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Abstract—Vehicle platooning is a promising technology to save
the road capacity and also fuel consumption by reducing the
distance between the vehicles in the platoon. The closer the cars
are to each other, the closer we are to the goals. But, this will
increase the need for safety verification. In this paper we use
formal methods to verify safety distance in a platoon. To do so, we
present a formal actor-based model for a vehicle platoon which
incorporates vehicle dynamics and communication protocol. Also,
we present a method to do the analysis based on model checking
that applies mathematical analysis to reduce the state space. The
method uses an upper bound and a lower bound value as network
delay, and verifies if a specified vehicle in a platoon has enough
distance to the leader during its traveling.

Index Terms—Vehicle Platoon, CAM, Formal Verification,
Timed Rebeca, Actor Model

I. INTRODUCTION

Vehicle platoon is a promising Intelligent Transport System
(ITS) that has been studied for several years with the objec-
tives such as efficient use of road capacity and reduced fuel
consumption [1], [2]. A platoon system is a set of vehicles that
drive closely behind one another. Each vehicle autonomously
follows the one in front of it and a manually driven leader
vehicle is in the first place of the platoon. Currently, vehicle
to vehicle (v2v) communications and automated driving are
two new technologies applied in these systems.

Cooperation in a vehicle network is achieved via periodic
Cooperative Awareness Messages (CAMs) sent from each
vehicle under the conditions drafted in ETSI EN 302 637-2 [3].
The conditions are based on the dynamics of the originating
vehicle and are checked periodically at a certain sampling rate.

Achieving the specified objectives depends on keeping
the distance between the vehicles in the platoon within an
appropriate range. The smaller the distance, the more vehicles
can travel in a road, and also the less fuel is consumed, since
more aerodynamic drag is reduced. However, reducing the
distance between vehicles leads to safety issues. Therefore,
safety certification is an important concern in these systems
[4]. Collision avoidance is one of the issues that has gained the
most attention in the research concerning platooning. Various
subjects related to this goal were studied in the literature,
like ”time to collision” property [5], [6], safety distance [7],
string stability [8] (the condition to ensure that disturbances
in the control system of a platoon do not lead in vehicles

collision [4]). Moreover, there are investigations on the impact
of communication protocols on platoons through estimating
the performance metrics of communication network, such
as collision probabilities of the packets that are exchanged
between vehicles to provide cooperative awareness, and data
age of each vehicle (which refers to the time elapsed since
the last received packet of a follower vehicle by the leading
vehicle.)

In this work, we study the impact of CAM delivery delays
on the distance between the vehicles. The followers in the
platoon react to the decisions of the leader by accelerating
or decelerating after receiving CAMs. Hence, different (and
varying) message delays may cause the distance between the
vehicles to fall outside the desirable range. As mentioned
before, both lower and upper bounds of the distance are
important as smaller distances raise safety issues and larger
distances reduce the efficiency of the platoon. It is important
to note that our analysis addresses not only different delays for
different pairs of vehicles, but also varying delays, in the sense
that the communication delay between two specific vehicles
may not be always the same. Effectively, we check if the
distance between the vehicles stays within a desirable and safe
margin considering a lower and an upper bound on the network
delay.

We use model checking, as a formal verification technique
to make sure our analysis exhaustively covers all possible
scenarios as opposed to simulation, which is more commonly
used in this domain, but limits the analysis to some random
scenarios. To the best of our knowledge, comparing to the
existing works based on formal methods, our method incor-
porates more details about the vehicle behavior in the formal
model used in the verification process. By examining combina-
tions of different values for message delays, we abstract from
different road traffic patterns and events and effectively cover
a wide range of road traffics for the purpose of verification,
in contrast to verifying some random traffic scenarios.

As a first step in our analysis, a formal model is presented
for a vehicle platoon. The presented model incorporates the
CAM protocol [3], and the dynamics of each vehicle according
to the Intelligent Driver Model (IDM) [9]. IDM is a well-



known car-following model 1. The model also provides an
abstraction of the inter-vehicular communication network.

