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Abstract—Blockchain is a shared, distributed ledger on which
transactions are digitally recorded and linked together. Smart
Contracts are programs running on Blockchain and are used
to perform transactions in a distributed environment without
need for any trusted third party. Since smart contracts are used
to transfer assets between contractual parties, their safety and
security are crucial and badly written and insecure contracts
may result in catastrophe. Actor-based programming is known
to solve several problems in building distributed software systems.
Moreover, formal verification is a solid technique for developing
dependable systems. In this paper, we show how the actor
model can be used for modeling, analysis and synthesis of
smart contracts. We propose Smart Rebeca as an extension of
the actor-based language Rebeca, and use the model checking
toolset Afra for verification of smart contracts. We implement
a synthesizer to synthesise Solidity programs that run on the
Ethereum platform from Smart Rebeca models. We examine
challenges and opportunities of our approach in modeling, formal
verification and synthesis of smart contracts using actors.

Index Terms—Smart Contract, Actor Model, Safety Verifica-
tion, Model Checking

I. INTRODUCTION

Smart contracts are lines of code that are stored on a
Blockchain and automatically executed when predetermined
terms and conditions are met. Blockchain is a shared, dis-
tributed ledger on which transactions are digitally recorded
and linked together. It can be seen as time-stamped series
of immutable record of data that is managed by a cluster of
computers not owned by any single entity, and provide the
entire history of transactions. The benefits of smart contracts
are most apparent in business collaborations. These contracts
are typically used to enforce some kind of agreement, and
are used to perform transactions in a distributed environment
without need for any trusted third party.

Since smart contracts are used to transfer valuable assets
between contractual parties, their safety and security are of
paramount importance. Blockchain assures deterministic exe-
cution and consistent state representations, but it cannot guard
against badly written or insecure contracts. Therefore, careful
design and implementation of contracts is still necessary
[1]. Moreover, contracts may be the target of adversaries
with malicious intents e.g. to transfer money from legitimate
users to themselves. A significant number of deployed smart
contracts are intentionally fraudulent [2], and a recent analysis
on 20K of them indicated that each of them had at least one

security issue [3]. Besides, there is no way to patch bugs and
vulnerabilities of smart contracts due to their immutability.

Accounts using smart contracts in a Blockchain are like
threads using concurrent objects in shared memory [4]. There
are well-known pitfalls in building distributed and concurrent
systems using threads [5], and well-established practices for
avoiding these problems. For example in Solidity [6] (one
of the most mature languages for building smart contracts)
execution of smart contracts callback functions and implicit
arbitrary execution of fallback functions can cause concur-
rency problems. A contract may call an external service
that calls the contract’s callback function in response. If the
contract calls more than one service the order of callbacks
may be significant while there is no guarantee that the order is
preserved. Fallback functions are called because of the Solidity
payment mechanism and their order of execution can change
the results tremendously.

Most of the currently existing work on verification of smart
contracts, e.g. Ahrendt et.al. in [7] and Osterland et.al. in
[8], focus on program verification rather than concurrency
problems. However, a wide range of issues in safety and
security of smart contracts are concurrency problems.

Using actors is a way towards building less error-prone dis-
tributed and concurrent models [5]. In this paper, we propose
a model-driven approach for developing smart contracts using
actors. We propose Smart Rebeca as an extension of the actor-
based language Rebeca [9], [10]. Smart contracts are modeled
using Smart Rebeca. Smart Rebeca has a syntax similar to
Solidity and is supported by the model checking tool Afra [11].
Counter examples are generated and help in debugging the
model. Then the correct model can be transformed to Solidity
code. Hence, the modeler is enabled to assure the safety and
security of Solidity smart contracts before the synthesis. By
using the model checking tool of Rebeca, we can find a set
of concurrency issues and program bugs. Synthesis of smart
contracts based on a formally verified model provides correct-
ness by design which results in improving public acceptance
of smart contracts.

II. PRELIMINARIES

A. Solidity

Currently, Bitcoin and the Ethereum virtual machine (EVM)
are the most popular platforms that support smart contract de-
velopment. Among the languages designed to target Ethereum,



Solidity [6] is the most mature and popular one. Solidity
is an object-oriented language influenced by C++, Python
and JavaScript. This language is statically typed, supports
inheritance, libraries and complex user-defined types among
other features. However, writing smart contracts in Solidity
is still challenging [12], mainly due to the need to use un-
conventional programming paradigms like fallback functions,
function modifiers, etc.

