
Science of Computer Programming 153 (2018) 1–29

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

An efficient TCTL model checking algorithm and a reduction

technique for verification of timed actor models

Ehsan Khamespanah a,b,∗∗, Ramtin Khosravi a,∗, Marjan Sirjani c,b,∗

a School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
b School of Computer Science, Reykjavik University, Reykjavik, Iceland
c Mälardalen University, School of IDT, Västerås, Sweden

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 February 2016
Received in revised form 10 November 2017
Accepted 10 November 2017
Available online xxxx

Keywords:
Actor model
Timed Rebeca
Model checking
TCTL
Durational transition graph

NP-hard time complexity of model checking algorithms for TCTL properties in dense time
is one of the obstacles against using model checking for the analysis of real-time systems.
Alternatively, a polynomial time algorithm is suggested for model checking of discrete
time models against TCTL≤,≥ properties (i.e. TCTL properties without U=c modalities). The
algorithm performs model checking against a given formula ! for a state space with V
states and E transitions in O (V (V + E) · |!|). In this work, we improve the model checking
algorithm of TCTL≤,≥ properties, obtaining time complexity of O ((V lg V + E) · |!|). We
tackle the model checking of discrete timed actors as an application of the proposed
algorithms. We show how the result of the fine-grained semantics of discrete timed
actors can be model checked efficiently against TCTL≤,≥ properties using the proposed
algorithm. This is illustrated using the timed actor modeling language Timed Rebeca. In
addition to introducing a new efficient model checking algorithm, we propose a reduction
technique which safely eliminates instantaneous transitions of transition systems (i.e.
transition with zero time duration). We show that the reduction can be applied on-the-
fly during the generation of the original timed transition system without a significant
cost. We demonstrate the effectiveness of the reduction technique via a set of case studies
selected from various application domains. Besides, while TCTL≤,≥ can be model checked in
polynomial time, model checking of TCTL properties with U=c modalities is an NP-complete
problem. Using the proposed reduction technique, we provide an efficient algorithm for
model checking of complete TCTL properties over the reduced transition systems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As a basic computational model for modeling of real-time systems, Timed Transition System (TTS) generalizes the basic
computational model of transition systems by associating an interval with each transition to indicate how long a transition
takes [1]. TTS is expressive enough for modeling the behavior of the majority of real-time distributed systems; however,
the formal verification of TTS is PSPACE-complete [1]. Therefore, currently there is no polynomial time algorithm for the
verification of TTSs. Another option for analysis of real-time systems is to use Alur and Dill’s Timed Automata [2]. There

* Corresponding authors.

** Principal corresponding author.
E-mail addresses: e.khamespanah@ut.ac.ir, ehsan13@ru.is (E. Khamespanah), r.khosravi@ut.ac.ir (R. Khosravi), marjan.sirjani@mdh.se, marjan@ru.is

(M. Sirjani).

https://doi.org/10.1016/j.scico.2017.11.004
0167-6423/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2017.11.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:e.khamespanah@ut.ac.ir
mailto:ehsan13@ru.is
mailto:r.khosravi@ut.ac.ir
mailto:marjan.sirjani@mdh.se
mailto:marjan@ru.is
https://doi.org/10.1016/j.scico.2017.11.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2017.11.004&domain=pdf

2 E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29

exists a large amount of theoretical knowledge and practical experiences about timed automata which all agree on the main
drawback of using timed automata being the inefficient analysis techniques which are at least PSPACE-hard [3]. The most
widely used model checking toolset for timed automata, UPPAAL, only supports a limited subset of Timed Computation Tree
Logic (TCTL) which can be model checked efficiently [4]. The source of this inefficiency in the analysis of TTS and timed
automata is in how the passage of time is modeled. The model of time in TTS and timed automata is dense time, i.e. the
passage of time from a state to another state is a nondeterministically chosen real number from an interval.

On the other hand, a wider range of properties can be analyzed for simpler families of timed models in polynomial
time. The simplicity of these models lies in the discretization of the passage of time. In these models, the passage of
time is modeled by a natural number which is chosen nondeterministically from an interval. The basic approach of such
simplifications is proposed in [5,6] by assuming that each transition takes exactly one time unit. Later, a minor extension
has been added to this work by allowing existence of instantaneous transitions (zero time transitions) in [7]. Finally, Timed
Transition Graph (TTG) [8] and Durational Transition Graph (DTG) [9] extended the former works by associating discrete
time duration with transitions. Although TTG and DTG are less expressive than TTS and timed automata, they can be model
checked in polynomial time for a wide range of properties. For example, there is a polynomial time algorithm for model
checking of DTGs against TCTL≤,≥ properties (i.e. TCTL properties without any sub-formula of the form ! U=c "). The
algorithm performs model checking against formula ! for a transition system with V states and E transitions in time
O (V · (V + E) · |!|) [9]. The details of these model checking algorithms are reviewed in Section 2. Note that, while TCTL≤,≥
can be model checked for DTGs in polynomial time, the model checking against TCTL= properties (i.e. TCTL properties with
sub-formulas of the form ! U=c ") is a NP-hard problem. In this work, we improve the running time of the algorithm of
[9] from O (V · (V + E) · |!|) to O ((V lg V + E) · |!|). The newly proposed algorithm is worst-case optimal for model checking
of TCTL≤,≥ properties, since its running time is the same as the tight running time of the CTL model checking algorithm [3].
This algorithm is presented in detail in Section 3.

In addition to improving the running time of TCTL≤,≥ model checking algorithm, we propose a reduction technique
which safely eliminates instantaneous transitions of timed transition systems. Applying this technique, a new transition
system is created, called folded timed transition system (FTS). As discussed in Section 4, in addition to reducing the size
of transition systems, the algorithm of exact path search in graphs can be used for model checking of FTS against TCTL=
properties. Having instantaneous transitions, the problem of model checking against TCTL= properties is reducible to the
Subset Sum problem which is well-known to be NP-complete [9]. By eliminating instantaneous transitions, FTS can be model
checked against TCTL properties efficiently. In the proposed algorithm, for a given TCTL formula, if small values are used as
timed quantifiers of TCTL modalities, FTS can be model checked in O ((V lg V + E) · |!|).

We tackle the problem of analyzing discrete timed actors1 to illustrate the applicability of the proposed approaches. The
actor model is a well-established paradigm for modeling the functional behavior of distributed systems with asynchronous
message passing. This model was originally introduced by Hewitt [10] and then elaborated by Agha [11,12] and Talcott
[13]. Actors are attracting more and more attention both in academia and industry; whoever, little work has been done
on timed actors and even less on analyzing timed actor models. To the best of our knowledge, only a few timed actor
modeling languages such as RT-synchronizer [14], real-time Creol [15], and Timed Rebeca [16] exist. Although there are
some studies on verification of timed actors [17,18], the lack of efficient model checking algorithms has limited the use
of model checking for this purpose. As DTG is expressive enough to be used as the semantics of discrete timed actors,
we show how it can be used for efficient model checking of timed actors. We develop this approach for Timed Rebeca
models. Timed Rebeca [19] has been proposed as an extension of the Rebeca language [20,21] with time constraints and
analysis support. Timed Rebeca is an actor-based modeling language which can be used in model-driven methodologies.
Using Timed Rebeca a designer builds an abstract model in which each component is a reactive object communicating with
other objects through non-blocking asynchronous message passing. In Section 5, we show how the transition systems which
are generated based on the fine-grained semantics of Timed Rebeca can be assumed as DTGs to be efficiently model checked
against TCTL≤,≥ properties. Although we demonstrate our approach on Timed Rebeca, it can be easily generalized to other
timed actor models.

We also elaborate on the execution cost of generating FTSs from DTGs. Using the approach of this paper, the FTS of a
Timed Rebeca model is generated without a significant cost, in parallel with the generation of its original transition system
and checking for Zeno freedom of models. In Section 4 we show how the algorithm of transition system generation and
checking for Zeno behavior are modified to generate FTSs. We have developed a tool (added to the rich Rebeca toolset [22]),
to illustrate the impact of using these techniques by applying them on a set of case studies in different application domains
(Section 6).

This paper is an extended version of the workshop paper [23]. In [23], we showed how the TCTL model checking algo-
rithm of [9] can be used for the model checking of Timed Rebeca models. We also introduced FTS in that paper. Apart from
adding more detail about the proposed approaches, this paper extends [23] as follows:

• We propose a new model checking algorithm with an asymptotically smaller running time in comparison with the
existing model checking algorithms of discrete time systems (Sections 3.1 and 3.2).

1 We use “timed actor” and “discrete timed actor” in this paper interchangeably.

E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29 3

Fig. 1. A TTS model of two traffic lights at a crossroad.

• We determine a condition where the newly proposed algorithm is optimal for discrete time systems (Theorem 3 and
its corresponding discussion).

• We improve the execution time of the reduction technique by combining transition system generation, checking for the
Zeno freedom, and applying the reduction technique (Section 4.2).

• The experimental results are improved for better illustration of the effectiveness of this work (Section 6).

2. Timed model checking of discrete time systems against TCTL properties

Timed transition system (TTS), as a basic computational model of real-time systems, generalizes the basic computation
model of transition systems by associating an interval with each transition to indicate how long a transition takes [1]. Fig. 1
illustrates how the behavior of a real-time system is modeled by TTS. The example models the behavior of a controller of
two traffic lights at a crossroad. Initially, the controller is in state l0. It immediately makes a transition to l1 as the duration
of its only outgoing transition is [0, 0]. The controller stays in l1 for a duration of [6, 9] units of time. It means that for a
nondeterministically chosen real number from the interval [6, 9], light1 remains green. Then, the state changes to l2 and for
two units of time light1 is yellow. Then, both lights are set to red and immediately light2 changes to green, and so on. In
this example, the dense time model is used to show the passage of time.

Definition 1 (Timed Transition System (TTS)). A timed transition system is defined as a tuple T T S = (S, s0, →, Act, A P , L, T),
where S is the set of states, s0 is the initial state, →⊆ S × Act × S is the transition relation, and Act is the set of possible
actions. Here, for a given set of atomic propositions A P , the labeling function L : S → 2A P relates a set of atomic propositions
to its given state. Finally, T : S × Act × S →N ×N associates an interval with each transition. ✷

As discussed in [1], TTS is expressive enough for modeling the behavior of the majority of real-time systems. However,
the verification algorithms of TTSs are PSPACE-complete. In practice, it is hard to use TTS for the efficient analysis of real
world systems. The same holds for the verification of real-time systems with dense time presented in other semantics
(region transition system, etc.) [3].

In contrast, there are many timed models for modeling of discrete time systems which can be verified efficiently in
polynomial time. Discrete time is the time model in which passage of time is modeled by natural numbers. A Durational
Transition Graph (DTG), as one of these models, is a TTS where the duration intervals of transitions are interpreted in
the domain of natural numbers [9]. This way, a transition with a bounded duration interval [a, b] between two states s
and s′ can be assumed as b − a + 1 different nondeterministic transitions from s to s′ with different duration values of
a, a + 1, · · · , b.

Definition 2 (Durational Transition Graph). A durational transition graph is a tuple DT G = (S, s0, →, A P , L) where S is the set
of states, s0 is the initial state, →⊆ S ×ϒ× S is the transition relation, A P is the set of atomic propositions, and L : S → 2A P

is a labeling function.
Here, ϒ is the set of all the possible finite (υ ∈ ϒ∧υ = [n, m] ·n, m ∈N) or right-open infinite (υ ∈ ϒ∧υ = [n, ∞) ·n ∈N)

intervals. ✷

DTGs can be model checked against Timed CTL (TCTL) properties [3] efficiently. TCTL is a real-time variant of CTL aimed
to express properties of timed systems. TCTL is used for model checking of both discrete time and dense time systems. In
TCTL, the until modality is equipped with a time constraint such that the TCTL formula ! Uρ " holds for the state s if and
only if " holds in the state s′ while ! holds in all states from s to s′ and the time difference between s and s′ satisfies
condition ρ . The syntax of TCTL is formally described in the following definition.

Definition 3 (Syntax of TCTL). Any TCTL formula is formed according to the following grammar:

! ::= p | ¬! | !1 ∧ !2 | E ϕ | A ϕ

4 E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29

where p is an atomic proposition and ϕ is a path formula. A path formula in TCTL is formed according the following
grammar:

ϕ ::= !1 U∼c !2

where c is a natural number and ∼∈ {<, ≤, =, ≥, >}. In addition to the until modality, the globally and finally path modali-
ties can be equipped with time constants. As in CTL, these modalities can be constructed using the until modality [9], and
can be safely omitted from the syntax and semantics of (T)CTL. However, in this paper, we use these modalities to make
formulas easier to read and understand. Also, note that |!| is defined as the size of the formula !, which is the number of
modalities’ instances in !. For example, for a given TCTL formula ! = E(AG∼c1 !1) U∼c2 E(!2 U∼c3 !3) the value of |!| is
three as there are two EU s and one AG in the formula. ✷

In the following, we present the semantics of TCTL properties over DTGs based on the work of [9]. The clauses of
Definition 5 show the conditions when a given TCTL formula ! holds for state s ∈ S of DT G = (S, s0, →, A P , L). Here, we
assume that Paths(DT G, s) represents the set of all valid timed paths of DT G starting from s ∈ S in the form of s d0→ s1

d1→
· · · , as described below.

Definition 4 (The Set of Timed Paths). In a given durational transition system DT G = (S, s0, →, A P , L), a sequence π =
(s0, d0), (s1, d1), · · · where si ∈ S and di ∈ ϒ is a valid timed path if and only if for any pair of (si , di) there is (si, υ, si+1) ∈→
and di ∈ υ . The set Paths(DT G, s) is defined as the set of all valid timed paths of DT G which are started from the state s. ✷

Definition 5 (Semantics of TCTL). A given TCTL formula ! holds for state s of DT G = (S, s0, →, A P , L) as described by the
following items.

• s ! p if and only if p ∈ L(s)
• s !¬! if and only if s !!
• s !!1 ∧ !2 if and only if s !!1 and s !!2
• s ! E !1U∼c!2 if and only if ∃ π ∈ Paths(DT G, s) ∧ ∃ n ≥ 0 · (sn ! !2) ∧ (

∑
i∈[0,n) di satisfies condition ∼c) ∧ (∀ 0 ≤ j <

n · s j ! !1)
• s ! A !1U∼c!2 if and only if ∀ π ∈ Paths(DT G, s) ∧ ∃ n ≥ 0 · (sn ! !2) ∧ (

∑
i∈[0,n) di satisfies condition ∼c) ∧ (∀ 0 ≤ j <

n · s j ! !1) ✷

Using the above semantics for model checking DTGs against TCTL formulas requires resolving the nondeterminism of
durations of transitions. The meaning of a duration on a transition between two states can be interpreted in different ways.
Here, we introduce two interpretations of durations on a transition, called jump semantics and continuous-early semantics [9].
In these two TTSs, instead of an interval, only one natural number is associated with each transition as its duration. For a
given transition (s, [n, m], s′) the mentioned semantics are interpreted as follows.

Jump Semantics. In this semantics, moving from the state s to the state s′ takes an integer time d ∈ [n, m]. Here, before
starting transition from s to s′ , the value of d is determined, and then the system waits for d units of time and it
reaches state s′ at time t + d. Fig. 2(b) shows how this semantics works for the DTG of Fig. 2(a). The idea of this
semantics is the same as the semantics of Timed Transition Graph [8] and the semantics of Timed Rebeca as it
will be described in Section 5.

Continuous-Early Semantics. In contrast to the jump semantics, in the case of a transition from the state s to the state
s′ with a duration d ∈ [n, m], the waiting time is not specified at the start time of the transition. Using the
continuous-early semantics, the system first waits for n units of time in state s, then, at each point in time
interval [0, m − n] it can leave s and go to s′ . Fig. 2(c) shows how this semantics works for the DTG of Fig. 2(a).

