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Abstract
Non-Polynomial time complexity of model checking
algorithms for TCTL properties in dense time is one of
the obstacles against using model checking for timed
systems. Alternatively, polynomial time algorithms are
suggested for model checking discrete time models
presented as Duration Time Graphs (DTG) versus a
subset of TCTL formula (TCTL≤,≥). While TCTL≤,≥ can
be model checked in polynomial time, the problem of
model checking for exact time condition (TCTL=) is an
NP-Hard problem unless certain conditions hold. In
this work we tackle model checking of timed actors
using DTG. At the first step, we propose a reduction
technique by folding all the instantaneous transitions,
resulting folded timed transition system (FTS). At the
second step, we show how the FTS of timed actors
with discrete time can be mapped to a DTG. Then,
we show when the necessary conditions hold for the
FTS of timed actors and hence there is an O(|S|2 ·
Φ) algorithm for model checking of complete TCTL
properties (including TCTL≤,≥ and TCTL=) which have
small constant time quantifiers. We use a set of case
studies to illustrate the impact of using this technique
in different application domains.

Categories and Subject Descriptors D.2.4 [SOFT-
WARE ENGINEERING]: Software/Program Verification
- Assertion checkers, Formal methods, Model checking.

Keywords Actor Model; Timed Rebeca; Model Check-
ing; TCTL; Discrete Time Transition System; Duration
Transition Graph
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1. Introduction
Using timed actors1 for modeling and analysis of real-
time systems with asynchronous message passing is
one of the well-known approaches. Although there are
some works on verification of timed actors [8, 11], the
lack of efficient model checking algorithm has limited
the use of model checking for verification of timed
actors.

Most of the works on model checking of real-time
systems are done for Alur and Dill’s Timed Automata
[3]. As a result, there exists a deep theoretical knowl-
edge and large number of practical experiences for the
systems which can be specified by timed automata.
Based on established theoretical works the model
checking algorithms of timed automata are at least
in PSPACE-hard class for TCTL properties [2]. Timed
model checkers like UPPAAL only support a subset of
TCTL that can be model checked efficiently [5].

On the contrary, wider range of TCTL properties
can be efficiently analyzed for simpler families of timed
models. One simplification is done in [7, 9] by assuming
that each transition takes exactly one time unit. Later, a
small extension is added to this work by allowing exis-
tence of instantaneous transition (zero time transitions)
in [13]. Finally Timed Transition Graph (TTG) [6] and
Duration Transition Graph (DTG) [14] extended the for-
mer works by associating discrete time duration to the
transitions. Although TTG and DTG are less expressive
than timed automata, there are efficient model check-
ing algorithms for them. DTG is expressive enough to
being used as the semantics of discrete timed actors, as
we used here.

In this work we use the algorithm of [14] for model
checking of timed actors. To this aim, in Section 5, we
show that the semantics of discrete timed actors, shown
as Timed Transition Systems (TTS), can be captured as
a DTG and hence the algorithm of [14] can be used for
model checking of it. Although the proposed model

1 We use “timed actor” and “discrete timed actor” in this paper
interchangeably.



checking algorithm efficiently works for TCTL≤,≥ prop-
erties, model checking against TCTL= properties re-
mains NP-complete. We propose a new approach based
on [16] for model checking of TCTL= properties for
Timed Rebeca models. Timed Rebeca is an extension
of Rebeca [19, 20] with time features for modeling and
verification of time-critical systems. Rebeca is an actor-
based language for modeling concurrent and reactive
systems with asynchronous message passing. An in-
troduction to Timed Rebeca and its formal semantics
is presented in Section 2 and TCTL model checking of
DTGs is presented in Section 3. The results of applying
the approach of this work is depicted in Section 6 to
illustrate the impact of the approach in verification of
timed actors.

The current work will add an efficient tool for model
checking TCTL properties of Timed Rebeca models to
the existing rich toolset of Rebeca. A short overview of
the previous approaches are presented in the following
as related works.
Related Work. A tool is developed for model checking
Timed Rebeca by transforming Timed Rebeca mod-
els to timed automata. The resulted timed automata
are model checked against TCTL properties using
UPPAAL toolset. Timed automata are used as back-
end timed model of different high-level modeling lan-
guages and UPPAAL is used as a successful back-end
model checker. But in case of Timed Rebeca, because of
the inefficiency of modeling asynchronous communica-
tion among actors by synchronized communication of
timed automata, model checking results in state space
explosion even for middle-sized case studies [12].

In another work, Floating Time Transition System
(FTTS) is defined as an event-based semantics for
Timed Rebeca models in [12]. Focusing on the analysis
of Timed Rebeca based on the key features of actors,
being event-driven and isolated, results in a significant
amount of state space reduction in FTTS. However,
FTTS cannot be used for model checking state-based
TCTL formulas. States in FTTS contain the local times
of each rebec, in addition to values of their state vari-
ables and the bag of their received messages. The local
times of rebecs in a state can be different from each
other, and there is no unique value for time in each
state. This is only admissible where we are not inter-
ested in the state of all the rebecs at a specific point of
time, e.g. checking for deadlock freedom and deadline
misses, or any other event-based property.