In Listing 1, the code of a simple contract which provides
basic banking operations is shown in Solidity.

1 contract Bank{
2 mapping(address=>uint) userBalances;
3 function getUserBalance(address user)

constant returns(uint) {
4 return userBalances[user];
5 }
6 function addToBalance() {
7 userBalances[msg.sender] =
8 userBalances[msg.sender] + msg.value;
9 }

10 function withdrawBalance() {
11 uint amount =
12 userBalances[msg.sender];
13 if (msg.sender.call.value(amount)()

== false) {
14 throw;
15 }
16 userBalances[msg.sender] = 0;
17 }
18 }

Listing 1. Smart Contract’s Code of a simple bank in Solidity

A contract is like a class in object-oriented languages,
consisting of declaration of state variables, functions, function
modifiers, events, structure types, enum types, etc. The values
of the state variables (e.g. line 2 of Listing 1) are stored
in the blockchain. Provided functions of smart contracts can
be called by users or other contracts. In the contract of
Listing 1, the user can deposit to the bank with the function
addToBalance and withdraw using withdrawBalance
function. The variable userBalances is a hash table that
saves the money balance of each user with users addresses in
the blockchain. Note that functions may have parameters and
return values.

Functions have different levels of visibility for other
contracts, including public, private, external, and
internal. There is a set of function modifiers that can be
associated with functions to amend the semantics of functions
in a declarative way. For example, in line 3 of Listing 1,
declaring getUserBalance as a constant function,
disallows assignment to state variables. Keywords pure,
view, payable, anonymous, indexed, virtual, and
override are used for other modifiers which their detailed
description is presented in [6].

In Solidity, there are special variables and functions that are
used to retrieve information about the blockchain or provide
widely-used utility functions. For example, block.number
returns the current block number and msg.sender returns
the identifier of the sender of the message (line 7 and 8).

Another set of Solidity built-in functions are used for encod-
ing/decoding purpose which are encapsulated in the abi pack-
age or independent functions like sha256, keccak256, and
ecrecover. Solidity provides a set of functions for aborting
the execution and reverting changes which are assert,
require, and revert. The first two functions revert if their
input condition (i.e. a boolean expression) is not met. Also,
selfdestruct function can be used to destroy the current
contract and send its funds to its given Address.

B. Rebeca Modeling Language

Rebeca is an actor-based language designed for modeling
and verification of concurrent and distributed systems and is
supported by a model checking tool, Afra [9], [10]. There is
no shared variables among actors and the communication takes
place by asynchronous message passing. Rebeca is designed
with the goal to bridge the gap between software engineers
and the formal methods community. With usability as one of
the primary design goals, Rebeca’s concrete syntax is Java-
like (close to object-oriented languages), and its computation
and communication model is kept simple. Learning Rebeca
is fairly easy for programmers and using model checking
tools requires far less expertise than deduction-based analysis
methods. Rebeca has a formal semantics and allows efficient
compositional verification based on model checking. There are
multiple state space reduction techniques designed for Rebeca
based on its actor-based model of computation [13], [14].

In Rebeca a set of actors are defined and each actor has
an unbounded buffer, called message queue, for its arriving
messages. Computation in Rebeca is event-driven, meaning
that each actor takes a message that can be considered as
an event from the top of its message queue and executes the
corresponding message server. The execution of a message
server is atomic which means that there is no way to preempt
the execution of a message server of an actor and start
executing another message server of that actor.

A Rebeca model consists of a set of reactive classes and the
main block. In the main block, actors which are instances of
the reactive classes are declared. The body of the reactive class
includes the declaration of its known rebecs, state variables,
private methods, and message servers. A very simple example
of a bank reactive class is depicted in Listing 2 which its
behavior is similar to the smart contract of Listing 1. Message
servers and private methods consist of the declaration of local
variables and the body of the message server. The statements in
the body can be assignments (line 11), conditional statements,
enumerated loops, non-deterministic assignment, and method
or message server calls. Message server calls are sending
asynchronous messages to other actors (line 13) or to itself.
Private methods cannot be called by other actors. A private
method starts with the type of its return value instead of the
msgsrv keyword (lines 9 to 11 of Listing 2).

A reactive class has an argument of type integer denoting
the maximum size of its message queue (line 1 shows that the
size is 10 for this reactive class). Although message queues
are unbounded in the semantics of Rebeca, to ensure that the



state space is finite, we need a user-specified upper bound for
the queue size. The operational semantics of Rebeca has been
introduced in [9] in more detail. Actors in Rebeca are single-
threaded which is aligned with smart contracts in Solidity .