For a given DTG, two TTSs generated based on jump semantics and continuous-early semantics are not bisimilar. This
can be shown by a TCTL formula which is satisfied by one of them but is violated by the other one. For example, in the
DTG of Fig. 2(a), TCTL property A(EF(s3) U≤5 (s3 ∨ s2)) is satisfied in the TTS of its jump semantics. As shown in Fig. 2(b)
state s1 satisfies E F (s3), and after leaving s1, formula s2 ∨ s3 is satisfied in less than 5 units of time. In contrast, as shown
in Fig. 2(c), after passage of time by one unit, the second s1 in the path to s2 does not satisfy neither E F (s3) nor s2 ∨ s3.
Therefore, the property is violated in this case.

Using either jump or continuous-early semantics, there are polynomial time model checking algorithms for TCTL≤,≥
properties; however, model checking of TCTL= , TLTL, and TCTL∗ properties remains PSPACE-complete. In the following, we
review the model checking algorithm of DTGs in jump semantics against TCTL≤,≥ properties according to [9]. As in model
checking of CTL properties, here, we show how the satisfaction set Sat(!) is computed for a given formula !. The running
time of the algorithm to find Sat(·) for a DTG with the jump semantics is O (V · (E + V) · |!|) where V is the number of
states, E is the number of transitions, and |!| is the size of formula !.

E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29 5

Fig. 2. An intuitive representation of the TTSs with respect to the jump and continuous-early semantics (it shows the continuous-early semantics as
nondeterminism is resolved immediately in the first S1) [9].

Let DT GM = (S, s0, →, A P , L) be a DTG of a given model M. The extended version of the standard CTL model checking
algorithm is used to support EU∼c and AU∼c sub-formulas. The cases for p, ¬!, and !1 ∧ !2 are the same as their
counterparts in CTL. The following four cases show how the extension works for timed sub-formulas of types E(!U∼c")

and A(!U∼c").

Sat(E(!U≤c")): Assume that DT Gsub
M is the induced subgraph of DT GM over S ′ = Sat(E(!U")), including only the states

satisfying E(!U"). This can be done using standard CTL model checking in O (V + E). In addition, the weight of
each transition of DT Gsub

M is set to the lower bound of its corresponding duration interval in DT GM . This way,
state s ∈ S ′ is in Sat(E(!U≤c")) if and only if running a single source shortest path algorithm from state s ∈ S ′

results in finding a path from s to s′ where s′ |= " and the weight of the path is not bigger than c. So, one round
of the algorithm (with the running time of O (V + E)) is needed for each state of S ′ . As a result, the total running
time of this algorithm is O ((V + E) + V · (V + E)) = O (V · (V + E)).

Sat(E(!U≥c")): Assume that a new atomic proposition P SCC+(!) is defined. Each state s is labeled by P SCC+(!) iff s is
a member of a strongly connected component (SCC), in which all of the states satisfy ! and at least one of the
transitions inside the SCC results in non-zero progress in time. Labeling S ′ with P SCC+(!) can be done using an
extension of Tarjan’s algorithm [24] for detecting SCCs in O (V + E), resulting in DT G ′

M .
The induced subgraph DT Gsub

M of DT G ′
M is defined over S ′ = Sat(E(!U")), including only the states satisfying

E(!U"). This way, s ∈ S ′ is in Sat(E(!U≥c")) if and only if one of the following conditions holds.
• There is an acyclic path from s to a state satisfying " and the overall weight of the path between them is not

less than c.
• State s satisfies CTL formula E(! U(P SCC+(!) ∧ E(! U "))). Satisfying this formula, there is a path from s to a

state which satisfies " through some state s′ where s′ |= P SCC+(!) . This way, by cycling in the SCC containing
s′ , the elapsed time can be increased to more than any constant value c.

For each state, checking for both conditions requires a search algorithm in O (V + E). As a result, the total running
time of this algorithm is O ((V + E) + V · (V + E)) = O (V · (V + E)).

Sat(A(!U≤c")): using the equivalence relations A(! U≤c") ≡ AF≤c " ∧¬E((¬")U(¬! ∧¬")) and AF≤c " ≡ ¬E(¬" U>c ⊤)

∧ ¬E(¬" U P SCC0(¬")), this case is reduced to a combination of the previous cases. A given state s satisfies propo-
sition P SCC0(¬") if and only if s is in a SCC in which all of the states satisfy ¬", and zero is associated with all
transitions of the SCC as the progress of time. Using an extension of Tarjan’s algorithm, states with P SCC0(¬") are
determined in O (V + E); so, the total running time of this algorithm is O ((V + E) + V · (V + E)) = O (V · (V + E)).

Sat(A(!U≥c")): using the equivalence relation A(! U≥c") ≡ AG<c (! ∧ A(! U>0")) and AG<c ! ≡ ¬EF<c ¬!, this case is
reduced to a combination of the previous cases. So, the total running time of this algorithm is O (V · (V + E)).

As the model checking of DTGs in the continuous-early semantics is out of the scope of this work, it is not described
here.

6 E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29

Algorithm 1: Enumerative backward search for computing Sat(E(! U ")) [3].
Input: Finite transition system TS with set of states S and CTL formula E(! U ")
Output: Set of Sat(E(! U ")) = {s ∈ S | s |= E(! U ")}

1 begin
2 T ← Sat(")
3 Q ← T
4 foreach state s ∈ Q do
5 Q ← Q \ {s}
6 foreach state s′ ∈ PREDECESSORS(s) do
7 if s′ /∈ T ∧ s′ |= ! then
8 Q ← Q ∪ {s′}
9 T ← T ∪ {s′}

10 return T

3. Improving the TCTL≤,≥ model checking algorithm

In the previous section, we illustrated how DTGs can be model checked against TCTL≤,≥ properties with running time
O (V · (V + E) · |!|). In this section, we show how the two phases of the TCTL≤,≥ model checking algorithm are combined
to develop a new TCTL≤,≥ model checking algorithm with running time O (V lg V + E). Here, we show how the algorithm
works for calculating Sat(.) for two primitive cases E(! U≤c ") and E(! U≥c "). As shown in the previous section, other
TCTL formulas can be constructed using EU≤c , EU≥c , and other untimed CTL operators and modalities with the maximum
overhead of O (V + E). Therefore, the overall cost of the preparation and the model checking is O (V lg V + E) for all cases.

Before describing the new algorithm, we review how the CTL model checking algorithm calculates the value of
Sat(E(! U ")). One of the implementations of this algorithm is an iterative algorithm, called enumerative backward search
[3]. As shown in Algorithm 1, in the initial step, T is defined to be the set of states satisfying " (line 2). Based on the se-
mantics of the until modality, these states satisfy E(! U "). Then, iteratively, other states are added to T . In each iteration,
a state s ∈ S \ T is added to T if and only if s |= ! and at least one of the successors of s is in T (lines 4 to 8). Note that in
this section, we assume that for a given formula E(!U≤c") or E(!U≥c") the values of Sat(!) and Sat(") are computed
in advance.

As described in the following sections, some modifications are applied to this algorithm to support the timed until
modality. The major modification of the algorithm is in the state selection policy (in line 4 of the algorithm). Two different
policies are required for the timed modalities EU≤c and EU≥c .

3.1. Calculating Sat(E(! U≤c "))

The main idea of the new model checking algorithm is in performing reversed Dijkstra single source shortest path
(SSSP) instead of using classic Dijkstra SSSP. The extension of reversed Dijkstra SSSP used here traverses a given state space
from the goal states (which are states of Sat(")) to their ancestors. This way, as both finding states satisfying E(! U ")
and checking the time constraint are started from the goal states, they can be combined together. The details of the new
algorithm for calculating Sat(E(! U≤c ")) are depicted in Algorithm 2. In the new algorithm, Q is defined as a Fibonacci
min-heap which stores pairs of (key, value) where key is an integer number and value is a state. The value of a key in Q
is interpreted as the minimum distance to one of the states which satisfies " (denoted by δ) of its paired state. Four functions
EMPTY_HEAP, PUT, EXTRACT_MIN, and DECREASE_KEY are used for creating an empty Fibonacci min-heap, putting a
pair (key, state) in a heap, extracting the pair with the minimum key, and decreasing the key of a given state, respectively.
In addition, the function low_time : S × S → N is defined to retrieve the lower bound of the associated progress of time
with the transition between two given states.

As shown in Algorithm 2, the initialization part of the algorithm is in lines 2 to 10. During the initialization, all of the
states of Sat(") are added to T (the return value of the algorithm) as they satisfy Sat(E(! U0 ")). The other states of S
are added to Fibonacci min-heap Q . The key of a given state s ∈ S \ T is set to infinity except in case a state s′ ∈ T is an
immediate successor of s. For such a state the key is set to low_time(s, s′). If s has transitions to more than one state in T ,
the key is the minimum time value of those transitions. The initialization running time is O (V + E) as the vertices and
edges are visited once.

In addition to some changes in the initialization part, some modifications to the main part of the CTL model checking
algorithm are required. The main part of the new algorithm is in lines 11 to 19. One of the differences between the main
part of the new algorithm and the main part of the algorithm of CTL model checking in Algorithm 1 is in the termination
condition of line 13. The termination condition is required in the new algorithm as the backward search must stop when
δ is bigger than c. The other difference is in updating δ of states in lines 18 and 19. Intuitively, when a new state s is
added to T , maybe δ of the predecessors of s is changed as there is a new path via s to the states which satisfy ".

E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29 7

Algorithm 2: Enumerative backward search for calculating Sat(E(! U≤c ")).

Input: A DTG with the set of states S and the TCTL≤,≥ formula E(! U≤c ")
Output: Sat(E(! U≤c ")) = {s ∈ S | s |= E(! U≤c ")}

1 begin
2 T ← Sat(")
3 Q ← EMPTY_HEAP
4 foreach state s ∈ S \ T do
5 if s |= ! then
6 δs ← ∞
7 foreach state s′ ∈ SUCCESSORS(s) do
8 if s′ ∈ T then
9 δs ← min{δs, low_time(s, s′)}

10 PUT(Q, δs , s)

11 while Q ≠ ∅ do
12 (δs, s) ← EXTRACT_MIN(Q)
13 if δs > c then
14 break

15 T ← T ∪ {s}
16 foreach state s′ ∈ PREDECESSORS(s) do
17 if s′ /∈ T ∧ s′ |= ! then
18 δs′ ← δs + low_time(s′ ,s)
19 DECREASE_KEY(Q, s′ , δs′)

20 return T

Therefore, δ of PREDECESSORS(s) is decreased in lines 18 and 19. Note that if the newly found value is bigger than the
previous value, DECREASE_KEY does nothing. The new algorithm requires O (V) number of extractions from the Fibonacci
min-heap Q and O (E) number of decreasing keys (in the worst case, extracting a state results in decreasing the keys of all
of its predecessors). In a Fibonacci min-heap of size n, the amortized running time of extracting an element is O (lg n) and
decreasing a key is O (1). Hence, the running time of the main part of the algorithm is O (V lg V + E). As a result, the total
running time of the new algorithm is O (V lg V + E).

Theorem 1. Algorithm 2 computes the set of states of a DTG which satisfy a given TCTL≤ property E(! U≤c ").

Proof. Assume that there is a state s ∈ S which satisfies the TCTL≤ formula E(! U≤c "). As s satisfies E(! U≤c "); there is
a state s′ ∈ S such that s′ satisfies ", there is a path between s and s′ where the length of the path is less than c, and all of
the states between s and s′ satisfy !. Using the new algorithm, reversed Dijkstra starts from s′ as it satisfies " (lines 2 to
10). Using reversed Dijkstra (ignoring the modifications which are made to support property satisfaction in lines 13 and 17),
starting from s′ , the algorithm visits s and associates a value which is less than c with s (as there is a path between s and s′

with the length of less than c). Reversed Dijkstra is not terminated before reaching s because of the conditional statement of
line 13 as the length of the path is less than c. Also, as all of the states between s and s′ satisfy !, the algorithm does not
miss the states of the path between s and s′ because of the conditional statement of line 17. Therefore, s ∈ Sat(E(! U≤c "))
which is computed by the new algorithm. The same argument is valid for proving that if the new algorithm puts a state s
in Sat(E(! U≤c ")), the state s satisfies the formula E(! U≤c "). ✷

3.2. Calculating Sat(E(! U≥c "))

As described in Section 2, the algorithm for finding Sat(E(! U≥c ")) is reduced to two cases. A given state s ∈ S is in
Sat(E(! U≥c ")) if and only if there exists a simple path from s to one of the states of Sat(") and the duration of the path
is at least c, or there exists a path with at least one non-zero cycle from s to one of the states of Sat(") (the elapse of time
can be increased to more than c by traversing the cycle). Note that all the states on the mentioned paths satisfy !.

The new approach to calculate Sat(E(! U≥c ")) is like the approach of calculating Sat(E(! U≤c ")). In this case, enumer-
ative backward search starts from a state which has the maximum level in BFS traverse of DTG, called the deepest state. This
state is selected because of the fact that before starting the process of a state, all of its successor states must be processed,
which is guaranteed by selecting the deepest state. This way, the states conforming to the first case are calculated. To handle
the second case, during the backward search, if the search reaches a state which is marked by the label P SCC+ (!) , the state
is put in Sat(E(! U≥c ")).

8 E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29

For the efficient implementation of this algorithm, we define Q as an ordinary max-heap. Three functions EMPTY_HEAP,
PUT, and EXTRACT_MAX are used for creating an empty heap, putting a pair (key, value) in a heap, and extracting the pair
with the maximum key, respectively. The function level : S → N is defined to retrieve the levels of states in BFS traverse of
transition systems (i.e. distance of a given state from the initial state in the BFS traversal). Note that the value of level can be
associated with states during the generation of transition systems without additional cost or after that by time complexity
of O (V + E). In addition, the function up_time : S × S → N is defined to retrieve the upper bound of the associated progress
of time with the transition between two given states. We also assume that each state has an additional field which shows
the maximum distance from this state to one of the states which satisfy " (denoted by)). The details of the new algorithm
are depicted in Algorithm 3.

The initialization part of Algorithm 3 is in lines 2 to 7. During the initialization,) of all the states are set to zero and
any state s ∈ Sat(") is added to Q in the form of a pair (level(s), s). As none of the states in this step satisfies the timing
constraint of the formula, T has no member and it is set to the empty set. The initialization part running time is O (V lg V)
as all of the vertices must be visited once and in the worst case Q is built by calling PUT for V times.

The main part of the algorithm is in lines 8 to 19. One of the differences between the main part of this algorithm and
the standard CTL algorithm’s main part (Algorithm 1) is in the policy of adding elements to T . Here, instead of adding s′

to T immediately after extracting it, s′ is added to T when it satisfies a timing constraint, as shown in line 19. The other
difference is in lines 12 to 16 where) of states are updated. Normally,) of a state s is set based on the value of)
of its successors. But, in case s is a member of SCC , there is the possibility of increasing) to an arbitrarily large value
by cycling from s to itself. So,) of s is set to infinity to address this fact. The new algorithm requires O (V) number of
extractions from heap Q and O (E) number of processing the predecessors of states (i.e. the maximum number of edges).
As the running time of extracting from a heap of n elements is O (lg n), the running time of the main part of the algorithm
is O (V lg V + (V + E)) = O (V lg V + E). As a result, the total running time of the algorithm is O (V lg V + E).

Theorem 2. Algorithm 3 computes the set of states of a DTG which satisfy a given TCTL≥ property E(! U≥c ").

Proof. As this algorithm finds Sat(.) in two different cases, we split the proof into the following two cases.