Another tool is developed for mapping Timed Re-
beca to Real-Time Maude. This enables a formal model-
based methodology which combines the convenience
of intuitive modeling in Timed Rebeca with formal
verification in Real-Time Maude. Real-Time Maude is
supported by a high-performance toolset providing a

spectrum of analysis methods, including simulation
through timed rewriting, reachability analysis, and (un-
timed) linear temporal logic (LTL) model checking as
well as timed CTL model checking. As described in
[17], a reduction technique is applied to the gener-
ated Real-Time Maude models to avoid state space ex-
plosion. Mainly, a number of statements (which are
related to the instantaneous statements of Timed Re-
beca except sending message) are “group together”
and execute them in one “atomic” rewrite step. This
approach significantly improves the performance of
the model checking in comparison with the “standard”
approaches (i.e. each action is performed by a rewrite
step). While Real-time Maude provides us with a wide
range of analysis tools, our current work only covers
the TCTL model checking. The experimental results
show that our new tool outperform Real-Time Maude
in TCTL model checking. In the reduction technique
of our current work, we group together instantaneous
statements including sending messages. This results in
more reduction on the size of state spaces.

There are also analysis tools for Timed Rebeca mod-
els using simulation techniques. In [15], the simulation
engine of Erlang is used to generate a number of traces
and verify them. Using this approach, state space ex-
plosion is avoided; however, it does not guarantee the
correctness of model.
Contributions. In a nutshell, the contributions of this
paper can be summarized to proposing a technique for
efficient TCTL model checking of timed actors by:

• Proposing Folded Timed transition System by ap-
plying a reduction technique on Timed transition
System used as the semantics of timed actors
• Proving that the Folded Timed Transition System is

a DTG which is used for model checking against
TCTL≤,≥ properties
• Using a modified version of pseudo-polynomial

time algorithm of finding the Exact Path Length in
weighted graphs for model checking against TCTL=

properties

2. Timed Rebeca
Timed Rebeca is an extension of Rebeca [20] with
time features for modeling and verification of time-
critical systems. We illustrate Timed Rebeca language
constructs using a simplified version of ticket service
example in Figure 1.

A Timed Rebeca model consists of a number of reac-
tive classes, each describing the type of a certain num-
ber of actors (called rebecs in Timed Rebeca. In this pa-
per we use rebec and actor interchangeably). In the



1 reactiveclass TicketService {
2 knownrebecs {Agent a;}

3 statevars {

4 int issueDelay, nextId;

5 }

6 TicketService(int myDelay) {

7 issueDelay = myDelay;

8 nextId = 0;

9 }

10 msgsrv requestTicket() {

11 delay(issueDelay);

12 a.ticketIssued(nextId);

13 nextId = nextId + 1;

14 }

15 }
16 reactiveclass Agent {

17 knownrebecs {

18 TicketService ts;

19 Customer c;

20 }

21 msgsrv requestTicket() {

22 ts.requestTicket()

23 deadline(5);

24 }

25 msgsrv ticketIssued(byte id)

{

26 c.ticketIssued(id);

27 }

28 }
29 reactiveclass Customer {
30 knownrebecs {Agent a;}

31 Customer() {

32 self.try();

33 }

34 msgsrv try() {

35 a.requestTicket();

36 }

37 msgsrv ticketIssued(byte id)

{

38 self.try() after(30);

39 }

40 }
41 main {
42 Agent a(ts, c):();

43 TicketService ts(a):(3);

44 Customer c(a):();

45 }

Figure 1. The Timed Rebeca model of ticket service system.

ticket service model, we have three reactive classes
TicketService, Agent, and Customer. Each reactive
class declares a set of state variables. The local state of
each actor is defined by the content of its message bag
and values of its state variables. Following the actor
model, the communication in the model takes place by
asynchronous messages passing among actors. Each
actor has a set of known rebecs to which it can send mes-
sages to. For example, an actor of type TicketService
knows an actor of type Agent (line 2), to which it can
send messages (line 12). Reactive classes declare the
messages to which they can respond. The way an actor
responds to a message is specified in a message server.
An actor can change its state variables through assign-
ment statements (e.g., line 13), make decisions through
conditional statements (not appearing in our example),
and communicate with other actors by sending mes-
sages (e.g., line 12). The periodic behavior is modeled
by actors sending messages to themselves (e.g., line 38).
Since the communication is asynchronous, each actor
has a message bag from which it takes the next incoming
message. The ordering of message in a message bag is
based on the arrival times of messages. An actor takes
the first message from its message bag, executes the
corresponding message server in an isolated environ-
ment, and then takes the next message (or waits for the
next message to arrive) and so on. The message server
may have nondeterministic assignment statement which
is used to model nondeterminism in the behavior of a
message server.

Finally, the main block is used to instantiate the
actors of the system. In the ticket service model, three
actors are created receiving their known rebecs and the
arguments to their constructor upon instantiation (lines
42-44).

Timed Rebeca adds three primitives to Rebeca to
address timing issues: delay, deadline and after. A de-
lay statement models passing of time for an actor dur-
ing execution of a message server (line 14). Note that
all other statements are assumed to execute instanta-
neously. The keywords after and deadline can be used in
conjunction with a method call. The term after n indi-
cates that it takes n units of time for the message to be
delivered to its receiver. For example, the periodic task
of requesting a new ticket is modeled in line 45 by the
customer sending a trymessage to itself and letting the
receiver (itself) to take it from its message bag only after
30 units of time. The term deadline n shows that if the
message is not taken in n units of time, it will be purged
from the receiver’s message bag automatically. For ex-
ample, lines 22-23 indicates a requestTicketmessage
to the ticket service must be started to execute before
five units from sending the message.

