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Abstract—Cyber-Physical Systems are networks of intercon-
nected computing, networking and physical devices. Communi-
cating through a network makes these systems vulnerable to
possible malicious attacks. These systems may play a crucial
role in controlling critical infrastructures and their security is of
paramount importance. Formal modeling and verification can be
effectively used for evaluating secure designs, particularly at the
architecture level of complex systems. In this work, we present
an actor-based approach for security analysis of Cyber-Physical
Systems at the design phase. We use Timed Rebeca, an actor-
based modeling language, to model the behavior of components
and potential attacks, and verify the security properties using
Rebeca model checking tool. We employ STRIDE model as
a reference for classifying the attacks. To demonstrate the
applicability of our approach, we use a Secure Water Treatment
(SWaT) system as a case study. We analyze the architecture of
the SWaT system using three different attack schemes in which
various parts of the system network and physical devices are
compromised. At the end, we identify single and combined attack
scenarios that violate security properties.

Index Terms—Cyber-Physical System (CPS), Rebeca Model
Checker (RMC), Secure Water Treatment (SWaT), Attack sce-
narios.

I. INTRODUCTION

Cyber-Physical System (CPS) refer to a system in which
physical, computational and communication components are
integrated to achieve a larger goal [1]. Generally, a CPS
includes three kinds of components i.e. sensors, controllers
and actuators. Sensors are responsible to gather data about the
state of a physical process and submit them to the controllers.
By analyzing the data, if the controllers detect a need for some
changes in the process, they apply those changes by sending
appropriate commands to the actuators [2]. Despite the advan-
tages of combining cyber and physical spaces, connection to
the Internet makes CPS exposed to several attacks, which may
lead to undesirable changes in the physical process [3].

There are a variety of use cases for CPS such as water treat-
ment systems, manufacturing products, health care services,
and electrical grid operations [4], [5], [6]. Despite the ad-
vantages of combining cyber and physical spaces, connection
to the Internet makes CPS exposed to several attacks, which
may lead to undesirable changes in the physical process [7],
[8]. For example, as reported by Kaspersky ICS CERT [9] in
February 2019, some parts of the production line of Japanese

Optics manufacturer HOYA in Thailand was crashed by a
Malware [10]. Once the malware could spread over a hundred
of the company computers, it stole user credentials, and
distributed a cryptocurrency miner. The incident also affected
computers at HOYA headquarters in Japan that were connected
to the network, disrupting the invoice issue process.

As another example, an attack took place on a US power
facility in March 2019 that caused interruption of electrical
grid operations [11]. The firewall on a network device was
compromised by an anonymous remote entity in 10 hours.
The attackers exploited a known vulnerability in the device
which caused the firewall to reboot repeatedly. During each
reboot, the firewall was out of service for about 5 minutes.
The direct impact of the attack was communication outages
between the control center and devices.

To tackle CPS attacks, it is required to consider security of
CPS beyond the IT systems standard information security [12],
[13], and several researchers have proposed formal or simula-
tion methods to analyse the security of CPS [14], [15], [16].
The work presented in this paper is a step towards an actor-
based approach for assessing the security aspects of CPSs. We
use Timed Rebeca as an actor-based modeling language [17],
[18], [19] to model the behavior of CPS components and attack
scenarios, and we utilize STRIDE [20] model as a reference
for classifying potential attacks on a CPS.

As an actor-based language, Rebeca [21], [22] is well-suited
for modeling complex behaviors in event-based asynchronous
distributed systems [23]. Timed Rebeca is supported by a
model checking tool suite Afra [24] and can be used for
verifying CPS [25]. In this work, beside modeling a cyber-
physical system, we propose a model of attack for both kinds
of attacks on communication and components. Using Timed
Rebeca, an attacker is modeled as an actor to jeopardise the
communication, and a compromised component is modeled
as an actor with possible malfunction. In addition, we use
the security threats category, STRIDE, to systematically map
the reported CPS attacks in [26], [27], [28] to the STRIDE
threat types and identify the attacks in our models. By model
checking we analyze security of the CPS design to recognize
where the potential attack scenarios can successfully cause a
failure in the system. The output counter-example gives us the
trace of events leading to a security failure which can then be
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used for developing mitigation plans.
We demonstrate the applicability of this method in practice

using a case study on Secure Water Treatment (SWaT) sys-
tem [29]. The natural mapping between the communicating
entities in the problem domain and actors in Rebeca models
makes the approach easy to understand and reuse [30].

The paper is organized as follows. In Section II, we intro-
duce Rebeca, and our approach for security analysis is intro-
duced in Section III. Section IV shows how our attack models
can be classified within the STRIDE model. In Section V,
we describe the case study and evaluate our experimental
results. Section VI discusses the related work and Section VII
concludes the paper and gives a summary of our future works.

II. AN ACTOR-BASED MODELING LANGUAGE: REBECA

Rebeca is an actor-based modeling language with formal
foundation used for modeling concurrent and reactive systems
with asynchronous message passing [21], [31]. A Rebeca
model consists of the definition of reactive classes, each
describing the type of a certain number of actors (called
rebecs, we use both terms rebec and actor interchangeably in
the Rebeca context). Each reactive class declares the size of
its message queue, a set of state variables, and the messages
to which it can respond. Each rebec has a set of known rebecs
to which it can send messages. The behavior of a rebec is
determined by its message servers. Each rebec takes a mes-
sage from its message queue and executes the corresponding
message server. Taking a message from the queue to execute
it can be seen as an event. Communication takes place by
asynchronous message passing, which is non-blocking for both
sender and receiver.

