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Abstract—Autonomous traffic control systems are large-scale systems with critical goals. To satisfy expected properties, these
systems adapt themselves to possible changes in their environment and in the system itself. The adaptation may result in further
changes propagated throughout the system. For each change and its consequent adaptation, assuring the satisfaction of properties of
the system at runtime is important. A prominent approach to assure the correct behavior of these systems is verification at runtime,
which has strict time and memory limitations. To tackle these limitations, we propose Magnifier, an iterative, incremental, and
compositional verification approach that operates on an actor-based model where actors are grouped in components, and components
are augmented with a coordinator. The Magnifier idea is zooming on the area (component) affected by a change and verifying the
correctness of properties of interest of the system after adapting the component to the change. Magnifier checks if the change is
propagating, and if that is the case, then it zooms out to perform adaptation on a larger area to contain the change. The process is
iterative and incremental, and considers areas affected by the change one by one. In Magnifier, we use the Coordinated Adaptive Actor
model (CoodAA) for traffic control systems. We present a formal semantics for CoodAA as a network of Timed Input-Output Automata
(TIOAs), and prove the correctness of our compositional reasoning. We implement our approach in Ptolemy II. The results of our
experiments indicate that the proposed approach improves the verification time and the memory consumption compared to the
non-compositional approach.

Index Terms—Self-adaptive Systems, Model@Runtime, Compositional Verification, Track-based Traffic Control Systems, Ptolemy II
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1 INTRODUCTION

MANY activities of the modern society are entirely
managed by traffic control systems. These systems are

large-scale, time and safety-critical systems that consist of
numerous moving objects whose movements are adjusted
and coordinated by controllers. The application domain
of these systems is not only limited to air traffic control
systems or rail traffic control systems but also includes
robotic systems, maritime transportation, smart hubs, intel-
ligent factory lines, etc. The traffic in such systems can pass
through pre-specified tracks, that based on the minimum
safe distance between the moving objects, are partitioned
into a set of sub-tracks. A system with this structural design
is called a Track-based Traffic Control System (TTCS) [1].

Due to the dynamic nature of a TTCS and its sur-
rounding world, a TTCS is vulnerable to failures, threaten-
ing human lives or causing intolerable costs. Autonomous
response to context changes is a mechanism to prevent
a failure in self-adaptive systems that are able to adjust
their structures and behaviors in response to changes. The
controller in an autonomous TTCS uses the track-based
design to safely and efficiently manage the traffic whenever
an unpredicted change happens. For each change and its
consequent adaptation, verifying the system’s safety and
quality is necessary, which should be performed at runtime.
For performing the analysis and verification at runtime, an
abstract model of the system and its environment, the so-
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called model@runtime [2], is generated, updated, and verified
during the system execution.

In [3], we introduced the Coordinated Adaptive Ac-
tor model (CoodAA) for constructing and analyzing self-
adaptive track-based traffic control systems. CoodAA is
an actor-based model [4], [5], where actors are grouped
in multiple components, and each component has its own
coordination policy. In CoodAA, we model each sub-track
as an actor, moving objects as messages passed by the actors,
and the controller as a coordinator. A TTCS is a large-scale
system partitioned into a set of control areas where each
area has its own controller, so, a model of a TTCS can be
intrinsically built as a set of components and is matched
to CoodAA. The moving objects are sent and received at
specified times through specified routes.

In this paper, our focus is on the analysis that is per-
formed for adaptation at runtime, and we propose the Mag-
nifier idea. Magnifier uses an iterative and incremental pro-
cess on CoodAA. When a change occurs, Magnifier zooms-
in on the affected component and checks if properties of
interest still hold. If not, it adapts the component affected by
the change by finding a new plan. Then, Magnifier checks
if, because of the new plan, the change is propagated to other
components. If not, the properties of interest are satisfied.
Otherwise, Magnifier zooms out and runs another adapta-
tion plan for a larger area. The same process is repeated
iteratively and the area under consideration is enlarged
incrementally until the change is contained. The idea is to
instead of analyzing the whole system for each change,
check the effects of the change on the smallest possible
area, i.e. the least number of neighborhood components,
and try to contain it by adaptation. The general idea of
Magnifier is not specific for TTCSs and can be applied
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for any autonomous control system. But in our work, we
focus on CoodAA and TTCSs, provide formal semantics and
necessary theorems for compositional verification of TTCSs,
and illustrate the results by implementing the approach.