2.1 Semantics of Timed Rebeca In Timed
Transition System

At the first step of presenting the semantics of Timed
Rebeca, we formalize the definition of a number of
primitive concepts in Timed Rebeca. A rebec ri with
the unique identifier i is defined as the tuple (Vi,Mi,Ki)
where Vi is the set of its state variables, Mi is the set
of its message servers, and Ki is the set of its known
rebecs. The set of all the values of the state variables of
ri is denoted by Valsi. For a Timed Rebeca model M,
there is a universal set I which contains identifiers of
all the rebecs ofM.

A (timed) message is defined as tmsg = ((sid, rid,mid)
, ar, dl), where rebec rsid sends the message mmid ∈ Mrid
to rebec rrid. This message is delivered to the rebec rrid
at ar ∈ N0 as its arrival time and the message should
be served before dl ∈ N0 as its deadline. For the sake



of simplicity, we ignore the parameters of the messages
here.

Each rebec ri has a message bag Bi which can be
defined as a multiset of timed messages. Bi stores the
timed messages which are sent to ri. The set of possible
states of Bi is denoted by Bagsi.

Timed transition system is generally the standard
semantic framework for discrete timed systems, and
we define the TTS of Timed Rebeca in this section.

Timed Transition System of the Timed Rebeca model
M is a tuple of TTS = (S, s0,Act,→,AP,L) where S is the
set of states, s0 is the initial state, Act is the set of action,
and→ is the transition relation. AP is the set of atomic
propositions and L is a labeling function in form of
L : S→ 2AP.

States. A state s ∈ S consists of the local states of the
rebecs, together with the current time of the state. The
local state of rebec ri in state s is defined as the tuple
(Vs,i,Bs,i, pcs,i, ress,i), where

• Vs,i ∈ Valsi is the values of the state variables of ri

• Bs,i ∈ Bagsi is the message bag of ri

• pcs,i ∈ {null} ∪ (Mi × N) is the program counter,
tracking the execution of the current message server
(null if ri is idle in s)
• ress,i ∈ N0 is the resuming time, if ri is executing a
delay in s

So, state s ∈ S can be defined as the following where
nows ∈N is the current time of s.∏

i∈I

(
Vs,i,Bs,i, pcs,i, ress,i

)
,nows


Initial State. s0 is the initial state of the Timed Rebeca
model M where the state variables of the rebecs are
set to their initial values (according to their types),
the initial message is put in the bag of all rebecs
having such a message server, the program counters of
all rebecs are set to null, and the time of the state is set
to zero.

Actions. There are three possible types of actions: send-
ing a message tmsg = ((sid, rid,mid), ar, dl), executing a
statement by an actor (which we consider as an inter-
nal transition τ), and progress of n ∈ N units of time.
Hence, the set of actions is defined as

Act =
⋃
i∈I

((I × i ×Mi) ×N ×N) ∪ {τ} ∪N

Transition Relations. Before defining the transition
relation, we introduce the notation Es,i which denotes
the set of enabled messages of rebec ri in state s which
contains the messages which their arrival time is less

than or equal to nows. The transition relation →⊂
S × Act × S is defined such that (s, act, t) ∈→ if and
only if one of the following conditions holds.

1. (Taking a message for execution) In state s, there
exists ri such that pcs,i = null and there exists tmsg ∈

Es,i. Here, we have a transition of the form s
tmsg
−→ t.

This transition results in extracting tmsg from the
message bag of ri, setting pct,i to the first statement
of the message server corresponding to tmsg, and
setting rest,i to nowt (which is the same as nows). Note
that Vt,i remains the same as Vs,i. These transitions
are called taking-event transitions.

2. (Internal action) In state s, there exist ri such that
pcs,i , null and ress,i = nows. The statement of
message server of ri specified by pcs,i is executed
and one of the following cases occurs based on the
type of the statement. Here, we have a transition of
the form s τ

→ t.

(a) Non-delay statements: the execution of the state-
ment may change the value of a state variable
of rebec ri or sending a message to other rebecs.
Here, pct,i is set to the next statement (or null if
there is no more statements). All other elements
of t is the same as those of s.

(b) Delay statement with parameter d ∈ N: the
execution of delay statement sets rest,i to nows +d.
All other elements of the state remain unchanged.
Particularly, pct,i = pcs,i because the execution of
delay statement is not yet complete. The value of
the program counter will set to the next statement
after completing the execution of delay (as will
be shown in the third case).

These transitions are called internal transitions.

3. (Progress of time) If in state s none of the condi-
tions in cases 1 and 2 hold, meaning that @ri · ((pcs,i =
null ∧ Es,i , ∅) ∨ (pcs,i , null ∧ ress,i = nows)), the
only possible transition is via progress of time. In
this case, nowt is set to nows + d where d ∈ N is the
minimum value which makes one of the aforemen-
tioned conditions become true. The transition is of
the form s d

→ t. For any rebec ri, if pcs,i , null and
ress,i = nowt (the current value of pcs,i points to a de-
lay statement), pct,i is set to the next statement (or to
null if there are no more statements). These transi-
tions are called time transitions. Note that when such
a transition exists, there is no other outgoing transi-
tion from s and it called progress-of-time state.

