
From Requirements to Verifiable Executable
Models using Rebeca

Marjan Sirjani1,2, Luciana Provenzano1, Sara Abbaspour Asadollah1, and
Mahshid Helali Moghadam3

1 Mälardalen University
Väster̊as, Sweden

{marjan.sirjani,Luciana.Provenzano,Sara.Abbaspour}@mdh.se
2 Reykjavik University, Reykjavik, Iceland

3 RISE Research Institutes of Sweden, Väster̊as, Sweden
mahshid.helali.moghadam@ri.se

Abstract. Software systems are complicated, and the scientific and
engineering methodologies for software development are relatively
young. We need robust methods for handling the ever-increasing
complexity of software systems that are now in every corner of our
lives. In this paper we focus on asynchronous event-based reactive
systems and show how we start from the requirements, move to
actor-based Rebeca models, and formally verify the models for
correctness. The Rebeca models include the details of the signals and
messages that are passed at the network level including the timing, and
can be mapped to the executable code. We show how we can use the
architecture design and structured requirements to build the behavioral
models, including Rebeca models, and use the state diagrams to write
the properties of interest, and then use model checking to check the
properties. The formally verified models can then be used to develop
the executable code. The natural mappings among the models for
requirements, the formal models, and the executable code improve the
effectiveness and efficiency of the approach. It also helps in runtime
monitoring and adaptation.

1 Introduction

Safety-critical systems are systems that may fail with catastrophic consequences
on people, environment and facilities. These systems are becoming more and
more common, powerful, and dependent on safety-critical software. The result
is that serious consequences may arise from the failure of such software systems.
Safety analysis is performed to identify the hazards that may cause failures which
lead to accidents. Safety requirements are written as measures to mitigate the
identified hazards, i.e. to avoid them or reduce their probability or limit their
consequences. Therefore, safety requirements play an important role because
they define the system’s behaviors that shall be implemented to ensure the safety
properties of the whole system.

2 M. Sirjani et al.

In a model-driven development approach, requirements can be seen as the
specification of the system to be developed. One can start from these
requirements, build the necessary models to capture the structure and the
behavior of the system, and build the code based on that. In this process, we
can use formal verification to come up with dependable models and hence more
dependable code. Note that this is an iterative and incremental approach where
we have to go back and forth between the models (including the requirements
and the code) several times. This approach is not necessarily the common
practice. In this paper, we promote this model-driven development approach.

Defective requirements can cause serious failures. This emphasizes the need
to have requirements that are correct, precise and clear as basis of the system
development. For building formal models based on the requirements, we need
the requirements to be consistent and unambiguous, or else we will not be able
to build the models. So, throughout the process of model-driven development we
not only build the system based on the requirements, but also the requirements
will be refined and become consistent and unambiguous. The models are then
checked against the safety properties that are also derived from the requirements,
to make sure that the (behavioral and implementation) details that are added
to build the models are not introducing errors.

We describe our experience with an industrial case study, a time-critical
safety function, i.e., “Passenger Door Control”, from a train control system.
We present how we start with the safety requirements and software architecture
documents, and then conclude with verified models using the Rebeca modeling
language [1–3]. Rebeca is an actor-based language used for modeling reactive
and asynchronous distributed and concurrent systems [4]. Rebeca is supported
with formal verification theories and tools [5]. Event-based reactive systems play
a major role in many industrial control software systems such as those in railway
and automotive domains. Hence, the experience we report in this paper can be
used in other similar cases and domains.

The whole process from requirements to Rebeca models is depicted in
Figure 1. Specifically, to be able to create the Rebeca model, two inputs are
necessary, i.e. the functional safety requirements and the system architecture.
From the safety requirements and the architecture document, we create the
behavioral models, i.e. the state diagrams and the sequence diagrams, and
based on these diagrams we build the Rebeca model along with the properties
that have to be checked. It is worth noting that this process foresees a
document called “structured requirements”. Indeed, it is important that the
safety requirements in input are written according to a well-structured syntax.
This enables us to reduce the ambiguity typical of natural language
requirements in order to facilitate their interpretation and translation into the
formal model. We use the GIVEN-THEN-WHEN syntax [6] for requirement
specification, as explained in Section 34.

4 We use this format based on the experience of the second author of the paper who
worked for seven years as requirements manager in industry.

From Requirements to Verifiable Executable Models 3

Fig. 1. The proposed process from requirement to code. Note that the figure shows one
iteration in our iterative and incremental approach. All the models, from requirements
to behavioral and executable ones are refined through the process in an iterative way.

As for now, the Rebeca models are the final output of our proposed process
from safety requirements towards verifiable models. During this process, by
building visualized system-level models we get a better view of the system
architecture is an extra step that can be conducted in parallel with building
the Rebeca models. The co-modeling of hardware and software can be done
using modeling and simulation tools like Ptolemy [7] (as suggested in Figure
1). While using Rebeca gives us formally verifiable models, by using Ptolemy
we will get a clear view of the architecture, and also simulation results. The
more detailed process is explained in the following sections.

2 The Door Controller Case Study

We use an example based on a real industrial case to describe the approach
that should be followed to formally verify a set of requirements using Rebeca.
We use the function “Open external passengers doors” that controls opening of
the external doors of a train to let passengers get on and off safely. Specifically,
the external doors of a train can be opened by the driver, through a dedicated
button installed in the driver’s cabin, and by the passenger, through a button
placed on each external door. This is done to let passengers get off the train at
their destination, and it should be only enabled when the train reaches a station

4 M. Sirjani et al.

and stops at it. Moreover, the external passenger doors are equipped with a lock
mechanism to prevent opening a door when the train leaves the station and is
running. This implies that to open a door, the door must be unlocked. This is
an interesting function to be modeled and verified for two main reasons:

– The function is safety-related. Indeed, an external door which is accidentally
opened when the train is running may cause a passenger to fall out of the
train, thus causing an accident.