1 reactiveclass Bank(10){
2 knownrebecs {
3 Client client1, client2, client3,
4 client4, client5;
5 }
6 statevars{
7 int[5] balances;
8 }
9 int getUserBalance(int id) {

10 return balances[id];
11 }
12 msgsrv addToBalance(int id, int amount) {
13 balances[id] += amount;
14 }
15 msgsrv withdrawBalance(int id, int r) {
16 ((Client)sender).receive(balances[id]);
17 balances[id] = 0;
18 }
19 }

Listing 2. Bank contract in Rebeca

A Rebeca code can be model checked against a given set
of Linear Temporal Logic (LTL) properties. These properties
specify the correct behaviors/states of the model. For example,
in the case of the bank contract, one correctness property
is that the balance of all clients must be none-negative in
all the states. This property can be specified in LTL using
�(balance1 ≥ 0∧· · · balance5 ≥ 0) formula. Figure 3 shows
how the mentioned LTL property is specified in the Rebeca
property file.

At the first step, the atomic propositions of the formula are
defined in the define section, considering the state variables
of the actors. As depicted in Figure 3, five atomic propositions
are defined for the bank contract example which examine
balances for all clients (lines 2 to 8). The name of atomic
propositions are b1 to b5 and their corresponding formula is
put after the equal sign. In the LTL section correctness proper-
ties are specified (line 10). In this example, only one property
with the name Safety is defined. Textual presentation of
LTL modality Always (�) is G in Rebeca property files and
conjunction between atomic propositions is shown by &&.

1 property {
2 define {
3 b1 = bank.balance[1] >= 0;
4 b2 = bank.balance[2] >= 0;
5 b3 = bank.balance[3] >= 0;
6 b4 = bank.balance[4] >= 0;
7 b5 = bank.balance[5] >= 0;
8 }
9 LTL {

10 Safety:G(b1 && b2 && b3 &&
11 b4 && b5);
12 }
13 }

Listing 3. The property file for the Rebeca code in Listing 2
stating the safety property as an LTL formula

III. SMART REBECA FOR SMART CONTRACTS

Smart contracts are a sequence of source codes that are
sequentially executed in an atomic step. It means that when a
user or a device asks for calling one of the functions of a con-
tract, lines of the code will be executed in the written order and
no other request will be processed until ending the execution of
that function (i.e. none-preemptive execution). Also when an
error or an exception happens in the code, performed changes
are reverted. Considering this characteristic of smart contracts,
it seems that they are easy to model, analyze, and synthesize.
However, there are many challenges in modeling and analyzing
smart contracts which have to be considered. For example,
supporting all the built-in functions of abi package of Solidity
or accessing block and transaction properties in Rebeca is not
easy. This makes program verification of Solidity contract in
Rebeca more challenging.

To address the mentioned challenges we develop Smart
Rebeca as an extension of Rebeca with a set of annotations
to be able to model Solidity features that are not supported
in Rebeca. In the following sections we propose a mapping
between Solidity language constructs and Smart Rebeca and
clarify the parts of Solidity that are not supported by Smart
Rebeca.

A. Mapping between Smart Rebeca and Solidity

We use the Solidity source code of a casino contract as
the running example to show how Solidity smart contracts
can be modeled using Rebeca, and what extensions to Rebeca
are needed to be able to model smart contracts efficiently.
By applying these extensions to Rebeca we build the Smart
Rebeca language. The casino contract regulates how a casino
should make a coin-tossing game available to the players.
In this model, a player makes a guess and the last player
who makes the correct guess wins the game. This contract is
developed based on the following legal contract items, which
are presented in [7].

• The casino owner may deposit or withdraw money from
the casino’s bank as long as the bank’s balance never falls
below zero.

• As long as no game is in progress, the owner of the
casino may make available a new game by tossing a
coin and hiding its outcome. The owner must also set
a participation cost of choice for the game.

• The bank balance may never be less than the sum of the
participation cost of the game and its win-out.

• The win-out for a game is set to be 80% of the partici-
pating cost.

The Solidity implementation of the smart contract of this le-
gal contract is depicted in Listing 4. The function placeBet
is invoked by external players to place a bet (lines 45-51). The
functions withdraw (lines 15-23), startTheGame (lines
31-36), and endTheGame (lines 37-44) are invoked by the
casino owner to manage the game life cycle. Note that in this
model the function tossACoin (lines 25-30) is developed to
model random number generation which should be replaced



with a fair external random number generation mechanism.
This implementation ensures that the mentioned legal contract
is never violated.