Transmission delays in an inter-vehicular communication
network may increase as a result of different weather condi-
tions, different sizes of platoons, non-platoon vehicle distur-
bance, etc. For a platoon of a reasonable size, many CAMs
may be exchanged during the analysis period. To investigate
how different network delays affect the distance between the
leader and the followers, a variation range for the transmission
delay of a CAM is assumed. To enable the analysis in practice,
we abstract the (infinite) possible values of the network delay
into two discrete values which are the upper and lower bounds
of the specified range. Whenever a CAM message is sent,
the network delay is chosen to be one of the two mentioned
bounds nondeterministically. In the following sections, we
show that model checking the model using only these two
values is enough to cover all the range between the two
specified bounds. This will cover the (cumulative) effect of
the variations in network delays on the distances between the
vehicles.

We use Timed Rebeca (Reactive Objects Language) [11]
[12] [13] as our modeling language. Timed Rebeca is an actor-
based [14] language capable of modeling timing behaviors
of asynchronous systems. An actor model contains a number
of actors which communicate via message passing. Asyn-
chronous communication model of Rebeca and its matching
with the communication model of vehicle platoons together
with the modularity of an actor model, leads to a natural and
easy to understand model. This fact makes the model easy
to evolve. Also, the Java like syntax and high abstraction of
Timed Rebeca makes the model more readable. Moreover, we
exploit the exhaustive verification using its supporting model
checking tool that efficiently reduces the state space [12] [13].

In summary, the contributions of this work are:
1) Presenting a model for a vehicle platoon system based

on actors: The model considers vehicle dynamics ac-
cording to the IDM model and the cooperative awareness
is provided by ETSI CAM protocol. Comparing to the
existing formal approaches, to the best of our knowl-
edge, our model of a platoon includes more details of
the system. We also use the nondeterministic constructs
in the language to cover more scenarios.

2) Presenting a method based on mathematical and formal
techniques for checking safe distance in a range of
delays: The method gives a range as network delay and
checks the distance between the leader and a targeted
follower of the platoon. This way, it investigates the
impact of varying delays, which may be the result of
the large size of the platoon or environmental events.

The remainder of the paper is organized as follows. After a
brief review of the preliminaries in Section 2 and the related
work in Section 3, we show how to model a vehicle platoon

1Car-following model is used to determine how vehicles follow one another
in a road. One of the goals of such a model is to adjust the speed of a vehicle
so that its distance to the vehicle in front lies within a desirable range [10].

in Timed Rebeca in Section 4, and how to analyze the models
in Section 5. The effectiveness of the method is illustrated
using a couple of experiments in Section 6. Finally, Section 7
concludes the paper.

II. PRELIMINARIES

A vehicle platoon is a group of vehicles traveling together
on a road. It contains a leader vehicle, which drives in front of
the platoon, and one or more followers. Details of platooning
may vary among different solutions according to their goals
and technical approaches [15]. Different technologies and
devices are used in platooning systems, but it is common to
contain local sensors, vehicle-to-vehicle (v2v) technology and
automated driving support systems, to have a safe cooperation.

A. CAM Protocol

CAMs [3] are messages that are periodically exchanged in
a vehicular network to provide cooperative awareness. Each
vehicle sends a CAM to other vehicles, according to some
triggering conditions which are defined in [3]. The triggering
conditions are periodically checked at a specified sampling
rate. A CAM contains kinematic data (such as position,
velocity, and acceleration) and other data about the status of
the originating vehicle.

According to [3], each vehicle must comply with the fol-
lowing limits of the transmission interval of CAM messages:

• The CAM generation interval shall not be less than
TMin = 100ms (CAM generation rate of 10 Hz).

• The CAM generation interval shall not be more than
TMax = 1000ms (CAM generation rate of 1 Hz).

CAM generation triggering conditions [3] shall be checked
repeatedly every TS (TS ≤ TMin ). The triggering conditions
are as follows:

• the absolute difference between the current direction
of the vehicle and the direction included in the latest
transmitted CAM exceeds 4◦;

• the distance between the current position of the vehicle
and the position included in the latest transmitted CAM
exceeds 4 m;

• the absolute difference between the current speed of the
vehicle and the speed included in the latest transmitted
CAM it exceeds 0.5 m/s.

B. Vehicle Platoon Behavior

As stated previously, a vehicle platoon involves a leader
followed by one or more vehicles. In the following, the
behavior of the leader and the followers are explained.