1. Assume that s ∈ S satisfies E(! U≥c ") and s′ ∈ S is a state where s′ satisfies " and there is a path between s and s′

such that all of the states in the path satisfy !. Also, assume that there is a state s′′ ∈ S in the path between s and s′

such that the label P SCC+(!) is associated with s′′ . In this case, as the algorithm is developed based on Algorithm 1, all
of the states in the path between s and s′ are explored as they satisfy E(! U "). During this exploration, upon visiting
s′′ the value of) is set to the infinity, and it is added to Sat(E(! U≥c ")). The same procedure happens for all of the
ancestors of s′′ too, because of the statement of line 16. Therefore, all of the ancestors of s′′ are put in Sat(E(! U≥c ")),
including s.

2. Assume that s ∈ S satisfies E(! U≥c ") and s′ ∈ S is a state where s′ satisfies " and there is a path between s and s′

such that all of the states in the path satisfy !. Also, assume that this path is the longest acyclic path between s and
other states which satisfy ". In this case, upon extracting s′ from Q , the value of) of its predecessors is overwritten
as the longest path ends to s′ (lines 15 and 16 of Algorithm 3). The same argument is valid for the predecessor of s′

and the other predecessors in the path from s to s′ . As a result, reaching s results in setting the value of) to the
length of the maximum acyclic path between s and s′ and adding s to Sat(E(! U≥c ")).

The same argument is valid for proving that if the new algorithm puts a state s in Sat(E(! U≥c ")), the state s satisfies the
formula E(! U≥c "). ✷

Combining the above two algorithms, we have the following result.

Theorem 3. There is an O ((V lg V + E) · |!|) algorithm for model checking of DTGs with V states and E transitions against a TCTL≤,≥
property !. ✷

Note that for the dense transition systems where the number of transitions is asymptotically larger than V lg V (i.e.,
E = *(V lg V)), this algorithm is the most efficient algorithm for model checking against TCTL≤,≥ properties. This is because
the running time of the algorithm is O (E · |!|), which is the same as the running time of the optimal CTL model checking
algorithm [3].

Corollary 1. The TCTL≤,≥ model checking algorithm which is defined in Algorithm 2 and Algorithm 3 is the asymptotically optimal
algorithm for dense transition systems.

4. A reduction technique based on folding instantaneous transitions

In this section, we propose a reduction technique, called “Folding Instantaneous Transitions”, to make the model checking
of object based models against TCTL≤,≥ cheaper. Using this reduction technique, in Section 4.2, we will propose an approach

E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29 9

Algorithm 3: Enumerative backward search for computing Sat(E(! U≥c ")).

Input: A DTG with the set of states S , the TCTL≤,≥ formula E(! U≥c "), and the set of states SCC as the states in
cycles of which all members are in Sat(!)

Output: Sat(E(! U≥c ")) = {s ∈ S | s |= E(! U≥c ")}
1 begin
2 T ← ∅
3 Q ← EMPTY_HEAP()
4 foreach state s ∈ S do
5)s ← 0
6 if s |= " then
7 PUT(Q, level(s), s)

8 while Q ≠ ∅ do
9 (levels, s) ← EXTRACT_MAX(Q)

10 foreach state s′ ∈ PREDECESSORS(s) do
11 if s′ /∈ T ∧ s′ |= ! then
12 if s′ ∈ SCC then
13) ← ∞
14 else
15) ←)s + up_time(s′ ,s)

16)s′ ← max{),)s′ }
17 PUT(Q, level(s′), s′)
18 if)s′ ≥ c then
19 T ← T ∪ {s′}

20 return T

for the model checking of TCTL= properties in polynomial time. This approach is developed based on the fact that after
folding instantaneous transitions, there is no transition with zero time in the transition system. So, an efficient algorithm
can be used for the model checking of TCTL= properties.

The idea of folding instantaneous transitions is developed based on the fact that the instantaneous transitions take no
time to execute; so, the system cannot “stay” in the states whose outgoing transitions are all instantaneous. Hence, these
states are not observable to the verifier (as an external observer). As generally assumed in modeling timed systems, instan-
taneous transitions take priority over non-instantaneous ones. So, any state which has an instantaneous outgoing transition
cannot have non-instantaneous transitions. Hence, there are two types of states: the ones whose outgoing transitions are all
instantaneous (called transient states), and the ones which have no outgoing instantaneous transition (called progress-of-time
states as in Section 5.3).

4.1. Folding instantaneous transitions

Folding instantaneous transitions is a reduction technique that eliminates all instantaneous transitions as well as all
transient states from DTGs. There is a transition between two states of an FTS if and only if the two states are consecutive
progress-of-time states its corresponding DTG. Fig. 3 illustrates how a DTG (at the left side) is transformed to its corre-
sponding FTS (at the right side). In the figure, the dotted states are the initial states and the states with thick borders are
the progress-of-time states. Note that the result of folding instantaneous transitions is not in the bisimulation relation with
its corresponding DTG; so, there is no guarantee for preserving the result of model checking against all properties on FTSs.
This is because of the fact that this approach eliminates transient states from the transition system regardless of the val-
ues of their atomic propositions and branching points. But, when modelers prefer to model check properties based on the
observable behaviors of systems, folding instantaneous transitions technique can be used safely. This preference is widely
considered in the object-oriented paradigm. Meyer in [25] said that object instances satisfy properties in all “stable” times.
Then he defined it as “Stable times are those in which the instance is in an observable state”. He mentioned that the time
of the instance creation and after/before method calls are observable states of objects. Considering observable states in the
verification of Timed Rebeca models conforms to this preference in the object-oriented paradigm; however, the definition of
observable states in Timed Rebeca is different from Meyer’s definition. In Timed Rebeca, observable states are progress-of-
time states as they are the only states in which systems are allowed to stay. So, although folding instantaneous transitions
eliminates some transient states, it can be used for the analysis of Timed Rebeca models which considers the observable
behaviors of actors.

10 E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29

Fig. 3. Example of how folding instantaneous transitions reduction works.

To present the formal definition of FTS, at the first step, we need to define npts : S → 2S which finds the set of the
nearest progress-of-time states from a given state. For a given state s ∈ S , all states in npts(s) are progress-of-time states
and there is no progress-of-time state in the paths from s to the states of npts(s).

Definition 6 (Nearest Progress-of-Time States). For a given DT GM = (S, s0, →, A P , L) and two states s, s′ ∈ S , s′ is
in npts(s) if and only if s′ is a progress-of-time state and for all valid paths between s and s′ such as π =
(s, d), (s1, d1), (s2, d2), · · · , (sn, dn), (s′, d′), none of s1, s2, · · · , sn are progress-of-time states. ✷

Using the definition of the nearest progress-of-time state, the definition of FTS is straightforward as below.

Definition 7 (Folded Transition System). For a given DT GM = (S, s0, →, A P , L), its corresponding folded transition system is
defined as the tuple F T S(DT GM) = (S ′, s0, ↪→, A P , L), where:

• S ′ ⊆ S which contains all progress-of-time states, and the initial state.
• For all s′

1, s
′
2 ∈ S ′ , there exists (s′

1, d, s′
2) ∈↪→ if and only if s′

2 ∈ npts(s′
1). The value of d is the value of the time elapse

associated with the outgoing transition of s′
1 (which is a progress-of-time transition). For the initial state, d is set to

zero. ✷

As the states and transitions of a FTS can be assumed as the subset of its corresponding DTG, a FTS can be model
checked against TCTL≤,≥ properties using the previously described algorithm.

Corollary 2. The FTS of a given DTG can be model checked against TCTL≤,≥ property ! in O ((V lg V + E) · |!|).

4.2. Complete TCTL model checking of DTGs

The model checking algorithms presented so far work for FTSs of DTGs with running time O ((V lg V + E) · |!|). Here,
we show that the approach of [26] can be used for efficient model checking of TCTL= properties respect to FTSs in pseudo-
polynomial time. Then, we discuss that for a wide range of complete TCTL properties, the running time of model checking
algorithm for a DTG is reduced to O ((V lg V + E) · |!|) for TCTL property !.

As known in graph theory, the problem of finding a path between two vertices in a weighted graph of which the weight
equals to a given number (called finding the exact path length (EPL) problem), is an NP-complete problem (using a reduction
from finding the EPL between two states to the subset-sum problem [27]); so, there is no known polynomial time algorithm
for solving the EPL problem. In the same way, the authors in [9] showed that the problem of model checking for the exact
time condition is an NP-complete problem. Therefore, there is no known polynomial time algorithm for model checking of
TCTL properties; however, the TCTL≤,≥ subset can be model checked in polynomial time.

E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29 11

On the other hand, as discussed in [26], there is a pseudo-polynomial algorithm for finding the EPL between two vertices
in a weighted graph. The running time of this algorithm is O (W 2 V 3 +|k| · min{|k|, W } · (V + E)), where V is the number of
vertices, E is the number of edges, k is the value which EPL looks for, and W is the biggest number in the set of absolute
values of weights of edges. This algorithm works in the following two phases.

• Preprocessing: In this phase, the given graph is processed with a relaxation algorithm. As a result, the weights of the
edges are updated such that the signs of the weights are the same in different paths (this algorithm works for graphs
with positive, negative, and zero weight edges). The running time of this phase is O (W 2 V 3).

• Finding-Path: In the second phase, the EPL between the two input vertices is found in the relaxed graph. The running
time of this phase is O (|k| · min{|k|, W } · (V + E)).

In the case of finding the EPL in the FTS of a DTG, W is the biggest time elapse of the FTS transitions. The value of k is
the time quantifier of the given TCTL= formula (e.g., for TCTL= formula ∃ !U=5" the value of k is five). This way, finding
the EPL is possible in polynomial time as for a wide range of TCTL formulas, the time quantifiers are small constant values
(in comparison to the size of the transition system). However, there is no limitation on the value of W .

Lemma 1. There is an O ((V + E) · |!|) algorithm for model checking of FTSs against TCTL= property ! with a small constant time
quantifier k.

Proof. As the FTS of a DTG has only progress-of-time states and transitions, the weights of all of the transitions are positive
integer numbers (assume that the biggest weight is W) and there is no need for a relaxation phase with cost O (W 2 V 3).
Therefore, the running time of the model checking algorithm is reduced to O (|k| · min{|k|, W } · (V + E)).

On the other hand, the time quantifier is assumed to be a small constant integer number. Hence, k is a constant number
in finding its corresponding EPL. Having a constant value for k, the value of min{|k|, W } is at most k. As a result, the running
time of finding the EPL in a state space is reduced from O (|k| · min{|k|, W } · (V + E)) to O (|k|2 · (V + E)) = O (V + E). ✷

Theorem 4. An FTS can be model checked against a TCTL property ! with small constant time quantifiers in the time complexity order
of O ((V lg V + E) · |!|).

Proof. This follows directly from Corollary 2 and Lemma 1. ✷

5. Efficient TCTL≤,≥ model checking of Timed Rebeca models

In the previous section, we showed how DTGs could be model checked efficiently against TCTL properties. But, the DTG
formalism does not support compositional modeling; so, it is hard to use it for modeling of complex real-time systems.
Contrarily, high-level modeling languages support compositional modeling; however, the existing techniques for analyzing
those models are inefficient. In this section, we show how the efficient model checking algorithm of DTGs can be used for
the model checking of higher-level modeling languages, using automatic generation of DTGs for higher-level models. To this
aim, we consider actor models, a well-established paradigm for modeling the functional behavior of distributed systems
with asynchronous message passing. This model was originally introduced by Hewitt [10] and then elaborated by Agha [12,
11] and Talcott [13]. We develop a toolset based on this approach for the model checking of Timed Rebeca models [19,16],
an actor-based language for modeling concurrent and time-critical reactive systems. Later in this section, we will show how
the proposed approach can be used for the model checking of the transition systems of Timed Rebeca model against TCTL
properties. Also, we will show how the FTS of a Timed Rebeca model can be generated on-the-fly, using well-known graph
search algorithms (DFS or BFS) in O (V + E). In practice, the runtime overhead of on-the-fly generation of FTSs is negligible
for the Timed Rebeca models.

5.1. A Timed Rebeca model

In this section, we introduce Timed Rebeca using the example of a simple ticket service system. In this system, a client
asks a ticket from an agent and the agent tries to issue a ticket by interacting with a ticket service server. A Timed Rebeca
model (as the real-time extension of the Rebeca modeling language [28–30]) consists of a number of reactive classes, each
describing the type of a certain number of actors (called rebecs in Timed Rebeca).2 There are three reactive classes Tick-
etService, Agent, and Customer, in the ticket service system (Listing 1). The size of the message bags of these reactive
classes are set to two, two, and one respectively (lines 1, 21, and 30). Each reactive class declares a set of state variables.
The local state of each actor is defined by the values of its state variables and the contents of its message bag. Following
the actor model, communication in the Timed Rebeca models takes place by asynchronous message passing among actors.

2 In this paper we use rebec and actor interchangeably.

12 E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29

Listing 1: The Timed Rebeca model of the ticket service system.
1 reactiveclass Customer(2) {
2 knownrebecs { Agent a; }
3 statevars {
4 byte id;
5 boolean sent;
6 }
7 Customer(byte myId) {
8 id = myId;
9 sent = false;

10 self.try();
11 }
12 msgsrv try() {
13 a.requestTicket();
14 sent = true;
15 }
16 msgsrv ticketIssued() {
17 sent = false;
18 self.try() after(30);
19 }
20 }
21 reactiveclass Agent(2) {
22 knownrebecs { TicketService ts; }
23 msgsrv requestTicket() {

24 ts.requestTicket((Customer)sender)
deadline(10);

25 }
26 msgsrv ticketIssued(Customer customer) {
27 customer.ticketIssued();
28 }
29 }
30 reactiveclass TicketService(1) {
31 knownrebecs { Agent a; }
32 statevars { int issueDelay; }
33 TicketService(int myIssueDelay) {
34 issueDelay = myIssueDelay;
35 }
36 msgsrv requestTicket(Customer customer) {
37 delay(issueDelay);
38 a.ticketIssued(customer);
39 }
40 }
41 main {
42 Agent a(ts):();
43 TicketService ts(a):(2);
44 Customer c1(a):(1);
45 }

Each actor has a set of known rebecs to which it can send messages. For example, an actor of type TicketService knows
an actor of type Agent (line 31), to which it can send ticketIssued message (line 12). Each reactive class of a Timed
Rebeca model may have some constructors. Constructors have the same name as the declaring reactive class and do not
have a return value (line 7). They have the task of initializing the actor’s state variables (lines 7 and 8) and putting initially
needed messages in the bag of that actor (line 33). A properly written constructor leaves the resulting actor in a valid state.
Reactive classes declare the messages to which they can respond. The way an actor responds to a message is specified
in a message server. An actor can change its state variables through assignment statements (e.g., line 13), makes decisions
through conditional statements (not appearing in our example), communicates with other actors by sending messages (e.g.,
line 12), and performs periodic behavior by sending messages to itself (e.g., line 39). Since communication is asynchronous,
each actor has a message bag from which it takes the next incoming message. The ordering of the messages in a message
bag is based on the arrival times of messages. An actor takes the first message from its message bag, executes its corre-
sponding message server in an isolated environment, takes the next message (or waits for the next message to arrive) and
so on. A message server may have a nondeterministic assignment statement which is used to model the nondeterminism in
the behavior of a message server.

Finally, the main block is used to instantiate the actors of the model. In the ticket service model, three actors are created
receiving their known rebecs and the parameter values of their constructors upon instantiation (lines 44-46).

Timed Rebeca adds three primitives to Rebeca to address timing issues: delay, deadline and after. A delay statement
models the passage of time for an actor during execution of a message server (line 11). Note that all other statements
of Timed Rebeca are assumed to execute instantaneously. The keywords after and deadline are used in conjunction with a
method call. The term after(n) indicates that it takes n units of time for a message to be delivered to its receiver. For
example, the periodic task of requesting a new ticket is modeled in line 39 by the customer sending a try message to
itself and allowing the receiver (itself) to take it from its message bag only after 30 units of time. The term deadline(n)
expresses that if the message is not taken in n units of time, it will be purged from the receiver’s message bag automatically.
For example, line 24 indicates that a requestTicket message must be started to execute before the passage of 10 units
from the sending time of the message.