Rebeca comes with a formal semantics that makes it suit-
able for model checking purposes. Additionally, the language
supports temporal logic to specify desired properties. Timed
Rebeca [17], [19] is an extension of Rebeca where compu-
tation time and network delay can be modeled. In Timed
Rebeca, each rebec has its own local clock, but there is also a
notion of global time based on synchronized distributed clocks
of all rebecs. Messages that are sent to a rebec are put in
its message bag together with their arrival time, and their
deadline. Methods are executed atomically, but the passing
of time during the execution of methods can be modeled.

Afra tool [24] is an IDE with a dedicated model checker,
Rebeca Model Checker (RMC), for verifying Rebeca fam-
ily models. The tool provides development environment for
models, property specification, model checking, and counter-
example visualization.

III. METHODOLOGY

As depicted in Figure 1, the proposed method for CPS
security analysis includes the following steps: (1) the Rebeca
model of the CPS is developed from the system design
specifications, (2) the potential attack scenarios against the
system are modeled, (3) the security properties are defined in
terms of assertions or temporal logic, and (4) Afra is used to
identify the events trace leads to a security failure. The above
steps are elaborated in the following subsections.

System Design

Security
Requirements

Security Objectives

Afra
RMC

Unsatisfied Properties
Counter-Examples

Events Trace 
Successful Attack

Security Properties
LTL, TCTL or
Assertions 

Rebeca Model
System and Attack

Modeling

CPS Specification

Satisfied Properties

Actor Modeling Security Analysis

Figure 1: The overview of the actor-based security analysis process.

A. Building the Rebeca model of the Cyber-Physical System

We consider each CPS component or physical process
as an actor. We realise four types of actors in our Rebeca
model, controllers, sensors, actuators and physical processes.
Generally, the interaction scenarios between these actors fol-
low a closed-loop feedback. Sensor observes the physical
component’s status, and sends the sensed data to the controller
denoting the state of the physical component. Based on the
received sensed data, the controller sends the control command
to the actuator, and the actuator performs the actual physical
change. The Rebeca model of a CPS includes reactive classes
corresponding to the four categories of actors. In real cases, we
may have different kinds of actors belonging to each category
(e.g., temperature sensors, speed sensors, etc.), and each kind
may be defined by a distinct reactive class.

B. Attack Modeling

According to the malicious behaviour on communication
channels and components three cases are considered as fol-
lows: (1) attacker targets the communication channel between
two components through injecting malicious messages, (2)
attacker manipulates the internal behavior of one or more
components e.g. through malicious code injection, and (3)
one or more attackers perform a coordinated attack to launch
malicious behaviour on both the communication channels and
the components. To illustrate these cases, we define three
attack schemes.

Scheme-A: Attack on Communication indicates a situation
in which an attacker injects malicious messages into the com-
munication channels between the controller and its associated
sensor or actuator. These messages may mislead the receiver
and cause a system security failure. For example, as depicted
in Figure 2(a), attacker compromises the channel between
the sensor and the controller, and injects a malicious data
message that shows a state different from the real state of
physical process. Note that the controller is not aware of the
communication interruption, thus accepts the injected data and
gives the faulty command to the actuator. Actuator performs
the unintended action and may damage the physical process.

In the Rebeca model, a separate reactive class is defined
to model the attacker’s behavior in this scheme. This reactive
class includes at least one message server to send malicious
message(s), e.g. the sensed data message, to the target chan-
nel(s) at an appropriate time. To perform exhaustive security
check, a set of Rebeca models is built that contains one or
more attacker actors that target different channels at different
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(a) Scheme-A: Attack on Communication.
Example: Attacker injects malicious data into the
communication channel between a sensor and the
controller.
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(b) Scheme-B: Attack on Components.
Example: Attacker compromises an actuator.
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(c) Scheme-C: Combined Attack.
Example: Two attackers attack in a coordinated
way.

Figure 2: Three attack schemes in Rebeca model for security analysis of CPS.

injection times during CPS operation. These Rebeca models
are inputs of executing CPS security analysis.

Scheme-B: Attack on Components indicates a situation
in which a number of components are compromised and do
not function correctly. Attackers may have direct access to
the components and perform physical attacks on them. They
may damage some sensors/actuators or inject malicious code
into the controllers. For example, as Figure 2(b) shows, an
attacker may compromise an actuator and perform an action
over physical process different from the command issued by
the controller. This action of the compromised actuator will
effect the physical process state and sensor feedback report.

This scheme is modeled in the Rebeca model as an addi-
tional message server inside the reactive class corresponding
to the target component. This message server models the in-
correct functionality. In the above example, the Rebeca model
includes the compromised actuator actor which has a message
server sending the malicious message to the physical process
actor once receiving a control command from the controller.
Similar to Attack Scheme-A, all the possible Rebeca models
including one or more compromised components are built and
the models are analysed in the model checking step.

Scheme-C: Combined Attack is a combination of the previ-
ous two attack schemes in which both the system components
and communication channels are compromised by attackers.
Usually, this happens when more than one attacker try to
attack the system in a coordinated way. Figure 2(c) illustrates
a CPS with presence of two attackers in which attacker A
compromises actuator to launch an alteration on the physical
process, and attacker B injects a false data message into the
channel from the sensor to the controller. This coordinated
operation of attackers makes an unexpected change on the
physical process without the controller awareness. Indeed, the
injected data message is sent to the controller falsely showing
that the expected action is performed rather than the malicious
alteration.

The modeling of this scheme would include various combi-
nations of the defined attackers and compromised components
as actors in a Rebeca model. We can choose many kinds of
attack scenarios with assumption of compromised network or

components in Rebeca model and check the attacks damage
on the CPS system.