1 contract Casino {
2 address owner;
3 bool coinResult, guessedValue;
4 uint gameState, betValue;
5 uint public constant STATE_GAME_STOPPED=0;
6 uint public constant STATE_GAME_STARTED=1;
7 uint public constant STATE_GAME_BET_PLACED=2;
8 uint nonce = 10;
9 address public player;

10
11 function Casino() {
12 owner = msg.sender;
13 gameState = STATE_GAME_STOPPED;
14 }
15 function withdraw(uint amount){
16 assert( msg.sender==owner);
17 //if game’s not stopped we require to have

enough money to pay the player
18 if(gameState!=STATE_GAME_STOPPED)
19 assert(amount<=this.balance-18*betValue/

10);
20 else
21 assert(amount<=this.balance);
22 owner.transfer(amount);
23 }
24 // a pseudo-random function which should be

replaced by an external service using
Oraclize

25 function tossACoin() internal returns (bool){
26 uint randomnumber = uint(keccak256(now,

msg.sender, nonce)) % 900;
27 randomnumber = randomnumber + 100;
28 nonce++;
29 return randomnumber>450;
30 }
31 function startTheGame(){
32 assert( msg.sender==owner);
33 coinResult = tossACoin();
34 // For simplicity we don’t use a Oraclize

service for a random guess
35 gameState = STATE_GAME_STARTED;
36 }
37 function endTheGame() {
38 assert( msg.sender==owner);
39 if(gameState==STATE_GAME_BET_PLACED) {
40 if(guessedValue==coinResult)
41 player.transfer(18*betValue/10);
42 gameState = STATE_GAME_STOPPED;
43 }
44 }
45 function placeBet(bool coinGuess) payable {
46 assert(gameState==STATE_GAME_STARTED);
47 player = msg.sender;
48 betValue = msg.value;
49 gameState = STATE_GAME_BET_PLACED;
50 guessedValue = coinGuess;
51 }
52 }

Listing 4. Casino Contract in Solidity

In the Rebeca implementation of the casino model, the
contract is modeled as the Casino reactive class which is

extended from the Contract reactive class. We embedded a
model of the blockchain inside Smart Rebeca Contract re-
active class, which its simplified version is shown in Listing 5.
The embedded model contains the bookkeeping (balances
of the contracts, e.g. line 3) and Ether transfer mechanisms
(send and receive functions in lines 8-14 and 15-17).
This way, to model a money transfer inside any contract,
developer only needs to call function send. If there is no
receive function, the Contract reactive class mimics the
Ethereum mechanism for money transfer by executing the
fallback function.

1 abstract reactiveclass Contract (10) {
2 statevars {
3 int balance;
4 }
5 Contract(int startBalance) {
6 balance = startBalance;
7 }
8 boolean send(Contract receiver,int value){
9 if (value > balance)

10 return false;
11 balance -= value;
12 receiver.receive(value);
13 return true;
14 }
15 msgsrv receive(int value) {
16 self.balance += value;
17 }
18 void fallback() { }
19 void callback() { }
20 }

Listing 5. The Contract abstract class in Rebeca

Functions of the contract are implemented as message
servers of Casino as they can be called asynchronously by
the external actors. The simplified version of the Smart Rebeca
model of Casino is shown in Listing 6. Besides, external
actors have to be added as other reactive classes. In the case
of Casino, they are Player and CasinoOwner reactive
classes. The complete code of this model is available at Rebeca
homepage [11].

1 env int GameStopped = 0;
2 env int GameStarted = 1;
3 env int BetPlaced = 2;
4 reactiveclass Casino extends Contract (10) {
5 knownrebecs {
6 CasinoOwner owner;
7 }
8 statevars{
9 int betValue, state;

10 boolean coinResult, guessedValue;
11 Player player;
12 }
13 Casino(int startBalance){
14 balance = startBalance;
15 betValue = 0;
16 state = GameStopped;
17 }
18 msgsrv withdraw(int amount){ ... }
19 msgsrv deposit(int amount) { ... }
20 msgsrv startTheGame() { ... }
21 msgsrv endTheGame() { ... }



22 msgsrv placeBet(int value, boolean guess)
23 { ... }
24 }
25 reactiveclass Player(10) { ... }
26 reactiveclass CasinoOwner(10){ ... }
27
28 main {
29 Casino casino(owner):(100);
30 CasinoOwner owner(casino):(100);
31 Player player(casino):(20);
32 }