Note that a Rebeca model may contain some private methods. These methods cannot be called from the other actors
and used to make the model of a reactive class more modular. The definition of a method starts with the type of its return
value (instead of the msgsrv keyword) and its body is the same as the body of a message server.

5.2. Property specification for Timed Rebeca models

After introducing Timed Rebeca, we have to show how property specifications can be implemented for Timed Rebeca
models. Here, we show how a property specification is developed for the example of ticket service system of Listing 1. For
this example, we want to make sure that responses to requests of the client are received in less than 10 units of time. To
this end, the property specification of Listing 2 is implemented. Atomic propositions are defined at the beginning of property
specification (line 3). Atomic propositions are implemented in the form of apLabel = expression such that their associated
expressions have to be evaluable to true or false. In the property specification of Listing 2, only one atomic proposition

E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29 13

Listing 2: A property specification for the example of ticket service system.

1 property{
2 define {
3 c1Sent = c1.sent;
4 }
5 TCTL {
6 responseTime : AG(time <= 10, (!c1Sent || (c1Sent -> AF(time <= 10, !c1Sent))));
7 }
8 }

is defined. Its associated expression examines if the first client sent a request or not. At the second part of a property
specification, TCTL formulas are specified (line 6). As shown in Listing 2, time constraints which should be associated with
TCTL modalities are specified as the first parameter of modalities, e.g. time <= 10 in the TCTL formula of line 6.

5.3. The fine-grained semantics of Timed Rebeca

In this section, we present the fine-grained semantics of Timed Rebeca based on the work of [31]. In the first step, we
present the notations used in the rest of the article.

We use the following notations for working with sets and sequences. Given a set A, the set A∗ is the set of all finite
sequences over elements of A, the set P(A) is the power set of A, and the set PN(A) is the power multiset of A. For a
sequence a ∈ A∗ of length n, the symbol ai denotes the ith element of the sequence, where 1 ≤ i ≤ n. Using this notation, we
may also write the sequence a as ⟨a1, a2, · · · , an⟩. The empty sequence is represented by ϵ , and ⟨h|T ⟩ denotes a sequence
whose first element is h ∈ A and T ∈ A∗ is the sequence comprising the elements in the rest of the sequence. For two
sequences σ and σ ′ over A, the operator ⊕ is defined as ⊕ : A∗ × A∗ → A∗ for the concatenation of two sequences such
that σ ⊕ σ ′ is a sequence obtained by appending σ ′ to the end of σ .

For a function f : X → Y , we use the notation f [x → y] to denote the function {(a, b) ∈ f |a ̸= x} ∪ {(x, y)}. We also use
the notation x → y as an alternative to (x, y). For X ′ ⊆ X , we write f |X ′ as the restriction of f to X ′ , i.e., {(x, y) ∈ f |x ∈ X ′}.
Having two sequences a and b of the same size n, the function map(a, b) returns the mapping of the elements of a into b
such that map(a, b) = {ai → bi |1 ≤ i ≤ n}, assuming that the elements of a are distinct.

5.3.1. Abstract syntax of Timed Rebeca
To enable the formal description of the fine-grained semantics of Timed Rebeca, we have to provide an abstract speci-

fication for the syntax of Timed Rebeca models. A Timed Rebeca model consists of a number of reactive class declarations
and a main block specifying actors which are instantiated from the reactive classes.

A reactive class is defined as an instance of type RClass = CID × P(Mtds) × P(Knowns) × P(Vars) × P(Mtds) such that:

• CID is the set of all reactive class identifiers in the model.
• Mtds is the set of all method declarations.
• Knowns is the set of all the identifiers of known actors.
• Vars is the set of all variable names.

A reactive class (cid, consts, knowns, vars, mtds) has the identifier cid, the constructor methods consts, the set of known
actors knowns, the set of state variables vars, and the set of methods mtds. Each method (and constructor methods) is
defined as the triple (m, p, b) ∈ MName × Var∗ × Stat∗ , where m is the name of the message the method is used to serve, p
is the sequence of the names of the formal parameters, and b contains the sequence of statements comprising the body of
the method.

The set of statements is defined as Stat = Assign ∪ Cond ∪ Delay ∪ Send ∪ {skip}, where different types of statements are
defined as below.

• Assign = Var × Expr is the set of assignment statements. We use the notation var := expr as an alternative to (var, expr).
• Cond = BExpr ×Stat∗ ×Stat∗ is the set of conditional statements. We use the notation if exprthenσ elseσ ′ as an alternative

to (expr, σ , σ ′).
• Delay = Expr is the set of delay statements. We use the notation delay(expr) as an alternative to (expr).
• Send = (ID ∪ {self }) × MName × Expr∗ × Expr × Expr is the set of send statements. We use the notation

x.m(e) after(ea) deadline(ed) as alternative to (x, m, e, ea, ed) to show that message m is sent from actor x with the
set of parameters e after ea units of time and its serving must be started before ed units of time from now. Note that
after and deadline specifiers are optional and their default values are zero and infinity, respectively.

• Nondet − Assign = Var × Expr∗ is the set of nondeterministic assignment statements. We use the notation var :=
?(expr1, expr2, · · · , exprn) as an alternative to (var, ⟨expr1, expr2, · · · , exprn⟩).

• skip is a predefined statement that has no effect.

14 E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29

The meaning of the above statements is straightforward. Expr denotes the set of integer expressions defined over usual
arithmetic operators (with no side effects). BExpr denotes the set of Boolean expressions defined over usual relational and
logic operators. We do not dig into the details of the expressions here.

In the main part of a model, actors are defined as instances of reactive classes. The set of actors is defined as Actor =
CID × AID × AID∗ × Expr∗ such that (c, a, k, p) ∈ Actor defines an actor instantiated from reactive class c, with identifier a,
the set of known actors k, and the set of parameters of its appropriate constructor p. Having the above definitions, the
set of Timed Rebeca models is specified by P(RClass) ∪ P(Actor), where the first component contains the specification of
reactive classes and the second component corresponds to the main block consisting of a sequence of actor instantiations.

Using the same approach, we also have to provide an abstract specification for the syntax of Timed Rebeca property
specifications. At the first step, we define AP as the set of names of atomic propositions which are defined in the “define”
part of property specifications. We also define PR as the set of names of TCTL properties which are define in the “TCTL”
part of property specifications. Using these sets, a property specification is defined as pair of two functions Prop = AP →
Expr × PR → Expr such that for property specification prop = (atps, prs) function atps maps names of atomic propositions
to their corresponding boolean expression and prs maps names of TCTL formulas to their corresponding TCTL expression.

5.3.2. Operational semantics of Timed Rebeca
In this section, we describe the fine-grained formal semantics of Timed Rebeca in terms of transition systems. But

before that, we make a few definitions and assumptions. We assumed that the Timed Rebeca models are well-formed. The
following rules define the well-formedness of a Timed Rebeca model which is hard to (or cannot be) described in the Timed
Rebeca grammar, but may be statically checked.

• Unique Identifiers. The actor identifiers are unique within a Timed Rebeca model.
• Unique Variables. The names of the state variables of an actor are unique.
• Unique Methods. The names of the methods of an actor are unique.
• Unique Parameters. The names of the formal parameters of a method are unique and different from the state variables

of the enclosing actor.
• Type Safety. The model is well typed, i.e.,

– the expressions are well-typed,
– both sides of an assignment are of the same type,
– the conditions of the conditional statements are of type Boolean, and
– the receiver of a message has a method with the same name as the message.

• Well-Formed Arguments. The list of actual arguments passed to a message send statement conforms to the list of
formal parameters of the corresponding method, in both length and type.

We also define the following auxiliary functions to be used in defining the formal semantics:

• body : AID × MName → Stat∗ , in which body(x, m) returns the body of the method m of the reactive class such that
actor x is one of its instances, appended by the special element endm, which denotes the end of the method.

• params : AID × MName → Var∗ , in which params(x, m) returns the list of formal parameters of the method m of the
reactive class which the actor identified by x is instantiated from.

• svars : AID → P(Var), where svars(x) returns the names of the state variables of the reactive class which actor identified
by x is instantiated from.

• evalv : Expr → Val abstracts away the semantics of expressions by evaluating an expression within the specific context
v : V ar → V al. Note that Val contains all possible values that can be assigned to the state variables or to be used
within the expressions. Here, we have Val = Z ∪ {True, False}. We assume evalv is overloaded to evaluate a sequence of
expressions: evalv(⟨e1, e2, · · · , en⟩) = ⟨evalv(e1), evalv(e2), · · · , evalv(en)⟩. Note that evalv (e1), evalv(e2), · · · , evalv(en)
are evaluated sequentially not in parallel.

Now, the fine-grained semantics of Timed Rebeca can be defined in terms of transition systems as the following. In the
following, Msg = AID×MName× (Var → Val) ×N ×N is used as the type for the messages which are passed among actors. In
a message (i, m, r, a, d) ∈ Msg, i is the identifier of the sender of this message, m is the name of its corresponding method,
r is a function mapping argument names to their values, a is its arrival time, and d is its deadline.

Definition 8. For a given Timed Rebeca model M and property specification PM the fine-grained semantics is a tuple of
T S = (S, s0, Act, →, A P , L) where S is the set of states, s0 is the initial state, Act is the set of actions, →⊆ S × Act × S
is the transition relation, A P is the set of atomic propositions, and L : S → 2A P is the labeling function, described as the
following.

• The global state of a Timed Rebeca model is represented by a function s : AID → (Var → Val) ×PN(Msg) ×Stat∗ ×N ×N ∪
{ϵ}, which maps an actor’s identifier to the local state of the actor. The local state of an actor is defined by a tuple like
(v, q, σ , t, r), where v : Var → Val gives the values of the state variables of the actor, q : PN(Msg) is the message bag of

E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29 15

the actor, σ : Stat∗ contains the sequence of statements the actor is going to execute to finish the service to the message
currently being processed, t is the actor local time, and r is the time when the actor resumes executing remained
statements. Note that we assume that actors communicate via message passing and put their incoming messages into
message bags.

• In the initial state of the model, for all of the actors, the values of state variables and content of the actor’s message
bag is set based on the statements of its constructor method, and the remaining statements is set to ϵ . The local times
of the actors are set to zero and their resuming times are set to ϵ .

• The set of actions is defined as Act = MName ∪ N ∪ {τ }.
• The transition relation →⊆ S × Act × S defines the transitions between states that occur as the results of actors’

activities including: taking a message from the mailbox, continuing the execution of statements, and progress in time.
The latter is only enabled when the others are disabled for all of the actors. This rule performs the minimum required
progress of time to make one of the other rules enabled. As a result, model of progress of time in the fine-grained
semantics of Timed Rebeca is deterministic. The following SOS rules define these transitions. Note that the method
effect contains the effect of the execution of Timed Rebeca statements, defined in Appendix A.

(take-message)
s(x) = (v, ⟨(ac, mg, pr, ar, dl)|T ⟩, ϵ, t, ϵ) ∧ ar ≤ t ∧ dl ≥ t

s
mg−→ s[x 9→ (v ∪ pr ∪ {(self , x)} ∪ {(sender, ac)}, T , body(x, mg), t, t)]

(internal)
s(x) = (v, q, ⟨st, σ ⟩, t, r) ∧ t = r

s τ−→ s[effect(s, x)]

(time-progress)

s mg" ∧ s τ" ∧ n1 = minx∈AID{ar|s(x) = (v, q, σ , t, r) ·σ = ϵ ∧ q = ⟨(ac, mg, pr, ar, dl)|T ⟩} ∧
n2 = minx∈AID{r′|s(x) = (v ′, q′, σ ′, t′, r′) · σ ′ ≠ ϵ} ∧ tp = min{n1, n2}

s t−→ {(x, (v, q, σ , tp, r)) | (x, (v, q, σ , t, r)) ∈ s}

• A P contains the name of all of atomic propositions of PM .
• Function L : S → 2A P associates a set of atomic propositions with each state, shown by L(s) for a given state s.

The atomic proposition atp is associated with state s if and only if its corresponding boolean expression, defined in
PM , is evaluated to true in s. In other words, for a give state s and property specification PM = (atps, prs), there
is L(s) = atpss such that for atp ∈ atpss there is ∃ (atp, expr) ∈ atps · evalV (expr) = True where V = ⋃

x∈AID{v|s(x) =
(v, q, σ , t, r)}. ✷

There is no explicit time reset operator in Timed Rebeca; so, progress of time results in an infinite number of states in
transition systems of Timed Rebeca models. However, reactive systems which generally show periodic or recurrent behaviors
are modeled using Timed Rebeca; in other words, they perform periodic behaviors over infinite time. Based on this fact, in
[32] we presented a new notion for equivalence relation between two states to make the transition systems finite, called
shift equivalence relation. In shift equivalence relation two states are equivalent if and only if they are the same except for the
parts related to the time and shifting the times of those parts in one state makes it the same as the other one, as defined
bellow.

Definition 9 (Shift-Equivalence Relation between States). Assume that S is a set of state of a given fine-grained semantics
T S = (S, s0, Act, →, A P , L). Two states s1 ∈ S and s2 ∈ S are in shift-equivalence relation if and only if for all x ∈ AID where
s1(x) = (v1, q1, σ1, t1, r1) and s2(x) = (v2, q2, σ2, t2, r2), there exists) ∈ N such that the following conditions hold:

• v1 = v2
• σ1 = σ2
• t1 = t2 +)
• r1 = r2 +) ∨ r1 = r2 = ϵ
• for σ1 = ⟨(ac1, mg1, pr1, ar1, dl1)|T1⟩ and σ2 = ⟨(ac2, mg2, pr2, ar2, dl2)|T2⟩ there are ac1 = ac2, mg1 = mg2, pr1 = pr2,

ar1 = ar2 +), and dl1 = dl2 +) and this rule is valid for the other elements of T1 and T2. ✷

This way, instead of preserving the absolute value of time, only the relative difference of timing parts of states is pre-
served. As a result, in [32] we showed that shift equivalence relation makes transition systems of the majority of Timed
Rebeca models finite. Note that the domain of integer variables in Timed Rebeca is finite which is a necessary property for
having finite transition systems.

16 E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29

Algorithm 4: ZenoF ree(s) analyzes the state space of a model for Zeno-freedom.
Input: State s of a fine-grained transition system T
Output: The part of T reachable from s is Zeno-free or not

1 begin
2 visited ← ∅
3 foreach state s′ ∈ SUCCESSORS(s) do
4 if s′ /∈ visited then
5 visited ← visited ∪ {s′}
6 recStack(s′)← true
7 if ZenoFree(s′)=false then
8 return false

9 recStack(s′)← false

10 else
11 if recStack(s′)= true ∧ now(s′)= now(s) then
12 return false

13 return true

Having the fine-grained transition system of a Timed Rebeca model, we can show that this transition system is a DTG as
the following.

Lemma 2. The fine-grained transition system of a Timed Rebeca model is a DTG.

Proof. For a given Timed Rebeca model M, T SM is transformed to its equivalent DTG (DT GM) using mapping of actions.
This mapping function associates zero with taking-event and internal transitions and associates one interval with each
progress-of-time transition. Note that as one value is associated with each progress-of-time transition of T SM , the time
interval which is associated with its corresponding transition in DT GM has tight bounds which are the same as the value
of the progress-of-time transition. ✷

5.4. Model checking of Timed Rebeca models

Prior to proposing model checking for Timed Rebeca models, given Timed Rebeca models must be analyzed to be Zeno-
free [3], as the prerequisite of any further timed analysis.