C. Model Checking and Security Analysis

The security objectives will be the basis for defining the
security properties to be verified. Afra supports LTL, TCTL
and assertions for property specification. The most important
security objectives are confidentiality, integrity and availability
presented in Table I and explained in Section IV.

We use RMC to automatically verify each of the specified
security properties. If RMC detects that a property is not
satisfied by the Rebeca model, it provides the modeler with a
counter-example detailing the sequence of events that would
lead to a security violation. The sequence of events determines
a successful attack. Realising the possible successful attacks
can be the basis for applying appropriate countermeasures. In
some cases, it may be enough to change the security policies
to protect the system against the attacks, and in some cases we
may need a security component such as an intrusion detection
system (IDS) to keep the system safe against intruders. As our
future work, we would incorporate and check these solutions
in the model

The common problem in model checking is state-space
explosion. A Rebeca model of a CPS in principle has a
recurrent bounded behavior. Although we model time, the
model checking tool is able to distinguish when a newly
generated state is already visited and the only difference is in
the logical time stamps. If needed, while running the model
checker we can use assertions to stop the process and look
into the state space. In any case we can have a bound on the
growing time stamps to stop the model checking at a certain
time.

IV. ATTACK CLASSIFICATION

STRIDE1 is designed as a model for identifying different
types of threats that a system may experience and the corre-
sponding security objective which might be violated [20]. In
Table I, we classify the significant attacks on CPS (reported in

1The acronym STRIDE stands for Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of Service, and Elevation of Privilege.
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[26], [27], [28]) based on the STRIDE categories. The cyber
and physical attacks exploit emerging CPS-related vulnerabil-
ities in the two aspects of communication and component, and
are shown in Table I as Scheme-A and Scheme-B. Scheme-A
consists of the attack scenarios which are secretly recording
or modifying the data transmitted over the channels (e.g.,
eavesdropping and MITM). Scheme-B includes the attacks that
inject malicious code into the software components or perform
a malicious alteration on a physical component (e.g., malware
and physical attack).

Table I: Attack Classification using STRIDE model.

Threat Type
(Security Objective) Cyber and Physical Attack Scheme-

A
Scheme-
B

Spoofing
(Authentication)

Masquerade attack [27]
Packet spoofing attack [28]

Tampering
(Integrity)

Man-in-the-middle (MITM) [27]
Injection attack [28] [28]
Replay attack [27]
Malware (Virus or Worms) [28]
Physical attack [28] [26]

Reputation
(Non-Repudiation) On-Off attack [26]

Information
Disclosure
(Confidentiality)

Eavesdropping [27]
Malware (Spyware) [28]
Side-channel attack [28]
Physical attack [28] [26]

Denial of
Service
(Availability)

Resource exhaustion attack [27] [28]
Interruption attack [27]
Malware (Ransomware) [28]
Physical attack [28] [26]

Elevation of
Privilege
(Authorization)

Malware (Rootkit) [28]

Scheme-A: Attack on Communication typically consists of
the followings. In the Spoofing attack, the attacker transmits a
message with a spoofed identity into the network. Man-in-the-
middle (MITM) requires the attacker puts herself in between
two communicating parties and changes the messages. To
launch MITM attack, the attacker impersonates herself as
one of targeted parties. Injection attack indicates that the
attacker injects invalid messages into the network (i.e., packet
injection). Replay attack is an intentional repetition of sending
a message to mislead the receiver. Eavesdropping attack takes
advantage of unsecured channels to steal the information
transmitted over the network. Side-channel attack is an attack
in which the attacker uses own technical knowledge of the
system to compromise the system security. Resource exhaus-
tion attack represents a situation that the network resources
are overwhelmed by a flood of messages transmitted from the
attacker. Interruption attack makes a service unavailable for
legitimate use, and finally Physical attack aims to damage a
communication link.

Scheme-B: Attack on Components includes the attacks as
follows. Masquerade attack refers to a situation in which the
attacker impersonates herself as one of the communicating
parties. Injection attack is used by an attacker to inject a ma-
licious code into a component (i.e., code injection). Malware

is a malicious software designed to manipulate the behavior
of components. Side-channel attack is an attack in which
the attacker gains knowledge about the system by observing
the behavior of some component(s). Finally, physical attack
manipulates some component(s) physically.

We can model each of the explained attacks using our
methodology based on Rebeca. In Section V-B, we show a
Rebeca model and explain how some of these attacks can be
modeled using a separate attacker actor or an actors that mimic
the compromised component.

V. CASE STUDY AND EVALUATION

In this section, we discuss an experimental study on the
SWaT testbed [29]. We first present the SWaT architecture and
its security objectives. Then, we provide details on the Rebeca
model, and finally, we discuss the security analysis results.

A. SWaT Design

The SWaT testbed is a scaled-down version of an industrial
water treatment system. This testbed is used for several re-
search and training purposes in the iTrust research center [29].
The aim of constructing the SWaT testbed is to assess the
impact of various attacks on the system and analyze the
effectiveness of different mitigation techniques.

The water treatment process in SWaT system consists of
three stages as depicted in Figure 3. These stages include
supplying raw water into the system, Ultra-Filtration (UF)
and Reverse Osmosis (RO). In each stage, there is a PLC
responsible for controlling a water tank. The PLC is directly
connected to some actuators (i.e., valves or pumps) through a
local network. A simple password-based authentication is the
only mechanism employed to control access to the network,
which makes SWaT system vulnerable to eavesdropping or
packet injection attacks [14].