Listing 6. The Casino contract in Rebeca

The syntax of Rebeca is Java-like and very similar to
the syntax of Solidity and transforming the body of func-
tions to message servers is straightforward. For instance, the
Rebeca codes of endTheGame and placeBet are shown
in Listing 7. Message servers and some statements of this
implementation is annotated with some keywords which will
be described in the following sections.
1 msgsrv endTheGame() {
2 @Assert(sender == owner)
3 if(state == BetPlaced){
4 if(guessedValue == coinResult)
5 transfer(betValue+(8*betValue) /10);
6 state = GameStopped;
7 }
8 }
9 @Payable

10 msgsrv placeBet(int value, boolean guess) {
11 @Assert(state == GameStarted)
12 player = (Player)sender;
13 betValue = value;
14 state = BetPlaced;
15 guessedValue = guess;
16 }

Listing 7. Detailed implementation of two message servers of Casino
in Rebeca

B. Smart Rebeca Annotations
To support special features of Solidity in Rebeca, instead

of extending the syntax of the language we added a set of
annotations. In the following sections, the detailed description
of the Solidity features which are supported by Smart Rebeca
and their corresponding annotations in Smart Rebeca are
presented.

1) Functions Visibility: Smart Rebeca only provides
public and private visibility modifiers of Solidity. Solid-
ity functions are defined as message servers in Smart Rebeca
and are publicly available for the other actors. Methods which
are called synchronously from message servers of a smart
contract are assumed private.

2) Function Modifiers: From the function modifiers of
Solidity, Smart Rebeca supports only payable modifier. We
will talk about this modifier and how the payment mechanism
is developed in Smart Rebeca in Section III-C. In Solidity,
new modifiers can be defined to encapsulate the common
behaviors of functions. Smart Rebeca supports these user
defined function modifiers. For example, in the following code
onlyOwner modifier is associated with abort function to
make this function available only to the owner (line 5).

1 contract Auction {
2 modifier onlyOwner() {
3 require(msg.sender == seller);
4 }
5 function abort() public onlyOwner {
6 // ...
7 }
8 }

In Smart Rebeca, user defined modifier functions are
implemented as private methods which are annotated with
@Modifier. A message server which the defined modifier
has to be associated with, uses @Modifier annotation with
a parameter, as shown in line 7 in the following listing.

1 reactiveclass Auction extend Contract (5) {
2 @Modifier
3 void onlyOwner() {
4 @Require(sender != owner)
5 return;
6 }
7 @Modifier(onlyOwner)
8 msgsrv abort() {
9 // ...

10 }
11 }

3) Block Chain Related Global Variables: In the current
version of Smart Rebeca, none of the block chain variables
(i.e. variables in the form of block.<func-name>) are
supported. Smart Rebeca only supports sender which is
passed to message servers implicitly.

4) Encryption/Decryption Libraries: In the current version
of Smart Rebeca, none of the abi functions and other
independent functions like sha256, keccak256, etc, which
are used for encryption and decryption are supported.

5) Error Handling: Two functions assert and require
of Solidity are used to make sure that their given expressions
are valid by evaluating them to true. They throw an exception
if the condition is not met. The function assert using up
all remaining gas in the failing condition and require will
refund the remaining gas. These two functions are modeled
with @Require or @Assert annotations. Line 2 of Listing 7
shows an example of using @Assert. Note that Smart Rebeca
does not support revert error handling mechanism.

6) Events: To inform the external component about the
execution of a contract function, a component can subscribe
to an event and when the event is emitted, its corresponding
code will be executed. In the following an event is defined in
line 2 and it is called in line 5.

1 contract Auction {
2 event inc(address bidder, uint amount);
3 function bid() {
4 // ...
5 emit inc(msg.sender, msg.value);
6 }
7 }

This mechanism is implemented by defining an empty body
method in Smart Rebeca and annotating it with @Event.
Upon needs for emitting the event, the empty body method



is called and the call statement is annotated with @Event as
well, as shown below.

1 reactiveclass Auction extend Contract (5) {
2 @Event
3 void inc(int bidder, int amount){}
4 msgsrv bid() {
5 // ...
6 @Event
7 inc(sender, value);
8 }
9 }

7) Variable Types: Rebeca supports a limited number of
variable types and its current version does not provide mecha-
nism for defining new data types. However, Solidity supports a
wide range of variable types, some of which are shown below.