Atomic Propositions. In General, atomic propositions
are used to formalize temporal characteristics of states.
In case of Timed Rebeca, atomic propositions intu-
itively express simple known facts about the value of



some integer constant, set a lower or upper bound for durations, while “= c”
requires a precise value. TCTL is the extension of CTL with all three types
of constraints, and we write TCTL≤,≥ for the fragment of TCTL where the
“=c” constraints are forbidden. Other classical temporal logics (e.g., CTL∗ or
LTL) can be extended in the same way, and we call TCTL∗, TLTL≤,≥, etc.,
the resulting formalisms.

Model checking TCTL over Kripke structures can be done in time 2 O(|S|3 ·
|ϕ|) [EMSS92]. This is in sharp contrast with model checking over Timed Au-
tomata (PSPACE-complete [ACD93]) and with model checking CTL extended
by freeze variables (PSPACE-complete over KSs [LST03]).

Thus it appears that, for timed properties of timed systems, polynomial-time
model checking is possible if one picks the right logic (e.g., TCTL) and the
adequate models (e.g., KSs).

Our contribution. In this article, we aim at defining extensions of KSs
for handling real-time aspects in such a way that model checking remains
efficient (polynomial-time). We propose and study durational transition graphs
(DTGs), a very natural extension of KSs. As illustrated in Fig. 1, a DTG
is a KS where transitions have possible durations specified by an interval
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Fig. 1. A DTG modeling publications by one researcher (time in days)

of integers. Such structures generalize the models where every transition is
considered as taking 0 or 1 time unit and provide a higher-level viewpoint. For
example, steps having long durations can be modeled without long sequences
of transitions. Also, the size of a DTG is mostly insensitive to a change of
time scale. We study two semantics for DTGs. Indeed time elapsing can be
interpreted in different manner: Either transitions are atomic, and time elapses
abruptly, all in one step — then the duration of a transition can be seen as a

2 In such statements, |S| denotes the size of the structure, and |ϕ| the length of the
temporal formula.

3

Figure 2. A DTG modeling publications by one re-
searcher (time in days) [14].

state variables of rebecs in states of the model under
consideration.

Labeling Function. Function L : S → 2AP relates a set
of atomic propositions to each state, shown by L(s)
for a given state s. L(s) intuitively relates the atomic
propositions which are satisfied in state s.

3. Timed Model Checking for Discrete
Time Systems

As mentioned in Section 1, there are many timed mod-
els for modeling of discrete time systems which can be
model checked efficiently (in polynomial-time). Usu-
ally, these timed models are based on Kripke Struc-
tures (KS). Using KS, the elapsing of time is handled
by events. Duration transition graph (DTG) is defined
as an extension of KS for handling real-time aspects of
systems in a way that model checking remains efficient
(polynomial-time) [14]. A duration transition graph is a
transition system which assigns duration to each tran-
sition. A duration is shown by an interval between two
natural numbers. Figure 2 is an example of DTG to
model the academic activities of a researcher.

Definition 1 (Duration Transition Graph). A duration
transition graph is a tuple of DTG = (S, s0,→,AP,L)
where S is the set of states, s0 is the initial state, and
→⊆ S × ρ × S is the transition relation such that ρ is a
finite (ρ = [n,m] · n,m ∈ N) or right-open infinite (ρ =
[n,∞) · n ∈ N) interval. AP is the set of atomic propositions
and L is a labeling function in form of L : S→ 2AP. �

In the above definition, the meaning of transition
between two state can be interpreted in two different
ways, called jump semantics and continuous semantics.
For a given transition (s, [n,m], s′) the mentioned se-
mantics are interpreted as the following.

Jump Semantics using this semantics, moving from
state s to s′ takes an integer time d ∈ [n,m]. Hence,

if the system is in state s at time t, then it is in state
s′ at time t + d and there is no position for times
t + 1, t + 2, · · · , t + d − 1 (Figure 3(b). The idea of
this semantics is the same as the semantics of Timed
Transition Graph [6]

Continuous Semantics using this semantics, the sys-
tem waits for d− 1 units of time (d ∈ [n,m]) in state s
before performing action act (Figure 3(c). The idea of
this semantics is the same as the semantics of timed
automata of Alur [3] and the semantics of Timed
Rebeca as described in Section 2.

There is no bisimulation equivalence relation between
these semantics as property A(EG(s3) U≤5 (s3 ∨ s2))
satisfies for jump semantics but not for continuous
semantics.

Using DTG, there is a polynomial-time model
checking algorithm for TCTL properties; however,
model checking of TLTL or TCLT∗ properties remains
PSPACE-complete. The time complexity of model
checking against TCTL formula Φ for jump semantics
is O(|S|2 ·|Φ|) and for continuous semantics is O(|S|3 ·|Φ|2)
[14].

Timed CTL (TCTL) is a real-time variant of CTL
aimed to express properties of timed systems. In TCTL,
the until modality is equipped with a time constraint
such that the TCTL formula Φ Uρ Ψ holds for state s
if and only if Ψ holds in state s′ while Φ holds in all
states from s to s′ and time difference between s and s′

satisfies condition ρ. Note that, in TCTL there is no EX
or AX, as there is no non-timed next operator in timed
systems.