1) Leader behavior: The leader vehicle is manually driven
by a professional human driver. The driver continuously deter-
mines the amount of acceleration. The velocity and position
change according to the acceleration. The relationship between
these three parameters are as follows:

a = dv/dt (1)

v = dx/dt (2)



According to [3], the kinematic parameters are checked at
a specified sampling rate. Whenever the changes in position
and velocity reach the threshold specified in CAM protocol,
a CAM message containing the velocity and position of the
leader vehicle will be sent to all followers.

2) Follower behavior: As stated previously, each of the
followers uses the IDM car following mobility model [9].
When a follower receives a CAM, it calculates the proper
acceleration according to the position and the velocity of the
leader, which is involved in the CAM. The acceleration is
calculated using the following formula:

aIDM (s, v,∆v) = a

[
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)δ
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In the above formula aIDM is the acceleration that a follower
needs to keep a desirable gap to its front vehicle, a is the
maximum acceleration constant and the value of v and s
are the velocity and the distance of the follower vehicle
respectively, δ is the acceleration power constant, v0 is the
desired velocity, ∆v is the difference between velocities of the
leader and the follower, and s∗ is a function for calculating
the desired distance:

s∗(v,∆v) = s0 + vT +
v∆v

2
√
ab

(4)

The function s∗ depends on the velocity and the velocity
difference of the leader and the follower. The constant s0
is minimum desired gap between vehicles of a platoon (jam
distance) and T is the time gap between two vehicles. We set
the parameter values according to [9].

C. Timed Rebeca

Rebeca is an actor-based modeling language with a Java-
like syntax for modeling distributed reactive systems. Actors
can be considered as a reference model for object-oriented
concurrent computation based on asynchronous communica-
tion. A Rebeca model consists of reactive classes and a main
part that contains instantiation of reactive objects (rebecs)
from reactive classes. Rebecs have encapsulated states and
their own execution thread. Each rebec contains a set of state
variables, methods and a set of known rebecs with which it
can communicate. Communication is through asynchronous
message passing. Sending a message to a rebec will cause
the invocation of corresponding message server. Each rebec
has an initialization method (like a constructor) with the same
name as the rebec which is executed while instantiating of the
rebec. Parameters of this method are used for initializing the
rebec and its known-rebecs. Each rebec has a message queue,
for buffering the arriving messages. The scheduling policy of
queues is FIFO. State of a rebec consists of the valuation of
state variables, and the messages in its message queue. In each
step, a rebec is executed by removing a message from top of
its queue and executing the corresponding message server. The
execution of a message server is an atomic execution of its
body and may not be interleaved with other message servers.

Timed Rebeca is an extension to Rebeca, capable of model-
ing timing features of distributed systems. In a Timed Rebeca
model each rebec has its own local clock. The local clocks
can be considered as synchronized distributed clocks. The
execution of message servers is still atomic and can lead to
progress of time in that rebec. To model timing behaviors
of a system like computation time, message delivery delay,
message expiration, and periodic occurrence of events, the
three constructs are provided as follows:

1) delay(t): causes a delay of t time units.
2) after(t): paired with sending a message, causes the

message to be sent with a delay of t units of time (it
does not cause a delay for the sending rebec).

3) deadline(t): paired with sending a message, the message
will be purged from the queue after t time units.

Timed Rebeca is used for modeling and analyzing of
distributed systems in different ways, for example in [16],
schedulability analysis of wireless sensor networks is per-
formed, different design decisions and routing algorithms in
Network on Chips are analyzed in [17].

III. RELATED WORK

One class of the related work use simulation techniques
to analyze the performance of communication protocols in
vehicle platoons. In [18], the authors use simulation tools to
investigate the effect of sampling rate at which CAM condi-
tions are checked. They show some scenarios that improperly
increasing the sampling rate leads in more collisions in IEEE
802 11.p MAC (Medium Access Control) layer, hence decreas-
ing the efficiency of CAM protocol. An analysis on the sending
rate of CAM protocol is done in [19]. It compares network
performance when sending CAMs, in two cases: when using
the CAM sending conditions specified in ETSI standards,
and when sending CAMs using a constant rate of 10Hz. It
considers scenarios with different velocities and platoon sizes
to investigate the effect of sending rate on network delay,
especially for the last member of the platoon. In [20], the per-
formance of ETSI CAM protocol is evaluated for two mobility
patterns. The two patterns are similar in that the velocity of all
vehicles changes together, hence, as the ETSI CAM protocol
triggering condition is based on kinematic parameters of the
originating vehicle, the communication network congests due
to the phenomena of message synchronization. In [21], the
authors explore the trade-off between the convoy message
frequency and the communication performance, to do so they
evaluate four communication metrics of convoys using this
simulation framework. In contrast to our work, these works
use simulation tools which are not as reliable as formal
approach, as they only examine some random scenarios in the
model.They analyzed the impact of a communication protocol
on the performance of the inter-vehicular communication (as
they investigate on network metrics), but not on the overall
performance of a vehicle platoon.