– The external door can be considered as a shared resource between the driver
and the passenger. The door can receive simultaneous commands from the
driver, i.e. to open, close or lock it; and from the passenger, i.e. to open it.
This may cause the door to be in an erroneous or unexpected state.

Our aim is therefore to formally check by using the Rebeca modeling language
whether there is any possibility that a passenger can open a locked door to
get off from a running train. In other words, we would like to check whether
the behavioral model that is built based on the requirements violates a safety
property of the train, which also means to show that the requirements may be
incorrect, inconsistent, or ambiguous.

It is worth noting that we define “running” as the train state which
corresponds to one of the following situations: the train is approaching a
station (before it stops and the doors are unlocked and open), the train is
leaving the station (the boarding is completed and doors are closed and
locked), and the train is running between two stations. There are multiple
properties that can be checked using the Rebeca model checking tool Afra [8],
in particular, the safety property that can be checked is the following:

– Is it possible to open a locked door when the train is running?

3 Structured Requirements

According to the proposed process in Figure 1, the starting point to create the
Rebeca model is to collect the safety requirements of the function to be verified
and rewrite them using a well-structured syntax.

In this work, the safety requirements related to the “Open external
passenger doors” function are obtained by applying the Safety Requirements
Elicitation (SARE) approach [9] to the Hazard Ontology depicted in Figure 2.
This Hazard Ontology is used to identify the causes and consequences of the
“Passengers fall out of the train” hazard. The Hazard Ontology proposed in
[10] and [11], provides a conceptualization of the hazard which enables to gain
a deep knowledge of the circumstances that result in hazards. This knowledge
is structured in entities of the Hazard Ontology which correspond to the
hazard’s sources, causes and consequences. The SARE approach uses this
knowledge to elicit the safety requirements that mitigate the hazard.

From Requirements to Verifiable Executable Models 5

Fig. 2. Hazard Ontology for the hazard “Passenger fall out of the train”.

Here, we use the experience of the second author in the railway domain and
the SARE approach to formulate the safety requirements; and as a real hazard
for trains, we choose the hazard “Passengers fall out of the train”. One can
alternatively use the functional safety document from an industry as the input.
This experience also shows that the SARE approach can be used to complement
the existing safety requirements provided as input or to discover new safety
requirements in case of new systems.

To specify the safety requirements elicited by SARE, we use the
GIVEN-WHEN-THEN syntax in order to obtain well-structured requirements
that can be easily used for modeling in Rebeca, and then the model can be
used for formal verification. Specifically, the GIVEN-WHEN-THEN is “a style
of specifying a system’s behavior using Specification by Example” [12]
developed within the Behavior-Driven Development [6]. According to this style,
a scenario is decomposed in three parts, i.e. the GIVEN states the
pre-condition(s) to the scenario; the WHEN describes the input event(s) which
trigger the action(s); the THEN defines the action(s) the system shall perform
as a consequence of the trigger and the expected changes in the system. We
think that this structured syntax for requirement specification helps to derive
the concepts that build the actors, states of the actors, and also the events that
trigger the changes. Moreover, it helps in deriving the properties to be verified
using model checking. Table 1 shows a set of safety requirements in the
GIVEN-WHEN-THEN syntax for the open door example.

4 The Architecture

Figure 3 depicts an overview of a typical system architecture realizing the
functionalities in our industrial case. The intended system is an example of a

6 M. Sirjani et al.

SafeReq1
GIVEN the train is ready to run
WHEN the driver requests to lock all external doors
THEN all the external doors in the train shall be closed and locked

SafeReq2
GIVEN an external door is locked
WHEN the passenger requests to open an external door
THEN the external door shall be kept closed and locked

SafeReq3
GIVEN an external door is unlocked
WHEN the passenger requests to open an external door
THEN the external door shall be opened

SafeReq4
GIVEN all external doors on the side of the train close to the platform
are unlocked
WHEN the driver requests to open all external doors
THEN all external doors on the side of the train close to the platform
shall be opened

SafeReq5
GIVEN the train approaches a station
WHEN the driver requests to unlock all external doors that are on the
train side close to the platform
THEN all external doors on the side of the train close to the platform
shall be unlocked

SafeReq6
GIVEN the train is running
WHEN an external door is open
THEN an alert shall be provided

Table 1. An example of the safety requirements for the door opening function.

cyber-physical system consisting of hardware components like programmable
control units, actuators, different communication channels, and different
control applications running on the hardware units. The main components in
the architecture are Input-Output (IO) units, central Train Control Unit
(TCU), Door Control Unit (DCU). IO units act as interfaces to the system and
are intended to receive/send the input/output signals. The IO unit on the
passenger side are in charge of reading the door push buttons to receive the
open request from the passenger. When a passenger pushes the “open” button,
the IO unit receives the open request and sends it to the DCU. The commands
for open, close, lock and unlock coming from the driver pass through TCU and
go to the DCU. The DCU is responsible for actuating the proper commands for
changing the state of the door.