In the following, its interpretation for DTGs is pre-
sented [14].

Definition 2 (Syntax of TCTL). Any TCTL formula is
formed according to the following grammar:

Φ ::= p | ¬Φ | Φ1 ∧Φ2 | ∃ϕ | ∀ϕ

where p is an atomic proposition and ϕ is a path formula. A
path formula in TCTL is formed according the the following
grammar:

ϕ ::= Φ1 U∼c Φ2

where c is a natural number and ∼∈ {<,≤,=,≥, >}. �

Definition 3 (Semantics of TCTL). The following clauses
show that when a given TCTL formula Φ holds for state s
of DTG = (S, s0,Act,→,AP,L). Here, we assumed that
Path(DTG, s0) represents a set of timed path of DTG from the

state s0 in form of π ∈ Path(DTG, s0)∧π = s0
d0
→ s1

d1
→ · · · .

• s |= p⇔ p ∈ L(s)
• s |= ¬Φ⇔ not s |= Φ
• s |= Φ1 ∧Φ2 ⇔ (s |= Φ1) ∧ (s |= Φ2)
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Figure 3. An intuitive representation of jump and continuous semantics (it shows continuous-early semantics as
non-determinism is resolved immediately in the first s1) [14].

• s |= ∃Φ1U∼cΦ2 ⇔ ∃π ∈ Path(DTG, s)∧∃n ≥ 0 · (sn |=
Φ2∧

∑
i∈[0,n) di satisfies condition∼c∧(∀ 0 ≤ j < n · s j |=

Φ1)
• s |= ∀Φ1U∼cΦ2 ⇔ ∀π ∈ Path(DTG, s)∧∃n ≥ 0 · (sn |=

Φ2∧
∑

i∈[0,n) di satisfies condition∼c∧(∀ 0 ≤ j < n · s j |=
Φ1)

�

In the following we introduce the model checking
algorithm of DTGs against TCTL≤,≥ properties accord-
ing to [14]. The modified version of this algorithm is
used for model checking of Timed Rebeca models.

Let DTGM = (S, s0,Act,→,AP,L) be a DTG. The ex-
tended version of standard CTL model checking algo-
rithm is used to support∃Φ1U∼cΦ2 and∀Φ1U∼cΦ2 sub-
formulas. The following two cases show that how the
extension works for timed subformula ξ = ∃Φ1U∼cΦ2.

• ξ = ∃Φ1U≤cΦ2: Assume that DTGM is reduced to
subgraph DTGsub

M
= (S′, s′0,Act,→′,AP′,L′) where

only states satisfying ∃Φ1UΦ2 are kept. In addition,
the value of lower bound of duration intervals are
assumed as the weight of each transition of DTGsub

M
.

This way, any state s ∈ S′ is in s |= ξ relation iff
running single source shortest path algorithm from
state s ∈ S′ results in finding a path from s to s′

where s′ |= Φ2 and the weight of the path is not
bigger than c.
• ξ = ∃Φ1U≥cΦ2: In this case, we assumed that we

have DTGsub
M

the same as the case one. Here s ∈ S′

is in s |= ξ relation iff one of the following condition
holds.

there is a longest acyclic path from s to a state
which satisfies Φ2

there is a path with cycle inside path from s to a
state which satisfies Φ2

Both of these cases can be checked in polynomial time.
Formulas in form of ∀Φ1U∼cΦ2 can be transformed

to their equivalent formulas with ∃U∼c operator. There-
fore, the above cases can be used to verify them.

4. Zeno-Freedom and State Space
Reduction
To enable efficient TCTL model checking, we must
apply a reduction technique presented in this section
named “folding instantaneous transitions”. Also, suc-
cessful application of this technique, as well as cor-
rect analysis of properties, require the constructed state
space to be Zeno-free (i.e., there is no execution path
along which infinitely many actions are performed dur-
ing a limited amount of time) [4]. Therefore, prior to
reduction, the state space must be analyzed to be Zeno-
free. We will show that the reduction technique can
be applied during Zeno-freedom analysis of the state
space.

4.1 Zeno-Free Timed Rebeca Models

As the model of time in Timed Rebeca is discrete, the
execution of infinite number of message server in zero
time is the only situation resulting in Zeno behavior.
In the other word, execution of infinite number of
message server which make progress in time does
not converge to a limited number, as the minimum
valid progress of time in Time Rebeca is by one unit.
Therefore, Zeno behavior happens if and only if there
is a cycle of message server invocation among different
actors without progress of time. Therefore, if there is a
cycle in the state space of Timed Rebeca model which
does not have any progress-of-time state, the model
exhibits Zeno behavior. This can be detected by a depth-
first-search (DFS) algorithm in O(|S|2), as shown in
Algorithm 1. In this algorithm we assume each state
has an associated boolean variable indicating whether
the state in search stack, called recStack. In addition,
as mentioned in the semantics of Timed Rebeca, the
function now(·) returns the time of its given state.

In line 2 of Algorithm 1, the statement forall traverses
all the transitions of the state space. As the processing
time of each transition is constant, the order of the
algorithm is O(|S|2).



Algorithm 1: ZenoFree(s) analyzes the model for
Zeno-freedom.