As the model of time in Timed Rebeca is discrete, the execution of an infinite number of message servers in zero time
is the only scenario of exhibiting Zeno behavior, since the minimum elapse of time in Timed Rebeca is one unit. Therefore,
if there is a cycle in the state space of a Timed Rebeca model which does not contain progress-of-time states, the model
exhibits Zeno behavior. This can be detected by a depth-first-search (DFS) in O (V + E), as shown in Algorithm 4. In this
algorithm, we assume that a Boolean variable is associated with each state indicating whether the state is in the search
stack, called recStack. The condition in line 11 of the algorithm checks if the state s′ is re-visited in zero time. In
Algorithm 4 we used function now to access to the time of its given state which is the same as the local time of actors.

In line 3 of Algorithm 4, the foreach statement traverses all transitions of the transition system. As the processing
time of each transition is constant, the overall running time of the algorithm is O (V + E).

Based on the fact that a given Timed Rebeca model is Zeno-free and its fine-grained transition system is a DTG
(Lemma 2), the newly proposed TCTL≤,≥ model checking algorithm in Section 3 can be used for the model checking of
Timed Rebeca models. As a result, for a given TCTL≤,≥ formula !, the polynomial time algorithm of DTG model checking
can be used for model checking the fine-grained transition systems of Timed Rebeca models.

Corollary 3. There is an O ((V lg V + E) · |!|) algorithm for model checking Timed Rebeca models against TCTL≤,≥ property !. ✷

5.5. Model checking of the FTSs of Timed Rebeca models

As the second step for the efficient model checking of Timed Rebeca models, we will show how the FTSs of Timed
Rebeca models are generated without a significant runtime overhead. As the following lemma (together with Algorithm 5)
illustrates, we can combine generating the state space, checking for Zeno behavior, and generating the FTS to decrease the
execution cost of the generation of FTSs. In this algorithm, transition systems are generated using Bounded-DFS.

Starting from the initial state s0, the set of the nearest progress of time states of the initial state (npts(s0)) are generated
(in the first iteration of the while loop in lines 10 to 20). At the next iteration, for each state of npts(s0), its set of the
nearest progress of time states are found, and so on. As in each iteration only states between consecutive progress-of-time

E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29 17

Algorithm 5: The state space is generated for the given Timed Rebeca model or null is returned in the case of Zeno
behavior in the model.

Input: A Timed Rebeca model M, a property specification PM
Output: The result FTS or null if the model has Zeno behavior

1 s0 ← GENERATE_INITIAL_STATE(M) " Generating the initial state
2 V ← {s0} " The set of all of the states
3 L ← ∅ " The labeling function of states
4 A P ← ∅ " The set of atomic propositions
5 hasZeno ← false " Flag for Zeno behavior detection
6 begin
7 S ← {s0} " The set of the states of the result FTS
8 N ← ENQUEUE(s0) " The set of the next level states
9 ↪→← ∅ " The set of the transitions of FTS

10 while HAS_ELEMENTS(N)∧ ¬hasZeno do
11 s ← DEQUEUE(N)
12 N ′ ← Bounded_DFS(s)
13 foreach state s′ ∈ N do
14 time ← PROGRESS_OF_TIME(s)
15 S ← S ∪ {s′}
16 ↪→←↪→ ∪{(s, time, s′)}
17 atps ← ATOMIC_PROPOSITIONS(s′ , PM)
18 A P ← A P ∪ atps
19 L ← L ∪ {(s′, atps)}
20 N ← ENQUEUE_ALL(N ′)

21 if hasZeno = true then
22 return null

23 else
24 return (S, s0, ↪→, A P , L)

25 Procedure Bounded_DFS(s)
26 Q ← GENERATE_SUCCESSOR_STATES(s)
27 R ← ∅ " The set of states of npts(s)
28 foreach state s′ ∈ Q do
29 if IS_PROGRESS_OF_TIME(s′) then
30 R ← R ∪ {s′}
31 continue

32 else
33 if s′ /∈ V then
34 V ← V ∪ {s′}
35 recStack(s′)← true
36 R ← R ∪ Bounded_DFS(s′)
37 recStack(s′)← false

38 else
39 if recStack(s′)= true ∧ now(s′)= now(s) then
40 hasZeno ← true

41 return R

states are generated in a DFS manner, the algorithm is called Bounded-DFS state space generation. Like ordinary DFS,
Bounded-DFS is a recursive procedure, defined in lines 25 to 41. In each round, if a progress-of-time state is found, it is put
in set R as the return value (line 30).

Otherwise, Bounded-DFS is invoked to explore the successor states of the newly generated state (lines 32 to 40); mean-
while, the existence of a cycle without an elapse of time is checked to detect Zeno behavior (line 39). This way, as each
state is visited at most twice (at the generation time and when DFS continues exploration through its successors) and each
transition is traversed once (at the generation time), the overall running time of checking for Zeno behavior and generating
the FTS is O (V + E).

18 E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29

Fig. 4. How TCTL model checker of Afra works.

Note that in Algorithm 5, the function PROGRESS_OF_TIME maps its given progress-of-time state to the value of its
only outgoing timed transition. Also, the function ATOMIC_PROPOSITIONS maps its given state to the set of atomic
propositions which can be associated with it based on its given property specification.

Lemma 3. The FTS of a given Timed Rebeca model M can be generated in O (V + E). ✷

Corollary 4. The FTS of a given Timed Rebeca model can be generated and model checked against TCTL property ! in O ((V lg V + E) ·
|!|).

6. Case studies and experimental results

We perform four different case studies in different sizes to illustrate how efficiently the improved algorithm and the
reduction technique work. The host computer of the model checking toolset was a desktop computer with 1 CPU (2 cores)
and 8 GB of RAM storage, running El Capitan OS X 10.11.5. The selected case studies are a simplified version of a NoC system
with 16 cores, a simplified version of the Scheduler of Hadoop, a Ticket Service system, and an application of Wireless Sensor
and Actuator Networks (WSAN). The Timed Rebeca source codes of these case studies and the model checking toolset (Afra)
are accessible from the Rebeca home page.3 As shown in Fig. 4, the Timed Rebeca source codes and their corresponding
TCTL properties are transformed to some C++ files using RMC component and executing the C++ files results in generating
state spaces of the models in the XML format. Afra benefits from another component, state space analyzer component,
for analyzing the generated state spaces. We developed the proposed TCTL model checking algorithm as a part of this
component. We also developed the old TCTL model checking algorithm in this component to be able to measure how
efficient is the work of this paper.

For each case study, we provide both an intuitive and a detailed description of the model, and then discuss the gained
reduction. We also present the TCTL formula against which the model is checked. In the presented TCTL formulas, atomic
propositions are defined as boolean expressions based on the values of the state variables of actors. For example, the atomic
proposition which shows the equality of the state variable x of actor a to 3 is shown by a.x == 3. We choose the state
space size and the model checking time consumptions as the performance metrics of the model checking algorithms. The
values of these metrics are compared in a table for each case study. In the tables, ORG is used to refer to the original state
spaces and RED is used to refer to the reduced state space (i.e., FTSs). We also use OLD to refer to the old TCTL model
checking algorithm and NEW to refer to the proposed TCTL model checking algorithm of this paper. In the case of having
both RED and NEW, we address the cases where reduced state spaces are model checked using the TCTL model checking
algorithm of this paper. We also reported the spent time for the state space generation. As mentioned before, there is no
difference between the spent times for the generation of the original state spaces and the reduced state spaces, so only one
number is reported as the spent times.

Note that the simplified source codes of the examples are shown in the figures of this section and many parts of them
are eliminated (they are replaced by dots). As mentioned before, the complete source codes of the models are in the Rebeca
home page.

3 http :/ /www.rebeca-lang .org /wiki /pmwiki .php /Examples /Examples.

http://www.rebeca-lang.org/wiki/pmwiki.php/Examples/Examples

E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29 19

6.1. Network on chip (NoC)

Our first example is a model of a network on chip (NoC), a promising architecture paradigm for many-core systems. In
NoC designs, functional verification and performance evaluation in the early stages of the design process are suggested as
ways to reduce the fabrication cost. As an example of a NoC, we modeled and analyzed ASPIN (Asynchronous Scalable Packet
switching Integrated Network), which is a fully asynchronous two-dimensional NoC design [33]. In a two-dimensional NoC
design, each core is placed in a 2D mesh and has four adjacent cores and four internal buffers for storing the incoming
packets (one for each direction). Different routing algorithms have been proposed for the two-dimensional NoC design,
including XY, OE, and DYAD routing algorithms. In the following example, we consider the XY routing algorithm. Using
the XY routing algorithm, packets are moving along the X direction first, and then along the Y direction, to reach their
destination cores. In ASPIN, packets are transferred through channels, using a four-phase handshake communication protocol.
The protocol uses two signals, namely Req and Ack, to implement this four-phase handshaking protocol. This way, to transfer
a packet, first the sender sends a request by raising the Req signal, and waits for an acknowledgment which is the raising
of the Ack signal by the receiver. In the third phase, the data is sent. Finally, after a successful communication all of the
signals return to zero.

The timed version of ASPIN was investigated in [34] using simulation and model checking against deadlock freedom and
schedulability properties. In addition to the functional correctness, the Afra toolset was used for estimating the maximum
end-to-end latency of the model.

Timed Rebeca model. The simplified version of the Timed Rebeca model of ASPIN is shown in Listing 3, which contains
two different reactive classes: Manager and Router. The Manager does not exist in real NoC systems. Here, it is used
as the starter of the model. It sends the combination of inReq and inReqMinus messages to a router to ask for packet
generation. This way, different traffic scenarios are generated by modifying the code of Manager. In the example of List-
ing 3, one packet is generated in the router r00 which must be routed to the router r11 (Lines 19 and 20). To make sure
successful delivery of this packet, two other messages are sent in lines 21 and 22. Using this pattern, different traffics can
be generated easily. Router is the model of a core in an ASPIN design. Its specification contains four known rebecs which
are its neighbor cores (line 29), a composite id which includes its X–Y position (line 32), buffer variables which show that
the buffers are enabled or busy (line 33), a variable which counts the number of received packets (received in line 32),
and many other control variables. The communication channel between neighbors is modeled by the message passing of
Rebeca. Trying for the delivery of a packet is started by sending an inReq message to a router. The receiver router accepts
the packet if its input buffer is free (line 48).

Upon accepting a packet, an acknowledgment is sent to its sender and an internal message is scheduled to process this
packet (lines 49 and 50). Processing of a packet takes place in message server process. If there is a packet for processing
(line 58), one of the routing algorithms is selected to send the packet to the appropriate neighbor (lines 59 to 64). As
shown the details of routing by XY algorithm in line 60, the output port of a packet is computed by the private method
XYrouting. As shown in lines 75 to 79 the destination port of a packet is computed based on the value of X and Y of
both the source router and the destination router. The 2D mesh of this model is formed in the main block of the model by
setting known rebecs based on the locations of the routers.

Gained reduction. We model checked this model against E(r11.received <= 2)U≤250(r11.received > 2) formula. This for-
mula makes sure that there is a path in which before passing 250 time units more than two packets are received by the
router r11. As shown in Table 1, sending 7 or 8 packets results in passing the time limit of the model checking (we set it
to 5 hours) in the case of using the old model checking algorithm. However, the new algorithm computes the results in a
reasonable time.

The effect of applying the reduction technique is shown in Table 1 too. In the NoC model, increasing the number of sent
packets results in a light increment in the gained reduction, which is because of the increment of the concurrency level
of the model. In other words, increasing the number of packets results in interleaving of transitions which correspond to
routing the packets. The interleaving of these transitions are omitted in the FTS of the model and as there is no conflict
between the routes of the packets (it is because of the traffic pattern we have chosen for this model), eliminating the effect
of the interleaving of transitions results in FTSs which have approximately the same sizes.

Table 1 also shows that using the new model checking algorithm together with the FTS reduction technique results in
the model checking of the models in less than a second.

6.2. Hadoop YARN scheduler

Hadoop [35] is a framework for MapReduce, a programming model for generating and processing large data sets [36].
MapReduce has undergone a complete overhaul in its latest release, called MapReduce 2.0 (MRv2) or YARN [37]. The funda-
mental idea of YARN is to split up the major functionalities of the framework into two modules, a global ResourceManager
(RM) and per-application ApplicationMaster (AM). RM arbitrates resources among all of the applications in the system. AM
negotiates with RM for the resources to manage the life cycle of its running applications. So, on a Hadoop cluster, there is
a single RM and for every job there is a single AM. It is possible to set different policies in YARN for dispatching jobs and
resources to AMs based on the deadlines, the jobs priorities, the arrival times of jobs, etc.

20 E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29

Listing 3: The model of an ASPIN NoC.
1 env short maxTime = 28000;
2 env short rAlg = 1;
3 env byte writeD = 2;
4 ...
5 reactiveclass Manager(60){
6 knownrebecs{
7 Router r00, r10, r20, r30,
8 r01, r11, r21, r31,
9 r02, r12, r22, r32,

10 r03, r13, r23, r33;
11 }
12 Manager(){
13 generate();
14 }
15 msgsrv reset(){ ... }
16 void generate(){
17 r01.reStart()after(wholeCycle);
18 r11.checkRecieved(2) after(maxTime);
19 r00.inReq(4,1,1,1) after (18);
20 r00.inReqMinus(4) after (18 + prodD);
21 r00.inReq(4,1,1,2) after (110);
22 r00.inReqMinus(4) after (110 + prodD);
23 ...
24 }
25 }
26 reactiveclass Router(80) {
27 knownrebecs {
28 Manager manager;
29 Router N, E, S, W;
30 }
31 statevars {
32 byte Xid, Yid, received;
33 bboolean[5] inBufFull, outBufFull
34 byte[5][2] outPortPtr;
35 ...
36 }
37 Router(byte X, byte Y){
38 Xid = X;
39 Yid = Y;
40 for(byte i=0;i<5;i++){
41 waitedOutReq[i] = 5;
42 outReqEnable[i] = true;
43 outPortPtr [i][0]= -1;
44 }
45 ...
46 }
47 msgsrv inReq (byte inPort, byte Xtarget,

byte Ytarget,byte id){
48 if (inBufFull[inPort] == false){
49 sendInAck((byte)(inPort + 2)% 4, inAD);
50 self.process(inPort, Xtarget,

Ytarget,id, false,
false)after((writeD *
inBufSizeTest)+ readD);

51 ...
52 } else { ... }
53 }

54 msgsrv process(byte inPort, byte Xtarget,
byte Ytarget,byte id, boolean
isPushed, boolean justPush) {

55 byte routeD;
56 ...
57 if ((inBufID[inPort][0] == id) ||

isPushed == true){
58 if(passedFlit == 0) {
59 if (rAlg == 1) {
60 outPort = XYrouting(Xtarget,

Ytarget);
61 routeD = routeXYD;
62 }
63 else if (rAlg == 2){ ... }
64 else if (rAlg == 3){ ... }
65 } else { ... }
66
67 if(outReqEnable[inPort] == true){
68 waitedOutReq[inPort] = outPort;
69 self.portSchedule(outPort, inPort)

after(routeD + schdD + outRD);
70 }
71 }
72 }
73 byte XYrouting(byte Xtarget, byte Ytarget)

{
74 byte outPort = 0;
75 if(Xtarget > Xid) outPort = 1;
76 else if(Xtarget < Xid) outPort = 3;
77 else if(Ytarget > Yid) outPort = 2;
78 else if(Ytarget < Yid) outPort = 0;
79 else outPort = 4;
80 return outPort;
81 }
82 ...
83 }
84 main {
85 Manager m(r00, r10, ..., r33):();
86 Router r00(m,r03,r10,r01,r30):(0,0);
87 Router r10(m,r13,r20,r11,r00):(1,0);
88 Router r20(m,r23,r30,r21,r10):(2,0);
89 Router r30(m,r33,r00,r31,r20):(3,0);
90
91 Router r01(m,r00,r11,r02,r31):(0,1);
92 Router r11(m,r10,r21,r12,r01):(1,1);
93 Router r21(m,r20,r31,r22,r11):(2,1);
94 Router r31(m,r30,r01,r32,r21):(3,1);
95
96 Router r02(m,r01,r12,r03,r32):(0,2);
97 Router r12(m,r11,r22,r13,r02):(1,2);
98 Router r22(m,r21,r32,r23,r12):(2,2);
99 Router r32(m,r31,r02,r33,r22):(3,2);

100
101 Router r03(m,r02,r13,r00,r33):(0,3);
102 Router r13(m,r12,r23,r10,r03):(1,3);
103 Router r23(m,r22,r33,r20,r13):(2,3);
104 Router r33(m,r32,r03,r30,r23):(3,3);
105 }

Timed Rebeca model. In the Timed Rebeca model of Listing 4, the YARN system is modeled using two different reactive
classes: ResourceManager, ApplicationMaster. Message server checkQueue models the main behavior of RM by
looking for a free AM and assigning a job to it. Lines 34 to 43 of checkQueue illustrate how a job is assigned to am1 (the

E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29 21

Table 1
The size of the state spaces and the gained reductions in the NoC example in different scenarios. The † sign on the reported times
shows that the model checking passed the time limit (5 hours).

