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Abstract. One of the applications of Vehicular Ad-hoc NETworks,
known as VANETs, is warning message dissemination among vehicles in
dangerous situations to prevent more damage. The only communication
mechanism for message dissemination is multi-hop broadcast; in which,
forwarding a received message has to be regulated using a scheme re-
garding the selection of forwarding nodes. When analyzing these schemes,
simulation-based frameworks fail to provide guaranteed analysis results
due to the high level of concurrency in this application. Therefore, there
is a need to use model checking approaches for achieving reliable results.
In this paper, we have developed a framework called VeriVANca, to
provide model checking facilities for the analysis of warning message
dissemination schemes in VANETs. To this end, an actor-based modeling
language, Rebeca, is used which is equipped with a variety of model
checking engines. To illustrate the applicability of VeriVANca, modeling
and analysis of two warning message dissemination schemes are presented.
Some scenarios for these schemes are presented to show that concurrent
behaviors of the system components may cause uncertainty in both be-
havior and performance which may not be detected by simulation-based
techniques. Furthermore, the scalability of VeriVANca is examined by
analyzing a middle-sized model.

Keywords: Model Checking, Warning Message Dissemination,Vehicular Ad-Hoc

Networks (VANETs), Rebeca, Actor Model

1 Introduction

VANETs have attracted much attention in both academia and industry during

the last years. The emergence of autonomous vehicles and the safety concerns

regarding the use of these vehicles in the near future have highlighted the possible

use of VANETs in safety enhancement of future transportation system. Using
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VANETs in such mission critical applications, calls for reliability assurance of

algorithms. One of the applications in this domain is the use of vehicle to

vehicle communication for Warning Message Dissemination (WMD) in dangerous

situations to prevent further damage. In this application, vehicles broadcast

warning messages to inform each other of the upcoming hazard. To increase the

number of vehicles receiving the warning message, the receiving nodes should

forward the message. To hold the trade-off between the traffic in the network

and maximum number of vehicles receiving the message, a number of schemes

regarding the selection of forwarding nodes has been proposed [14]. More details

about WMD in VANETs are presented in Section 2.

A number of simulation-based tools and techniques have been used for the

analysis of these WMD schemes. However, concurrent execution of system com-

ponents reduces the effectiveness of simulation-based approaches for such mission

critical applications. This is because simulation-based approaches cannot provide

high level of confidence for the correct behavior of the system. In such cases,

there is a need to apply formal verification for achieving reliable results. For-

mal verification is used in applications of VANETs such as cooperative collision

avoidance [7], intersection management using mutual exclusion algorithms [2],

and collaborative driving [10]. However, to the best of our knowledge, there is no

work on formal verification of WMD application in VANETs.

In this paper, we introduce VeriVANca as a framework for the analysis of WMD

schemes in VANETs. To this end, we develop VeriVANca in Timed Rebeca [9],

a real-time extension of Rebeca [15]. Rebeca is an operational interpretation

of the actor model with formal semantics, supported by a variety of analysis

tools [8]. In the actor model, all the elements that are running concurrently in a

distributed system are modeled as actors. Communication among actors takes

place by asynchronous message passing. These structures and features match

the needs of VANETs as they consist of autonomous nodes which communicate

by message passing. This level of faithfulness helps in having a more natural

mapping between the actor model and VANETs, making models easier to develop

and understand. In Section 3 Timed Rebeca is briefly introduced using the

counting-based scheme example.

To illustrate the applicability of this approach, we have modeled a distance-

based scheme [16] and a counting-based scheme [17] using VeriVANca. Results of

model checking for the distance-based scheme show that concurrent execution

of the system components enables multiple execution traces some of which

cause starvation and may not be detected using simulation-based techniques

(Section 4.1). We also observed that, in a given scenario, multiple values may be

achieved for the performance when considering the interleaving of concurrently

executing components. Our further investigations yield that having multiple

performance results is not limited to one scenario but is common. More details on

these cases are presented in Section 4.2. Furthermore, to examine the scalability

of VeriVANca, a middle-sized model of a four-lane street with about 40 vehicles

is analyzed. We observed that if scaling up the number of vehicles results in

creation of very congested areas, the size of the state space and analysis time is
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increased dramatically. However, scaling up the model without creation of new

congested areas, results in smooth increase in the size of the state space and

analysis time as presented in Section 4.3.