Input: State s of a timed transition system T
Output: The part of T reachable from s is

Zeno-free or not
1 visited← ∅
2 forall the state s′ ∈ Successors(s) do
3 if s′ < visited then
4 visited← visited ∪ {s′}
5 recStack(s′)← true
6 if ZenoFree(s′) = f alse then
7 return f alse

8 recStack(s′)← f alse

9 else
10 if recStack(s′) = true∧ now(s′) = now(s) then
11 return f alse

12 return true

4.2 Folding Instantaneous Transitions

Folding instantaneous transitions is a reduction tech-
nique that eliminates instantaneous transitions from
the state space. Applying this reduction technique
results in a transition system (FTS) which has only
progress-of-time states. The main idea behind FTS is
the fact that in timed actor systems with continuous se-
mantics the residual time in states with instantaneous
transitions are zero. Therefore, if we are looking for cor-
rectness of properties which are defined by state propo-
sitions (not action propositions) only the progress-of-
time states must be considered. It means that the en-
vironment observes the value of state variables in the
state before starting the first instantaneous transition
and the state after the last instantaneous transition.
Note that, although folding instantaneous transition
works for the majority of timed actor models and prop-
erties, it does not work if the modeler wants to check the
validity of a property in all states including reachable
states with no residual time (transient states).

At this point, we use folding instantaneous transi-
tions reduction for TTS of Timed Rebeca models. In a
TTS, taking-event and internal transitions are instanta-
neous and the sequences of taking-event and internal
transitions are surrounded by progress-of-time transi-
tions (it is assumed that the system does not have Zeno
behavior). Figure 4 illustrates a FTS (in the right side)
corresponding to the timed transition system (in the left
side) of a Timed Rebeca model. In the figure, the dotted
states are initial and the states with thick borders are
progress-of-time states.

For a formal definition of FTS of Timed Rebeca
models, at the first step, we need to define a function

which finds the nearest progress-of-time states from
a given state s ∈ S, denoted by npts(s). All the states
of npts(s) are progress-of-time states and there is no
progress-of-time state between members of npts(s) and
s.

Definition 4 (Nearest Progress-of-Time States). For a
given timed transition system TTSM = (S, s0,Act,→
,AP,L) and state s ∈ S, a state s′ is in npts(s) if and
only if s′ ∈ S, s′ is a progress-of-time state and there is a
path π = s, s1, s2, · · · , sn, s′ where none of s1, s2, · · · , sn are
progress-of-time state.

Using the definition of npts, the FTS of a Timed
Rebeca model is defined based on the TTS of that model
as the following.

Definition 5 (Folded Timed Transition System). For a
given timed transition system TTSM = (S, s0,Act,→
,AP,L), the corresponding folded timed transition sys-
tem is defined as the tuple FTS(TTSM) = (S′, s′0,Act′, ↪→
,AP′,L′), where:

• S′ ⊆ S, s′0 = s0, AP′ = AP, and L′ = L
• All the members of S′ are progress-of-time states except

the initial state.
• For two states s′1, s

′

2 ∈ S′, there is (s′1, act′, s′2) ∈↪→ if and
only if s′2 ∈ npts(s′1). The value of act′ is the same as the
outgoing progress-of-time transition of s′1. In the case of
s′1 = s′0, act′ is set to a progress-of-time transition with
duration zero.

�

To create the FTS of a given TTS, for every state of
the model, the set of the nearest progress-of-time states
must be computed. This can be done with a breadth-
first-search (BFS) algorithm in time O(|S|2).

In this work, we combined checking for Zeno be-
havior (DFS-based algorithm) and creating FTS (BFS-
based algorithm) to decrease the overhead of creating
FTS. This is done by doing a Bounded-DFS search from
each progress-of-times state to its nearest progress-of-
time states level by level as shown in Algorithm 2 and
Algorithm 3. This way, Bounded-DFS starts from initial
state s0 to the states of npts(s0). Then it continues from
all the states of npts(s0) to their next progress-of-time
states. Using this combination, the following properties
hold.

• If DFS detects a cycle, there as Zeno behavior in the
model as there is no progress of time among states
between two consequent progress-of-time states.
• For each progress-of-time state s, when the DFS

reaches one of the states of npts(s), it added as the
next child of s in FTS.



 

 

 

 

 
 

 

  

    

    
 

 

Figure 4. Example of how folding instantaneous transitions reduction works

Lemma 1. The FTS of a given TTS can be created by an
algorithm with time complexity of O(|S|2) where n is the
number of the states of TTS.

Proof 1. Each progress-of-time state is explored once by
while loop in line 9 of Algorithm 3 and the other states
and their corresponding transitions are explored by DFS
in Algorithm 2. This way, all the transitions of the state
space are explored once by one of Algorithm 2 or the loop of
Algorithm 3, which results in time complexity of O(|S|2) for
Algorithm 3. �

5. TCTL Model Checking of Timed
Rebeca

As mentioned before, the model checking algorithms of
this paper works for FTS of Timed Rebeca models. We
model check TCTL≤,≥ properties using the algorithms
of [14]. To this aim, we prove that FTS of a Timed Rebeca
model is a DTG. Therefore, we can use polynomial-time
algorithms for model checking of Timed Rebeca models
against TCTL≤,≥. Then, we show that the approach
of [16] can be used to have an efficient algorithm for
model checking of TCTL= properties in FTS. Finally, we
discuss that using FTS, the model checking algorithm
of Timed Rebeca models against TCTL property Φ
reduced to an O(|S|2 · |Φ|) problem for a wide range
of TCTL properties.