Configuration State space generation Model checking time

States ORG States RED Gain Time ORG, OLD ORG, NEW RED, NEW

3 Packets 442 68 84% 1 s <1 s <1 s <1 s
4 Packets 1,239 122 91% 2 s 6 s <1 s <1 s
5 Packets 3,117 126 96% 7 s 2.8 m <1 s <1 s
6 Packets 9,907 129 98% 35 s 40 m 1 s <1 s
7 Packets 35,746 102 99% 6.8 m >5 h† 5 s <1 s
8 Packets 136,666 117 99% 1.4 h >5 h† 16 s <1 s

Table 2
The size of the state spaces and the gained reductions in the Hadoop Yarn example with default configuration. The † sign on the
reported times shows that the model checking passed the time limit (5 hours).

Configuration State space generation Model checking time

States ORG States RED Gain Time ORG, OLD ORG, NEW RED, NEW

1 AMs 180 56 69% <1 s <1 s <1 s <1 s
2 AMs 5,506 1,283 77% 1 s 16 s <1 s <1 s
3 AMs 177,989 24,639 86% 14.5 m >5 h† 18.8 m <1 s

first Application Master) if the status of am1 is FREE. The specification of the job which is sent to am1 is in the head of
the queue of jobs (line 9). After sending the specification, the job is removed from the queue of jobs (lines 38 to 41) and
another job is generated and added to the queue of jobs to model the arrival of a new job (line 42). The same behavior is
implemented for the other AMs. In ResourceManager, state variable fifoQueue, as the queue of jobs, keeps track of
the deadlines of jobs. In lines 48 to 58 of checkQueue, the deadlines of jobs are decreased by one unit to model the time
elapse for waiting jobs.

In this model we simplified the behavior of application masters to perform their assigned jobs successfully. This takes
place by setting 2 as the completion time of all jobs (line 90). Setting this value to more than the value of dline results
in missing the deadline and non-successful termination of the job. As shown in line 98, each application master keeps
the number of the performed jobs. To avoid state space explosion, the value of this counter is set to 0 after performing 5
successful jobs (line 99).
Gained reduction. We used E(am2.done Jobs <= 4)U≤10(am2.done Jobs > 4) formula for the model checking of the Yarn
model. This formula makes sure that there is a path in which before passing 10 time units the second application master
finishes five jobs (the same property can be checked for the other application masters). As shown in Table 2, having 3 ap-
plication masters results in passing the time limit of the model checking in case of using the old model checking algorithm.
However, the new algorithm terminates in 18 minutes. Although the model checking time of the new algorithm is reason-
able even for the case of three application masters, the time is reduced to less than one second when the new algorithm
and FTS technique work together, as shown in Table 2.

The same as the model of NoC applying FTS technique reduces the size of the state spaces significantly. Also, increasing
the number of the application masters increases the gained reduction. It is because of the fact that the application masters
are working in parallel and the interleaving of their parallel activities is eliminated by FTS.

6.3. Ticket service

Our third example is the model of a Ticket Service system. The overview of this example is presented in Section 5. We
created the extended version of this model and varying in the number of customers.
Timed Rebeca model. The Timed Rebeca model of this system for the case of five customers, shown in Listing 5, contains
three different reactive classes: Customer, Agent, and TicketService. Customers periodically ask for tickets by send-
ing requestTicket to the agent in message server try (line 13). Upon sending requestTicket, the customer sets
its state variable sent to true to show that it sends a ticket request. This variable will be used in a TCTL formula which
measures the service time of the system. Agent forwards the received requests immediately to TicketService. As spec-
ified by the deadline primitive (line 24), the forwarded request must be served before the passage of 24 units of time.
The ticket service system issues a ticket and informs Agent about the issued ticket (line 38). This process takes 2 units of
time, which is specified in line 37. Agent sends the issued ticket to its corresponding customer (line 27) and the customer
unsets its state variable sent.
Gained Reduction. Making sure about the upper bound of the response time to the customers’ requests is the property we
checked for this model. We have to make sure that in all states, the time elapse between sending a request and receiving a

22 E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29

Listing 4: The model of a Hadoop YARN system with three application masters.
1 reactiveclass ResourceManager(5) {
2 knownrebecs {
3 AppMaster am1, am2, am3;
4 }
5 statevars {
6 int FREE, BUSY;
7 int appMaster1, appMaster2, appMaster3;
8 int m_queue_misses, m_update_miss,

m_job_complete, DEFAULT_DEADLINE,
QUEUE_SIZE;

9 int[4] fifo_queue;
10 }
11
12 ResourceManager() {
13 FREE = 1;
14 BUSY = 0;
15 appMaster1 = FREE;
16 appMaster2 = FREE;
17 appMaster3 = FREE;
18 m_queue_misses = 0;
19 m_update_miss = 0;
20 m_job_complete = 0;
21 DEFAULT_DEADLINE = 3;
22 fifo_queue[0] = DEFAULT_DEADLINE;
23 fifo_queue[1] = DEFAULT_DEADLINE;
24 fifo_queue[2] = DEFAULT_DEADLINE;
25 fifo_queue[3] = DEFAULT_DEADLINE;
26 QUEUE_SIZE = 4;
27 self.checkQueue();
28 }
29 msgsrv checkQueue() {
30 m_queue_misses = 0;
31 m_update_miss = 0;
32 m_job_complete = 0;
33 int I = 0;
34 if(appMaster1 == FREE) {
35 appMaster1 = BUSY;
36 am1.runJob(fifo_queue[0]);
37 I = 0;
38 while(I < QUEUE_SIZE - 1) {
39 fifo_queue[I] = fifo_queue[I + 1];
40 I++;
41 }
42 fifo_queue[QUEUE_SIZE - 1] =

DEFAULT_DEADLINE;
43 }
44 if(appMaster2 == FREE) { ... }
45 if(appMaster3 == FREE) { ... }
46 I = 0;
47 int J = 0;
48 while(I < QUEUE_SIZE) {
49 fifo_queue[I]--;
50 if(fifo_queue[I] == 0) {
51 m_queue_misses++;
52 J = I;
53 while(J < QUEUE_SIZE - 1) {
54 fifo_queue[J] = fifo_queue[J + 1];

55 J++;
56 }
57 fifo_queue[QUEUE_SIZE - 1] =

DEFAULT_DEADLINE;
58 }
59 I++;
60 }
61 self.checkQueue() after(1);
62 }
63 msgsrv update(boolean deadline_miss) {
64 m_queue_misses = 0;
65 m_update_miss = 0;
66 m_job_complete = 0;
67 if(deadline_miss == true) {
68 m_update_miss = 1;
69 } else {
70 m_job_complete = 1;
71 }
72 if(sender == am1) {
73 appMaster1 = FREE;
74 } else if(sender == am2) {
75 appMaster2 = FREE;
76 } else if(sender == am3) {
77 appMaster3 = FREE;
78 }
79 }
80 }
81
82 reactiveclass AppMaster(5) {
83 knownrebecs {
84 ResourceManager rm;
85 }
86 statevars { int doneJobs; }
87
88 AppMaster() { doneJobs = 0; }
89 msgsrv runJob(int dline) {
90 int completion = 2;
91 boolean deadline_miss;
92 if(completion > dline) {
93 deadline_miss = true;
94 rm.update(deadline_miss) after(dline);
95 } else {
96 deadline_miss = false;
97 rm.update(deadline_miss)

after(completion);
98 doneJobs++;
99 if (doneJobs > 5) doneJobs = 1;

100 }
101 }
102 }
103 main {
104 ResourceManager rm(am1, am2, am3):();
105 AppMaster am1(rm):();
106 AppMaster am2(rm):();
107 AppMaster am3(rm):();
108 }

ticket is less than a specific number. In the following formula, we ensure that in case of five customers, there is an upper
bound of 16 time units for the response time of the system.

AG≤50((c1.sent → AF≤16¬c1.sent) ∧ · · · ∧ (c5.sent → AF≤16¬c5.sent))

E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29 23

Listing 5: The model of a ticket service system with five customers.
1 reactiveclass Customer(3) {
2 knownrebecs { Agent a; }
3 statevars {
4 byte id;
5 boolean sent;
6 }
7 Customer(byte myId) {
8 id = myId;
9 sent = false;

10 self.try();
11 }
12 msgsrv try() {
13 a.requestTicket();
14 sent = true;
15 }
16 msgsrv ticketIssued() {
17 sent = false;
18 self.try() after(30);
19 }
20 }
21 reactiveclass Agent(10) {
22 knownrebecs { TicketService ts; }
23 msgsrv requestTicket() {
24 ts.requestTicket((Customer)sender)

deadline(24);

25 }
26 msgsrv ticketIssued(Customer customer) {
27 customer.ticketIssued();
28 }
29 }
30 reactiveclass TicketService(10) {
31 knownrebecs { Agent a; }
32 statevars { int issueDelay; }
33 TicketService(int myIssueDelay) {
34 issueDelay = myIssueDelay;
35 }
36 msgsrv requestTicket(Customer customer) {
37 delay(issueDelay);
38 a.ticketIssued(customer);
39 }
40 }
41 main {
42 Agent a(ts):();
43 TicketService ts(a):(2);
44 Customer c1(a):(1);
45 Customer c2(a):(2);
46 Customer c3(a):(3);
47 Customer c4(a):(4);
48 Customer c5(a):(5);
49 }

Table 3
The size of the state spaces and the gained reductions in the Ticket Service example with different numbers of customers.

Configuration State space generation Model checking time

States ORG States RED Gain Time ORG, OLD ORG, NEW RED, NEW

2 customers 77 10 87% <1 s <1 s <1 s <1 s
3 customers 360 40 89% <1 s <1 s <1 s <1 s
4 customers 1,825 184 90% <1 s 1 s 1 s <1 s
5 customers 10,708 1,047 90% 6 s 2 s 1 s <1 s
6 customers 73,461 6,997 91% 3.4 m 2.2 m 1.7 m 1 s

Note than this formula has to be transformed into the base form which only contains existential until modalities using
AG≤cφ ≡ ¬ EF≤c¬φ ≡ ¬ E true U≤c¬φ and AF≤cφ ≡ ¬ E¬φ U≥ctrue ∧ ¬ E¬φ U P scc0(¬φ) . As the state spaces are checked to
be Zeno free prior to start the TCTL model checking, E¬φ U P scc0(¬φ) is empty and there is AF≤cφ ≡ ¬ E¬φ U≥c true .

The numbers of Table 3 show that both of the algorithms perform model checking in a reasonable time. However, the
algorithm of this paper is less than two times better than the old one. The gained performance of the new TCTL model
checking algorithm in this example is not as significant as the aforementioned two examples because of the fact that a
limited number of states pass the first phase of the old algorithm. Therefore, there are few states which have to pass the
second phase of the algorithm, which is a costly algorithm. In the previous examples, all of the states pass the first phase,
result in executing the second phase algorithm over all of the states. Table 3 shows that combining the new algorithm and
FTS improves the performance of the model checking. The same as the previous examples, applying FTS technique reduces
the size of the state spaces significantly and increasing the number of the customers increases the gained reduction.

6.4. WSAN applications

As the fourth example, we present a real-time data acquisition system for structural health monitoring and control
(SHMC) of civil infrastructures [38]. This system has been implemented on top of the Imote2 [39] wireless sensor platform,
and has been deployed for long-term monitoring of several highway and railroad bridges. The SHMC application develop-
ment has proven to be particularly challenging: it has the complexity of a large-scale distributed system with real-time
requirements, while having the resource limitations of low-power embedded WSAN platforms. Ensuring the safe execution
of a SHMC requires modeling the interactions between the components of the data acquisition nodes, which are CPU, sensor,
and radio transmission components, as well as interactions between the nodes. In this application, all periodic tasks (sample
acquisition, data processing, and radio transmission) are required to be completed before the start of their next period. In
addition, each node has to send its processed data to a central station. To handle the communication between the nodes
and the central station, a communication protocol is required. The schedulability of the models of this application using

24 E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29

Table 4
The size of the state spaces and the gained reductions in WSAN example with different configuration.

Configuration State space generation Model checking time

States ORG States RED Gain Time ORG, OLD ORG, NEW RED, NEW

25-5-3-10 1,741 402 77% <1 s <1 s <1 s <1 s
33-6-4-2 1,934 451 77% <1 s <1 s <1 s <1 s
25-5-4-10 3,718 945 75% 1 s <1 s <1 s <1 s
30-6-4-2 9,353 2,774 71% 1 s <1 s <1 s <1 s
25-6-4-2 34,503 10,368 70% 2 s <1 s <1 s <1 s
20-6-4-2 57,621 17,714 69% 3 s <1 s <1 s <1 s

Timed Rebeca is investigated in [40]. Here, we showed how other properties can be model checked using the TCTL model
checking of Timed Rebeca.

Timed Rebeca model. The simplified version of the Timed Rebeca model of WSAN, shown in Listing 6, contains five different
reactive classes: Sensor, CPU, Misc (for miscellaneous tasks unrelated to sensing or communication), Communica-
tionDevice, and WirelessMedium. The model of a WSAN node concerns the data acquisition, processing, and radio
transmission primarily. Having Sensor, CPU, and CommunicationDevice for a WSAN node, the developed Timed Re-
beca model closely mimics the structure of the real application. The configuration of this model is specified by the values
of the environment variables in lines 1 to 7. Based on these values, there are six nodes in the environment (line 2) and the
sampling rate of the nodes is 25 samples per 1000 units of time (line 1). Each node packs two acquired data elements in
one packet (line 3). The time spent for the internal activities of a node is specified in lines 4 to 6.