Tank1

Raw water

Pump1

UltraFiltration
(UF)

Tank2

Reverse
Osmosis
(RO) unit

Tank3

Pump2
Clean water

Valve

Sensor1 Sensor2

Sensor3

l2	,	m2	,	h2

On2	,	Off2

l3	,	m3	,	h3

PLC1

PLC2

PLC3

Stage1 Stage2

Stage3

PLCs
Cabinet

l1	,	m1	,	h1

On1	,	Off1

Open,	Close

On	Req	

Open	Req	,	

Close	Req	

Water flow direction.
Communication links between PLCs and corresponding actuator/sensor,
Communication links between PLCs,

Figure 3: An abstract architecture of the SWaT system

At any stage during the execution of the water treatment
process, each pump can be in On or Off state, and respectively
each valve can be in one of the two states Open or Close. Also,
three states are considered for the big tanks (i.e., Tank1 and
Tank2): Low(l), Medium(m), and High(h), and two states for
the small tank (Tank3): Low(l) and High(h). During the system
operation, whenever the water level of a tank changes to h, the
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associated sensor reports the change to the responsible PLC.
That PLC will close the valve or turn off the pump that is
pouring water into the tank. Also, the PLC may open a valve,
turn a pump on, or send open/on requests to other PLCs when
the water level in the tank is either l or m.

In the following, we elaborate the control logic of each
PLC (see Figure 3): whenever the level of water in Tank1

is l, PLC1 turns on Pump1 and closes Valve, so that raw
water flows into the tank and no water flows out. Valve is
opened only if the water level is h or m and also PLC1 has
received an open request from PLC2. In addition, whenever
PLC1 receives a close request from PLC2, it will close Valve.
PLC2 is in charge of controlling Tank2, and sends a close
request to PLC1 whenever water level in Tank2 is h. Hence,
the flow of water from Tank1 to Tank2 is stopped. The PLC
sends an open request to PLC3 when the level of water is
reduced to m. If no response is received from PLC3, the PLC
asks PLC1 to open Valve. It will continue sending requests
until one of the other PLCs replies. PLC3 is in charge of
controlling Tank3 by turning off Pump2 whenever the level of
water in Tank3 is l. The purpose is to stop the flow of water
to Tank2 and prevent Tank3 from underflow. If the water level
is h, Tank3 turns Pump2 on, so that water is depleted to Tank2

after passing through RO unit.
A dataset collected from SWaT system operation is available

in iTrust homepage for research purposes [32]. The dataset
includes data about network traffic and sensor and actuator
status during normal operation of the system. The dataset
indicates that one millimeter increase or decrease in water level
of Tank1 and Tank2 takes approximately two seconds. The
sensors of Tank1 or Tank2 report the water level in millimeters.
The capacity of Tank3 is half capacity of Tank1 and Tank2,
and its sensor reports only low and high levels of water to the
corresponding PLC.

B. Security objectives and Threats

We assume that malicious attackers have the ability of
injecting arbitrary packets into the communication channels
between PLCs and sensors/actuators, and also they are able
to alter the functionality of sensors/actuators. Here we use the
STRIDE terminology to explain the possible attack scenarios.
An attacker may break through the network authentication, dis-
guise himself/herself as an actual system component (spoofing
threat) and inject a packet into the channel between sensor
and PLC (tampering threat). The integrity objective of the
system is jeopardized when an attacker wants to mislead the
PLC (reputation threat) by sending a packet that contains a
value different from the real value of the water tank status.
Another attack scenario is possible when an attacker wants
to jeopardize the availability of the system by sending the
same message to a communication channel several times. This
repetition causes the channel to be overwhelmed with several
packets (denial of service threat). It is even possible that the
attacker changes the state of an actuator through bypassing the
actual commands coming from the PLC.

In this experiment we focus on the integrity of SWaT system
following the STRIDE model. In fact, we use model checking
to detect the undesirable events that might happen while
attackers tamper the channels (e.g., by injecting packets) and
compromise sensors/actuators by altering their functionality
(e.g., physical attack).

C. SWaT Actor Model

The actor model of the SWaT system is depicted in
Figure 4. In this model, each shape represents an actor which
corresponds to a component in the SWaT abstract architecture
presented in Figure 3. Each arrow models a message passed
between two components. In the model, the messages that may
be the targets of attackers are distinguished from the secure
ones. The red points with numbers from one to six indicate the
possible compromised channels where the attackers may inject
messages. The channels between PLCs and sensors/actuators
can be compromised due to the lack of strong authentication
methods and tamper-resistant mechanisms. However, the PLCs
communicate with each other through a separate protected
network. For example, the open Req or the on Req message
passed in the secured channel between the PLCs may not be
the target of any attacker. However, the messages (l, m, and h)
which are transmitted from the sensors to the PLCs indicate
the water level and may be tampered by an attacker to affect
the decisions made by the PLCs. The blue points represent
the components that may behave maliciously. Typically, the
malicious behaviour of the component leads to a faulty data
transmission. For instance, whenever a pump is compromised,
it may transmit message Turn On to the connected tank once it
receives the command Turn Off from the corresponding PLC.

In the SWaT actor model, we assume that the water level in
each tank is low in the initial state. Also, the water treatment
process begins by pumping raw water to Tank1 and it ends
when the cleaned water flows out of Tank3. During the process
execution, each sensor sends water level information to the
corresponding PLC periodically.

Based on the iTrust dataset (see Section V-A) in the SWaT
system the sensing period is 1 second, and the water level
is changed every 1000 seconds. We use these values for
setting the value of parameters (i.e., sensing interval and
operationTimeTank) in the Rebeca model, and also in the logic
of the code.

D. The Rebeca Model of the SWaT System

Here, we provide a detailed explanation of the Rebeca
model developed for SWaT system. The complete model is
available in [33].