TCU plays the role of the central control management. TCU might be
distributed and run on separate physical devices. For example, one physical
control device for running non safety-related functions and one device for the
execution of safety-critical functions. DCU may represent a programmable unit
which receives the command signal from TCU and applies the signal to the
corresponding converters actuating the door. Data communication between the
physical devices is usually conducted through a system-wide bus and a safe
communication protocol. Later in our behavioral models, we model both DCU
and the associated IO on the passenger side as “Door” actor and also the
combination of TCU and the driver as “Controller” actor.

From Requirements to Verifiable Executable Models 7

Fig. 3. The system architecture with a focus on the door controller case study. The
dotted circles show the actors in the Rebeca code.

The actor “Train” models a set of IO units receiving the status from the
sensors, and other means, that are used to inform the TCU and the driver that
the train is in a state which is significant for our case study, i.e., approached at
the station, and ready to leave. These are the states in which the TCU has to
change the state of the doors. Figure 3 shows how we abstract the architecture
diagram to extract main Rebeca actors.

Generally, in safety critical systems, in order to satisfy the integrity and
availability, different types of redundancy structures are applied to different
units including IO units. For example, redundant IO units are in place and
extra supervision mechanisms for the validity check of the resulted values from
these redundant IO units are used. In our example, we abstract these details
away. We can create other models focusing on such details and verify the
correct functionality of these parts of the system. In general, we need to use
compositional and modular approaches to cover large and complicated systems.

5 The Mapping from Requirements to Behavioral Models

By studying the structured requirements, together with the architecture of the
software system, we will know the actors to be included in the Rebeca code.
We build an abstract version of the architecture to be the basis for writing the
Rebeca code. The abstract architecture includes the reactive classes that we
include in our code.

In the context of our door controller example, from the architecture (Figure
3), we see that we have I/O units for the passenger door buttons (passing the
input to the door to request open) and the driver input interface (passing the

8 M. Sirjani et al.

input to the controller to request open, close, lock and unlock (release)), and
the door control actuator (passing the output from the controller to the door,
commanding for open, close, lock and unlock (release)). From this explanation
we can conclude that we need actors to represent the controller, the door, the
driver and the passenger in the model.

From the structured requirements (Table 1), we can see that the players are:
the train, the driver, the passenger, and the door. Note that we do not see the
controller in the requirements. To see the complete picture to model the software
system we need to study both the requirements and the architecture. For the
door controller we consider the scenarios when a train is ready to run, and when
it approaches the station. When boarding is complete and the train is ready to
run, the driver sends the request to close and then lock the doors. When the
train approaches the station, the driver sends the request to unlock and then
open the doors. The requests are received by the controller, and the controller
makes the decision based on the status of the train and the doors. The logic
within the code of the controller is supposedly written in a way that the safety
requirements are guaranteed. There is no exact physical realization as signals or
hardware devices for the train in the model, the train is in the model to represent
the states where the driver knows he has to send the command for closing and
locking the doors, or unlocking and opening them. The passenger can always
request to open the door.

The structured requirements also help in deriving the state variables, and
their values, specially the pre- and post-conditions in the GIVEN and THEN
parts. For example, consider the condition “the train is ready to run” written
in the GIVEN part of the requirement SafeReq1 in Table 1. We can infer that
we need a variable representing the train status (the variable trainStatus of
the actor Controller in Figure 6); and one possible value of this variable shows
that the train is “ready to run”. From these requirements we can also infer that
we need two state variables to capture the status of the doors being locked or
unlocked, and being opened or closed (the variables isLocked and isClosed of
the actor Controller in Figure 6).

The events defined in the WHEN parts are mapped to the messages that
are sent to the actors and upon which the actors react. They can be used to
obtain the sequence of messages exchanged among the actors, and to build the
sequence diagram based on that.

This process and the natural mapping facilitate the development of the
Rebeca model from the requirements and help to limit the errors that may be
introduced when translating the requirements into the model. Moreover, the
pre- and post- conditions in the requirements can be used to form the
assertions that represent the properties to be verified.

Abstraction in an iterative and incremental approach. Note that during
the process we choose to have abstract models to begin with, and we continue
by adding more details in an iterative and incremental way. For example, in
the behavioral models derived from the requirements of the door controller case
study, we do not distinguish each door separately, and we do not distinguish

From Requirements to Verifiable Executable Models 9

which side of the train the doors are. A concrete example of this abstraction is
where for the requirement SafeReq5, we abstract away the part regarding the
side of the train in the part referring to “all external doors on the side of the
train close to the platform”.

5.1 The Mapping to Logical Properties

We can use the structured requirements for writing assertions that must hold
throughout the execution of the code. For example, consider the requirement
SafeReq2: “GIVEN an external door is locked, WHEN the passenger requests
to open the locked external door, THEN the external door shall be kept closed
and locked”. This requirement helps us to derive the main safety property of the
function “open external passenger door”. The assertion that shall be checked is
the following: “It is not possible to open a locked door by passengers”. A stronger
assertion that covers this one is discussed in Section 6.1, the assertion is checked
by Afra, and we show how the model is modified such that this assertion holds.

There are other interesting requirements, like the requirement SafeReq4

which is a property to show that progress has to be made. The SafeReq4

requirement states: “GIVEN all external doors on the side of the train close to
the platform are unlocked, WHEN the driver requests to open all external
doors, THEN all external doors on the side of the train close to the platform
shall be opened”. Safety properties are about showing that nothing bad will
happen, while progress properties are about showing that good things will
finally happen. For checking these types of requirements, we cannot use simple
assertions and we need to use the TCTL model checking tool for Timed
Rebeca [13]5. The timing features can be included here, for example for the
requirement SafeReq4, we can check that “if the doors are unlocked and an
open request is sent by the driver then the doors will be opened within x units
of time”.