Another class of the related work uses formal techniques
to model and/or analyze vehicle platoons. Kamali et.al. [22]
present a modular formal technique for verification of vehicle



platoon as a hybrid system. They verify the system against
both real-time and high level decision making aspects of a
vehicle platoon (such as joining or splitting a platoon). Each
of the aspects are verified separately and during the verification
the other aspects are abstracted. They extended their work in
[23] by adding a spatial controller and thus verifying spatial
properties. In both of the works they did not model kinematic
parameters of the vehicles (they use a simulator to model the
controller) and the work assumes that each vehicle keep its
distance to the next and previous vehicles.

[24] Proposes a framework for modeling cooperating vehic-
ular systems. The main idea of the framework is separating low
level and high level behaviors of the system and to model them
in any flexible modeling language, like the work by [22] [23].
The framework is finally applied to model a vehicle platoon,
using a simulator in its lower layer to mention the physical
dynamics of each vehicle. The model was not verified against
safety properties.

In [25], two models are proposed with two different ap-
proaches. The first model is a timed automata model which
abstracts from the vehicle dynamics. It contains management
operations of a platoon, such as splitting and joining. This
model is verified against safe distance and some functional
properties about a controller that they proposed. The second
model is modeled in Webots simulator. It contains the dynamic
of the vehicle and mainly used to assess the implemented con-
troller quality. As they conclude, their Webots model provides
better evaluation of the controller compared to their timed
automata model, since the vehicle dynamics is abstracted in
their formal verification.

Compared to these works, we capture the dynamics of
vehicles together with the CAM protocol in our formal model.
Having formally modeled the lower level behavior of the
system we are able to apply nondeterministic constructs to
model a wider range of scenarios for the purpose of verifi-
cation. Also, we use an abstraction technique to reduce the
state space and make exhaustive examination of the scenarios
tractable. There already exist some tools that enable bounded
model checking on range variables (e.g., [26]). Compared to
these tools, our analysis targets a different goal. we applied
mathematical reasoning to reduce the state space, regarding
a platoon system’s assumptions, as we aim to address a lot
of independent range variables in our analysis (since a lot of
CAM messages are sent from a leader to a follower, possibly
with varying sending delays).

IV. THE ACTOR MODEL OF THE PLATOON

To start the analysis using model checking, the system must
be modeled at first. We have chosen Timed Rebeca as the
modeling language in this step since actor model is capable
of naturally model a vehicle platoon. In a Timed Rebeca
model we have independent actors communicating through
asynchronous message passing, like in a vehicle platoon where
vehicles communicate through asynchronous message passing.

To verify the property that the distance between the vehi-
cles lies within the desired range, we must model vehicles,

both the leader and the followers. For each of them it is
needed to consider their dynamics and their behavior regarding
sending CAM. We also need to capture the model of the
communication channels and the topology of the platoon on
the road. During a vehicle movement, kinematic parameters
change continuously. But, as those parameters are checked at
a sampling rate, we can model the changes with a discrete
model. To do so, the value of each kinematic parameter can
be calculated in each sampling.

The way we model each component, as well as the assump-
tions made to simplify the analysis, are stated below.

A. Model Assumptions

• We consider linear acceleration in our model (it can
simply be extended to support other functions for accel-
eration).

• Vehicles are in the communication range of each other.
• Each follower adjusts its distance to the leader, whenever

it receives a CAM from the leader.

B. Model of the Components

1) Leader: The leader is modeled as an actor, communicat-
ing to each follower through message passing. To model the
dynamics of the leader, the leader reactive class contains three
state variables as its kinematic parameters. The leader contains
a message server namely doSample that models the behavior
of periodically checking of the leader kinematic parameters
to determine if it is time to send a CAM. It calculates the
values of the kinematic parameters periodically at the specified
sampling rate of 10 Hz.