Listing 1 shows an abstract view of the SWaT Rebeca
model. The main block includes the declarations of all rebecs
defined in the SWaT actor model (see Figure 4) together with
an attacker rebec. In each declaration, the first parameter list
includes the known rebecs, those which the declared rebec
communicates with. For example, the known rebecs of PLC1

are Valve, Pump1 and Sensor1. The second parameter list
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Figure 4: SWaT actor model.

includes the parameters to be passed to the constructor of the
rebec.

In addition to the main block, the Rebeca model includes
the reactive classes defining the behavior of the SWaT ac-
tors. For example, the PLC1 reactive class has three known
rebecs which are instances of reactive classes Pump1, Valve
and Sensor1. The PLC1 reactive class includes a Boolean
state variable openReqPlc2 whose value indicates whether a
water request is received from PLC2 or not. This variable is
initialized to false in the constructor of PLC1. Two Boolean
state variables pump1On and valveOpen indicate the current
status of Pump1 and Valve respectively. The definition of PLC1

includes three message servers i.e., processSensorData, open-
Req and closeReq. The message server processSensorData
processes the sensor data and issues commands on or off to
Pump1 and open or close to Valve accordingly. The message
servers openReq and closeReq are activated once a message
is received from PLC2.

The reactive class Pump1 includes four massage servers
on, off, KeepOnpumping and maliciousAct. The message
servers on and off update the value of the state variable
On based on the commands received from PLC1. The mes-
sage server KeepOnpumping calls increaseWater which takes
operationTimeTank units of time and increases the level of
water for one level in the tank. This continues until the
message server off receives the turn off message. Due to
space limitations, we exclude the explanation of other reactive
classes from this paper. Interested readers may refer to [33]
for more details.

E. Attack Models in Rebeca

In the Rebeca code, we model compromised actors
(Scheme-B Attacks) using two parameters that are passed to
all the actors that can be compromised (see Listing 1). The first
parameter sets the status of the actor, and the second parameter
sets the time of the attack. For example, the reactive class of
Pump1 includes a variable maliciousAction that can be set to
change the status of the component to be compromised or not
compromised. If this variable is set to be compromised then

although the pump receives a message to turn its status to on,
it turns it to off. For changing the variable maliciousAction
at different times in each run of the model, a message is
sent to Pump1 at a certain model time. This model time can
be configured and is passed to the pump as a parameter.
Similar to the compromised mode of Pump1, whenever the
value of the input parameter compromised is true for Valve,
then both message servers open and close behave maliciously
(for example the message server open changes the value of
state variable Open to false). The message server maliciousAct
corresponding to each sensor activates compromised mode for
the sensor, which causes the sensor to report invalid water
level to PLC1.

In addition to the reactive classes that define the normal
and compromised behavior of SWaT components, the Rebeca
model includes a reactive class named Attacker that models
the behaviour of potential attackers targeting channels to inject
messages (Scheme-A Attacks).

As we assume that attackers may target the communication
channels between any two components in SWaT system, the
knownrebecs section of reactive class Attacker includes all the
other rebecs defined in the Rebeca model. The constructor of
this class has three arguments representing the target channel,
malicious message content, and attack time. Since there are six
channels in the system, the value of the first argument would
be a number between 1 and 6. Based on the value passed
to this argument, the message server responsible for sending
malicious messages to the corresponding channel is invoked by
the constructor. Message content is another numeric argument
whose value indicates either the water level in a tank, an
on/off command for Pump, or an open/close command for
Valve. Finally, the third argument represents the time during
the system operation that the malicious message is sent to a
channel.

F. Properties of Interest

The goal of attacks on the SWaT system is to cause an
overflow or underflow in one of the tanks. An overflow may
harm some of the critical units such as the UF or RO and
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lead to flow out unclean water, and an underflow may damage
a valve or a pump. Accordingly, the properties presented in
Figure 5 are considered to be verified on the Rebeca model
of SWaT system.

property {
define {

t1_overFlow = tank1.overFlow;
t1_underFlow = tank1.underFlow;
t2_overFlow = tank2.overFlow;
t2_underFlow = tank2.underFlow;
t3_overFlow = tank3.overFlow;
t3_underFlow = tank3.underFlow;}

Assertion{
safety_tank1_over: !(t1_overFlow);
safety_tank1_under: !(t1_underFlow);
safety_tank2_over: !(t2_overFlow);
safety_tank2_under: !(t2_underFlow);
safety_tank3_over: !(t3_overFlow);
safety_tank3_under: !(t3_underFlow);}

}

Figure 5: Security properties considered in the SWaT system.

G. Model Checking and Abstract States

Figure 6 represents an abstract view of the state transition
diagram of the SWaT system during a normal operation. The
diagram is derived manually from the state space generated
automatically by Afra. Each state shows the water level in
the three tanks and the status of the pumps and the valve.
Each transition between two states indicates an increase or/and
decrease of the water level of some tank(s). Whenever a
waterIncrease or waterDecrease occurs in a tank, then the
attached sensor informs the corresponding PLC to update the
status of the pumps and the valve based on the sensed data.
Each state in Figure 6 represents a set of states and transitions
in the state space generated by model checking. In each of
these abstract states the total amount of progress of time in
the including transitions is shown. The state space generated
through model checking by Afra includes 42k states and 53k
transitions.

tank1.waterIncrease()
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Pump2_off
Valve_close
----------------
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1000 s
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----------------
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Valve_open
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----------------
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tank1.waterIncrease()
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----------------
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sensors.sense()

sensors.sense()

sensors.sense()sensors.sense()

sensors.sense()sensors.sense()

Figure 6: The abstracted state transition of SWaT system.