1 contract Auction {
2 uint a;
3 address b;
4 ether c;
5 mapping(address => uint) votes;
6 }

In Smart Rebeca, variable types which have to be synthesized
to Solidity special types, should be annotated with target types
like below.

1 reactiveclass Auction extend Contract (5) {
2 @uint int a;
3 @address int b;
4 @ether int c;
5 @addressidx int votes[10];
6 }

The same can be done for all subdenomination of Ether, i.e.
wei, szabo, and ether.

C. Payment in Smart Rebeca

Defining a function as payable allows it to receive ether
while being called, as shown in the following code.

1 contract Auction {
2 function bid() payable { ... }
3 }

The payable functions are defined in Smart Rebeca using
@Payable annotation as shown below. The first parameter
of a payable function in Smart Rebeca has to be in form of
int value which shows the transferred value.

1 reactiveclass Auction extend Contract (5) {
2 @Payable
3 msgsrv bid(int value) { ... }
4 }

But, calling payable functions is not the only way of
transferring money in smart contracts. In smart contracts and
EVM, there are send and transfer functions for low
level money transfer. Using them, results in call of receive
method in the receiver side. Smart Rebeca only supports send
and implement it in the Contract reactive class. A modeler
can use these methods or overwrite receive in its own
contract.

In Solidity, a function named Fallback, can be defined
inside a contract (in Solidity this function has no name and
is shown by two parentheses in the code) which is called if
the method receive is not defined. Contracts that receive
Ether directly (without a function call, i.e. using send or
transfer) call fallback function which may lead to reen-
trancy attacks in smart contracts. The fallback function is also
called when a contract receives a request for calling a function
which does not exists.

In Smart Rebeca, as the reactive class Contract defines
receive for receiving money and defined fallback as an
empty body private method, the mentioned attack does not
happen.

D. Synthesizing Solidity Codes from Smart Rebeca Models

Transforming Smart Rebeca models to Solidity code is
straightforward as suggested in the above examples. Note
that in the transformation, there is no need for transforming
Contract reactive class as its functionality is provided by
EVM.

IV. ANALYSIS OF SMART REBECA

In the Blockchain, the order of executing transactions (re-
quests for executing contract functions) is determined by the
miners to increase their profit, and therefore it is somewhat
random. This policy leads to problem of the transactions
ordering and needs to be considered in the verification process.
In addition, arbitrary execution of callback functions as a result
of external service call and execution of fallback functions as a
result of Solidity payment mechanism may causes concurrency
issues. These concurrency issues have to be taken into account
in verification.

We transform Smart Rebeca models to Rebeca models to
perform formal verification. Transforming from Smart Rebeca
to Rebeca is straightforward and only function modifiers
and error handling notations have to be considered. In this
transformation, error handing annotations are replaced with an
if statement to mimic their behavior. The body of the user-
defined function modifiers are put as the first statement in the
body of message servers. For the case of payable functions,
one statement is added to the beginning of the body of those
functions to increase the balance of the contract with the given
value for the value parameter.

There is no need for more modification in the transfor-
mation of a Smart Rebeca contract to Rebeca except for
multi-contract models. In some cases, a contract is defined
as a set of independent contracts. Message passing between
contracts in Ethereum is usually synchronous. It means that in
corresponding Smart Rebeca model of such a contract, there
is a need for the synchronous call between actors which is not
allowed. To resolve this issue, a multi-contract Smart Rebeca
model is transformed to a Rebeca model in which the body of
all of the contracts are embedded in one reactive class. This
way, the required synchronous function calls are possible.



A. Concurrency in Smart Contracts

Referring to the sequential and non-preemptive execution of
smart contracts, it seems that there is no concurrent behavior
in smart contracts. But in many cases, smart contracts have to
communicate with the services outside of the Blockchain to
acquire data and run external services. Since connecting to an
external service is time-consuming and IO errors may happen
during the call, execution is performed asynchronously. This
way of calling external services is called Oracelizing service
call and may results in concurrency in execution [4].