6 The Behavioral Models

Here we explain the state diagrams, sequence diagrams and the Rebeca code
that are derived from the requirements. We also explain the timing properties.
State diagrams. Using the mapping explained in Section 5, we can derive the
state diagrams for the door controller case study. In Section 5, we concluded that
we need actors to represent the controller, the door, the driver, the passenger,
and the train in the model. For simplifying the model, we decided not to model
the driver, the behavior of the driver is merged with the controller. We may
consider this as an autonomous controller that decides based on the conditions
of the doors and the train. Note that we only have one actor that represents all
the doors, also for the sake of simplicity. The model can be refined, and details

5 The TCTL model checking tool for Timed Rebeca is not yet integrated in the Eclipse
tool suite of Afra.

10 M. Sirjani et al.

can be added in an iterative and incremental way in order to check different
properties and different parts of the system.

As shown in the state diagram in Figure 4.a, the train can be either in a
state that has just approached the station (when the doors should be unlocked
and then opened), or in a state that it is ready to run (when the doors should
be closed and locked). Note that these are the only two states of the train that
are important for us in our example because our focus is on changing the states
of the doors, and only in these states of the train we need to change the status
of the doors. For example when the train is running, or stopped (with doors
already open) the status of the doors should stay unchanged (and that is what
the controller in Figure 4.c guarantees by not accepting any wrong event in the
wrong states).

Figure 4.b shows the states of the doors. A locked and closed door can only
be unlocked, and then opened; and an unlocked and open door can only be closed
and then locked. The state diagram is consistent with the Rebeca code in Figure
6. We prevent the door from going to a state where it is locked and open, an
unsafe state that should be avoided. The if-statement in Line 93 guarantees
this.

Figure 4.c shows the state diagram for the controller. The controller receives
the status of the doors and the train, also the requests for opening, closing,
locking and unlocking the doors. The controller coordinates the commands that
are sent to the doors based on the status of the door itself, and the train. Figure
4.d is the state diagram of the passenger. This actor models the requests coming
from the passengers in a non-deterministic way, and the Rebeca code is model
checked to make sure this behavior cannot jeopardize the safety.

Sequence diagrams. The sequence diagrams derived from the requirements
and the architecture are shown in Figure 5. These diagrams are made in a
similar way as described for the state diagram. Indeed, the actors controller,
door, passenger and train become the objects in the sequence diagrams among
which messages are exchanged in a temporal order to perform the door
functions. In the sequence diagrams the flow of messages between actors, and
also their order and causality are clearer. In Figure 5.a, it is shown that when
the status of the train or the door is changed the controller receives a message
to update the status of these two actors in the controller. Any change in the
status of the train or the doors triggers the execution of driveController

message server in which the controller decides which command to send to the
doors.

Figure 5.b shows the message sent by the passenger to the door. Note that
the sequence diagrams are consistent with the Rebeca code, here instead of
having an actor representing the passenger button on the door, and another actor
representing the door controller, for the sake of simplicity, we have both modeled
as one actor. Passenger sends the open command directly to the door, and the
door sends a message to the controller to update the status in the controller
(as described above). This is where different errors may occur if the behavioral

From Requirements to Verifiable Executable Models 11

model (Rebeca code) is not written with enough care. More explanation is in
Section 6.1.

(a) Train (b) Door (d) Passenger
(c) Controller

trainStatus

leaveStation() after(t2)
trainStatus = false

ap
pr

oa
ch

St
at

io
n(

) a
fte

r(
t1

)
tra

in
St

at
us

 =
 tr

ue

! trainStatus

Unlocked &
not closed

locked &
closed

Unlocked &
closed

closeD
oor()

lockD
oor()

op
en

D
oo

r()
un

lo
ck

D
oo

r()

trainStatus
& Unlocked
& not closed

! trainStatus
Unlocked &
not closed

! trainStatus
Unlocked &

closed

! trainStatus
locked &

closed

trainStatus
locked &

closed

trainStatus
unlocked &

closed

train.leaveStation() after (t2)

door.closeD
oor()

door.lo
ckDoor()

train.approachStation() after (t1)

do
or

.u
nl

oc
kD

oo
r()

door.openDoor()

P

passengerO
penD

oor()

Fig. 4. The state diagrams for the door controller case study. In the state diagram
for the Train (Part a), the state in which trainStatus is true is when the train has
approached the station and stopped and ready for the doors to be unlocked and then
opened. The state in which trainStatus is false is when the boarding is complete,
and the train is ready to run and leave the station, and the doors must be closed and
then locked. The name of the rest of the variables are chosen in a way to make the
diagrams self-explanatory as much as possible.

Rebeca code. Based on the state and the sequence diagrams, we wrote a
Timed Rebeca code with four reactive classes: Controller, Train, Door, and
Passenger. The Rebeca code is presented in Figure 6. The rebecs (i.e. reactive
objects, or actors) controller, train, door, and passenger are instantiated
from these reactive classes.

The main message server of the reactive class Controller is
driveController, where we check the state of the train and the doors, and
send proper commands. If the train is in the state that the boarding is
completed and the train is ready to run (trainStatus is true - lines 31-41),
then if the doors are not yet closed, the Controller sends a command to close
them (by sending the closeDoor to the rebec door). If the doors are already
closed the controller sends a command to lock them (by sending the lockDoor

to the rebec door). If the train is in the approaching state (trainStatus is
false - lines 42-51), then if the doors are not yet unlocked, the controller sends
a command to unlock the doors (by sending the unlockDoor to the rebec
door). If the doors are already unlocked the controller sends a command to
open them (by sending the openDoor to the rebec door).

