
Lightweight Preprocessing for Agent-Based
Simulation of Smart Mobility Initiatives

Carlo Castagnari1, Jacopo de Berardinis1, Giorgio Forcina1,
Ali Jafari3, and Marjan Sirjani2,3

1 University of Camerino, Division of Computer Science, Smart Mobility Lab
Via Madonna delle Carceri 9, Camerino (MC), 62032, Italy

2 Malardalen University, School of Innovation, Design and Engineering
Hogskoleplan 1, Vasteras, 72123, Sweden

3 Reykjavik University, School of Computer Science
Menntavegur 1, Reykjavik, 101, Iceland

Abstract. Understanding the impacts of a mobility initiative prior to
deployment is a complex task for both urban planners and transport
companies. To support this task, Tangramob offers an agent-based sim-
ulation framework for assessing the evolution of urban traffic after the
introduction of new mobility services. However, Tangramob simulations
are computationally expensive due to their iterative nature. Thus, we
simplified the Tangramob model into a Timed Rebeca (TRebeca) model
and we designed a tool-chain that generates instances of this model start-
ing from the same Tangramob’s inputs. Running TRebeca models allows
users to get an idea of how mobility initiatives affect the system perfor-
mance, in a short time, without resorting to the simulator. To validate
this approach, we compared the output of both the simulator and the
TRebeca model on a collection of mobility initiatives. Results show a
correlation between them, thus demonstrating the usefulness of using
TRebeca models for unconventional contexts of application.

Keywords: Agent-Based Simulations, Actor-Based Modeling Languages

1 Introduction

Being part of a continuously growing population, which is expected to shift from
7.3 billion to 9.6 billion inhabitants by 2050 [14], urges us to re-think urban
mobility. Such an unbridled demographic growth is worsened by an increasing
urbanization trend, as people living in urban areas will rise from 54% to 66% in
the next 30 years. If poorly managed, these phenomena will jeopardize the quality
of life of citizens, accentuating many problems like traffic congestion, high cost
of personal mobility, land use inefficiencies as well as the environmental impacts.

Urged by these threats, urban planners are now shifting their attention to
Smart Mobility, defined as “a complex set of projects and actions, different in

The work of the 4th and a part of that of the 5th author are supported by “Self-
Adaptive Actors: SEADA” (project nr.163205-051) from Icelandic Research Fund.



2 Castagnari et al.

goals, contents and technology intensity” [2] focused on mobility issues. Exam-
ples of smart mobility services range from carsharing and bikesharing services
to more advanced ones like self-driving taxis and dynamic ridesharing systems.

Nevertheless, given a certain urban context, how can we evaluate the ability
of a Smart Mobility Initiative (SMI), i.e. a number of smart mobility services,
to meet the actual mobility needs of the population prior to its deployment?
It turns out that estimating the impacts of a mobility initiative is one of the
most crucial concerns in urban planning. In fact, the current approach of using
heuristics and best-practises might end up being risky for decision makers, since
the resulting mobility initiatives may be unaccepted by the population [6, 9].

Driven by these motivations, Tangramob [4] offers a simulation environment
for mobility assessment. This open source tool allows urban planners and trans-
port companies to understand if the effects of the simulated mobility initiatives
are expected to be in line with their objectives and plans. The peculiarities of this
simulator are: the adaptability to different geographical contexts; the support of
multimodal trips and mobility services; the ability to reproduce real-life scenar-
ios. Tangramob relies on an Agent-Based Model (ABM) in which every citizen
is given the ability to experience with the newly introduced mobility services in
order to understand which is the best way to travel daily. Following a Reinforce-
ment Learning (RL) strategy, a simulation is organized as a series of iterations,
so that a single day is simulated multiple times: this approach allows citizens to
accumulate experience so as to come up with better mobility decisions. At the
end of a simulation, we will be able to understand how the mobility initiative is
accepted by the population and how it affects both citizens and urban system.

However, the iterative nature of Tangramob simulations makes them com-
putationally expensive in case of complex scenarios, i.e. when either or both the
population under study is large and the number of new smart mobility services
is substantial. On the other hand, a Tangramob user is interested in perform-
ing multiple experiments with the simulator, that is, evaluating different smart
mobility initiatives so as to find out the most promising ones. For instance, a
user can change the configuration of a mobility service by either increasing or
decreasing the number of vehicles. Nonetheless, running as many simulations as
the number of smart mobility initiatives to investigate might be time-consuming.

To address this obstacle, we reduced the complexity of the Tangramob’s ABM
in order to derive a Timed Rebeca (TRebeca) [10] model in which the RL-based
learning process and the representation of traffic were both simplified. Together
with the ability of modeling persons as packets, made possible by the actor-based
modeling paradigm of TRebeca, the resulting model allows to run experiments
faster with the cost of loosing the microscopic detail of Tangramob simulations.
In addition, to improve its usability, we developed a tool chain that generates
instances of the TRebeca model from the same input files of Tangramob scenar-
ios. Despite the many simplifications, comparing the results obtained from the
two models on different mobility initiatives for the same scenario shows that the
TRebeca model behaves similarly to Tangramob. This correlation makes it pos-
sible for users to exploit the TRebeca model as a tool for getting first results of



Lightweight preprocessing for AB simulation of smart mobility initiatives 3

a SMI without simulating it. In particular, the experimenter can use this model
to understand which initiatives are more in line with his expectations, so as to
simulate them later with Tangramob to get more details.