2 Warning Message Dissemination in VANETs

WMD is an application developed for VANETs that tends to increase the safety

and riding experience of passengers. In this application, a warning message is

disseminated between vehicles in the case of any abnormal situations such as car

accidents or undesirable road conditions. Received warning messages are used

either to activate an automatic operation such as reducing speed to avoid chained

accidents (increasing safety) or are shown as alerts to inform the driver of the

upcoming hazard so that the driver can do operations such as changing their

route (improving the riding experience).

Using WMD in safety-critical applications, requires providing high reliabil-

ity for the application in developed solutions. Besides, some characteristics of

VANETs such as high mobility of the nodes and fast topology changes, makes

routing algorithms commonly used in MANETs (Mobile Ad-hoc NETworks)

inapplicable to VANETs [20]. Therefore, the only approach for implementation of

message dissemination in VANETs is multi-hop broadcast of the message. In this

approach, the receiving nodes are responsible for re-broadcasting the message to

the others. However, this can result in broadcast storm problem in the network.

In order to tackle this problem, a number of schemes have been proposed for

WMD as described in the following subsection.

2.1 Message Dissemination Schemes

Message dissemination schemes are algorithms that specify how a forwarding

node is selected in a VANET. The selection of a forwarding node is performed

based on some criteria such as distance between senders and receivers, number

of received messages by a node, probabilities associated with nodes, topology

of the network, etc. [14]. In this paper, two schemes —a distance-based and a

counting-based scheme— are modeled using the proposed framework.

The distance-based scheme, called TLO (The Last One) [16], makes use of

location information of the vehicles to select the forwarding node. In this scheme,

upon a message broadcast, the farthest receiver in the range of the sender is

selected as the forwarding TLO node. Other vehicles in the range know that they

are not the farthest node and do not forward the received message. However, they

wait for a while to make sure of successful broadcast of the TLO node. Receiving

the warning message from the TLO node, means that the sending of the message

has been successful and they do not forward the warning message. Otherwise,

the algorithm is run once again to select the next TLO forwarding node.

In the counting-based scheme [17], an integer number is defined as counter

threshold. Each receiving node counts the number of received messages in a

time interval. At the end of that time interval, the receiver decides on being a
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forwarding node based on the comparison of the value of its counter and the value

of counter threshold. If the value of the counter is greater than the value of counter

threshold, the receiver assumes that enough warning messages are disseminated

in its vicinity; therefore, it avoids forwarding the message. Otherwise, the receiver

forwards the warning message.

2.2 Analysis Techniques

Different analysis techniques have been developed for the analysis of message

dissemination schemes in VANETs. Simulation-based approaches are widely used

for the analysis of applications of in this domain. Gama et. al. developed a

model and analyzed three different message dissemination schemes using Veins

simulator [4]. Sanguesa et. al. have used ns-2 simulator in two independent works

regarding the selection of optimal message dissemination scheme. In [12], they

aim to select the optimal broadcasting scheme for the model in each scenario and

in [13], the selection of the optimal scheme is performed for each vehicle based on

vehicular density and the topological characteristics of the environment where the

vehicle is located in. In a more comprehensive work [14] authors have developed a

framework in ns-3 simulator for comparing different schemes. Note that although

this approach is used in many applications, it does not guarantee correctness of

results as it does not consider concurrent execution of system components.

Another technique used for the analysis of WMD in VANETs is the analytical

approach. In this approach, a system is modeled by mathematical equations

and the analysis is performed by finding solutions to the equation system. For

example, in [11], Saeed et. al. have derived difference equations that their solutions

yield the probability of all vehicles receiving the emergency warning message.

This value is computed as a function of the number of neighbors of each vehicle,

the rebroadcast probability, and the dissemination distance. In another work, a

probabilistic multi-hop broadcast scheme is mathematically formulated and the

packet reception probability is reported for different configurations, taking into

account the topology of the network and as a result, major network characteristics

such as vehicle density and the number of one-hop neighbors [6]. This approach

guarantees achieving correct results but it is not modular and developing math-

ematical formula needs a high degree of user interaction and a high degree of

expertise.