As mentioned in the previous section, the equations needed
to calculate the kinematic parameters are based on accelera-
tion, thus a simple way to calculate the value of the parameter
is to keep the latest time that the acceleration has changed.
Then, the change in the value of each kinematic parameter
is calculated from that point to the current time. The three
kinematic parameters are calculated as follows,

• Acceleration(acc): is defined by the user, as input of the
model. As stated before, we assume acc changes linearly.
Then, the user must specify the slope of the acc function
(against time), whenever he/she wants to change it. The
slope of the line is initially 0 and can be changed via
calling a message server changeAccCoef.

• Velocity(v): is calculated by integrating the acceleration
function, during the time 0 to dt, where dt is the time be-
tween the latest time that acc has changed (rcntTime)
till the current time. The constant value of the integral is
the current value of velocity.

• Position(x): is defined by second integral of the accelera-
tion function, during the time 0 to dt, where dt is the time
between rcntTime till the current time. The constant
value of the integral is the current value of position.

After the calculation, the parameters are checked against
CAM sending conditions. If they satisfy the conditions, a
CAM is sent to all followers via giveCAM. To check the
conditions, the leader model needs to keep the information



about the recently sent CAM. Thus, it also contains three
other variables to keep the recent CAM velocity, distance and
sending time.

Listing 1 shows the pseudo code for Leader model in Timed
Rebeca (the complete code can be found at Rebeca Homepage
[27]). As shown in the pseudo code, the leader is declared as a
reactive class (line 5). Four followers are defined as the known
rebecs (line 8). The information needed to be kept as state
variables (line 10) are: the kinematic parameters, information
about the recently sent CAM, the slope of acceleration linear
function and the latest time that the acc has changed.

In the constructor (lines 20-28), the initial value of ac-
celeration slope (ap1) is set. Here, the leader driving sce-
nario can be defined as input of the model, through calling
changeAccCoef() message server and set it to be triggered
after a desired time (line 24). The leader calls doSample()
message server to start sampling itself.

1 env byte TSampling = 100; //mili seconds
2 env byte minDistance = 11;
3 env byte maxDistance = 30;
4
5 reactiveclass Leader(20){
6
7 knownrebecs{
8 Follower f1, f2, f3, f4;
9 }

10 statevars{
11 //values sent by the last CAM
12 int vCAM , xCAM, tCAM;
13 //a: acc, v: velocity, dx: distance
14 int a, v, x;
15 //our assumption: a = ap1 t + a0
16 int ap1;
17 //lastest time that ap1 has changed
18 int rcntTime;
19 }
20 Leader(int x0, int v0){
21 ap1 = 0;
22 v = v0/3.6; //km/h => m/s
23 //a = -2t + 0
24 self.changeAccCoef(-2) after(1000);
25 //a = -2
26 self.changeAccCoef(0) after(2000);
27 self.doSample();
28 }
29 msgsrv changeAccCoef(double Acc){
30 //calculate and save
31 calculateKinematicParams();
32 //check the distance to follower1
33 f1.checkDistance(x);
34 //setting the rcntTime
35 rcntTime = now;
36 //changing the slope of acc = ap1 t+ap0
37 ap1 = Acc;
38 }
39 msgsrv checkDistance(int xf) {
40 //saving in temp variables
41 int A = a; int V = v; int X = x;
42 calculateKinematicParams();
43 double dist = realScale(x - xf, x_scale);
44 //compare to minDistance
45 assertion(dist >= minDistance);
46 //retrieving the variables
47 a = A; v = V; x = X;
48 }
49 msgsrv doSample (){
50 int A = a; int V = v; int X = x;
51 calculateKinematicParams();

52 if(checkCAMConds() == true){
53 //saving latest CAM info
54 vCAM = v; xCAM = x; tCAM = now;
55 //nondeterministic network delay
56 int d1 = ?(1,5);
57 //sending CAM to all followers
58 f1.giveCAM(v, x) after(d1);
59 //...
60 }
61 a = A; v = V; x = X;
62 //sampling periodically
63 self.doSample() after(TSampling);
64 }
65 void calculateKinematicParams(){
66 dt = now - rcntTime;
67 //a0: current value of ‘a’
68 a = (ap1*dt)+a0;
69 //integral of ’a’
70 v = (ap1*pow(dt,2)/2) + (a0*dt) + v0;
71 //second integerl of ‘a’
72 x = (ap1*pow(dt,3))/6) + (a0*pow(dt,2))