The structure of this paper is as follows: Section 3 gives an overview of
Tangramob, as well as a brief description of its ABM. In Section 4 we introduce
the Rebeca and Timed Rebeca modeling languages and we present the simplified
Timed Rebeca model derived from the original one. Section 4.3 details on how
we performed the derivation process, focusing on the different assumptions and
heuristics adopted in order to approximate the learning process of the simulator.
In Section 5 we describe how we designed the experiment to prove both the
similarity among the two models and the utility of the simplified TRebeca model.
Finally, in Section 6 we show the experimental results and we discuss about their
implications in order to confirm the former hypothesis.

2 Related work

To the best of our knowledge, Tangramob is the first simulator supporting inter-
modality and multimodality in a context-independent architecture. This section
thus provides the reader with an overview of common approaches aimed at han-
dling large-scale scenarios within reasonable computational time. Indeed, this
is one of the most faced challenges in Agent-Based (AB) traffic simulations.
The state of the art provides different solutions to this problem, which can be
classified into two groups: technical approaches and model-based ones.

The first group collects all those alternatives which keep the integrity of the
AB traffic model, whereas trying to decrease the computational complexity by
means of some expedients, such as: reducing the input dimension and optimizing
the available computational resources. For instance, in [7] the practice is to scale
down the model, i.e. instead of modeling the 100% of a city’s population, only a
representative portion is considered. It is thus possible to get comparable system
dynamics with a 10% population if the transport system capacities are scaled
down proportionally. Another approach is to harvest the computational power
of Graphical Processing Units (GPU). For instance, [13] achieved a speedup of
up to 67 times by means of a CUDA re-implementation of MATSim.

On the other hand, the second group comprises alternative approaches to
model traffic at a more coarse-grained level, often resulting in loss of details.
Indeed, microscopic traffic simulations are much computational demanding than
other models, since they track the movement of each vehicle as well as the in-
teractions among vehicles competing for roads. In contrast, macroscopic models
aggregate vehicles, and traffic is described as a continuum. For instance, [3] in-
troduces MacroSim, a MATSim’s module for macroscopic mobility simulations.
In MacroSim, agents are handled sequentially and decoupled from each other,
as well from the environment, over the simulation. Their interactions are thus
represented at a higher abstraction level by means of constraints in capacity
and speed on each road of the network, expressed by volume-delay functions.
With MacroSim, the simulation approach changes from a system-based to an



4 Castagnari et al.

individual-based one, allowing a more efficient parallelization of the mobility
simulation (7 to 50 times faster). Another modeling approach is given by [5] in
which, instead of performing a microscopic traffic simulation along fixed time
steps, an event based model is used, performing only discrete actions which are
relevant to the model (i.e. entering and leaving roads).

Although scaling the model to a smaller yet representative population is
certainly helpful to save time, this approach is still not enough to cope with both
large-scale scenarios and shared mobility services. Concerning the exploitation of
GPU computing, it is worth considering that a CUDA implementation requires
considerable design efforts since Tangramob is developed in Java. Moreover,
the dependencies among agents and the environment, typical of macroscopic
simulations, make it difficult to reach a good parallelization of the model.

For what concerns model-based approaches, shifting from a micro to a macro-
scopic model by means of abstractions is useful in some contexts. However, Tan-
gramob aims at modeling both intermodal trips, which follow different traveling
patterns than usual ones, and the acceptance of a mobility initiative for every
single person of a sample population. This last consideration is due to the fact
that an urban planner should be able to find a good balance of mobility resources
for a certain district according to the actual mobility needs of the nearby citi-
zens. Thus, it turns out that a macroscopic modeling approach is not suitable
for our purposes. On the other hand, the event-based approach suggested in [5]
can be even improved by modeling other traffic dynamics as messages.

3 The Tangramob simulator

Tangramob [4] is an agent-based simulation framework supporting urban plan-
ners and transport companies in shaping Smart Mobility Initiatives (SMIs)
within urban areas. Users can thus assess whether introducing a SMI can improve
the traveling experience of the citizens, as well as the urban transport system.
In order to consider people’s acceptance, Tangramob returns an estimation of
how a mobility initiative can impact on local communities, so as to figure out
beforehand if a SMI can potentially succeed or not. Technically, a Tangramob
simulation requires the following inputs:

– road network of the urban area under study, represented as a weighted
graph with nodes denoting intersections and edges standing for streets;

– mobility agendas of a sample population (i.e. people’s mobility habits),
– smart mobility initiative to be simulated, i.e. a list of geographically

located containers of one or more smart mobility services, called tangrhubs.
Each smart mobility service belongs to a tangrhub and it comes with a
number of mobility resources (e.g. vehicles), as well as a service charge.