H. Model Checking and Security Analysis

In order to analyze the security properties of the SWaT
system using the developed Rebeca model, we follow three
attack schemes presented in Section III-B. The outcome of the

analysis includes the attack scenarios which lead the system
to security violation. To cover all possible attack scenarios
by model checking, we need to generate all combinations of
different values for the input parameters of the attacker and
the compromised components, and verify the model for each
combination. A Python script is developed to automate input
value generation and accumulation of the verification results.
This approach is similar in its nature to the automated verifica-
tion technique using symbolic modeling and constraint solving
in [34]. Here we use an algorithmic approach to enumerate
all the possible attack scenarios. In total we modeled 105
communication attacks and 84 attacks on components, and
also the combination of these attacks (resulting in 8820 attack
scenarios). Totally, out of all above possible attack scenarios
29 cases successfully violate the system security which we
report in Tables II, III and IV.

Table II presents the outcomes of the analysis process for
Attack on Communication (Scheme-A). The results indicate at
which system state the injected message has caused security
violation. For example, assume that the system is in state S0

(see the state transition diagram in Figure 6), and the attacker
injects a malicious message into the channel between Sensor1
and PLC1 (see channels in Figure 4). This message wrongly
reports the level of water in Tank1 as being High. Tank1 will
underflow afterwards, because Turn off Pump1 and Open Valve
are issued by PLC1 after receiving the message (line 5 in
Table II).

Table II: Model checking results in Attack on Communication (Scheme-A).
# Tank Property Injected Message Communication

Channel
System State

1 Tank1 Overflow Water level in Tank1 is low Sensor1 to PLC1 Si+1

2 Tank1 Overflow Turn on Pump1 PLC1 to Pump1 Si+1

3 Tank1 Overflow Water level in Tank1 is low Sensor1 to PLC1 Si+2

4 Tank1 Overflow Turn on Pump1 PLC1 to Pump1 Si+2

5 Tank1 Underflow Water level in Tank1 is high Sensor1 to PLC1 S0

6 Tank2 Overflow Water level in Tank2 is medium Sensor2 to PLC2 Si+1

7 Tank2 Overflow Open Valve PLC1 to Valve Si+1

8 Tank3 Overflow Water level in Tank3 is high Sensor3 to PLC3 Si

9 Tank3 Overflow Open Valve PLC1 to Valve Si

10 Tank3 Underflow Turn on Pump2 PLC3 to Pump2 S0

11 Tank3 Underflow Turn on Pump2 PLC3 to Pump2 S1

12 Tank3 Underflow Water level in Tank3 is high Sensor3 to PLC3 S2

13 Tank3 Underflow Turn on Pump2 PLC3 to Pump2 S2

14 Tank3 Underflow Water level in Tank3 is high Sensor3 to PLC3 Si+2

15 Tank3 Underflow Turn on Pump2 PLC3 to Pump2 Si+2

Table III shows the results of model checking on the Rebeca
model for Attack on Components (Scheme-B). These results
indicate at which system state the compromised component
causes security violation. For example, assume that the system
is in state Si+1 and Sensor2 is compromised. This sensor sends
a wrong report about the water level of Tank2 to PLC2. This
report indicates the level of water as being Medium, whereas
the real level is High. Upon receiving this report, PLC2 opens
Valve and causes Tank2 to overflow (line 5 in Table III).

The analysis results in Table IV indicate that by using the
modeling method presented in Combined Attack (Scheme-C),
such collaborative attack can be easily detected. For example
assume that the system is in state S0 and an attacker injects
message Open Valve into the communication link between
PLC1 and Valve, and at the same time another attacker com-
promises Pump1 to be turned off, then Tank1 will underflow
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Table III: Model checking results in Attack on Components (Scheme-B).

# Tank Property Compromised
Component

Malicious Behaviour System State

1 Tank1 Overflow Sensor1 Water level in Tank1 is low Si+1

2 Tank1 Overflow Pump1 Turn on Si+1

3 Tank1 Overflow Sensor1 Water level in Tank1 is low Si+2

4 Tank1 Underflow Sensor1 Water level in Tank1 is high S0

5 Tank2 Overflow Sensor2 Water level in Tank2 is medium Si+1

6 Tank3 Overflow Sensor2 Water level in Tank2 is low Si

7 Tank3 Overflow Valve Open Si

8 Tank3 Underflow Pump2 Turn on S1

9 Tank3 Underflow Sensor3 Water level in Tank3 is high S2

10 Tank3 Underflow Pump2 Turn on Si+1

11 Tank3 Underflow Sensor3 Water level in Tank3 is high Si+2

(line 1 in Table IV). As another example, if the system is in
state S1, Sensor2 is compromised and a malicious message
of high water level for Tank3 is injected into the channel
between Sensor3 and PLC3, then Tank3 will underflow (line 3
in Table IV). Note that the scenarios presented in Table IV
are those in which the single attacks (message injection or
the compromised component) do not cause a security failure
separately, but the combination leads to the security violation.
If we assume that the system is robust against the scenarios
in Table II and Table III, the system may still be vulnerable
against the collaborative attacks in Table IV.

VI. RELATED WORK

Several modeling and simulation methods have been pro-
posed for analyzing the security of CPSs. In this section, we
review the ones most related to the method presented in this
paper.

Wasicek et al. [35] propose an aspect-oriented technique
to model attacks against CPSs. They use Ptolemy [36] as
the modeling and simulation framework, and demonstrate the
practicality of their technique through modeling four types of
attacks on an automotive control system. They also illustrate
how Ptolemy [36] can be used to simulate the behavior of
system components and detect anomalies.