The reactive class Controller also has two other message servers:
setDoorStatus and setTrainStatus. The setDoorStatus (lines 21-25) is
called by the Door after updating the status of the doors. The setTrainStatus

(lines 26-29) is called by the Train after updating the status of the train. The
reactive class Train has two message servers that model the train behavior

12 M. Sirjani et al.

Fig. 5. Sequence diagrams of the door controller case study showing the message
passing between the actors Controller, Train, Passenger, and Door.

From Requirements to Verifiable Executable Models 13

1 env byte networkDelayDoor = 1;
2 env byte networkDelayTrain = 3;
3 env byte reactionDelay = 1;
4 env byte passengerPeriod = 5;
5 env short runningTime = 239;
6 env short atStationTime = 50;
7 reactiveclass Controller(23){
8 knownrebecs{
9 Door door;
10 }
11 statevars{
12 boolean isClosed;
13 boolean isLocked;
14 boolean trainStatus;
15 }
16 Controller(){
17 trainStatus = true;
18 isClosed = false;
19 isLocked = false;
20 }
21 msgsrv setDoorStatus(boolean close, boolean lock) {
22 isClosed = close;
23 isLocked = lock;
24 self.driveController();
25 }
26 msgsrv setTrainStatus(boolean status){
27 trainStatus = status;
28 self.driveController();
29 }
30 msgsrv driveController(){
31 if(trainStatus){ // leave the station
32 if(!isClosed || !isLocked) {
33 if(!isClosed) {
34 door.closeDoor() after(networkDelayDoor);
35 delay(reactionDelay);
36 }
37 if(!isLocked) {
38 door.lockDoor() after(networkDelayDoor);
39 }
40 }
41 }// end of if(trainStatus)
42 else if(!trainStatus){ // arrive to the station
43 if(isClosed || isLocked) {
44 if(isLocked) {
45 door.unlockDoor()

after(networkDelayDoor);
46 delay(reactionDelay);
47 }
48 if(isClosed) {
49 door.openDoor() after(networkDelayDoor);
50 }
51 } } // end of else if(!trainStatus)
52 } // end of driveController()
53 } //end of the Controller class
54 reactiveclass Train(5){
55 knownrebecs{
56 Controller controller;
57 }
58 statevars{
59 boolean status;
60 }
61 Train(){
62 status = true;
63 self.leaveStation();
64 }
65 msgsrv leaveStation(){
66 status = true;
67 controller.setTrainStatus(status)

after(networkDelayTrain);

68 self.approachStation() after(runningTime);
69 }
70 msgsrv approachStation(){
71 status = false;
72 controller.setTrainStatus(status)

after(networkDelayTrain);
73 self.leaveStation() after(atStationTime);
74 }
75 } //end of the Train class
76 reactiveclass Door(15){
77 knownrebecs{
78 Controller controller;
79 }
80 statevars{
81 boolean isDoorClosed;
82 boolean isDoorLocked;
83 }
84 Door(){
85 isDoorClosed = false;
86 isDoorLocked = false;
87 }
88 msgsrv closeDoor(){
89 isDoorClosed = true;
90 controller.setDoorStatus(isDoorClosed,

isDoorLocked) after(networkDelayDoor);
91 }
92 msgsrv lockDoor(){
93 if (isDoorClosed){
 // The door is only locked if the door is closed.

 94 isDoorLocked = true;
 95 }
 96 controller.setDoorStatus(isDoorClosed,

isDoorLocked) after(networkDelayDoor);
 97 }
 98 msgsrv unlockDoor(){
 99 isDoorLocked = false;
 100 controller.setDoorStatus(isDoorClosed,

isDoorLocked) after(networkDelayDoor);
101 }
102 msgsrv openDoor(){

 // The door is only opened if the door is not locked.
103 If (!isDoorLocked){
104 isDoorClosed = false;
105 }
106 controller.setDoorStatus(isDoorClosed,

isDoorLocked) after(networkDelayDoor);
107 }
108 } //end of the Door class
109 reactiveclass Passenger(5){
110 knownrebecs{
111 Door door;
112 }
113 Passenger(){
114 self.passengerOpenDoor() after(passengerPeriod);
115 }
116 msgsrv passengerOpenDoor(){
117 door.openDoor();
118 self.passengerOpenDoor() after(passengerPeriod);
119 }
120 } //end of the Passenger class
121 main {
122 Controller controller(door):();
123 Door door(controller):();
124 Train train(controller):();
125 Passenger passenger(door):();
126 }

Fig. 6. The Rebeca model for the door controller case study.

14 M. Sirjani et al.

when the train is ready to run (leaveStation) and approaches the station
(approachStation). Both message servers in this actor inform the controller
when the train status changes.

The reactive class Door models the behavior of the doors and has four
message servers: closeDoor(), lockDoor(), unlockDoor() and openDoor().
The closeDoor() (lines 88-91) is called by Controller actor (line 34) to close
the door by changing the status of the door (line 89). The lockDoor() (lines
92-97) is called by the controller (line 38) to lock the door. If the current status
of the door is closed, then the status of the door is change to locked (line 94).
The unlockDoor() (lines 98-101) is called by the Controller actor (line 45) to
unlock the door by changing the status of the lock (line 99). The openDoor()

(lines 102-107) is called by the Controller actor (line 49) and the Passenger

actor (line 117) to open the door. If the current status of the door is unlocked,
then the status of the door can change to open (line 104). In all these message
servers the status value is sent to the Controller actor after any updates.