Once the above inputs are provided, Tangramob can start a simulation which
returns several output files in order to provide users with a list of measures con-
cerning how the mobility habits of citizens are expected to change after the in-
troduction of the SMI. In particular, the following output variables are returned



Lightweight preprocessing for AB simulation of smart mobility initiatives 5

for each person, and then added together: traveled distance, traveled time, CO2

emissions, mobility costs and whether he has accepted the mobility initiative or
not. Tangramob will also provide a measure of the resulting urban traffic lev-
els, as well as a metric on the use of mobility resources. From the analysis of
such parameters, a user can realize if the simulated initiative is in line with his
expectations. If not, he can change the configuration of the SMI (e.g. relocate/ad-
d/remove tangrhubs, change a mobility service) and run new experiments.

The detailed description of Tangramob is out of the scope of this work;
nevertheless, in order to present the ABM as well as the derivation process
for the TRebeca model, we introduce the following key concepts to the reader:
tangrhub, smart mobility initiative and commuting pattern.

A tangrhub is a geo-located container of mobility services (e.g. carsharing,
bikesharing), each of which in turn manages a fleet of vehicles (e.g. cars, bikes).

A Smart Mobility Initiative (SMI) is thus about placing a number of tan-
grhubs within the urban area of interest, adding one or more mobility services
to each of them, and providing a characterization for each service. In particular,
to define a smart mobility service for a tangrhub, the user has to specify the
service type (i.e. intra-hub or inter-hub), the initial number of vehicles and the
service charge (i.e. cost per km, per hour and fixed cost). Each mobility service
mi provided by a tangrhub thj must belong either to one of these service types:

– intra-hub services, used for moving people to and from thj thereby serving
first mile trips, e.g. from a commuter’s home-place to thj and viceversa;

– inter-hub services, moving people from thj to another tangrhub thk.

A commuting pattern is the intermodal representation of how a person moves
from an origin location to his destination. Such a trip can be either simple, e.g.
the commuter directly travel from origin to destination by either walking or car;
or more complex, e.g. the commuter will use more than one means of transport,
for instance: walking to the closest bus station, travel by bus, then reach a
metro line and so on. A clear example of a commuting pattern is the route
provided by the trip planner of Google Maps. However, how will the commuting
patterns of citizens change as the smart mobility initiative is introduced? In
Tangramob, the complexity of commuting patterns is limited to three schemes:
direct path, 2-trip path and 3-trip path (shown in Figures 1, 2, 3, respectively).
In particular, nodes O and D represent respectively the commuter origin and
destination; whereas nodes TH, THO and THD depict respectively a generic
tangrhub, and the nearest tangrhubs to O and D. This is possible thanks to
both the concept of tangrhub and interconnection among tangrhubs via inter-
hub mobility services. The resulting architecture looks similar to a computer
network, in which tangrhubs play the role of routers, mobility services are cables
and commuters can be seen as packets.

Fig. 1. Direct path Fig. 2. 2-trip path Fig. 3. 3-trip path



6 Castagnari et al.

3.1 Tangramob Agent-Based Model (ABM): an overview

This section introduces the formalization of Tangramob, that will be helpful to
understand the translation of the original agent-based model into the simplified
TRebeca one (presented in Section 4.2).

The Tangramob ABM has two different agent types: commuter and tangrhub.
A commuter agent, from now on commuter, is the computational counterpart of
a person of the population. Every commuter has his own mobility agenda, i.e. a
sequence of daily activities (e.g. home, work) interleaved by legs, each of which
tells how the commuter moves from one activity location to the next one (e.g.
car, bike). Instead, a tangrhub agent acts as a local mobility service provider.

Both agents live and operate, with different perceptions, in a composite envi-
ronment made of three different spaces: the temporal one, the geographical one
and the smart mobility services’ state space. The geographical space is the core
of the transport simulation, since the physical limitations of the road network
can create bottlenecks and delays as people move with a certain pace.

As depicted in Figure 4, every time a commuter needs to move from one place
to another, an interaction with the surrounding tangrhubs takes place as follows:
tangrhubs are expected to collaborate with each other in order to provide the
commuter with a number of traveling alternatives for taking him to destination
(a traveling alternative can be thought of as a combination of one up to three
legs, each of which can involve a smart mobility service and it is based on the
Tangramob commuting patterns). Next, the commuter will perform a decision-
making process to select the traveling alternative that is expected to optimize his
performance criteria. Once an alternative is chosen, the involved tangrhubs will
reserve the required mobility services so that the commuter can start his journey.
Finally, once the commuter has reached his destination, he will be asked to leave
a feedback for each smart mobility service involved in the chosen alternative.

Fig. 4. Commuter-Tangrhub interaction loop

Each feedback quantifies the traveling experience of a commuter using a
specific mobility service. This value is computed by means of a scoring function
which takes into account some performance criteria of the commuter, such as
travel time, traveled distance and travel comfort. The use of a feedback is dual:
on one hand, it allows a person to make more informed decisions in the future;
on the other hand, it enables tangrhubs to improve their mobility services.