/2 + (v0*dt) + x0;
73 }
74 boolean checkCAMConds(){
75 int T = now - tCAM;
76 if (T >= 1000)
77 return true;
78 else if(T >= 100) {
79 if ((realScale(x-xCAM,x_scale) >= 4)
80 ||(realScale(v-vCAM,v_scale) >= 0.5)
81 ||(realScale(vCAM-v,v_scale) >= 0.5)
82 ) {
83 return true;
84 }
85 }
86 return false;
87 }
88 }

Listing 1. Psuedo Code of the Leader Reactive Class in the
Platooning Rebeca Model

In the changeAccCoef message server, the kinematic
parameters are calculated and stored. Because this point of the
time is a changing point for kinematic parameters, as discussed
before, we need to store the time and the kinematic parameters
for later calculations. The slope of the acceleration function
is then set. In the doSample message server the kinematic
parameters are first stored in temporary variables (to be finally
retrieved at the end of this message server, line 50). Then, their
current values are calculated and checked whether they satisfy
CAM sending conditions. If the conditions are satisfied, a
CAM is sent to the first follower with a nondeterministic delay
(lines 56 and 58). After that, the value of vCAM and xCAM
is set and the recent values of the kinematic parameters are
retrieved (line 61). Finally, a doSample message is scheduled
to be processed after the sampling time.

2) Follower: Each of the followers are mapped to an actor
in our model. According to the property we are checking,
a follower just needs to communicate to the Leader. But,
according to [4] there exist two ways for a follower to choose
an acceleration. The first way is to adjust itself to the leader,
and the second is to adjust to the front vehicle. We chose the
first way for our analysis. Although our model is capable of
considering CAMs between followers we have not included
this feature for current analysis, and our properties refer to
the distance of each follower to the leader.



A follower periodically checks its kinematic parameters to
send CAM to its rear vehicle if the CAM sending conditions
are satisfied. Thus, as Listing 2 shows, the body of the follower
model is very similar to the leader model, but each follower
adjusts its acceleration when it receives a CAM message from
the leader according to the velocity and distance to the leader
(line 31). The other two kinematic parameters are calculated
like those of the leader.

1 reactiveclass Follower(10){
2 knownrebecs{
3 Leader lead; Follower f;
4 }
5 statevars{
6 int a, v, x;
7 int rcntTime;
8 int xCAM, vCAM, tCAM;
9 }

10 Follower(int x0, int v0) {...}
11 boolean checkCAMConds() {...}
12 msgsrv doSample () {...}
13 msgsrv checkDistance(int xl) {...}
14 msgsrv giveCAM(int vl, int xl) {
15 // calculate & save
16 calculateKinematicParams();
17 lead.checkDistance(x);
18 // absolute value
19 double dv = vl-v;
20 double s = xLead - xSelf;
21 // idm parameters
22 double v0 = 120/3.6;
23 byte sigma = 4;
24 double maxAcc = 1.4;
25 byte b = 2;
26 byte s0 = 2;
27 double T = 1.5;
28 double ss = 0;
29 //4.3 = 2 * sqrt(ab)
30 ss = s0 + max(0, (vSelf * T) + (vSelf * dv) /

3.4);
31 a = maxAcc * (1 - pow((vSelf / v0), sigma)

- pow((ss / s), 2));
32 rcntTime = now;
33 }
34 //Completed and checked
35 void calculateKinematicParams(){
36 double dt = now - rcntTime;
37 //acc: a constant calculated in giveCAM
38 //v: the integration of acc in dt
39 v = (a0 * dt) + v0;
40 x = (a0 * pow(now,2))/2 + (v0 * currTime)
41 - ((a0 * pow(rcntT, 2))/2
42 + (v0 * rcntT)) + x0;
43 }
44 }

Listing 2. A Psuedo Code of the Follower Reactive Class in the
Platooning Rebeca Model

3) Communication Channels and Topology: Channels can
be modeled by message passing. The delay of v2v commu-
nication may vary depending on the network load, environ-
mental conditions, cut-in situations, etc. We capture this fact
by assuming a minimum and a maximum for the delay of
the network and choosing the delay in the corresponding
range nondeterministically (Listing 1, line 58). These two
bounds can be modeled as the delay of calling a message
server giveCAM using after construct. Listing 3 shows the
instantiation of actors.