In Magnifier, we use a compositional approach, we focus
on the interface of each component, which in CoodAA
means the inputs and outputs of the component at a speci-
fied time from/to a specified source/destination. According
to the new plan, if the adapted component generates new
outputs or generates outputs by making new assumptions
on its inputs, the effects of the change may propagate to the
connected components. So, the connected components (or
the so-called environment components) are adapted consid-
ering the new interface of the component. Then, Magnifier
zooms-out and creates a new component by composing
all components adapted to the change. The propagation of
the change stops if the interface of the new (composite)
component remains unchanged.

To prove the correctness of our incremental composi-
tional approach, we present a formal compositional se-
mantics for CoodAA as a network of Timed Input-Output
Automata (TIOAs) [6], and adopt the compositional ver-
ification theorem of Clark et al. [7]. Each component is
represented by TIOAs of its constituent actors and its coor-
dinator. We check the propagation of a change by checking
the compatibility of TIOAs of the adapted component and
TIOAs of its environment components. We call two (or
more) TIOAs compatible if they do not reach a deadlock
state in their parallel product.

In [7], each component of the model is supplied with a
correctness property. By composing a component with an
abstraction of its environment components and verifying
a property over the composition, the satisfaction of the
property over the whole system is proved. Similar to [7],
we use abstractions of the environment components. To
reduce the state space, instead of TIOAs of the environment
components, we only consider TIOAs of border actors that
directly communicate with the adapted component. In con-
trast to [7], we do not use any logical formula to express the
properties, since it is enough to check whether the adapted
component interacts with its environment as expected (i.e.
their compatibility).

Note that the verification of the propagation of a change
is checking whether the interface of a component remains
unchanged after adapting to a new plan. The verification
is performed on a static snapshot of the system (the actor-
based model@runtime in CoodAA) after each adaptation.

To illustrate the applicability of our approach, we im-
plement it in Ptolemy II [8]. Ptolemy II is an actor-
oriented open-source modeling and simulation framework.
A Ptolemy model consists of actors that communicate via
message passing. Actors are grouped together and coordi-
nated by directors. The semantics of communications of the
actors in Ptolemy is defined by different models of com-
putation, implemented in directors. Here, to perform verifi-
cation in Ptolemy II, we develop a Magnifier director. Our
director generates the state space of the affected component,
automatically extends its domain to include other com-
ponents, and performs the reachability analysis over this
extended domain. Comparing the compositional and non-
compositional approaches, the results of our experiments

for an example in the domain of air traffic control systems
indicate a significant improvement in the verification time
and the memory consumption for Magnifier.
Novelty, importance, and contribution. Our contribution
is proposing a compositional, iterative and incremental ap-
proach for verification of a component-based actor model
for traffic control. We propose an interface theorem for our
abstraction and composition technique. Proposing a compo-
sitional approach and proving its correctness is not at all
trivial. Components may be tightly coupled and dependent
on each other, and the problem becomes more serious when
we encounter circular dependency. In Magnifier, we take
advantage of the structure of TTCSs and the encapsulation
and decoupling of actors [9] to build our compositional
approach and prove its correctness.

Although compositional verification can be a successful
approach for alleviating the state-space explosion, like any
other divide-and-conquer techniques, its usage in practice is
limited. According to Clarke et al. in [7] and Bensalem et al.
in [10], the dependency and specially circular dependency
of components can be problematic, and a correct abstraction
of interactions is crucial. We also need to be careful with the
time alignments in timed systems [11].

An advantage of Magnifier is that it can be seen as
a decentralized adaptation mechanism. Adaptation in a
decentralized setting is a well-known challenge [12], [13].
It significantly improves scalability and is a suitable option
in hard real-time settings, when the reaction to a change
should be performed in a negligible amount of time [13]. On
the other hand, preserving global goals in a decentralized
setting is difficult [13], as several components may need to
reach a consensus about an adaptation policy to satisfy a
global goal. Magnifier meets the global goals by first apply-
ing local adaptation to the component affected by a change.
If it is not successful, it dynamically extends its adaptation
(and verification) domain to consider more components.
The Magnifier approach relies upon the assumption that the
environment components of a component are recognisable
at the analysis time.