The Passenger actor is implemented to model the behavior of a passenger.
We assume that the passenger can constantly send a request to the Door actor
to open the door. This actor has only one message server (passengerOpenDoor).
The passengerOpenDoor is designed to send a request (open the door) to the
Door actor every 5 units of time (lines 117 and 118).
Timing properties. The Rebeca code in Figure 6 contains the environment
variables (denoted by env at the top of the code). These variables are used
to set the timing parameters. The variable networkDelayDoor represents the
amount of time that takes for a signal to get to the door from the controller
(and vice versa), and the variable networkDelayTrain shows the amount of
time that takes for a signal to get from the train to the controller. We also
have other timing features, e.g., we modeled a reaction delay for the controller
when it reacts to the events (reactionDelay); passengerPeriod is defined to
show the passenger sending the open command periodically (it can be modeled
differently but this is the simplest way and serves our purpose to find possible
errors). We also model passage of time between a train leaving and then again
approaching the station (runningT ime), and the time that train stays at the
station (atStationT ime).

The environment variables can be used as parameters to set different cycle
times and communication channel features. The value for the parameters can
be changed to check different configurations. For example, we can see varying
depths in getting into the error state by changing the period of the passenger
pressing the open door button.

6.1 Formal Verification

The Rebeca code in Figure 6 is a version of the code that runs without violating
any of the properties of interest. We checked the assertion: “It is not possible
to open a locked door (not by the driver nor the passengers);” and we showed
that the door cannot be opened when it is locked. This assertion covers multiple
other weaker assertions, like: “It is not possible to open a locked door (by driver

From Requirements to Verifiable Executable Models 15

or passengers) when the train is leaving the station;” and “It is not possible to
open a locked door (by driver or passengers) when the train is arriving at the
station”.

In the Rebeca model, the passenger sends a request directly to the door,
the request does not pass through the controller. This is what makes the model
vulnerable to errors. The door is receiving commands from both the passenger
and the controller, and variant interleaving of these commands (i.e. events in the
queue) may cause the execution of the model to end in a state that violates the
safety property6. The two “if-statements” in lines 93 and 103 of the reactive
class Door are there to avoid this problem. If we remove the passenger from the
model, the model is correct even without these if-statements.

We run the Rebeca model checking tool, Afra, on a MacBook Pro laptop with
2,9 GHz Intel Core i5 processor and 8GB memory. While model checking the
code without the passenger the number of reached states is 55, and the number
of reached transition is 68 (consumed memory is 660, and the total spent time
is below one second). For the setting shown in the Rebeca model in Figure 6,
where we have a passenger and when the passenger sends a request to open the
door every 5 units of time then the number of reached states will be 402079, the
number of transitions is 1286068 and the total time spent for model checking is
115 seconds.

In the Rebeca code in Figure 6, where we have a passenger, if we remove
the if-statements in lines 93 and 103, then the model violates the assertion
and comes back with a counterexample. The depth of the trace in the state
space to reach the counterexample depends highly on the setting of the timing
parameters. A snapshot of the Afra tool where the counterexample is found is
shown in Figure 7. The assertion is checking the value of variables
isDoorClosed and isDoorLocked from the rebec door. In the snapshot you
may see that isDoorClosed is false (the door is open), and isDoorLocked is also
false (the door is unlocked). The only message in the queue of the rebec door is
lockDoor. This will cause the execution of the message server lockDoor in the
rebec door which will create the state in which isDoorClosed stays false (the
door is open), and isDoorLocked changes to true (the door is locked). This
states fail the assertion and the model checking tool comes back with the
counterexample shown in Figure 7. You can see this state on the right hand
side of the figure, and the trace to get to it in the left hand side of the figure.

Note that changing the timing parameters can change the state space
significantly. The timing parameter includes the period of sending the requests,
network delay, and the computation/process delay.

6 A different design for the model, derived from a different allocation of functions in
the architecture, can be modeled and model checked. More explanation will be in
Section 7.

16 M. Sirjani et al.

Fig. 7. The screen shot of Afra, coming back with a counterexample for checking the
assertion “It is not possible to open a locked door” for the Rebeca code in Figure 6.

7 Discussion and Future Work

To reach the Rebeca code from the requirements we need to use an iterative
approach. There may be ambiguity in the informally stated requirements that
need to be clarified. To come up with the right state variables and right
transitions among states, we may need to go back and forth several times and
ask the experts for the right information to avoid misunderstandings and
incorrect outcome. As stated in many classical papers on formal methods, one
of the main advantages of formal methods is to make the requirements clear,
unambiguous, and consistent. Some examples of this kind of clarifications
within our work are explained further in this section.

Rebeca models can be useful for checking safety and timing properties only
if the topology of the actor model matches (or is consistent with) the
architecture of the system. As we plan for a straightforward mapping of
Rebeca code to executable code we need this consistency. This can be another
challenge in the process, to know the architecture and the allocation of tasks to
different components. One example is the decision we made for the Door
Control Unit, modeled within the actor door, to send the open command to
the door upon receiving the request from the passenger. Alternatively, we could
have a model in which all the decisions for sending the open command to the

From Requirements to Verifiable Executable Models 17

door are handled centrally in the Train Control Unit. This will change the
design and verification results in a significant way.

In the current Rebeca code, the status of the units are sent to the control
unit upon any change. Another design is updating the status of different units
periodically. This will result in a much more complicated design where
verification can help in finding the timing problems and tuning the timing
features. Again, the decision has to be based on the architecture and execution
model of the system.