As the third technique, model checking is a general verification approach which

provides ease of modeling similarly to simulation-based approaches in addition

to guaranteeing the correctness of results due to its mathematical foundation. To

the best of our knowledge, there is no framework which provides model checking

facilities for the analysis of WMD schemes in VANETs.

3 Rebeca Language

Rebeca is a modeling language based on Hewitt and Agha’s actors [1]. Actors in

Rebeca are independent units of concurrently running programs that communicate
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with each other through message passing. The message passing is an asynchronous

non-blocking call to the actor’s corresponding message server. Message servers are

methods of the actor that specify the reaction of the actor to its corresponding

received message. In the Java-like syntax of Rebeca, actors are instantiated from

reactive class definitions that are similar to the concept of classes in Java. Actors

in this sense can be assumed as objects in Java. Each reactive class declares the

size of its message buffer 6, a set of state variables, and the messages to which

it can respond. Reactive classes have constructors with the same name as their

reactive class, that are responsible for initializing the actor’s state.

Basically, in Rebeca the concept of known rebecs was introduced for an actor

to specify the actors to which it can send messages. However, to implement

applications in ad-hoc networks, a more flexible sending mechanism is needed.

Two Rebeca extensions b-Rebeca [18] and w-Rebeca [19] have been proposed to

provide more complex sending mechanism. In b-Rebeca the concept of known

rebecs is eliminated and it is assumed that the only communication mechanism

among actors is broadcasting; hence, only a fully connected network can be

modeled. Note that the type of broadcasting introduced in b-Rebeca is not

the same as the location-based broadcasting in VANETs. In location-based

broadcasting, only the actors in the range of each other are connected in the

Rebeca model. Regarding this assumption, a counter-based reduction technique is

used in b-Rebeca to reduce the state space size of the model making it impossible

to send messages to a subset of actors.

The other extension w-Rebeca, which is developed for model checking of

wireless ad-hoc networks, uses an adjacency matrix in the model checking engine,

to consider connectivity of actors. In this approach, by random changes in the

value of adjacency matrix, all the possible topologies of the network are considered

in the model checking. Note that users are allowed to define a set of topological

constraints and the topologies that do not fulfill the constraints are not considered

in the model checking. w-Rebeca does not support timing in the model which is

essential for developing models in the domain of VANET, since there are some

real-time properties that need to be considered. Besides, considering all possible

topologies —some of which may not be possible in the reality of the model—

results in a bigger state space for the model. In addition, considering these

infeasible topologies, may cause false-negative results when checking correctness

properties.

3.1 Explaining Rebeca by the Example of Counting-Based Scheme

In this subsection, we introduce Timed Rebeca [9] using the example of the

counting-based scheme presented in the previous section. A Timed Rebeca model

consists of a number of reactive class definitions which provide type and behavior

specification for the actors instantiated from them. There are two reactive classes

BroadcastingActor and Vehicle in the implementation of counting-based WMD

in VeriVANca as shown in Listing 1.

6 Message queue in Rebeca and message bag in Timed Rebeca
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Each reactive class consists of a set of state variables and a message bag

with the size specified in parentheses after the name of the reactive class in

the declaration. For example, reactive class Vehicle has state variables isAv,

direction, latency, counter, etc. The size of the message bag for this reactive

class is set to five. The local state of each actor consists of the values of its state

variables and the contents of its message bag. Being an actor-based language,

Timed Rebeca benefits from asynchronous message passing among actors. Upon

receiving a message, the message is added to the actor’s message bag. Whenever

the actor takes a message from the message bag, the routine which is associated

with that message is executed. These routines are called message servers and are

implemented in the body of reactive classes.

1 env int RANGE = 10;
2 env int THRESHOLD_WAITING = 4;
3 env int MESSAGE_SEND_TIME = 1;
4 env int C_THRESHOLD = 3;
5 abstract reactiveclass BroadcastingActor (5) {
6 statevars { int id, x, y; }
7 abstract msgsrv receive(int data);
8 void broadcast(int data) { ... }
9 double distance(BroadcastingActor bActor, BroadcastingActor cActor){...}