To do this, following a Reinforcement Learning approach, Tangramob simu-
lations are iterative: each iteration corresponds to a typical day in which com-
muters try the new mobility services and record their experience.



Lightweight preprocessing for AB simulation of smart mobility initiatives 7

At the end of a simulation, commuters may change their original mobility
habits in favour of those mobility services that can better accommodate their
needs. In case the simulated SMI does not suit some commuters, those agents
will then restore their initial traveling habits (e.g. traveling by private car).

4 From Tangramob ABM to TRebeca

In this section, we introduce Rebeca and TimedRebeca modeling languages,
showing their features and the motivations behind their involvement in our work.
Afterwards, we present the simplified TRebeca model, and we argue about its
derivation process from the Tangramob ABM.

4.1 Rebeca and Timed Rebeca

Reactive Object Language (Rebeca) [11] is an actor-based language designed
to connect practical software engineering domains and formal verification meth-
ods. In short, Rebeca is a language for modeling event-based distributed sys-
tems. Moreover, it represents an interpretation of the actor model adopting a
Java-like syntax which is supported by verification tools. The semantics of Re-
beca is presented by Labeled Transition System (LTS). Systems are modeled
by concurrently executing reactive objects called rebecs which can interact with
one another by asynchronous message passing. In particular, a Rebeca model
consists of the definition of reactive classes, each of which corresponds to a
specific actor type of the system. Technically, a reactive class comprises three
parts: known rebecs (i.e. the other rebecs with which it can communicate), state
variables (like attributes in object-oriented languages) and message server defi-
nitions, defining the behaviour of the actor itself (like methods in object-oriented
languages). Each message server has a name, an optional list of parameters and
its body, which can be described as the actual behaviour of the rebec once
such kind of message is received; it includes a number of statements, i.e. assign-
ments, sending of messages, and selections. The computation of a Rebeca model
is event-driven [11], since messages can be seen as events. Each rebec takes a
message from its message queue and executes the corresponding message server
atomically. Communication among rebecs takes place by asynchronous message
passing as follows: the sender rebec sends a message to the receiver rebec and
continues its work; the message is put in the message queue of the receiver and
it stays there until the receiver serves it. The behaviour of a Rebeca model is
hence defined as the parallel execution of the released messages of the rebecs.

Timed Rebeca (TRebeca) [8,10,12] is a timed extension of Rebeca language
with timing primitives. TRebeca supports the modeling and verification of dis-
tributed systems with timing features and its semantic is presented in Timed
Transition System. Time is represented in terms of discrete time steps.

As it emerges from its features, TRebeca is the right modeling language for
our purposes, since it allows to capture timing features, as well as to represent the
interactions between the ABM’s agents. In fact, timing is needed for organizing
the actions performed by commuters during the course of a 24-hour day.



8 Castagnari et al.

4.2 The simplified Tangramob model in TRebeca

Tangramob is a very complex and fine-grained framework capable of simulat-
ing millions of events and interactions between agents and the environment. For
this reason, it is prohibitive to reproduce the AB model as it is into a TRebeca
model, since its executions would result into an unmanageable state explosion.
Thus, the designed TRebeca model is simplified, but still keeping the core fea-
tures. In detail, the TRebeca model is composed of the two following rebecs:
CommuterGenerator and Tangrhub. In the simplified model, commuters do not
have a rebec counterpart. They are modeled as packets to be delivered within
a network. Each commuter is characterized by a data structure representing its
daily mobility agenda (introduced in Section 3.1). This data structure holds the
following information: the commuter identifier (id), the nearest tangrhub to his
home (thh), the time units to elapse before leaving home (timeh,w), the time
units for walking from home to thh (timefm), the nearest tangrhub to its work-
place (thw), the time units spent working (timework) and the time units for
walking from thw to his workplace (timelm).

Modeling the so-described “commuter”, required many assumptions. Indeed,
a careful reader may notice that providing each commuter with two tangrhubs,
implies that all of them are only expected to travel by inter-hub mobility services,
thus adopting the 3-path commuting pattern (Figure 3). Therefore, with this
simplification, in the TRebeca model commuters have two commuting patterns:

home→ thh → thw → work and work → thw → thh → home

Another strict assumption regards the fixed time units associated to each sub-
trip: traveling times are always the same and traffic congestion is just emulated
by adding random delays during the model-generation phase (Section 4.3).

Differently from the commuter, the tangrhub agent has been translated into a
rebec named Tangrhub. Its behavior is similar to the one designed for the ABM,
i.e. managing its mobility services and providing commuters with vehicles. Addi-
tionally, since commuters are modeled as messages in the TRebeca model, each
Tangrhub has the responsibility of delivering commuters to the next Tangrhub.
Every time this occurs, an available mobility service resource (i.e. a vehicle) is
released to a commuter which will use it for reaching the next Tangrhub. In-
stead of letting commuters select a mobility service, in the TRebeca model this
decision-process is made by Tangrhubs. Every time a commuter is scheduled, a
Tangrhub releases a vehicle of the selected service with the best trade-off be-
tween its current fleet and its priority value. In particular, we associate each
service with a priority value, which is meant to represent people’s preferences:
the higher the value, the more the service will be preferred.