Taormina et al. [15] propose another simulation-based ap-
proach that is implemented in a MATLAB toolbox to analyze
the risk of cyber-physical attacks on water distribution sys-
tems. In this approach, they analyze the hydraulic response
of water networks to several attacks implemented in a MAT-
LAB toolbox. The implemented attacks are extracted from a
graphical attack model which includes the cyber and physical
elements that may be the targets of attack together with the
types of attacks they might be subject to. Using this approach
we can analyze the security of water networks toward several
kinds of attacks. In [1], [16], the authors rely on simulation to
perform their analyses. They propose a new metric to quantify
the impact of attacks on components of the target CPS. This
metric can be used to perform cost-benefit analysis on security
investments.

Furthermore, there are several formal methods examine
CPS security. In [14], Kang et al. use Alloy to model SWaT
behavior and potential attackers. They can discover the un-
detected attacks which cause safety failure (e.g., water tank
overflow). The study is considered as run-time monitoring,

where compares actual invariant of the SWaT system and out-
put state in the Alloy model checker during system operation.
Although some important attack scenarios are identified using
this approach, each run of the analysis considers only one
point of the system to attack. Using the actor-based method
presented in this paper, we are able to detect scenarios in
which several attackers attack to different components and
communication channels at various times of system operation.
Furthermore, defining attacker actors in the Rebeca model
helps us to detect sabotages in the system by analyzing the
behavior of various kinds of attack scenarios that exploit
communication and components vulnerabilities.

Rocchetto and Tippenhauer [37] present another formal
method for discovering feasible attack scenarios on SWaT.
ASLan++ is the formal language used for modeling the
physical layer interactions and CL-AtSe is a tool used to
analyze the state space of the model and discover the potential
attack scenarios. As the result, they succeed to find eight attack
scenarios. A distinctive feature of this method is providing
support for modeling different attacker profiles. However, only
one profile can be active at each moment, whereas Rebeca
allows us to have multiple profiles active simultaneously.

Fritz and Zhang [38] consider CPSs as discrete-event sys-
tems and model them using a variant of Petri nets. They
propose a method based on permutation matrices to detect
deception attacks. In particular, they can detect attacks by
changing the input and output behavior of the system and
analyzing its effect on the system behavior. Covert attacks and
replay attacks are two kinds of attacks modeled and analyzed
in this study. However, the combinations of attacks are not
considered.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present an approach to model and analyze
the security properties of CPS using formal methods. We
define three attack schemes targeting communication channels,
components, and the combination of each, and then verify
if the attacks could compromise the system security. In this
approach, we use an actor-based modeling language Rebeca.
The language facilitates modeling and analysis of the normal
system behavior as well as the malicious behavior of potential
attackers.

We present a case study on a Secure Water Treatment
(SWaT) System. This case study shows how each component
in a cyber-physical system can be directly mapped to an
actor in a Rebeca model. We demonstrate how the Afra
model checking tool makes it possible to discover various
potential attack scenarios. The presented approach enables
the evaluation of the attack scenarios in a practical case
study where some of the scenarios were not easily manually
analyzable.

As future work, we intend to extend the application of our
method to security analysis during run-time system operation
and also analyze mitigation strategies together with attack
scenarios.
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Table IV: Model checking results in Combined Attack (Scheme-C).
# Tank Property Injected Message Communication

Channel
Compromised
Component

Malicious Behaviour System State

1 Tank1 Underflow Open Valve PLC1 to Valve Pump1 Turn Off S0

2 Tank3 Underflow Water level in Tank2 is medium Sensor2 to PLC2 Sensor3 Water level in Tank3 is high S0

3 Tank3 Underflow Water level in Tank3 is high Sensor3 to PLC3 Sensor2 Water level in Tank2 is medium S1
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1 env boolean p1Compromised = false; env int p1Compromised_time = 0;
2 env boolean s1Compromised = false; env int s1Compromised_time = 0;
3 env boolean vCompromised = false; env int vCompromised_time = 0;
4 env boolean s2Compromised = false; env int s2Compromised_time = 0;
5 env boolean p2Compromised = false; env int p2Compromised_time = 0;
6 env boolean s3Compromised = false; env int s3Compromised_time = 0;
7 env int chl = 1;
8 env int malMsg = 0;
9 env int attackTime = 0;