10 }
11 reactiveclass Vehicle extends BroadcastingActor(5){
12 statevars{
13 boolean isAV;
14 int direction, latency, destX, destY, counter;
15 }
16 Vehicle (/*List of Parameters*/){
17 /*Variables Initializations*/
18 if (isAV) {
19 self.alertAccident();
20 } else
21 self.move() after(latency);
22 }
23 msgsrv alertAccident(){ ... }
24 msgsrv move() { ... }
25 msgsrv stop () { ... }
26 msgsrv finishWait(int hop) { ... }
27 msgsrv receive(int hopNum) { ... }
28 }
29 main {
30 Vehicle v1():(0,0,10,RIGHT,1,10,10,true), v2():(1,10,0,UP,2,10,10,false),
31 v3():(2,-1,0,RIGHT,1,10,0,false), v4():(3,0,1,DOWN,2,0,-10,false),
32 v5():(4,3,0,LEFT,1,-10,0,false);
33 }

Listing. 1. Counting-based scheme in Timed Rebeca

As depicted in Listing 1, the message servers of the reactive class Vehicle
are move, receive, alertAccident, stop, and finishWait. In order for an
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actor to be able to send a message to another actor, the sender has to have

a direct reference to the receiver actor. For example, in Line 19, the message

alertAccident is sent to self which represents a reference to the actor itself.

However, in order to model a WMD scheme in VANETs, the warning message

should reach actors which are in the range of the sender actor. In other words,

actors should receive messages based on some criteria, i.e., their location in this

application. We used the inheritance mechanism of Timed Rebeca to implement

this customized sending strategy.

3.2 Customized Message Sending in VeriVANca

In object-oriented design, inheritance mechanism enables classes to be derived

from another class and form a hierarchy of classes that share a set of attributes

and methods. Using this approach, we encapsulated a broadcasting mechanism in

a reactive class called BroadcastingActor and all other behaviors of vehicles are

implemented in Vehicle reactive class which is derived from BroadcastingActor.

In BroadcastingActor, the broadcast method shown in Listing 2 mimics the

sending mechanism of vehicles in VANET.

As mentioned before, broadcasting data results in receiving a message contain-

ing that data by the vehicles in the range of the sender actor. In the body of this

method, all actors —that are derived from BroadcastingActor— are examined

in terms of their distance to the sender (Line 5). If the distance between an actor

and the sender is less than the specified threshold, called RANGE (Line 6), the

data is sent to the actor by an asynchronous message server call of receive (Line

7). As BroadcastingActor has no idea about the behavior of vehicles, upon

receiving the receive message, the template method design pattern [5] is used

in the implementation of receive. So, the receive message server is defined as

an abstract message server in BroadcastingActor and its body is implemented

in Vehicle. The behavior of the WMD scheme is implemented in Vehicle.

1 void broadcast(int data) {
2 ArrayList<ReactiveClass> allActors = getAllActors();
3 for(int i = 0; i < allActors.size(); i++) {
4 BroadcastingActor ba = (BroadcastingActor)allActors.get(i);
5 double distance = distance (ba , self);
6 if(distance < RANGE) {
7 ba.receive(data) after (MESSAGE_SEND_TIME);
8 }
9 }

10 }
11 double distance(BroadcastingActor bActor , BroadcastingActor cActor){
12 return sqrt(pow(cActor.x - bActor.x, 2) + pow(cActor.y - bActor.y, 2));
13 }

Listing. 2. Body of broadcast Method in Broadcasting Actor
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3.3 Counting-Based Scheme in VeriVANca

For the case of counting-based scheme, three message servers alertAccident,

finishWait, and receive provide the behavior of the scheme. When Vehicle
actors are instantiated, their constructor methods are executed resulting in

sending one of the following messages to themselves:

– alertAccindent: sent by the accident vehicle to start the WMD algorithm

(Line 8)

– move: sent by the other actors to begin moving with their pre-defined latency;

an actor performs this through sending move message periodically to itself

(Line 10).