Some issues about the safety requirements (refer to Table 1) that we observed
while building the Rebeca model are explained here. The two actions described
in the THEN part of the safety requirement SafeReq1 make the requirement
ambiguous and, likely, incorrect. In fact, it is not clear under which condition an
external door should be locked. In our Rebeca model, we assume that an external
door can be locked if it is closed and the train is leaving the station. To remove
the ambiguity in the requirement, we can specify two different requirements, one
to define the close action and the other for the lock action, such as “GIVEN the
train is ready to run WHEN the driver requests to close all external doors THEN
all the external doors in the train shall be closed”; and “GIVEN all the external
doors in the train are closed AND the train is ready to run WHEN the driver
requests to lock all external doors THEN all the external doors in train shall be
locked”. Having two different requirements allows to define the appropriate pre-
conditions and events for the action expressed in the THEN part. The proposed
requirements implies that “close” and “lock” are two different actions that the
driver must perform in order to lock the external doors. However, it is also
possible that the action to lock the external doors includes the action to close
them in order to guarantee that no open door can be locked. In this case, the
safety requirement SafeReq1 is correct but, for the sake of clarity, the action
close should be removed, i.e. “THEN all the external doors in the train shall be
locked”.

The safety requirement SafeReq3 is unclear and incorrect due to
incomplete pre-condition in the GIVEN part. In fact, the pre-condition “an
external door is unlocked” does not take into account the train status, i.e. if
the train is leaving or approaching the station. In our model, we assume that a
door can be open if it is unlocked and the train is approaching the station. As
a result, a better requirement would be “GIVEN an external door is unlocked
AND the train approaches the station WHEN the passenger requests to open
the external door THEN the external door shall open”. The proposed
requirement also covers the dangerous situation in which an external door is
opened when the train is leaving the station. The safety requirement SafeReq6

cannot happen in the Rebeca model proposed in this paper since an external
door that is locked cannot be open. However, such requirements must be
considered in a real application since they mitigate unexpected behaviors that
may happen due to interactions of other system’s parts which may interfere
with the “open door” function.

18 M. Sirjani et al.

The work presented in this paper is in preliminary stages. One direction to
go is to make the mappings automatic or semi-automatic. Generating Ptolemy
models during the process will make the approach more robust and also more
friendly towards the engineers. It gives us a better view on the architecture and
helps in choosing the actors involved.

8 A Quick Overview of Related Work

The work presented in this paper has multiple dimensions. We speak of a
process for model-driven development of reactive systems that involves
requirement documentation, architecture designs, UML models, actor models,
and formal verification. In the following we point at a few related work, the
text is far from a complete survey or a thorough comparison with the existing
work.

The center of the work is the actor-based language Rebeca, and how we can
use it in model-driven development of dependable reactive systems. Industrial
reactive systems are mainly cyber-physical systems combining computation
and communication with physical and temporal dynamics. They consist of
different components (actors) acting based on different computation models
and interacting with each other through communication channels. Actor-based
modelling is one of the key approaches for co-modeling of hardware and
software of cyber-physical systems [14]. In this modeling style, actors are the
components communicating through interfaces, i.e. ports, via sending and
receiving data.

For building dependable systems, we look for models that capture timing
features and come with formal verification support. Timed automata and
UPPAAL [15] are examples of such models and tools that are widely used in
industrial cases. The reason for using Rebeca is its friendliness towards
event-driven and asynchronous distributed systems [4], and the support for
formal verification. Rebeca is the first actor-based language with model
checking support [16], and is used for schedulability analysis of wireless sensor
network applications [17], protocol verification [18], design exploration and
comparing routing algorithms [19].

To fill the gap between the formal actor model and the requirements we
need other less formal models that are closer to the requirement specification.
In this work, we use the GIVEN-WHEN-THEN syntax to specify the safety
requirements, and then we used UML state diagrams and sequence diagrams.
One way to get closer to a formal representation from informal requirements
(written in natural language), is using patterns. Using patterns to specify
requirements are proposed in multiple works [20–22]. Patterns for requirements
specification are also integrated in frameworks which aim at building
conceptual models from the structured requirements and, consequently,
formally verifying them using different tools for model checking. Some
examples of such frameworks are proposed in [23] and [24].

From Requirements to Verifiable Executable Models 19

State diagrams are common notation for behavioral modelling of reactive
systems. Currently they are a key part of modelling standards like UML, SysML
[25] and MARTE [26]. There are many commercial and open source design tools
supporting system behavior modelling in terms of state diagrams. While state
diagrams show different states of each actor or combination of actors, sequence
diagrams can show the flow of messages among actors and are used for modeling
reactive systems [27].

For modeling reactive systems, there are other modeling and simulation
frameworks which provide heterogeneous modeling along with simulation
capabilities. Ptolemy II [7] and Stateflow [28] are popular examples of this
category. Ptolemy II supports hierarchical actor-based modelling, i.e.,
composite actor, and various types of models of computation (MoC) with
simulation capabilities. Stateflow provides a graphical language to describe the
system behavior logic using state diagrams, flow charts and truth tables. It also
offers the possibility of reusing Simulink subsystems and MATLAB code for
representing states, and automatic code generation. However, none of these
tools support formal verification.

Regarding proposing a systematic process for building verifiable behavioral
models, Gamma [29] is a modeling framework which integrates heterogeneous
statechart components to make a hierarchical composition, supports formal
verification for the composite model and provides automatic code generation on
top of the existing source code of the components. Gamma focuses on building
hierarchical statechart network based on the existing statechart components,
and like most existing tools and approaches do not consider the phase in the
process where we need to map the requirements to behavioral models.