We will illustrate concurrency problems using a gambling
contract called BlockKing [4], a part of it is shown in Listing 8.
The gamble in BlockKing works as follows. At any given time
there is a designated “Block King” which is initially set to the
writer of the contract. When money is sent to the contract
by a gambler s, a random number is generated and if the
current block number modulo 10 is equal to that number,
then s becomes the new Block King. Afterward, a portion
of the money in the contract (from 50% to 90%) is sent as
the reward to the new Block King, and the remained money
is set to the writer of the contract. In this model, there is
a need for generating random numbers, which is difficult to
be provided in deterministic systems. So, BlockKing uses a
trusted external web service to generate unpredictable random
numbers, Wolfram Alpha (an Oraclize service). In this contract
the enter function is called by the player and the bet money
is sent to the contract (lines 1-16). After setting the contract
variables (lines 10-12), a request is sent to the Oraclize
service (lines 13-15) and the function is terminated. The called
external service checks the request and after generating the
random number calls the callback function in the contract
with the generated number as the parameter. Meanwhile, many
other functions of the contract may be executed, and some
blocks and the state of the Blockchain may be changed. So,
there is no guarantee that the state of the BlockKing contract
at the time of callback be the same as its state at the time of
Oraclize service call.

1 function enter() payable {
2 /* 100 finney = .05 ether minimum payment
3 * otherwise refund payment and stop
4 * contract
5 */
6 if (msg.value < 50 finney) {
7 msg.sender.send(msg.value);
8 return;
9 }

10 warrior = msg.sender;
11 warriorGold = msg.value;
12 warriorBlock = block.number;
13 bytes32 myid =
14 oraclize_query(0,"WolframAlpha",
15 "random number in [1, 9]");
16 }
17 function __callback(bytes32 myid,
18 string result) {
19 if (msg.sender != oraclize_cbAddress ())
20 throw;
21 randomNumber = uint(bytes(result)[0])-48;
22 process_payment ();

23 }
24 function process_payment() {
25 ...
26 if (singleDigitBlock == randomNumber) {
27 rewardPercent = 50;
28 // If the payment was more than .999
29 // ether then increase reward percentage
30 if (warriorGold > 999 finney) {
31 rewardPercent = 75;
32 }
33 king = warrior;
34 kingBlock = warriorBlock;
35 }
36 }

Listing 8. Smart BlockKing Contract

There is a concurrency bug in this implementation of
BlockKing contract. Assume that multiple gamblers wish to
try their luck and attempt to play in a short period of time.
The presented implementation of this contract does not have a
mechanism for keeping track of different players and the newly
entered player overwrites the values of warriorBlock and
warrior in lines 10 to 12. This way, the contract only
knows the information regarding the last player. So, every
time the external service calls the callback function, only the
last player is considered for a chance of winning; although,
the other players paid for it. The problem lies in lines 24
to 32 of process_payment, which is called at the end
of the __callback function. Note that in Smart Rebeca,
the reactive class Contract has an empty body callback
function which mimics the behavior of the __callback
function.

Modeling of these kinds of behaviors can be performed
efficiently in Smart Rebeca, because it is designed for model-
ing concurrent behaviors and a modeler can easily model not
only the contract logic but also service providers and external
services. For instance, in BlockKing, a modeler can implement
the contract logic, users, and external service as different
reactive classes, then defines the correctness properties and
check the correctness.

B. Arbitrary Order of Execution

The fact that transactions and function calls are executed
in a nondeterministic order decided by miners may cause
concurrency problems. Model checking smart contracts can
reveal such potential problems. A newly issued request for
executing a function may be executed before the previously
issued requests. This nondeterminism may affect the correct-
ness of a contract when the logic of the contract depends on
the outcome of more than one request and the ordering is
significant.

For instance, assume that there is a bank contract and the
bank manager wants to add the yearly profit to the saving
accounts. He wants to add 5 percent profit to the account,
which can be implemented by multiplying the balances of
accounts by 1.05. Also, assume that there is a customer who
wants to withdraw 10 dollars from his account which its
balance is 100 dollars. Now in a scenario that these two



requests are waiting for execution on Blockchain, the balance
of the customer account may have two different values since
the order of the transactions cannot be determined no matter
which request comes earlier (one of 94.5 or 95 dollars). This
was an example of how racing condition affects the outcome of
a contract. This type of nondeterminism is considered by Afra.
In the case of having more than one message to handle, model
checkers chooses one of the messages nondeterministically
and handle it.