Concerning the other rebec, the CommuterGenerator is in charge of moni-
toring the progress of commuters and their scheduling. In particular, it checks
whether commuters are leaving home or they have just performed the last sub-
trip. Moreover, this rebec is notified every time a commuter experienced a service
disruption, i.e. it did not find any available service for an inter-hub sub-trip.



Lightweight preprocessing for AB simulation of smart mobility initiatives 9

In order to describe how actors interact in the the simplified TRebeca model,
we provide the reader with its event graph (Figure 5), which gives an intuitive
and highly abstracted view of events and their causality relations. The model
showed in this graph is composed of labeled nodes which represent events and
their owner rebec. Edges show the causality relations among vertices, and can
be either conditional (thick edges) or mandatory (thin edges).

Fig. 5. Event Graph of the TRebeca Model

As shown in Figure 5, the CommuterGenerator starts the run by sending a
message to itself that triggers the fireCommuters event (message server). At this
point, the CommuterGenerator evaluates the mobility agenda of commuters and
sends a serveCommuter message to every thh after a specific time unit, which
is computed as follows: timeh,w + timefm + randomDelay. When a Tangrhub
receives such a message, one of the following three actions is possible:

1. it sends a message to the next Tangrhub (i.e. thw), in case there is an available
mobility service and the commuter is reaching his workplace,

2. it sends a message to the CommuterGenerator, which informs it that the
commuter is coming back home,

3. it sends a message to the CommuterGenerator, which informs it that the
commuter did not find an available mobility service (i.e. service disruption).

The first message triggers a deliverCommuter event, which represents the
travel of a commuter by means of a mobility service. Then, a message is de-
livered to the next Tangrhub for informing it about the following commuter
trip, triggering again a serveCommuter event. On the other hand, messages 2
and 3 will trigger a commuterEndOfTheDay event. Every time this event oc-
curs, the CommuterGenerator updates the number of arrived commuters (i.e.
the ones who finished their activities), and eventually registers a service disrup-
tion. In case the number of arrived commuters is equal to the total number of
commuters, the CommuterGenerator restores the initial state of the system by
sending a resetSmarthub message to each Tangrhub and restarts the run of the
scenario by sending a fireCommuters message to itself.

The pseudo-code of the TRebeca model, together with a complete runnable
example model, can be found at [1].



10 Castagnari et al.

4.3 ToolTRain: infer, generate, run, infer and collect

Since we aim at using the TRebeca model as a lightweight simulation tool, we
should be able to generate new instances of the model from given scenarios, so as
to collect similar output data of Tangramob after the model run. However, this
is still not enough to get significant results due to the iterative learning process
of Tangramob’s commuters and its queue-based traffic simulation.

Fig. 6. The architecture of ToolTRain

For this purpose, we implemented ToolTRain: a tool-chain specifically designed
for generating a TRebeca model from the simulator’s input files according to
some abstraction rules; running the resulting model; and inferring the output
from the model run. Figure 6 shows the 3 building blocks of ToolTRain:

Model inference and generation Starting from the input files of Tangramob
(Section 3), a TRebeca model is generated according to the following points:

– A subset of the input population is selected as potential users of the new
mobility services. The remaining commuters, i.e. those who live or work too
far to the tangrhubs, are assumed to travel by car or walk.

– For each potential user, from now on potential subscriber, the tangrhubs
closest to his home and to his workplace are chosen, and the corresponding
3-path commuting pattern (Figure 3) is fixed for him.

– First mile trips (traveling towards a tangrhub) and last mile trips (traveling
from a tangrhub to the destination) are performed by walk, thus the travel
distance of such trips is computed as euclidean distance from point to point.
This is done for all the daily trips of each commuter, since travel time is
derived from travel distance according to a reference walk speed.

– Recalling the graph-like nature of the road network input, distances among
tangrhubs are computed with the Dijkstra’s shortest path algorithm. These
values are expected to determine the travel time of inter-hub trips, depending
on the characteristics of the vehicles provided by the new mobility services.

– Random delays are generated for all trips in order to emulate urban traffic.



Lightweight preprocessing for AB simulation of smart mobility initiatives 11

Model run The so-generated TRebeca model is run with Rebeca Model Checker
(RMC), a tool for direct model checking of TRebeca models. In particular, run-
ning a Rebeca model in RMC results in the generation of the whole state space
of the model. Next, in ToolTRain, the so-generated statespace is converted into
a tinier representation in which only a list of pre-defined state variables are re-
ported for each state for further analysis. Therefore, it is worth remarking that
we actually use RMC for performance evaluation rather than correctness.