Acknowledgment

We would like to thank Edward Lee for reading the paper and giving us very
useful comments. The research of the first three authors for this work is
supported by the Serendipity project funded by the Swedish Foundation for
Strategic Research (SSF). The research of the first two authors is also
supported by the DPAC project funded by the Knowledge Foundation
(KK-stiftelsen). The research of the fourth author is funded partially by
Vinnova through the ITEA3 TESTOMAT and XIVT projects.

References

1. Rebeca: Rebeca Homepage Available at http://www.rebeca-lang.org/, Retrieved
July, 2019.

2. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fundam. Inform. 63(4) (2004) 385–410

3. Sirjani, M.: Rebeca: Theory, applications, and tools. In: Formal Methods for
Components and Objects, International Symposium, FMCO 2006. (2006) 102–126

20 M. Sirjani et al.

4. Sirjani, M.: Power is overrated, go for friendliness! expressiveness, faithfulness and
usability in modeling - the actor experience. In: Principles of Modeling - Essays
Dedicated to Edward A. Lee on the Occasion of His 60th Birthday. Lecture Notes
in Computer Science 10760 (2018) 424–449

5. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Model checking, automated
abstraction, and compositional verification of rebeca models. J. UCS 11(6) (2005)
1054–1082

6. North, D.: Introducing BDD. Better Software Magazine, March (2006) Available
at https://dannorth.net/introducing-bdd/, Retrieved July, 2019.

7. Ptolemaeus, C.: System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org, Berkeley, CA (2014)

8. Rebeca: Afra Tool (2019) Available at http://rebeca-lang.org/alltools/Afra,
Retrieved July, 2019.

9. Provenzano, L., Häninnen, K., Zhou, J., Lundqvist, K.: An ontological approach
to elicit safety requirements. In: Asia-Pacific Software Engineering Conference,
APSEC. (2017) 713–718

10. Zhou, J., Häninnen, K., Lundqvist, K., Provenzano, L.: An ontological approach
to hazard identification for safety-critical systems. In: Reliability and System
Engineering, 2nd International Conference, ICRSE. (2017) 54–60

11. Zhou, J., Häninnen, K., Lundqvist, K., Provenzano, L.: An ontological approach
to identify the causes of hazards for safety-critical systems. In: System Reliability
and Safety, 2nd International Conference, ICSRS. (2017) 405–413

12. Fowler, M.: ThoughtWorks: GivenWhenThen (2013) Available at
https://martinfowler.com/bliki/GivenWhenThen.html, Retrieved July, 2019.

13. Rebeca: RMC Tool (2016) Available at http://rebeca-lang.org/alltools/RMC,
Retrieved July, 2019.

14. Lee, E.A.: Cyber physical systems: Design challenges. In: 11th IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC).
(2008) 363–369

15. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal smc
tutorial. International Journal on Software Tools for Technology Transfer 17(4)
(2015) 397–415

16. de Boer, F.S., Serbanescu, V., Hähnle, R., Henrio, L., Rochas, J., Din, C.C.,
Johnsen, E.B., Sirjani, M., Khamespanah, E., Fernandez-Reyes, K., Yang, A.M.:
A survey of active object languages. ACM Comput. Surv. 50(5) (2017) 76:1–76:39

17. Khamespanah, E., Sirjani, M., Mechitov, K., Agha, G.: Modeling and analyzing
real-time wireless sensor and actuator networks using actors and model checking.
STTT 20(5) (2018) 547–561

18. Yousefi, B., Ghassemi, F., Khosravi, R.: Modeling and efficient verification of
wireless ad hoc networks. Formal Asp. Comput. 29(6) (2017) 1051–1086

19. Sharifi, Z., Mosaffa, M., Mohammadi, S., Sirjani, M.: Functional and performance
analysis of network-on-chips using actor-based modeling and formal verification.
ECEASST 66 (2013)

20. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications
for finite-state verification. In: International Conference on Software Engineering,
ICSE. (1999) 411–420

21. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: International
Conference on Software Engineering, ICSE. (2005) 372–381

22. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to requirements
syntax (ears). In: IEEE International Requirements Engineering Conference, RE.
(2009) 317–322

From Requirements to Verifiable Executable Models 21

23. Konrad, S., B. H. C. Cheng, L.A.C.: Real-time specification patterns. IEEE
Transactions on Software Engineering 30 (2004) 970–992

24. Filipovikj, P., Jagerfield, T., Nyberg, M., G. Rodriguez-Navas, C.S.: Integrating
pattern-based formal requirements specification in an industrial tool-chain. In:
IEEE Annual Computer Software and Applications Conference, COMPSAC.
(2016) 167–173

25. Object Management Group: OMG Systems Modeling Language v1.5 (2017)
Available at https://sysmlforum.com/sysml-specs/, Retrieved July, 2019.

26. Object Management Group: UML profile for MARTE, beta 2 (2008) Available at
https://www.omg.org/omgmarte/Specification.htm, Retrieved July, 2019.

27. Alavizadeh, F., Nekoo, A.H., Sirjani, M.: ReUML: a UML profile for modeling
and verification of reactive systems. In: International Conference on Software
Engineering Advances ICSEA. (2007) 50–55

28. MathWorks: Stateflow: Model and simulate decision logic
using state machines and flow charts (2018) Available at
https://www.mathworks.com/products/stateflow.html, Retrieved July, 2019.

29. Molnár, V., Graics, B., Vörös, A., Majzik, I., Varró, D.: The Gamma statechart
composition framework. In: Internation Conference on Software Engineering, ICSE.
(2018) 113–116