1 reactiveclass Vehicle extends BroadcastingActor(5){
2
3 statevars{ ... }
4 Vehicle (...){
5 ...
6 counter = 0;
7 if (isAV) {
8 self.alertAccident();
9 } else

10 self.move() after(latency);
11 }
12 msgsrv alertAccident(){
13 broadcast(0);
14 }
15 msgsrv finishWait(int hop){
16 if (counter < C_THRESHOLD)
17 broadcast(hop++);
18 }
19 msgsrv receive(int hopNum) {
20 if (counter == 0) {
21 self.finishWait(hopNum) after (THRESHOLD_WAITING);
22 counter = 1;
23 } else {
24 counter++;
25 }
26 }
27 }

Listing. 3. Body of message servers in Vehicle Actor

The algorithm of counting-based scheme, as implemented in Listing 3, begins

by serving alertAccident message in the accident vehicle. Upon the execution of

receive, if the counter, which is initially set to zero for all actors (Line 6), is zero

— meaning that it is the first time the actor is receiving the warning message—

a watchdog timer is started. This is implemented by sending the finishWait
message to the actor itself with the arrival time of THRESHOLD_WAITING. In



VeriVANca 9

addition, the value of counter is set to one to indicate that this is the first call of

receive (Lines 20-22). The next calls of receive result in increasing the value

of counter, which represents the number of received warning messages. When

message server finishWait is executed by an actor, showing that the watchdog

timer is expired, the value of counter is compared with the threshold considered

for the counter (C_THRESHOLD). By not exceeding the threshold, i.e., the area

around the actor is not covered by enough number of warning messages, the

actor broadcasts the warning message (Lines 16 and 17).

3.4 Reusability of VeriVANca

To illustrate the reusability of VeriVANca, we show how the model of the counting-

based scheme can be altered to present another scheme (the TLO scheme) by

making minor modifications to the code. At the first step, we implemented the

algorithm in a method called runTLO. As shown in Listing 4, the bodies of the

message servers finishWait and receive are rewritten to mimic the behavior

of the scheme in the event of expiration of the watchdog timer and receiving a

warning message respectively.

1 msgsrv finishWait(int hopNum) {
2 if (isWaiting)
3 runTLO(hopNum);
4 }
5 msgsrv receive(int hopNum) {
6 if(!isWaiting)
7 runTLO(hopNum);
8 else
9 isWaiting = false;

10 }
11 void runTLO(int hopNum) {
12 if (!received) {

13 if (isTLO()) {
14 broadcast(hopNum++);
15 received = true;
16 } else {
17 isWaiting = true;
18 self.finishWait(hopNum)

after(THRESHOLD_WAITING);
19 }
20 }
21 }

Listing. 4. Needed modifications for TLO
scheme

In the TLO scheme, explained in Section 2.1, upon receiving the warning

message for the first time, the runTLO method is called. In the body of this

method, if the value of state variable received is false —meaning that the actor

has not received the duplicate warning message from a selected TLO node as a

sign of its successful broadcast—, the isTLO method is called. This method is

implemented in the BroadcastingActor and checks if the actor is the furthest

node in the range of the sender and returns the result as a boolean value. If the

return value is true, the actor is the last one in the range and is selected as the

TLO node to forward the warning message; so, it broadcasts the message by

increasing the value of hopNum by one (Line 15). Then the value of received
is set to true to show that broadcasting has been successful. In case the actor

is not the last one in the range (Line 17), the actor should wait for a while to

make sure that the selected TLO node has successfully broadcasted the warning

message. To this end, the actor sets the value of isWaiting to true to show that
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the actor is in the waiting mode, and then sets the watchdog timer by sending

message finishWait to itself by execution time of THRESHOLD_WAITING (Line 19).

The message server receive, like in the previous scheme, mimics receiving the

warning message. In the body of this message server, if the value of isWaiting
is false, meaning that the actor is not in the waiting mode, isTLO is executed

to select the TLO forwarding node. Otherwise, isWaiting is set to false since

this message is interpreted as a successful broadcast of the TLO node. The

finishWait message server is executed upon expiration of the watchdog timer

and it checks the value of isWaiting. In the case of false value for finishWait,

the actor has not received the warning message from the selected TLO node, so,

runTLO is called to select the next TLO forwarding node.

4 Experimental Results

To demonstrate the applicability of VeriVANca, both of the schemes presented in

the former section are analyzed in different configurations. As mentioned before,

concurrent behaviors of the system components may cause uncertainty which

is clearly observable in the presented scenarios, but may not be detected using

simulation-based techniques. For the case of the TLO scheme, we show that

nondeterminism causes starvation and for the case of the counting-based scheme,

it causes different results in the performance of the algorithm. Furthermore, we

illustrate that the approach is scalable regarding the number of cars with traffic

patterns that do not contain congested areas. Note that the following experiments

have been executed on a Macbook Air with Intel Core i5 1.3 GHz CPU and 8GB

of RAM, running macOS Mojave 10.14.2 as the operating system. Development

of these experiments are performed in Afra, modeling and verification IDE of

Rebeca family languages [3].