Data inference and aggregation Since we are interested in the results of a
smart mobility initiative, the converted statespace is fed into a post-processing
script to collect the observed variables at the very last reached state, which cor-
responds to the end of a day. Next, in order to emulate people’s acceptance of
a mobility initiative, all those commuters who encountered a service disruption
(i.e. no vehicles available at a tangrhub) during the model run are selected and
treated differently. In particular, as similarly done in the pre-processing step,
those commuters are assumed to travel by car or by walk, and their travel met-
rics are computed accordingly. Finally, once every potential subscriber has been
processed, all the progressively-collected travel metrics are aggregated in order
to generate the same output files of Tangramob.

4.4 Comparing the two models

All the previously outlined abstraction rules are meant to simplify the original
AB model, thereby removing its computationally-expensive features at the cost
of loosing the microscopic detail of Tangramob simulations. Thus, traffic is emu-
lated with random delays, whereas the Reinforcement Learning iterative process,
used for modeling people’s acceptance, is replaced by decision-rules. These rules
are both encoded in the TRebeca model and achieved by the commuter filtering
process of ToolTRain. Nevertheless, even though we pay in model expressive-
ness, a complete pass of ToolTRain is much faster than a Tangramob simulation.
Indeed, as shown in Section 6.3, it turns out that running the TRebeca model
can drastically reduce the computational burden of Tangramob, and this is a
considerable gain if one needs to try many SMIs.

Concerning the modeling techniques, Tangramob lies on an agent-based model
which is conceptually similar to the actor-based one of the TRebeca counterpart.
Agent’s perceptions can be thought of as triggering message forwarding in actor-
based models: an actor receiving a message can be seen as an agent perceiving
a change in the environment. This similarity makes it possible to translate the
agent-based model into an actor-based one, keeping its conceptual integrity.

For what concerns the analysis capabilities, both models allow to observe
the same information, with an exception made for traffic levels. In particular, as
previously mentioned, we did not model traffic dynamics in the TRebeca model,
thus it is not possible to have a measure of the road occupancy during the day.

Finally, if we look at the usability of the models, we can notice that both
require the same input files to perform a model run/simulation. Therefore, con-
sidering that the output data is also presented in the same way (graphs and
tables), using the TRebeca model is as intuitive as using Tangramob.



12 Castagnari et al.

5 Experimental design and setup

So far, we outlined the ABM of Tangramob and the simplification process for
the derivation of the corresponding TRebeca model. However, using ToolTRain
as lightweight preprocessing for Tangramob requires us to prove this hypothesis:

H 1 Given a network, a population and a SMI, ToolTRain can approximate
Tangramob, i.e. there is a positive correlation between their outputs.

Because Tangramob returns several output files, testing H1 is equivalent to test-
ing different sub-hypothesis, one for each output variable of the simulator. There-
fore, with the exception of urban traffic, which is not represented in the TRebeca
model, we need to show that ToolTRain can return similarly to Tangramob:

– travel times
– travel distances
– CO2 emissions

– mobility costs
– number of subscribers
– mobility resource usage

To test the positive correlation between the output variables of both these
approaches, we propose a comparative experiment which also allows us to appre-
ciate the usefulness of ToolTRain. First, we choose 9 smart mobility initiatives
to evaluate and we partition them into 3 groups, according to the number of
Vehicles Per-Capita (VPC) of each one. In particular, we defined the follow-
ing partitions: light-SMIs (VPC ≤ 0.05); medium-SMIs (0.05 ≤ VPC ≤ 0.10);
massive-SMIs (VPC ≥ 0.10). Each group thus represents a kind of intervention
that the urban planner can evaluate on the basis of his/her goals.

Then, we feed each SMI into ToolTRain, together with a fixed set of input
variables described later. Once the computation is over, we can observe how the
output variables mentioned above differ for each SMI. Such analysis allows us
to get a coarse-grained idea of the impacts of a mobility initiative on the urban
system. Therefore, for each group we select the most promising SMI, i.e. the
one that minimizes travel times, traveled distances, travel costs, CO2 emissions
and the number of unused vehicles while maximizing the number of subscribers.
The selected SMIs are then simulated with Tangramob and their results are
compared with the ones returned by ToolTRain. This allows to test H1.

For this experiment, we chose a subarea of Ascoli Piceno (Italy), a mid-sized
town of 50K inhabitants, and we we scaled down the scenario in order to deal
with 2068 commuters. The 9 SMIs to be investigated, outlined in Table 5, share
the same number and location of tangrhubs, each of which is provided with the
same type of mobility services. Charges are also fixed for each service type (Table
5). A more detailed description of the experimental setup is provided in [1].