The main activity of this model is started by executing sensorLoop of Sensor. In this loop, based on the specified
sampling rate, data is acquired by Sensor and it is sent to CPU (lines 17–21). There is the same behavior in Misc. These
two actors send messages to CPU, which are handled by the sensorEvent and miscEvent message servers respectively
(lines 33–35 and line 46). The message server sensorEvent starts the processing of the acquired data by sending a sen-
sorTask message. In sensorTask, the schedulability of the processing of the acquired data is checked (lines 37 and 38),
it is packed into one packet (line 40), and the packed data is sent by the communication device of this node if it reaches
the limit which is specified by bufferSize. The communication protocol between nodes is implemented in the method
send of Communication Device (We developed TDAM and MACB communication protocols in [40]). In the current
implementation, before sending data, the freedom of the communication device is checked (line 64) then the needed mes-
sages are scheduled for sending data (line 68). To model the effect of Ether is the wireless communication and transmission
conflict, we developed WirelessMedium. Communication devices send broadcast messages to the wireless medium
to send data to other communication devices and the receivers of broadcast data send broadcastingIsCompleted to
inform it received the data successfully.
Gained Reduction. Checking for utilizing the communication channel in each 50 units of time is the property
we used for the model checking of this example with different configurations. This property is shown by
AG≤50(A(freeChannel)U≤50(¬freeChannel)) which has to be transformed to the base forms, as we did in the previous
example. We verified the WSAN application in different configurations, varying the value of the sampling rate, the number
of nodes, the packet size, and the sensor task delay. The results of these experiments are depicted in Table 4. In each row,
the configuration (the numbers which are separated by a dash) is a combination of the sampling rate, the number of nodes,
the packet size, and the sensor task delay of the experiment, respectively. As shown in Table 4, the time consumption of
the model checking is less than one second for all cases and changing the configuration of the model does not end in
large state spaces. However, the effectiveness of the reduction technique is reduced in configurations which result in bigger
state spaces. This is because of the fact that changing the configuration of WSAN in this way does not increase the number
of messages which are sent at the same time. So, the chance of finding transient transitions is decreased as there is no
increment in the number of simultaneously executing instantaneous transitions.

7. Related work

The model checking against TCTL properties. The decidability of model-checking TCTL has been shown by Alur, Courcou-
betis, and Dill [41], using clock equivalence and region transition systems. They proposed the first model checking algorithm
for timed automata against TCTL properties. A variation of this algorithm is used in many model checking algorithms, includ-
ing UPPAAL [4]. To over come the inefficiencies of this model checking algorithm, some reduction techniques are proposed
for verification of timed automata models, instead of proposing a new model checking algorithm. Bengtsson et al. in [42]
proved that allowing clock of timed automata to increase independently and synchronize clocks when two timed automata
want to communicate, is an effective way for improving the time consumption of the TCTL model checking. This idea is
close to the inter-process atomic blocks of SPIN. This work is continued by Minea in [43] by applying the proposed reduc-
tion technique in model checking of timed extension of LTL. In comparison to these works, our algorithm performs model
checking in polynomial time; however, it supports a limited subsystem of the real-time systems, i.e. discrete time systems.

E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29 25

Listing 6: The model of a WSAN application.
1 env int samplingRate = 25;
2 env int numberOfNodes = 6;
3 env int bufferSize = 2;
4 env int sensorTaskDelay = 2;
5 env int OnePacketTransmissionTime = 7;
6 env int miscTaskDelay = 10;
7 env int tmdaSlotSize = 10;
8 env int miscPeriod = 120;
9 env int packetMaximumSize = 112;

10
11 reactiveclass Sensor(10) {
12 knownrebecs { CPU cpu; }
13 Sensor() { self.sensorFirst(); }
14 msgsrv sensorFirst() {
15 self.sensorLoop() after(?(10, 20, 30));
16 }
17 msgsrv sensorLoop() {
18 int period = 1000 / samplingRate;
19 cpu.sensorEvent(period);
20 self.sensorLoop() after(period);
21 }
22 }
23
24 reactiveclass Misc(10) { ... }
25
26 reactiveclass CPU(10) {
27 knownrebecs {
28 CommunicationDevice senderDevice,

receiverDevice;
29 Sensor sensor;
30 }
31 statevars { int collectedSamplesCounter; }
32 CPU() { collectedSamplesCounter = 0; }
33 msgsrv sensorEvent(int period) {
34 self.sensorTask(period,

currentMessageWaitingTime);
35 }
36 msgsrv sensorTask(int period, int lag) {
37 int tmp = period - lag -

currentMessageWaitingTime;
38 assertion(tmp >= 0);
39 delay(sensorTaskDelay);
40 collectedSamplesCounter += 1;
41 if (collectedSamplesCounter ==

bufferSize){
42 senderDevice.send(receiverDevice,

0, 1);
43 collectedSamplesCounter = 0;
44 }
45 }
46 msgsrv miscEvent() {

delay(miscTaskDelay); }
47 }
48
49 reactiveclass CommunicationDevice (10) {
50 knownrebecs { WirelessMedium medium; }
51 statevars {
52 byte id;
53 int sendingData;

54 int sendingPacketsNumber;
55 CommunicationDevice receiverDevice;
56 }
57 CommunicationDevice(byte myId) {
58 id = myId;
59 sendingData = 0;
60 sendingPacketsNumber = 0;
61 receiverDevice = null;
62 }
63 msgsrv send(CommunicationDevice receiver,

int data, int packetsNumber) {
64 assertion(receiverDevice == null);
65 sendingPacketsNumber = packetsNumber;
66 receiverDevice = receiver;
67 sendingData = data;
68 medium.getStatus();
69 }
70 msgsrv receiveStatus(boolean result) {

... }
71 msgsrv receiveResult(boolean result) {

... }
72 msgsrv receiveData(CommunicationDevice

receiver, int data, int
receivingPacketsNumber) { ... }

73 }
74
75 reactiveclass WirelessMedium(5) {
76 statevars {
77 CommunicationDevice senderDevice;
78 CommunicationDevice receiverDevice;
79 int maxTraffic;
80 }
81 WirelessMedium() {
82 senderDevice = null;
83 receiverDevice = null;
84 maxTraffic = (125 * 1024) / 8;
85 }
86 msgsrv getStatus() { ... }
87 msgsrv broadcast(CommunicationDevice

receiver, int data, int
packetsNumber) { ... }

88 msgsrv broadcastingIsCompleted() {
89 senderDevice = null;
90 receiverDevice = null;
91 }
92 }
93
94 main {
95 WirelessMedium medium():();
96 CPU cpu (sensorNodeSenderDevice,

receiver, sensor):();
97 Sensor sensor(cpu):();
98 Misc misc(cpu):();
99 CommunicationDevice

sensorNodeSenderDevice(medium):
((byte)1);

100 CommunicationDevice
receiver(medium):((byte)0);

101 }

26 E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29

In another attempt, Campos et al. in [8] addressed discrete-time systems and introduced timed transition graph (TTG)
as the underlying semantics of this type of systems. TTGs are transition graphs in which an interval is associated with
each transition. Passing such a transition results in progress in time with a value which is chosen nondeterministically
from the associated interval. They proposed a polynomial time symbolic model checking algorithm for TTGs in [8]. Later,
Laroussinie et al. in [44] addressed a subset of timed automata which can be model checked easier. They gave a polynomial
time algorithm for the model checking of TCTL≤,≥ over the class of timed automata with one or two clocks. They showed
that the model checking of full TCTL over one clock timed automata is PSPACE-complete. In comparison to the work of
this paper, our TCTL model checking algorithm outperforms all of the aforementioned works regarding to the algorithm
complexity point of view, without need of any limitation on the number or types of clocks.

Model checking of timed actors. As one of the earliest attempts for model checking timed actors, a tool is developed for
model checking of Timed Rebeca models using a transformation from Timed Rebeca to timed automata. The resulting timed
automata are model checked against TCTL properties using the UPPAAL toolset. Using this transformation, the most efficient
network of timed automata is generated for Timed Rebeca models (having as much as possible committed states and as few
as possible number of clocks). But, because of the inefficiency of modeling asynchronous communication among actors by
synchronized communication of timed automata, model checking results in state space explosion even for middle-sized case
studies [45]. A similar approach of transforming timed actor models into timed automata is taken by de Boer et al. in [15],
where timed actor models in Creol language are analyzed for schedulability. This work also suffers from a lack of scalability
for the same reason.

In other work, Floating Time Transition System (FTTS) is introduced as a natural semantics of timed actors in [32].
Focusing on the analysis of timed actors based on the key features of actors, being event-driven and isolated, results in a
significant amount of state space reduction in FTTSs. Actors in a state of a FTTS can be in different local times, so, there
is no unique value for the time of a state. Such time skew among actors is only admissible where we are not interested
in the state of all the actors at a specific point of time, e.g. checking for deadlock freedom and schedulability, or any other
event-based property. As a result, although FTTS works efficiently for deadlock freedom and schedulability analysis of timed
actors, it cannot be used for the model checking of timed actors against TCTL properties.

Another work on model checking of timed actors is based on mapping timed actors to Real-Time Maude. This enables
a formal model-based methodology which combines the convenience of intuitive modeling in timed actors with formal
verification of Real-Time Maude. Real-Time Maude is supported by a high-performance toolset providing a spectrum of
analysis methods, including simulation through timed rewriting, reachability analysis, and (untimed) linear temporal logic
(LTL) model checking as well as timed CTL model checking. As described in [46], all the possible reduction techniques are
applied to the generated Real-Time Maude models to avoid state space explosion. Mainly, a number of statements (which
are related to the instantaneous statements of Timed Rebeca except sending messages) are grouped together to be executed
in one atomic rewrite step. The experimental results, reported in [46], show that the generate state spaces using Real-time
Maude is significantly bigger than the state spaces which are generated by the fine-grained semantics of Timed Rebeca. So,
although Real-time Maude provides us with a wide range of analysis tools, using transition systems which are generated
based on the fine-grained semantics together with the algorithm of this paper outperforms it.

There is also an analysis toolset for simulating Timed Rebeca models. In [47], the simulation engine of Erlang [48] is used
to generate a number of traces and verify them. Using this approach, state space explosion is avoided; however, it does not
guarantee the correctness of models.

8. Summary and conclusion

In this paper, we proposed techniques for improving the model checking of discrete time actors. At the first step, we
introduced a new model checking algorithm, which is an optimal TCTL≤,≥ model checking algorithm for discrete time
actors with dense transition systems. So, discrete time actors can be model checked faster than before. In addition to this
improvement, we have proposed a reduction technique which works based on the fact that the instantaneous transitions
take no time to execute; so, the system cannot stay in the states whose outgoing transitions are all instantaneous. These
states are not observable to the verifier so they can be eliminated from the transition systems. Beside reducing the size of
the transition system, applying the reduction technique enables efficient TCTL= model checking of timed actors.

Experimental evidence supports our theoretical observation that the new model checking algorithm works efficiently
and the reduction technique results in smaller transition systems in general. In the case of models with many concurrently
executing actors, the time consumption of the model checking increased rapidly for the old TCTL model checking algorithm;
however, using the new algorithm avoids it. Although the new TCTL model algorithm works more efficient in comparison
with the old one, its time consumption is high for big transition system. For these cases, using the FTS reduction technique
results in up to 95% reduction in the size of the transition systems. Therefore, we can efficiently model check more compli-
cated models against complete TCTL properties under certain conditions. Although we have used Timed Rebeca to illustrate
the techniques presented in this paper, our results are not limited to this language and can be applied to any modeling for-
malism with a discrete notion of time. Note that before the work of this paper, timed actor models have to be transformed
to Realtime Maude or timed automata for TCTL model checking, which do not give acceptable execution performances even
for middle-sized models. But, using the work of this paper, both of the old and improved TCTL model checking algorithms

E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29 27

outperforms time and memory consumption of TCTL model checking in comparison to using transformation to Realtime
Maude or timed automata. This way, model checking of bigger transition systems is possible.

The work reported in this paper paves the way to several interesting avenues for the future works. In particular, we
have already started defining a special kind of DTGs for the continuous time which conforms the requirements of dense
time actors and can be model checked in polynomial time, using the same algorithm. It is also possible to work on the
categorization of TCTL properties to illustrate which category of TCTL properties benefits more from the provided efficiency
of the proposed algorithm.

Acknowledgements

The work on this paper has been supported in part by the project “Self-Adaptive Actors: SEADA” (nr. 163205-051) of the
Icelandic Research Fund.

Appendix A. The SOS rules of the effect method

(assignment)
s(x) = (v, q, ⟨var := expr|σ ⟩, t, r) ∧ r = t

s τ−→ s[x 9→ (v[var 9→ evalv(expr)], q, σ , t, r)]

(ConditionalT)
s(x) = (v, q, ⟨if expr then σ else σ ′|σ ′′⟩, t, r) ∧ r = t ∧ evalv(expr) = True

s τ−→ s[x 9→ (v, q, σ ⊕ σ ′′, t, r)]

(ConditionalF)
s(x) = (v, q, ⟨if expr then σ else σ ′|σ ′′⟩, t, r) ∧ r = t ∧ evalv(expr) = False

s τ−→ s[x 9→ (v, q, σ ′ ⊕ σ ′′, t, r)]

(nondet-assign)
s(x) = (v, q, ⟨var :=?(expr1, expr2, · · · , exprn)|σ ⟩, t, r) ∧ r = t

s τ−→ s[x 9→ (v[var 9→ evalv(expri)], q, σ , t, r)]
1 ≤ i ≤ n

(send)

s(x) = (v, q, ⟨y.m(e1) after(e2) deadline(e3)|σ ⟩, t, r) ∧ r = t ∧ s(y) = (v ′, q′, σ ′, t′, r′) ∧ p =
params(y,m)

s τ−→ s[x 9→ (v, q, σ , t, r) ∧ y 9→ (v ′, q′ ∪ {(m, (map(p, evalv(e1))), e2, e3)}, σ ′, t′, r′]

(delay)
s(x) = (v, q, ⟨delay(e)|σ ⟩, t, r) ∧ r = t

s τ−→ s[x 9→ (v, q, σ , t, r + evalv(e))]

(skip)
s(x) = (v, q, ⟨skip|σ ⟩, t, r) ∧ r = t

s τ−→ s[x 9→ (v, q, σ , t, r)]

(end-method)
s(x) = (v, q, ⟨endm⟩, t, r)

s τ−→ s[x 9→ (v|svars(x), q, ϵ, t, r)]

References

[1] T.A. Henzinger, Z. Manna, A. Pnueli, Timed transition systems, in: J.W. de Bakker, C. Huizing, W.P. de Roever, G. Rozenberg (Eds.), Real-Time: Theory
in Practice, REX Workshop, Proceedings, Mook, the Netherlands, June 3–7, 1991, in: Lecture Notes in Computer Science, vol. 600, Springer, 1991,
pp. 226–251.

[2] R. Alur, D.L. Dill, A theory of timed automata, Theor. Comput. Sci. 126 (2) (1994) 183–235.
[3] C. Baier, J.-P. Katoen, Principles of Model Checking, MIT Press, 2008.
[4] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, W. Yi, UPPAAL – a tool suite for automatic verification of real-time systems, in: R. Alur, T.A. Henzinger,

E.D. Sontag (Eds.), Hybrid Systems, in: Lecture Notes in Computer Science, vol. 1066, Springer, 1995, pp. 232–243.
[5] E.A. Emerson, A.K. Mok, A.P. Sistla, J. Srinivasan, Quantitative temporal reasoning, Real-Time Syst. 4 (1992) 331–352.

http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F7265782F48656E7A696E6765724D503931s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F7265782F48656E7A696E6765724D503931s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F7265782F48656E7A696E6765724D503931s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A6A6F75726E616C732F7463732F416C7572443934s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A626F6F6B732F6461676C69622F30303230333438s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F6879627269642F42656E677473736F6E4C4C50593935s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F6879627269642F42656E677473736F6E4C4C50593935s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A64626C705F6A6F75726E616C732F7274732F456D6572736F6E4D53533932s1

28 E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29

[6] S.V.A. Campos, E.M. Clarke, W.R. Marrero, M. Minea, H. Hiraishi, Computing quantitative characteristics of finite-state real-time systems, in: RTSS, IEEE
Computer Society, 1994, pp. 266–270.

[7] F. Laroussinie, P. Schnoebelen, M. Turuani, On the expressivity and complexity of quantitative branching-time temporal logics, Theor. Comput. Sci.
297 (1–3) (2003) 297–315.

[8] S.V. Campos, E.M. Clarke, Real-time symbolic model checking for discrete time models, in: Theories and Experiences for Real-Time System Development,
World Scientific Publishing Co., Inc., River Edge, NJ, USA, 1994, pp. 129–145, http://dl.acm.org/citation.cfm?id=207907.207912.