1 main{
2 Leader L(F1):(100, 90);
3 Follower F1(L, F1):(78, 90);
4 Follower F2(L, F2):(66, 90);
5 Follower F3(L, F3):(54, 90);
6 Follower F4(L, F4):(42, 90);
7 }

Listing 3. Instantiating the reactive classes in the Timed Rebeca
Model for Platooning

The leader and the four followers are instantiated in the
main function. Their initial positions and velocities are passed
as parameters. Each of the followers is passed to the leader,
and also, the leader and the rear vehicle of a follower are
passed to each follower as knownrebecs. This way, the
topology of the platoon is defined.

V. VERIFICATION OF THE MODEL

In this section, we explain how to verify the model against
the property that the distance d between the vehicles lies within
a range, such that dmin <= d <= dmax while avoiding state
explosion.

The main challenge is that there are infinitely many values
in the range of possible network delays. Even if we assume the
interval contains discrete values, the possible combination of
the values for different CAMs will cause state space explosion.
To overcome this challenge, we let the leader nondeterminis-
tically choose between the upper bound and the lower bound
of the possible network delay range before sending a CAM.
As several CAMs are exchanged between the leader and
the followers during their travelling, the model checker must
cover all possible combination of nondeterministic choices for
sending the CAMs. Here, a question arises: “How examining
every combination of the upper bound and the lower bound
for network delay can guarantee finding the minimum and the
maximum distance points for the whole range?”

To answer the question, observe that in a vehicle platoon
a follower is assumed to have a velocity close to that of the
leader. Thus, the amount of ∆v in formula 4 is negligible.
Thus, by removing the last term of formula 4, the function
defined in formula 4 and consequently the one defined in
formula 3 will be monotonic relative to the velocity of the
follower. Between two receiving CAMs, the velocity and
position functions of a follower are monotonic in terms of
time (since they are the first and the second integral of the
IDM acceleration function which is kept constant during two
CAMs). Therefore, according to the features of monotonic
functions, the minimum and the maximum values of IDM
acceleration, velocity and position of a follower in a time
interval occur in the lower bound or upper bound of the time
interval.

To perform verification against the specified property, the
distance between the leader and a follower must be checked
at every point in time in which their distance can be at the
minimum or maximum. Now, we should answer this question:
”At which point in time the minimum and the maximum
distance may occur?”



Let us call the position function of the leader and the fol-
lower xL and xF respectively. Their distance is D = xF −xL
which is always positive (according to the platoon system
definition). The minimum and the maximum value of D during
a time interval can be located at the first and the last points of
the interval, and also in the extremum points of the function in
the interval. The extremum points are the root of the derivative
of D in the specified interval. As both xF and xL are position
functions, their derivative is their velocity function.

As previously stated, the curve of the acceleration input of
the model is composed of some consecutive linear parts. The
integral of each part, the velocity function, is a polynomial
function at most of degree 2. Therefore, the root of D can
be easily calculated in each of the linear acceleration parts
(also, for more complicated acceleration functions, Newton-
Raphson method can be efficiently used to find the roots, as
the specified interval is relatively small).

In our model, to divide the acceleration function of the
leader and the follower into linear parts we must take into
account all points in time at which the acceleration changes.
As mentioned in the previous section, the acceleration of
the leader is changed through calling the changeAccCoef
message server. Then, we must check the distance between
the leader and the follower whenever this message server is
executed. Moreover, we must include all the points at which
the follower receives a CAM, since it changes its acceleration
at these points to adjust to the leader.

A. Verifying the Timed Rebeca Model

In the following, we will explain how we perform the
verification in our Rebeca model:

To verify dmin <= d, we declare a message server called
checkDistance (Listing 1, line 30) in both leader and
follower models. In both models, checkDistance receives
the position of the sending vehicle as parameter and compares
it to that of itself. If the distance is greater than a threshold, an
assertion fails and the execution path will be returned as a con-
tradiction example. The leader sends the checkDistance
message to the follower in its changeAccCoef message
server (and passes its own position to the follower to be
compared to that of the follower). Also, a follower does the
same in its giveCAM message server. This way, we just check
the distances in the first point and the last point of the intervals.
To keep the model simple, we do not check the distance in
those points at which the root of the velocity function is zero.
As we assume the frequency of CAMs is relatively high, this
does not make a significant error in our results. Adding this
check to the model is not hard and will be included in the
future steps.