10 env int sensing_interval = 1;
11 env int operationTimeTank = 1000;
12 //..............................................
13 reactiveclass PLC1(5){
14 knownrebecs{
15 Pump1 pump1;
16 Valve valve;
17 sensorTank1 sensor1;}
18 statevars{
19 boolean openReqPlc2, pump1On, valveOpen;
20 int waterLevelTank1;}
21 PLC1(){
22 openReqPlc2 = false;
23 waterLevelTank1 = 0;
24 pump1On = false;
25 valveOpen = false;}
26 msgsrv processSensorData(int waterLevel){
27 if (waterLevel == 1){
28 if (waterLevelTank1 != waterLevel){
29 pump1.on(); pump1On = true;}
30 } else if (waterLevel == 2 && openReqPlc2 == true
31 && pump1On == true && valveOpen == false){
32 if (waterLevelTank1 != waterLevel){
33 openReqPlc2 = false; valve.open(); valveOpen = true;}
34 } else {...}
35 waterLevelTank1 = waterLevel;}
36 msgsrv openReq(){ openReqPlc2 = true;}
37 msgsrv closeReq(){ valve.close();}
38 }
39 reactiveclass PLC2(5){...}
40 reactiveclass PLC3(5){...}
41 //..............................................
42 reactiveclass Tank1(10){
43 knownrebecs{
44 sensorTank1 sensor;}
45 statevars{
46 boolean underFlow,low,medium,high,overFlow;
47 int status;}
48 Tank1(){
49 underFlow = false; overFlow = false;
50 low = true; medium = false; high = false;}
51 msgsrv status(){
52 if (underFlow){sensor.reportStatus(0);
53 } else if (low){sensor.reportStatus(1);
54 } else {...}}
55 msgsrv waterIncrease(){
56 delay(operationTimeTank);
57 ... //changes water level status
58 if (low == true) {low = false; medium = true; high = false;
59 } else if (medium == true) {low = false; medium = false; high = true;
60 } else if (high == true) {
61 overFlow = true; low = false; medium = false; high = false;}}
62 msgsrv waterDecrease(){...}
63 }
64 reactiveclass Tank2(10){...}
65 reactiveclass Tank3(10){...}
66 //..............................................
67 reactiveclass Pump1(10){
68 knownrebecs{
69 Tank1 tank1;}
70 statevars{
71 boolean On, maliciousAction;}
72 Pump1(boolean compromised, int compTime){
73 on = false;
74 maliciousAction = false;
75 if (compromised == true) { self.maliciousAct() after(compTime);}}
76 msgsrv on(){
77 if(maliciousAction == true) { on = false; maliciousAction = false;
78 } else if (on == true) { //do nothing
79 } else { on = true; tank1.waterIncrease();
80 self.KeepOnpumping() after(operationTimeTank);}}
81 msgsrv KeepOnpumping(){
82 if (on == true) {
83 tank1.waterIncrease();
84 self.KeepOnpumping() after(operationTimeTank);}}
85 msgsrv off(){
86 if(maliciousAction == true) { on = true; tank1.waterIncrease();
87 self.KeepOnpumping() after(operationTimeTank);
88 maliciousAction = false;
89 } else {on = false;}}
90 msgsrv maliciousAct(){ maliciousAction = true;}

91 }
92 reactiveclass Pump2(10){...}
93 reactiveclass Valve(10){...}
94 //..............................................
95 reactiveclass SensorTank1(10){
96 knownrebecs{
97 Tank1 tank1;
98 PLC1 plc1;}
99 statevars{

100 boolean underFlow,overFlow;
101 boolean low,medium,high;
102 boolean maliciousAction;
103 int sensing_interval;}
104 SensorTank1(boolean compromised, int compTime){
105 ... // initialize boolean variables with false
106 sensing_interval = 1; maliciousAction = false;
107 if (compromised == true) {
108 self.maliciousAct() after(compTime);}
109 self.sense();}
110 msgsrv sense(){tank1.status();}
111 msgsrv reportStatus(int waterLevel) {
112 if (waterLevel == 1) {
113 if (maliciousAction == true) {
114 plc1.processSensorData(2);
115 ... //other boolean variables are false.
116 medium = true;
117 } else {
118 low = true;
119 ... //other boolean variables are false.
120 plc1.processSensorData(1);}
121 }else if (waterLevel == 1) {
122 low = true;
123 plc1.processSensorData(1);}
124 else {
125 ... //sends sensed data to PLC1.
126 tank1.status() after(sensing_interval);
127 }
128 msgsrv maliciousAct(){maliciousAction = true;}
129 }
130 reactiveclass SensorTank2(10){...}
131 reactiveclass SensorTank3(10){...}
132 //..............................................
133 reactiveclass reverseOsmosisUnit(5){
134 knownrebecs{
135 Tank2 tank2;
136 Tank3 tank3;}
137 statevars { boolean drinkableWater;}
138 reverseOsmosisUnit(){ drinkableWater = false;}
139 msgsrv waterIncreaseTank3(){
140 tank2.waterDecrease(); tank3.waterIncrease();}
141 msgsrv cleanWater(){
142 tank2.waterDecrease(); drinkableWater = true;}
143 }
144 //..............................................
145 reactiveclass Attacker(3){
146 knownrebecs{
147 PLC1 plc1;
148 PLC2 plc2;
149 PLC3 plc3;
150 Pump1 pump1;
151 Pump2 pump2;
152 Valve valve;}
153 Attacker(int chl, int maliciousMsg, int attackTime){
154 if (chl == 1) { self.channelPlc1P1(maliciousMsg, attackTime);
155 } else if (chl == 2) {self.channelPlc1S(maliciousMsg, attackTime);
156 } else {...}}
157 msgsrv channelPlc1P1(int msg, int attackTime){
158 if(msg == 1) { pump1.on() after(attackTime);
159 } else if(msg == 0) { pump1.off() after(attackTime);}}
160 msgsrv channelPlc1S(int msg, int attackTime){
161 plc1.processSensorData(msg) after(attackTime);}
162 ... //message servers
163 }
164 main{
165 PLC1 plc1(pump1,valve,sensor1):();
166 PLC2 plc2(plc1,plc3,sensor2):();
167 PLC3 plc3(pump2,tank3,sensor3):();
168 Tank1 tank1(sensor1):();
169 Tank2 tank2(sensor2,unit):();
170 Tank3 tank3(sensor3,tank2):();
171 sensorTank1 sensor1(tank1,plc1):(s1Compromised,s1Compromised_time);
172 sensorTank2 sensor2(tank2,plc2):(s2Compromised,s2Compromised_time);
173 sensorTank3 sensor3(tank3,plc3):(s3Compromised,s3Compromised_time);
174 Pump1 pump1(tank1):(p1Compromised,p1Compromised_time);
175 Pump2 pump2(tank2,tank3):(p2Compromised,p2Compromised_time);
176 Valve valve(tank1,tank2):(vCompromised,vCompromised_time);
177 reverseOsmosisUnit unit(tank2,tank3):();
178 Attacker attacker(plc1,plc2,plc3,pump1,pump2,
179 valve):(chl,malMsg,attackTime);
180 }

Listing 1: An abstract version of the SWaT system Rebeca model.
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