Table 1. Cost and priority values per mobility service

Cost per hour Cost per km Fixed Cost Priority (only for ToolTRain)

Bikesharing 0.5 e 0 e 0.01 e 30

Carsharing 13 e 0.1 e 0.01 e 40

Scootersharing 2.5 e 0.1 e 0.01 e 35



Lightweight preprocessing for AB simulation of smart mobility initiatives 13

Table 2. The investigated Smart Mobility Initiatives (SMIs)

light-SMIs medium-SMIs massive-SMIs

Tangrhub Service Type SMI-1 SMI-2 SMI-3 SMI-4 SMI-5 SMI-6 SMI-7 SMI-8 SMI-9

TH 0
bikesharing 0 2 2 2 2 4 5 10 25
carsharing 2 2 6 2 4 4 5 5 25

scootersharing 0 0 1 2 2 2 5 5 25

TH 1
bikesharing 0 2 2 2 4 4 5 5 25
carsharing 2 2 5 2 2 2 5 10 25

scootersharing 0 0 1 2 2 4 5 5 25

... ... ... ... ... ... ... ... ... ... ...

TH 8 bikesharing 0 0 2 5 5 5 10 10 25
carsharing 2 2 3 3 3 5 10 15 25

scootersharing 0 2 2 3 5 5 10 10 25

total fleet 22 44 68 101 119 140 338 333 675

6 Experimental results

In this section, we first show the results of the 9 SMIs runs with ToolTRain, then
we select 3 of them. Afterwards, to test H1, we compare the output variables of
the selected SMIs with the ones returned by Tangramob on the same setup. A
comparison of the computational times of the 3 SMIs is also provided.

6.1 9 SMIs experimental results

The output variables that we are going to discuss, presented in Section 5, can
be gathered into three categories: (i) number of subscriptions, (ii) commuters’
travel performance measures and (iii) mobility resources usage.

Fig. 7. N. of subscribers Fig. 8. Travel distances Fig. 9. Travel times

Fig. 10. CO2 emissions Fig. 11. Mobility costs Fig. 12. Mobility fleet usage



14 Castagnari et al.

A subscriber is a person who, at the end of the simulation, is expected to
change his traveling habits in favour of the new mobility services. Thus, the
number of subscribers is a measure of people acceptance of an SMI. Figure 7
shows that light-SMIs can attract between 20% and 42% of the whole population;
the medium-SMIs could involve from 60% up to 72%; whereas the the massive
ones could interest around 85% of the population. These results show that the
number of subscribers grows with the number of vehicles provided, both in the
light and medium SMIs. However, when the number of subscriber is close to the
total number of citizens, such as in the massive-SMIs, increasing the number of
vehicles is not sufficient anymore. For instance, SMI-7 is more successful than
SMI-9, even though the total amount of vehicles is less than half the other.

Commuters’ performance measures are related to the number of sub-
scribers. Concerning travel times and travel distances (Figures 8 and 9), their
averages grow as the number of subscribers of the SMI increases. These trends are
due to the fact that subscribers will extend their trips since they pass through two
tangrhubs instead of making a direct trip. Moreover, subscribers perform their
first-mile and last-mile trips by walk, which is considerably time-consuming.

Even mobility costs and CO2 emissions (Figures 10 and 11) follow the trend of
subscribers, but in an inverse relationship: the higher the number of subscribers,
the lower the average CO2 emissions and mobility costs. Specifically, the CO2

decrease is due to the fact that all the tangrhubs are provided with green vehicles.
Thus, when the amount of subscribers is around 85% (smi-7, smi-8 and smi-9),
the carbon footprint of a commuter is almost zero. Concerning the mobility costs
decrease with the subscriptions growth, this is due to the fact that commuters
are just paying for the time spent traveling. The fixed costs of owning a vehicle
are thus shared with the community. Indeed, in smi-1 the average daily cost of
travelling is just less than e 8 per commuter; in smi-7 it is 4 times less.

Mobility resources usage Figure 12 shows how vehicles are daily used. Light
and medium SMIs are well configured, since there are no unused vehicles. Con-
versely, as the number of subscribers is close to 100%, the distribution of re-
sources becomes tougher. Indeed, all the massive-SMIs have unused vehicles.

6.2 ToolTRain vs Tangramob: comparing the 3-SMIs

The selection process of a light and a medium SMI is not trivial, since their
performance is quite similar in scale. Thus, for each of these SMIs groups we
selected the SMI with the lowest deployment of resources, i.e. smi-1 and smi-4.
On the other hand, for what concerns the massive-SMIs group, we selected the
one with the lowest unused resources, (i.e. smi-7), since it is more efficient.

As shown in Figures 13, 14, 16 and 18, number of subscribers, travel distances,
CO2 emissions and resources usage are almost the same between Tangramob and
ToolTRain. For the mobility costs parameter, Figure 17 shows that both smi-1
and smi-4 are very similar; whereas for smi-7 the difference is less than one euro,
which is acceptable. On the other hand, travel times (Figure 15) are different,
but at least they follow the same upward trend. Nevertheless, even though the
TRebeca model still lacks a realistic representation of traffic, we can conclude
that H1 is verified, with some precautions concerning the travel times output.