Verifying d <= dmax is just like the minimum distance.
The only difference is the assertion in checkDistance
message server.

VI. EXPERIMENTS

We use Afra model checker [28] to perform a set of experi-
ments on the system model to check the distance between the

leader and a follower, during their movement. The analysis
is done in a scenario for disruption maneuvers of a platoon
which is introduced in [9]. In the scenario, all vehicles are
running at the speed of 90 km/h for a while, then the leader
slows down to 60 km/h because of an obstacle it faces, which
may be a vehicle moving with a lower speed. After a short
time, the leader turns back to 90 km/h and moves for a while.

In the first experiment, there is a 12 meters initial gap
between the leader and the follower. The communication delay
was considered to vary in the range of [1, 5] milliseconds. The
delay was extracted from the experimental results reported in
[21] as the communication delay for a platoon of size 5 to 40
vehicles.

The scenario was analyzed for different values of acceler-
ation -1, -2, -4 and -8. In all of these cases the following
property is satisfied: “ Is the distance between the leader and
the follower always at least 12 meters?”

In this experiment, the distance between the leader and the
first follower was analyzed. To do so, we consider variable
network delay that was assigned to the communication delay
of different platoon sizes. This way we investigate the impact
of large platoons on the distance between them. Thus, our
method enable us to consider the impact of different platoon
sizes without strictly modeling different sizes of platoons.

The second experiment is performed with the goal of
showing that using a deterministic maximum or minimum
network delay may not necessarily lead to the minimum or
the maximum distance between two vehicles. To find the
minimum and maximum distances, we verified the model
against the two following properties:

1) Is the distance between the vehicles always at least dmin

meters?
2) Is the distance between the vehicles always at most dmax

meters?
To do so, we tried the model checking with different threshold
as dmin and dmax . (Approximately, we need to verify the
model log n times to find the maximum or minimum distance,
where n is dmin or dmax .)

The experiment used the same scenario as the first one, but
used an initial gap of 15 meters between the leader and the
follower. The delay of sending CAMs was considered to vary
in the range [1, 80] ms. Table. 1 illustrates the verification
result of three scenarios with different delays.

The result shows that the minimum and the maximum
distances between the vehicles may not necessarily occur in
the cases that the network delay for sending all of the CAMs is
maximum or minimum. Thus, we need an exhaustive method
to examine all of the possible delays in a variation range
of network delay to find the minimum and the maximum
distances.

VII. CONCLUSION AND FUTURE WORKS

We presented a formal model based on actor model for a
vehicle platoon that uses the well known IDM car-following
model and CAM protocol for v2v communications. The model
is analyzed to verify that the distance between the leader and a



TABLE I
THE MINIMUM AND MAXIMUM DISTANCES FOR DIFFERENT NETWORK

DELAYS

1 ms 80 ms [1,80] ms
Minimum Distance 9m 12m 9m
Maximum Distance 66m 64m 75m

targeted follower always lies within an appropriate range. This
enables us to efficiently use the road capacity while keeping
the safe distance between the vehicles. To make the analysis
practical, we assumed a possible range for the transmission
delays and showed that (nondeterministically) choosing one
of these two values for each transmission will cause both the
minimum and the maximum distances between the vehicles to
appear in the examined scenarios. We used model checking
as the means of analysis to check every combination of
the network delays of the messages. This allowed us to
abstract from the events that affect the network delay, such
as environmental events and the packet loss resulting from
network congestion in large platoons. Our method can be
applied to check whether the CAM protocol (or any other
beaconing protocol) provides enough awareness for a platoon
to reach its goals. The analysis results allow us to evaluate the
communication protocol, or choosing appropriate values for
its parameters.

We have used an approximation in computing the minimum
and maximum distances. The accuracy of the results can
be improved by including other comparison points (other
extremum points), which is left as a future work. As another
future work, we will investigate on how the results of the
analysis of smaller platoons can be related to the larger ones.
Since the network delay increases as the size of the platoon
gets bigger, characterizing the relation between these two
parameters may enable us to analyze bigger platoons by first
analyzing a smaller platoon that uses the same communication
protocol and then extend the results for larger platoons,
probably through some approximations.
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