The variable floor is the requested floor number sent by the
rebec pers.

o W w —

©

/* Scheduling policy: Shortest distance policy with load
balancing. */

/* Check if any elevators are already located on the requested

floor */

else if (abs(floor-Elviloc) > abs(floor-Elv2Loc)){
if (Size(Elv2Queue) < Size(ElviQueue) || Size(Elv2Queue) =
Size(ElviQueue))
Add (E1lv2Queue,floor);
else
Add (ElviQueue,floor);
}
else {
if (Size(ElviQueue) < Size(Elv2Queue)
Size (Elv2Queue))
Add (ElviQueue,floor);
else
Add (E1lv2Queue,floor) ;

|| Size(ElviQueue)

Listing 13. Timed Rebeca pseudo code for scheduling
policy shortest distance with load balancing. [...] denotes
deleted code which has been already shown in Listing 11.
The variable floor is the requested floor number sent by the
pers rebec.

msgsrv handleElevatorMovement (int movement)
{
// movement=0 means elevator stopped,
// movement=1 means elevator is going up
// movement=-1 means elevator is going down
if (sender == Elevatorl && movement != 0){ //moving elevator
ElviMovement = movement;
if (movement == -1)
ElviLocation-=1;
else if (movement == 1)
ElviLocation+=1;
if (Size(ElviQueue) > 0){
if (Contains(ElviQueue, ElviLocation)){
ElviQueue.Remove(ElviLocation);
SendMessage (Elevatorl,StopOpen) ;
}
else{
if (Next(Elv1iQueue,ElviLocation,1)
ElviMovement = 1;
SendMessage (Elevator1,MoveUp) ;
}
else{
ElviMovement = -1;
SendMessage (Elevator1,MoveDown) ;
}
}

1= -1){

}
}
else if (sender == Elevatorl){ // Stopped Elevator
ElviMovement = movement;
if (ElviMovement == 0 && Size(ElvQueuel) > 0){
if (Next(ElviQueue,ElviLocation,1) != -1){
ElviMovement = 1;
SendMessage (Elevatorl,MoveUp) ;
}
else{
ElviMovement = -1;
SendMessage (Elevatorl,MoveDown) ;

}
}
¥

// movement for elevator 2

u‘}

Listing 14. Timed Rebeca Pseudo code for message server
handleElevatorMovement where the movement policy is up
priority policy. Contains and Next are custom functions.
Pseudo code presented is for Elevator 1 in the model.

N

/* Movement policy: Maintain movement Policy. */
/* Check if elevators are on the requested floor before moving */

/* If elevator queue is not empty: */
/* If movement is UP and there is a request higher than the
current floor then go up. Otherwise go down. */
if (Movement==1){
if (Next(ElviQueue,ElviLocation,1) !'= -1){
ElviMovement=1;
SendMessage (Elevator1,MoveUp) ;
}
else{
ElviMovement=-1;
SendMessage (Elevator1,MoveDown) ;
}
/* Elself movement is DOWN and there is a request lower than the
current floor then go down. Otherwise go up. */
else{
if (Next(ElviQueue,ElviLocation,-1) != -1){
ElviMovement=-1;
SendMessage (Elevatorl,MoveDown) ;
}
elseq{
ElviMovement=1;
SendMessage (Elevatorl,MoveUp) ;
}

Listing 15. Timed Rebeca pseudo code for movement
policy Maintain movement. The pseudo code shows the
algorithm for elevator 1.