V. RELATED WORK

A. Smart Contracts and Solidity

In the recent years, several programming languages have
been defined on top of Ethereum virtual machine (EVM)
platform. For example, Bitcoin script is a non-Turing complete
language, which allows implementing a limited form of smart
contracts. In particular, this language supports some basic
arithmetic and logical operators, but no loops, and it suffers
from low expressiveness [15]. Ivy [16] is another Bitcoin
language, which is more secure than Bitcoin script. In fact,
by constraining the expressiveness of Bitcoin script as well as
introducing financial asset and transaction notions as first-class
concepts, it renders large classes of potential smart contract
vulnerabilities simply impossible by design. The functional
language Simplicity is another notable language for designing
smart contracts that are secure by design [17]. Simplicity
is a functional language without loops and recursion, which
comes with formal denotational semantics defined in Coq. This
language is still under development. Vyper [18] is another
Ethereum language, which is designed to be secure and
simple. Following these goals, this language does not provide
support for some features such as modifiers, inheritance and
overloading. As another Ethereum language, Bamboo [19] is
defined to provide support for formal verification. In par-
ticular, this language makes state transitions explicit, which
is beneficial for model-checking purposes. Developers define
which functions can be called in each state, and the language
provides constructs to specify changes of state explicitly.
However, Bamboo does not present any additional features
geared towards the safety of programs [20].

Among the languages designed to target Ethereum, Solidity
[6] is the most mature and popular which we described it in
detail in Section II.

B. Verification of Smart Contracts

The semantics of EVM bytecode is formalized in the F*
proof assistant in [21], obtaining executable code that is
validated against the official Ethereum test suite. Furthermore,
the authors have formally defined a number of central security
properties for smart contracts, such as call integrity, atomicity,
and independence from miner controlled parameters. Luu et
al. presented Oyente [3], a state-of-the-art static analysis tool
for EVM bytecode that relies on symbolic execution. Oyente
comes with a semantics of a simplified fragment of the
EVM bytecode and, in particular, misses several important
commands related to contract calls and contract creation.

Oyente supports a variety of security properties, such as
transaction order dependency, timestamp dependency, and
reentrancy, but the security definitions are rather syntactic and
are described informally. Brent et al. [22] introduce a security
analysis framework for Ethereum contracts, called Vandal,
which converts EVM bytecode to semantic relations, which are
then analyzed to detect vulnerabilities described in the Souffle
language. Note that all of the above mentioned approaches
consider EVM bytecodes which may make the analysis more
complicated.

On the other hand, VeriSolid [23] is a framework for formal
verification of smart contracts specified using a transition-
system based model. This framework provides natural-
language-like templates for specifying safety and liveness
properties. However, the need to be familiar with the concept
of transition systems and state machines may limit the adop-
tion of this framework. Tesnim et al. [24] propose an approach
to model smart contract and Blockchain execution protocol
along with users’ behaviors using the BIP framework. BIP [25]
includes a strong component-based modeling formalism and a
statistical model checking engine for systems verification. The
latter two may not be friendly for the practitioners working
with the existing programming languages and Solidity. In [8],
the authors propose a method to translate Solidity programs
to PROMELA models. The SPIN model checker is then used
to verify the correctness properties. They do not discuss how
they handle callback and fallback functions which are essential
for developing real-world smart contract.

C. Synthesis of Smart Contracts from Models

In addition to the verification facilities, VeriSolid also
supports generation of Solidity code from the verified models.
In [26], the authors present a tool to model smart contracts
as finite state machines (FSM), which are then transformed
to Solidity code automatically. They also introduce a set
of design patterns, which they implement as plugins that
developers can easily add to their contracts to enhance security
and functionality. UML statecharts are used in [27] to model
contract behaviors. The statechart models are then translated
to Solidity code based on some predefined mapping rules.

In [1] an algorithm is proposed to translate ADICO mod-
els to Ethereum smart contracts. ADICO allows behavior
specification in terms of human-readable statements. The
currently generated smart contract skeletons using ADICO
require significant amount of manual inputs to enable them
to be executable in EVM.

VI. CONCLUSION

In this paper, we present an approach for modeling and
verification of smart contracts using Smart Rebeca and show
how modeling and analysis challenges are addressed. We
illustrate that the model of computation of Smart Rebeca and
smart contracts developed in Solidity are very close. We make
it clear that statements in Smart Rebeca and Solidity are
similar, so, the transformation is straightforward. We show
how annotations can be used to cover the limitations of



Smart Rebeca for modeling Solidity contracts. To illustrate
the applicability of our approach, we present a set of Solidity
smart contracts and discuss how issues that are caused by
concurrency and nondeterminism can be revealed by model
checking.

In the future, we plan to extend Afra to support the
automatic transformation from Solidity to Smart Rebeca. We
also plan to develop a more comprehensive set of case studies
to provide samples for Solidity contract developers to support
them in the modeling phase.
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