4.1 Starvation Scenario in TLO Scheme

In this section, we present an observed scenario that using the TLO scheme

causes starvation and affects the reliability of the scheme in some executions.

The steps of the scenario is depicted in Figure 1. In 1(a), position of the vehicles

is shown in the time of the accident between vehicles A and B. In the next step,

vehicle B starts broadcasting the warning message and vehicles C and D receive

the message as they are in the range of B (Figure 1(b)). Upon receiving the

warning message, these vehicles execute the TLO algorithm and since they both

have the same distance from B, they forward the received warning message and

the vehicles E and F receive the warning message from these two vehicles. When

vehicles E and F execute the TLO algorithm, racing between the following two

scenarios happen.

1. E broadcasts before F: vehicles G and H receive the warning message

from E. Upon execution of TLO algorithm by G and H, Vehicle H is selected

as the TLO forwarding node and forwards the message. Meanwhile, vehicle
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G is waiting for receiving the warning message from H to make sure that

the broadcasting has been successful. If in the waiting time of G, vehicle H

forwards the warning message, the message will be interpreted as acknowl-

edgement of the successful broadcast of H and although G is TLO node in

this step, it will not forward the message. In this case, the vehicle J does not

receive the warning message.

2. F broadcasts before E: vehicle G receive the warning message from F and

after the execution of TLO algorithm, it forwards the message as the selected

TLO node and vehicle J will receive the warning message in this scenario.

A

F
D

C
B

H

E

J G

(a) Accident between A and B

A

D

C

B
A

D

C
B

(b) B broadcasts the warning message

F

D

C

B

E

A

F
D

C
B

E

G

(c) C and D are both selected as TLO
nodes to forward the warning message

F

H

E

J G

(d) Order of broadcasting between E
and F results in two cases

Fig. 1. A scenario of TLO scheme which results in two execution alternatives that one
of them causes starvation for vehicle J

This example shows that concurrent execution of the algorithm in nodes

causes nondeterministic behavior which may violate correctness properties of

the application. To avoid such cases, all the possible nondeterministic behaviors

have to be considered in any analysis framework. However, simulation-based

techniques, commonly used for the analysis of these systems, fail to report a result

by considering all the possible execution traces. This highlights the necessity of

applying formal methods in the development of applications of VANETs with

critical mission.
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4.2 Nondeterminism in Performance of the Counting-Based Scheme

The configuration depicted in Figure 2(a) is used for the analysis of the counting-

based scheme (explained in Section 3.1). In this scenario, the value of C_THRESHOLD
is set to 2 and the RANGE is set to 4. The scenario begins with the vehicle

A broadcasting the warning message (Figure 2(b)). This broadcast results in

increasing the counters of the vehicles A, B, C, and E by one. In the next round

two following cases may happen.

A E

C

D

B

H

F

G

J

(a) Configuration of the scenario

0

1 1

1

0

1

0

0

0

0

A E

C

B

(b) Vehicle A starts broadcasting

2 2

1

2

0

0

0

0

2

A E

C

D

B

(c) B broadcasts before expiration of
the watchdog timer of E

2 2

2

2

3

1

0

0

0

D

B

H

(d) D forwards the warning message

2 2

2

3

3

2

1

0

1

D H

F J

(e) H rebroadcasts the message

2 3

2

2

3

4

3

2

3

E

D H

F

G

J

(f) F and (or) J forward(s) the message
and algorithm finishes

Fig. 2. A case of the scenario for the counting-based scheme

1. The watchdog timer of vehicle E expires after receiving the message

from B: In this case, as the counter has reached the threshold, E does not
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2 2

1

2

0

1

1

1

2

A E

C

D

B

F

G

J

(a) E is selected as forwarder (instead
of B as depicted in Figure 2(c))

2 3

2

3

1

2

2

2

3

E

C

D

B

H

F

G

J

(b) F broadcasts the message and al-
gorithm finishes

Fig. 3. Another case of the scenario for the counting-based scheme

forward the warning message as shown in Figure 2(c). Following this case, the

algorithm continues with vehicles D, H, and F being selected as forwarding

nodes and rebroadcasting the message (Figures 2(d) to 2(f). As a result, it

takes 5 hops for all the vehicles to get informed of the warning message. Note

that the same scenario happens when C forwards the message before the

expiration of the watchdog timer of E.