5.1 Model Checking for TCTL≤,≥ Properties

A general overview of the model checking algorithm
for DTGs against TCTL≤,≥ properties is presented in

Section 3. We can use the proposed algorithm for model
checking of Timed Rebeca models because of the fact
that FTSs of Timed Rebeca models are DTG.

Lemma 2. The FTS of a Timed Rebeca model is a DTG.

Proof 2. For a given Timed Rebeca model M, its cor-
responding FTS is defined as FTSM = (S′, s′0,Act′, ↪→
,AP′,L′). The only difference between a DTG and a FTS is in
the semantics of their transition relations. This way, FTSM is
a DTG which is identified by tuple (S′, s′0,→,AP′,L′) where
(s′1, ρ, s

′

2) ∈→ if and only if (s′1, act′, s′2) ∈↪→ and ρ = act′ is
an integer number. �

This way, we use the polynomial-time algorithm
of [14] for model checking of Timed Rebeca models
against TCTL≤,≥ properties.

Corollary 1. There is an O(|S|2 · |Φ|) algorithm for model
checking of Timed Rebeca models against TCTL≤,≥ proper-
ties. �

5.2 Model Checking for TCTL= Properties

As known in graph theory, there is no polynomial
algorithm for finding exact path length (EPL) between
two nodes of a graph and finding EPL is NP-Hard
(using reduction from finding the EPL between two
states to subset-sum problem [10]). Using the same
approach, the authors in [14] showed that the problem
of model checking for exact time condition is a NP-
Hard problem. Therefore, there is no polynomial-time
algorithm for model checking of TCTL; however, its



Algorithm 2: BoundedZenoCheck(s) makes sure that
there is no cycle among reachable states from s to
npts(s). Also sets the nearest progress-of-time states
of all the reachable states from s to npts(s).

Input: State s of a timed transition system
Output: The bounded reachable part of the

transition system is Zeno-free or not
1 visited← ∅
2 forall the state s′ ∈ Successors(s) do
3 if s′ < visited then
4 visited← visited ∪ {s′}
5 if s′ is progress-of-time then
6 //DFS has reached one of its boundaries

npts(s)← npts(s) ∪ {s′}

7 else
8 if now(s) = now(s′) then
9 recStack(s′)← true

10 childsNPTS←
BoundedZenoCheck(s′)
recStack(s′)← f alse

11 if childsNPTS = ∅ then
12 return ∅

13 else
14 npts(s)← npts(s) ∪ childsNPTS

15 else
16 //Back-edge is detected

npts(s)← npts(s) ∪ npts(s′)

17 else
18 if recStack(s′) = true then
19 //There is cycle which shows Zeno

behavior return ∅

20 return npts(s)

TCTL≤,≥ subset can be model checked in polynomial-
time.

But, as discussed in [16] there is a pseudo-polynomial
algorithm for finding the EPL between two nodes
of weighted graphs. The order of the algorithm is
O(W2n3 + |k|min (|k|,W)
n2), where n is the number of nodes, W is the biggest
absolute value of any edge weight, and k is the tar-
get weight. The algorithm works in the following two
phases.

• Preprocessing: In this phase, graphs are processed
with a relaxation algorithm. As a result, the weights
edges of different paths are set to values with
the same signs. Note that, the proposed algorithm
works for graphs with positive, negative, and zero

Algorithm 3: FTS(TTSM) creates the correspond-
ing FTS of a given TTS or returns ∅ in the case of
Zeno behavior in the model.

Input: Timed transition system
TTSM = (S, s0,Act,→,AP,L)

Output: Folded timed transition system ofM
1 S′ ← {s0}

2 Act′ ← ∅
3 ↪→← ∅
4 AP′ ← AP
5 L′ ← L
6 openBorderStates← {s0}

7 nextLevelStates← ∅
8 repeat
9 while openBorderStates , ∅ do

10 remove s from openBorderStates
11 NPTS← BoundedZenoCheck(s)
12 if NPTS = ∅ then
13 return ∅

14 else
15 nextLevelStates←

nextLevelStates ∪NPTS
16 S′ ← S′ ∪NPTS
17 foreach s′ ∈ NPTS do
18 ↪→←↪→ ∪{(s, act′, s′)}
19 Act′ ← Act′ ∪ {act′}

20 openBorderStates← nextLevelStates
21 nextLevelStates← ∅
22 until openBorderStates , ∅
23 return (S′, s0,Act′, ↪→,AP,L)

weighted edges. The complexity of this phase is
O(W2n3).
• Finding-Path: At the second phase, the EPL between

two nodes is found in the relaxed graph. The com-
plexity of this phase is O(|k|min (|k|,W)n2).

In case of finding the EPL in FTS of Timed Rebeca
models, W is the biggest time duration in the FTS.
Hence, based on the semantics of Timed Rebeca, the
value of W is limited to the maximum value which is
used as the parameter of delay and after. The value of
k is the same as the time quantifier of the given TCTL=

formula (e.g. for TCTL= formula ∃Φ1U=5Φ2 k equals to
five). Finding EPL is a polynomial-time algorithm if W
and k have upper bound constant values. There is no
limitation on the value of W as it can be dynamically
set by timed statements of Timed Rebeca. However,
for wide range of TCTL properties, the time quanti-
fier of TCTL= formulas are small constant values (in
comparison to the size of the transition system). Based



on this fact, there is a polynomial time model checking
algorithm for Timed Rebeca models against TCTL= for-
mulas with small constant time quantifiers as we will
show in the following lemma.