Lightweight preprocessing for AB simulation of smart mobility initiatives 15

Fig. 13. Subscriptions Fig. 14. Travel distances Fig. 15. Travel times

Fig. 16. CO2 emissions Fig. 17. Mobility costs Fig. 18. Mobility fleet usage

6.3 Computational performance statistics

In order to compare Tangramob and ToolTRain in terms of computational time,
Table 6.3 reports the CPU time of each selected SMI for both a Tangramob
simulation and a ToolTRain run. More in detail, the experiments are performed
on a Manjaro Linux desktop with an i7-4790S CPU @ 3.20GHz and 16GB RAM.
Each Tangramob simulation is configured for 110 iterations.

Table 3. Computational times

SMI-1 SMI-4 SMI-7 Iterations

Tangramob 693413 ms 841782 ms 947465 ms 110

ToolTRain 45641 ms 57882 ms 69242 ms -

7 Conclusions and Future Work

Assessing the effects of smart mobility initiatives is a complex and risk-bearing
task in urban planning. A Decision Support System (DSS) like Tangramob can
support urban planners and transport companies in such a duty, even though
the computational requirements might be considerable in case of large scenarios.

In this paper, we show how the Agent-Based Model (ABM) of Tangramob
can be translated into a simplified one in TimedRebeca (TRebeca), which is
an actor-based formal language. To make this model as useful as Tangramob,
we also introduced ToolTRain, a tool-chain designed for generating an instance
of the corresponding TRebeca model from the same input files of Tangramob;
running the resulting model; and inferring the output from its run. This tool
thus allows users to get an idea of a smart mobility initiative in a shorter time.

The comparative experiment designed to validate this approach, shows a posi-
tive correlation between the output variables of both Tangramob and ToolTRain.



16 Castagnari et al.

Also, the computational time comparison reported in Table 6.3 confirms the va-
lidity of the proposed approach, since a ToolTRain run requires less than 10%
of time needed for its corresponding Tangramob simulation. Considering such
promising results, we would like to emphasize that the conceptual organization
and architecture of ToolTRain can be reused in other AB contexts. This would
even allow to exploit the power and the expressiveness of actor-based formal lan-
guages like Rebeca in order to reproduce the behavior of a certain phenomenon
with an acceptable fidelity and few implementation efforts.

As future work, we are planning to improve the TRebeca model in order to
introduce new mobility services as well as finding a better way to emulate traffic,
due to its implication on travel times. Moreover, we will extend a fully automated
tool to provide the modeling and analysis of self-adaptive urban planning systems
at runtime. The resulting system would allow tangrhubs to adapt their mobility
services at runtime, in response to service disruptions, commuters’ traveling
experience and changes in the environment (e.g car accidents, strikes).

References

1. Timedrebeca example page of tangramob, https://goo.gl/HBacfs
2. Benevolo, C., Dameri, R.P., DAuria, B.: Smart mobility in smart city. In: Empow-

ering Organizations, pp. 13–28. Springer (2016)
3. Bosch, P.M., Ciari, F.: Macrosim - a macroscopic mobsim for MATSim. Procedia

Computer Science 109 (2017), https://doi.org/10.1016/j.procs.2017.05.406
4. Castagnari, C., De Angelis, F., de Berardinis, J., Forcina, G., Polini, A.: Tan-

gramob: an agent-based simulation framework for validating smart mobility solu-
tions, https://www.tangramob.com/docs/SmartHub_Thesis.pdf

5. Charypar, D., Axhausen, K., Nagel, K.: Event-driven queue-based traffic flow mi-
crosimulation. Transportation Research Record: Journal of the Transportation Re-
search Board (2003), 35–40 (2007)

6. Fehrenbacher, K.: Another failed attempt to make ride sharing work in the U.S.,
ridejoy to shut down, https://goo.gl/3ITYce

7. Horni, A., Nagel, K., Axhausen, K.W.: The Multi-Agent Transport Simulation
MATSim. Ubiquity-Press, London (2016)

8. Khamespanah, E., Sirjani, M., Kaviani, Z.S., Khosravi, R., Izadi, M.J.: Timed
rebeca schedulability and deadlock freedom analysis using bounded floating time
transition system. Science of Computer Programming 98, 184–204 (2015)

9. Mamiit, A.: Why the ride-sharing company failed to conquer china and what it
means for everyone else (2016), https://goo.gl/cHuC9n

10. Reynisson, A.H., Sirjani, M., Aceto, L., Cimini, M., Jafari, A., Ingolfsdottir, A.,
Sigurdarson, S.H.: Modelling and simulation of asynchronous real-time systems
using timed rebeca. Science of Computer Programming 89, 41–68 (2014)

11. Sirjani, M.: Rebeca: Theory, applications, and tools. In: Formal Methods for Com-
ponents and Objects, 5th International Symposium. pp. 102–126 (2006)

12. Sirjani, M., Khamespanah, E.: On time actors. In: Essays Dedicated to Frank De
Boer on Theory and Practice of Formal Methods - Volume 9660. pp. 373–392.
Springer-Verlag New York, Inc. (2016)

13. Strippgen, D., Nagel, K.: Multi-agent traffic simulation with cuda. In: High Per-
formance Computing & Simulation, 2009. HPCS’09. IEEE (2009)

14. United Nations: The world’s cities in 2016. New York, United (2016)