2. The watchdog timer of vehicle E expires before receiving warning

message from B and C: In this case, since the counter of E is less than

the threshold, E must forward the warning message (Figure 3(a)). In the

next step, vehicle F broadcasts the message and all non-informed vehicles

receive the warning message and algorithm finishes in 3 hops.

Achieving two different numbers for performance of this algorithm shows that

beside correctness properties, providing guaranteed values for performance results

requires applying formal verification techniques as well. We analyzed this scenario

with different values for range and counter threshold, the result of three of them

are shown in Figure 4. The results show that this phenomenon is not rare and

can be observed in many cases.

4.3 Scalability Analysis

For the purpose of scalability analysis, we have modeled a four-lane street which

contains about 30 vehicles. These vehicles are distributed in a way that there is

no congested area in the street as shown in Figure 5(a). The execution time of

this model is 11 seconds and the number of reached states and transitions are

19,588 and 110,627 respectively. To determine the scalability, we added new cars

in two ways. First, we increased the length of the street and added new vehicles

to the tail of the street of Figure 5(a). To avoid creating congested areas, we kept

the same distribution while adding new vehicles. This way of scaling resulted in

15 seconds, 23,734 states, and 133,255 transitions for 35 vehicles and 18 seconds,

25,872 states, and 143,727 transitions for 40 vehicles (i.e. about 1.3 times more

than the first case). As an estimation of the supported maximum size of the
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Fig. 4. Analysis results of the counting-based scheme with different values for the
range and counter threshold (Note that Y axis shows the number of hops required for
termination of the algorithm)

model regarding the state space size limit of Afra, the number of vehicles can be

increased up to 100 if having distribution which does not create congested areas.

In the second way, new vehicles were added in a way to increase congestion in

some areas (Figure 5(b)). Scaling in this way increases the execution time of

the model to 120 seconds and the number of reached states and transitions to

157,086 and 1,265,839, respectively (i.e. about 10 times more than the previous

case). This is because of the fact that in a congested area, the number of delivered

warning messages to each vehicle grows rapidly and all the possible orders of

execution for messages with the same execution time are considered in the model

checking. This results in a sharp growth in the size of the state space and model

checking time consumption.

(a)

(b)

Fig. 5. Configuration of the scenario used for scalability analysis

5 Conclusion and Future Work

Lack of a framework for formal modeling and efficient verification of warning

message dissemination schemes in VANETs is the main obstacle in using these
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schemes in real-world applications. In this paper, we presented VeriVANca, an

actor-based framework, developed using Timed Rebeca for modeling warning

message dissemination schemes in VANETs. Model of schemes developed in

VeriVANca can be analyzed using Afra, the model checking tool of Timed Rebeca.

We showed how warning message dissemination schemes can be modeled using

VeriVANca by implementing two of these schemes. Scenarios in these schemes

were explored to illustrate the effectiveness of the approach in checking correctness

properties and performance evaluation of the schemes. We further explained how

easily the model of a scheme can be transformed to present another scheme by

making minor modifications. Providing this level of guarantee in correctness and

performance of warning message dissemination schemes, enables engineers to

benefit from these schemes in the development of smart cars.

Considering different members of Rebeca family modeling language, VeriVANca

can be used for addressing other characteristics of schemes such as their proba-

bilistic behavior. Since Afra supports different members of Rebeca family, models

with these characteristics can be analyzed using Afra.

VeriVANca can be used for the analysis of scenarios with limited congested

areas. However, to be able to use the framework for large-scale models containing

congested areas, we are going to develop a partial order reduction technique.

This reduction relies on the fact that reaction of a vehicle to received warning

messages is independent of their sender; therefore, different orders of execution

(interleaving) for messages received at the same time can be ignored without

affecting the result of model checking.
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