Lemma 3. There is an O(|S|2 · |Φ|) algorithm for model
checking of Timed Rebeca models against TCTL= properties
with small constant time quantifiers.

Proof 3. As the reduced FTS of Timed Rebeca models has
only progress-of-time transitions, the weight of all the tran-
sitions are positive natural numbers and there is no need
for relaxation algorithm with cost of O(W2

|S|3). Therefore,
the complexity of the model checking algorithm is reduced to
O(|k|min (|k|,W) |S|2).

On the other hand, the time quantifiers assumed to be
small constant integer values. Therefore, the algorithm looks
for exact path between two states with constant value. Hence,
the value of k is constant in its corresponding finding
EPL problem. Having constant value for k, the value of
min (|k|,W) is at most k. As a result, the time complexity
of finding exact path length in the state space is reduced from
O(|k|min (|k|,W) |S|2) to O(|k|2 · |S|2) = O(|S|2) for each
until quantifier in form of U=c. Therefore, for a given TCTL=

formula Φ the time complexity is at most O(|S|2 · |Φ|). �

Theorem 1. Model checking of Timed Rebeca models against
TCTL properties with small constant time quantifiers is an
O(|S|2 · |Φ|) problem.

Proof 4. This follows directly from Lemma 1, Corollary 1,
and Lemma 3. �

6. Experimental Results
We provided five different case studies in different sizes
to illustrate how efficiently the reduction technique
works. The host computer of model checking toolset
was a desktop computer with 1 CPU (2 cores) and 8GB
of RAM storage, running Mavericks OS X 10.9.4. The
selected case studies are Ticket Service, simplified ver-
sion of 802.11 Wireless Protocol, Wireless Sensor and Actu-
ator Networks (WSAN), simplified version of Scheduler
of Hadoop, and model of NoC system with 64 cores. The
Timed Rebeca code of the case studies and the model
checking toolset are accessible from Rebeca homepage
[1].

Details of Ticket Service case study is explained in Sec-
tion 2. Catching the deadline of issuing the ticket is the
main property of this model. We created different sizes
of ticket service model by varying the number of cus-
tomers, which results in three to ten rebecs in the model.
In case of simplified version of 802.11 Wireless Protocol,
we modeled three wireless nodes which are communi-
cating via a medium. The medium sets random back-off
time when more than one node starts to send data, to
resolve data collision in the medium. Deadlock avoid-

ance is the main property of this model. In the third
case study, a WSAN is modeled as a collection of actors
for sensing, radio communication, data processing, and
actuation. In WSAN applications, scheduling challenge
is difficult as the wireless sensor platforms —which
typically use event-driven operating systems— do not
provide real-time scheduling guarantees. Deadline hit
is verified as the main property of this model. As the
forth case study, we modeled a simplified version of
the behavior of MapReduce of Hadoop system, called
YARN. We modeled one client which submits jobs to
YARN resource manager. The resource manager dis-
tributes the submitted job among application masters
and application masters split the job into some tasks
and distribute tasks among some nodes. This model
has 32 rebecs and verified to ensure that all the jobs are
services before their deadlines. Finally, we used model
of the traffic of packets in NoC systems. This model
was published in [18] and we used one of its versions
with mesh of 8x8 cores.

Table 1 shows the results of model checking of the
four case studies. As shown in the table, the state space
size of the FTS is at least two times smaller than the TTS
in all the case studies. However, avoiding interleaving
of concurrent instantaneous actions in 8x8 NoC results
in up to 92% reduction in the state space size.

7. Conclusion
In this paper we proposed a new reduction technique,
folding instantaneous transitions, which significantly
reduces the state space of timed actor models. Beside
reducing the size of the state space, applying the reduc-
tion technique enables efficient TCTL model checking
of the models. Formerly, we had to translate timed actor
models to Real-Time Maude for TCTL model checking.
Using the work of this paper, we apply model check-
ing technique on a reduced state space which results
in supporting bigger transition system. In addition, the
work of this paper outperforms time consumption of
TCTL model checking in comparison to using Real-
Time Maude.

Experimental evidence supports our theoretical ob-
servation that the reduction technique results in smaller
state space in general. In case of models with many con-
currently executing actors, the reduced state space is up
to 92% smaller than its original timed transition system.
Therefore, we can efficiently model check more compli-
cated models against complete TCTL properties under
certain conditions. In addition, our technique and the
proofs are applicable for model checking of any dis-
crete time real-time model with continuous semantics
against TCTL properties with propositions on the val-
ues of state variables.



Problem Size State Space Size
Reduced State

Space Size
Percentage of

Reduction

Ticket Service

2 customers 77 10 87%
3 customers 360 39 89%
4 customers 1825 184 90%
5 customers 10708 1045 90%
6 customers 73461 6996 90%
7 customers 581962 54019 91%

WSAN - 1920 818 57%
Yarn - 533 172 68%
8x8 NoC - 74192 6068 92%

Table 1. The size of state spaces in different case studies.
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