[9] F. Laroussinie, N. Markey, P. Schnoebelen, Efficient timed model checking for discrete-time systems, Theor. Comput. Sci. 353 (1–3) (2006) 249–271.
[10] C. Hewitt, Description and Theoretical Analysis (Using Schemata) of PLANNER: A Language for Proving Theorems and Manipulating Models in a Robot,

MIT Artificial Intelligence Technical Report 258, Department of Computer Science, MIT, Apr. 1972.
[11] G. Agha, C. Hewitt, Actors: a conceptual foundation for concurrent object-oriented programming, in: Research Directions in Object-Oriented Program-

ming, 1987, pp. 49–74.
[12] G.A. Agha, ACTORS – A Model of Concurrent Computation in Distributed Systems, MIT Press Series in Artificial Intelligence, MIT Press, 1990.
[13] I.A. Mason, C.L. Talcott, Actor languages their syntax, semantics, translation, and equivalence, Theor. Comput. Sci. 220 (2) (1999) 409–467, https://

doi.org/10.1016/S0304-3975(99)00009-2.
[14] S. Ren, G. Agha, RTsynchronizer: language support for real-time specifications in distributed systems, in: R. Gerber, T.J. Marlowe (Eds.), Workshop on

Languages, Compilers, & Tools for Real-Time Systems, ACM, 1995, pp. 50–59.
[15] F.S. de Boer, T. Chothia, M.M. Jaghoori, Modular schedulability analysis of concurrent objects in creol, in: F. Arbab, M. Sirjani (Eds.), Fundamentals

of Software Engineering, Third IPM International Conference, FSEN 2009, Kish Island, Iran, April 15–17, 2009, in: Lecture Notes in Computer Science,
vol. 5961, Springer, 2009, pp. 212–227, Revised Selected Papers.

[16] A.H. Reynisson, M. Sirjani, L. Aceto, M. Cimini, A. Jafari, A. Ingólfsdóttir, S.H. Sigurdarson, Modelling and simulation of asynchronous real-time systems
using Timed Rebeca, Sci. Comput. Program. 89 (2014) 41–68, https://doi.org/10.1016/j.scico.2014.01.008.

[17] M. Geilen, S. Tripakis, M. Wiggers, The earlier the better: a theory of timed actor interfaces, in: M. Caccamo, E. Frazzoli, R. Grosu (Eds.), HSCC, ACM,
2011, pp. 23–32.

[18] F.S. de Boer, M.M. Jaghoori, C. Laneve, G. Zavattaro, Decidability problems for actor systems, in: M. Koutny, I. Ulidowski (Eds.), CONCUR, in: Lecture
Notes in Computer Science, vol. 7454, Springer, 2012, pp. 562–577.

[19] L. Aceto, M. Cimini, A. Ingólfsdóttir, A.H. Reynisson, S.H. Sigurdarson, M. Sirjani, Modelling and simulation of asynchronous real-time systems using
Timed Rebeca, in: M.R. Mousavi, A. Ravara (Eds.), FOCLASA, in: EPTCS, vol. 58, 2011, pp. 1–19.

[20] M.M. Jaghoori, M. Sirjani, M.R. Mousavi, E. Khamespanah, A. Movaghar, Symmetry and partial order reduction techniques in model checking rebeca,
Acta Inform. 47 (1) (2010) 33–66.

[21] M. Sirjani, A. Movaghar, A. Shali, F.S. de Boer, Model checking, automated abstraction, and compositional verification of rebeca models, J. Univers.
Comput. Sci. 11 (6) (2005) 1054–1082, https://doi.org/10.3217/jucs-011-06-1054.

[22] Rebeca Home Page, http://www.rebeca-lang.org.
[23] E. Khamespanah, R. Khosravi, M. Sirjani, Efficient TCTL model checking algorithm for timed actors, in: E.G. Boix, P. Haller, A. Ricci, C. Varela (Eds.),

Proceedings of the 4th International Workshop on Programming Based on Actors Agents & Decentralized Control, AGERE! 2014, Portland, OR, USA,
October 20, 2014, ACM, 2014, pp. 55–66, https://doi.org/10.1145/2687357.2687366.

[24] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 3rd edn., MIT Press, 2009, http://mitpress.mit.edu/books/introduction-
algorithms.

[25] B. Meyer, Object-Oriented Software Construction, 2nd edn., Prentice–Hall, 1997.
[26] M. Nykänen, E. Ukkonen, The exact path length problem, J. Algorithms 42 (1) (2002) 41–53.
[27] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.
[28] M. Sirjani, A. Movaghar, A. Shali, F.S. de Boer, Modeling and verification of reactive systems using rebeca, Fundam. Inform. 63 (4) (2004) 385–410.
[29] M. Sirjani, M.M. Jaghoori, Ten years of analyzing actors: rebeca experience, in: G. Agha, O. Danvy, J. Meseguer (Eds.), Formal Modeling: Actors, Open

Systems, Biological Systems, in: Lecture Notes in Computer Science, vol. 7000, Springer, 2011, pp. 20–56.
[30] M. Sirjani, F.S. de Boer, A. Movaghar-Rahimabadi, Modular verification of a component-based actor language, J. Univers. Comput. Sci. 11 (10) (2005)

1695–1717, https://doi.org/10.3217/jucs-011-10-1695.
[31] E. Khamespanah, M. Sirjani, M. Viswanathan, R. Khosravi, Floating time transition system: more efficient analysis of timed actors, in: C. Braga, P.C.

Ölveczky (Eds.), Formal Aspects of Component Software – 12th International Symposium, FACS 2015, Rio de Janeiro, Brazil, October 14–16, 2015, in:
Lecture Notes in Computer Science, Springer, 2016.

[32] E. Khamespanah, M. Sirjani, Z. Sabahi-Kaviani, R. Khosravi, M. Izadi, Timed rebeca schedulability and deadlock freedom analysis using bounded floating
time transition system, Sci. Comput. Program. 98 (2015) 184–204, https://doi.org/10.1016/j.scico.2014.07.005.

[33] A. Sheibanyrad, A. Greiner, I.M. Panades, Multisynchronous and fully asynchronous nocs for GALS architectures, IEEE Des. Test Comput. 25 (6) (2008)
572–580, https://doi.org/10.1109/MDT.2008.167.

[34] Z. Sharifi, M. Mosaffa, S. Mohammadi, M. Sirjani, Functional and performance analysis of network-on-chips using actor-based modeling and formal
verification, Electron. Commun. EASST 66 (2013).

[35] Apache Hadoop Home Page, http://hadoop.apache.org.
[36] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters, Commun. ACM 51 (1) (2008) 107–113, https://doi.org/10.1145/

1327452.1327492.
[37] T. White, Hadoop – The Definitive Guide: Storage and Analysis at Internet Scale, 3rd edn., revised and updated, O’Reilly, 2012,

http://www.oreilly.de/catalog/9781449311520/index.html, 2012.
[38] L.E. Linderman, K. Mechitov, B.F. Spencer, TinyOS-based real-time wireless data acquisition framework for structural health monitoring and control,

Struct. Control Health Monit. 20 (2013) 1007–1020, https://doi.org/10.1002/stc.1514.
[39] L. Nachman, R. Kling, R. Adler, J. Huang, V. Hummel, The Intel Mote platform: a bluetooth-based sensor network for industrial monitoring, in: Proceed-

ings of the Fourth International Symposium on Information Processing in Sensor Networks, IPSN 2005, April 25–27, 2005, UCLA, Los Angeles, California,
USA, IEEE, 2005, pp. 437–442, https://doi.org/10.1109/IPSN.2005.1440968.

[40] E. Khamespanah, K. Mechitov, M. Sirjani, G.A. Agha, Schedulability analysis of distributed real-time sensor network applications using actor-based
model checking, in: D. Bosnacki, A. Wijs (Eds.), Model Checking Software – 23rd International Symposium, Proceedings, SPIN 2016, Co-located with
ETAPS 2016, Eindhoven, the Netherlands, April 7–8, 2016, in: Lecture Notes in Computer Science, vol. 9641, Springer, 2016, pp. 165–181.

[41] R. Alur, C. Courcoubetis, D.L. Dill, Model-checking in dense real-time, Inf. Comput. 104 (1) (1993) 2–34.
[42] J. Bengtsson, B. Jonsson, J. Lilius, W. Yi, Partial order reductions for timed systems, in: D. Sangiorgi, R. de Simone (Eds.), CONCUR, in: Lecture Notes in

Computer Science, vol. 1466, Springer, 1998, pp. 485–500.
[43] M. Minea, Partial order reduction for model checking of timed automata, in: J.C.M. Baeten, S. Mauw (Eds.), CONCUR, in: Lecture Notes in Computer

Science, vol. 1664, Springer, 1999, pp. 431–446.
[44] F. Laroussinie, N. Markey, P. Schnoebelen, Model checking timed automata with one or two clocks, in: P. Gardner, N. Yoshida (Eds.), CONCUR 2004 –

Concurrency Theory, 15th International Conference, Proceedings, London, UK, August 31–September 3, 2004, in: Lecture Notes in Computer Science,
vol. 3170, Springer, 2004, pp. 387–401.

http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F727473732F43616D706F73434D4D483934s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F727473732F43616D706F73434D4D483934s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A6A6F75726E616C732F7463732F4C61726F757373696E696553543033s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A6A6F75726E616C732F7463732F4C61726F757373696E696553543033s1
http://dl.acm.org/citation.cfm?id=207907.207912
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A6A6F75726E616C732F7463732F4C61726F757373696E69654D533036s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib4865776974743732s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib4865776974743732s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A626F6F6B732F6D69742F736872697665725738372F41676861483837s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A626F6F6B732F6D69742F736872697665725738372F41676861483837s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A626F6F6B732F6461676C69622F30303636383937s1
https://doi.org/10.1016/S0304-3975(99)00009-2
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F6C63747274732F52656E413935s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F6C63747274732F52656E413935s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F6673656E2F426F6572434A3039s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F6673656E2F426F6572434A3039s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F6673656E2F426F6572434A3039s1
https://doi.org/10.1016/j.scico.2014.01.008
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F6879627269642F4765696C656E54573131s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F6879627269642F4765696C656E54573131s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F636F6E6375722F426F65724A4C5A3132s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F636F6E6375722F426F65724A4C5A3132s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A6A6F75726E616C732F636F72722F6162732D313130382D30323238s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A6A6F75726E616C732F636F72722F6162732D313130382D30323238s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A6A6F75726E616C732F616374612F4A6167686F6F7269534D4B4D3130s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A6A6F75726E616C732F616374612F4A6167686F6F7269534D4B4D3130s1
https://doi.org/10.3217/jucs-011-06-1054
http://www.rebeca-lang.org
https://doi.org/10.1145/2687357.2687366
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A626F6F6B732F70682F4D657965723937s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A6A6F75726E616C732F6A616C2F4E796B616E656E553032s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A626F6F6B732F666D2F47617265794A3739s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A6A6F75726E616C732F6675696E2F5369726A616E694D53423034s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F62697274686461792F5369726A616E694A3131s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F62697274686461792F5369726A616E694A3131s1
https://doi.org/10.3217/jucs-011-10-1695
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F66616373322F4B68616D657370616E616853564B3135s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F66616373322F4B68616D657370616E616853564B3135s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F66616373322F4B68616D657370616E616853564B3135s1
https://doi.org/10.1016/j.scico.2014.07.005
https://doi.org/10.1109/MDT.2008.167
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib536861726966794E6F4341566F435332303133s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib536861726966794E6F4341566F435332303133s1
http://hadoop.apache.org
https://doi.org/10.1145/1327452.1327492
http://www.oreilly.de/catalog/9781449311520/index.html
https://doi.org/10.1002/stc.1514
https://doi.org/10.1109/IPSN.2005.1440968
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F7370696E2F4B68616D657370616E61684D53413136s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F7370696E2F4B68616D657370616E61684D53413136s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F7370696E2F4B68616D657370616E61684D53413136s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A6A6F75726E616C732F69616E64632F416C757243443933s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F636F6E6375722F42656E677473736F6E4A4C593938s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F636F6E6375722F42656E677473736F6E4A4C593938s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F636F6E6375722F4D696E65613939s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F636F6E6375722F4D696E65613939s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F636F6E6375722F4C61726F757373696E69654D533034s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F636F6E6375722F4C61726F757373696E69654D533034s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F636F6E6375722F4C61726F757373696E69654D533034s1
https://doi.org/10.1016/S0304-3975(99)00009-2
https://doi.org/10.1145/1327452.1327492

E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29 29

[45] E. Khamespanah, Z. Sabahi-Kaviani, R. Khosravi, M. Sirjani, M.-J. Izadi, Timed-Rebeca schedulability and deadlock-freedom analysis using floating-time
transition system, in: G.A. Agha, R.H. Bordini, A. Marron, A. Ricci (Eds.), AGERE!@SPLASH, ACM, 2012, pp. 23–34.

[46] Z. Sabahi-Kaviani, R. Khosravi, M. Sirjani, P.C. Ölveczky, E. Khamespanah, Formal semantics and analysis of Timed Rebeca in Real-Time Maude, in:
C. Artho, P.C. Ölveczky (Eds.), FTSCS, in: Communications in Computer and Information Science, vol. 419, Springer, 2013, pp. 178–194.

[47] B. Magnusson, Simulation-Based Analysis of Timed Rebeca Using TeProp and SQL, Master’s thesis, Reykjavík University, School of Computer Science,
Iceland, 2012, http://rebeca.cs.ru.is/files/MasterThesisBrynjarMagnusson2012.pdf.

[48] C.B. Earle, L. Fredlund, Verification of timed Erlang programs using McErlang, in: Proceedings of the 14th Joint IFIP WG 6.1 International Conference and
Proceedings of the 32nd IFIP WG 6.1 International Conference on Formal Techniques for Distributed Systems, FMOODS’12/FORTE’12, Springer-Verlag,
Berlin, Heidelberg, 2012, pp. 251–267.

http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F73706C61736A2F656873616E3132s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F73706C61736A2F656873616E3132s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F66747363732F5361626168692D4B617669616E694B534F4B3133s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib44424C503A636F6E662F66747363732F5361626168692D4B617669616E694B534F4B3133s1
http://rebeca.cs.ru.is/files/MasterThesisBrynjarMagnusson2012.pdf
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib4561726C656E673A74696D656432303132s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib4561726C656E673A74696D656432303132s1
http://refhub.elsevier.com/S0167-6423(17)30242-3/bib4561726C656E673A74696D656432303132s1

	An efﬁcient TCTL model checking algorithm and a reduction technique for veriﬁcation of timed actor models
	1 Introduction
	2 Timed model checking of discrete time systems against TCTL properties
	3 Improving the TCTL<=,>= model checking algorithm
	3.1 Calculating Sat(E(ΦU<=cΨ))
	3.2 Calculating Sat(E(ΦU>=cΨ))

	4 A reduction technique based on folding instantaneous transitions
	4.1 Folding instantaneous transitions
	4.2 Complete TCTL model checking of DTGs

	5 Efﬁcient TCTL<=,>= model checking of Timed Rebeca models
	5.1 A Timed Rebeca model
	5.2 Property speciﬁcation for Timed Rebeca models
	5.3 The ﬁne-grained semantics of Timed Rebeca
	5.3.1 Abstract syntax of Timed Rebeca
	5.3.2 Operational semantics of Timed Rebeca

	5.4 Model checking of Timed Rebeca models
	5.5 Model checking of the FTSs of Timed Rebeca models

	6 Case studies and experimental results
	6.1 Network on chip (NoC)
	6.2 Hadoop YARN scheduler
	6.3 Ticket service
	6.4 WSAN applications

	7 Related work
	8 Summary and conclusion
	Acknowledgements
	Appendix A The SOS rules of the effect method
	References