CoodAA is introduced in [3] and its applicability in
modeling TTCSs is shown by implementing a case study.
In [1], the coordinator is augmented with different rerout-
ing/rescheduling policies, a look-ahead prediction is done
for each policy at the time of the change using simulation,
and the best policy is selected. We briefly presented the
Magnifier idea as a future work in a short work-in-progress
paper [14]. In the current paper, we present the formal
foundation of CoodAA and Magnifier, and support the
idea of effectiveness of Magnifier by an implementation
of Magnifier in Ptolemy II and experimental results. The
summary of the main contributions is:

• Proposing an approach for compositional, iterative
and incremental verification of model@runtime in
CoodAA using Magnifier,

• Proposing an abstraction technique for environment
components in Magnifier to reduce the state space
while preserving the effects of interactions between
the components, and proof of correctness of the
compositional approach using the interface theorem.

The rest of the paper is organized as follows. We provide
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a general overview of TTCSs in Section 2. We recall the
definition of a TIOA in Section 3. In Section 4, the formal
compositional semantics of CoodAA is described in terms
of TIOAs. Section 5 describes the details of the Magnifier
approach. The implementation of Magnifier in Ptolemy II
and the results of our experiments are shown in Section 6.
We describe the related work in Section 7, and conclude the
paper in Section 8.

2 PROBLEM DEFINITION AND AN EXAMPLE

Track-based Traffic Control Systems (TTCSs) are safety-
critical systems. A TTCS works based on the track-based
design of the traveling space. To reduce the risk of collision
between moving objects, they move on certain tracks instead
of moving around freely. Based on the safe distance between
two moving objects, each track is divided into a set of
sub-tracks. Each sub-track is a critical section that accom-
modates only one moving object in-transit. A large-scale
TTCS is divided into a set of areas, while the traffic of each
area is controlled by a centralized controller. Considering
congestion and environmental changes, the controller uses
the track-based infrastructure of the area to navigate the
moving objects safely. As explained in [1], the application
domain of TTCSs ranges from Air Traffic Control Systems
(ATCs), rail traffic control systems, maritime transportation,
to centralized robotic systems and intelligent factory lines.
For instance, ATC in the North Atlantic follows a track-
based structure that is called an organized track system [15].
The North Atlantic organized track system consists of a set
of nearly parallel tracks positioned in light of the prevailing
winds to suit the traffic between Europe and North America.

In the real-world applications of TTCSs, each moving
object has an initial traveling plan that is generated prior
to the departure of the moving object from its source. A
traveling plan consists of a route, time schedule decisions,
and depending on the application, fuel, etc. The route is a
sequence of sub-tracks traveled by the moving object from
its source to its destination. The time schedule decisions
consist of the departure time of the moving object from
its source, assumed arrival time at each sub-track in its
route, and assumed arrival time at its destination. TTCSs
are sensitive to unforeseen changes in their context. It may
need to modify the traveling plans of moving objects when a
dynamic environmental change happens. Therefore, follow-
ing a change in the context, a sequence of changes might
happen. For instance, in an ATC, the aircraft flight plans
are changed if a storm happens in a part of their flight
routes. While changing traveling plans, several safety issues
should be considered, i.e., loss of the separation between
two moving objects should be avoided and the remaining
fuel should be checked. To avoid conflicts, changing the
traveling plan of a moving object may result in changing
the traveling plans of other moving objects. These changes
can be propagated to the whole system. Besides the safety
concerns, performance metrics such as arrival times of the
moving objects at their destinations or sub-tracks in their
routes are important. In a TTCS, the controller is in charge of
coordinating the moving objects by rerouting/rescheduling
them.

Fig. 1: A TTCS with 18 sub-tracks. The effect of the change in
sub-track 8 is propagated to the component c2. To avoid the
collision in sub-track 11, the blue moving object is rerouted.

Example. An example of the change propagation is de-
scribed for a TTCS as follows. Assume Fig. 1(a) and Fig. 1(b)
show a TTCS with two control areas (C1, C2), where each
area has nine sub-tracks. The traffic flows from the west
to the east and vice versa. Each moving object of the
eastbound traffic is able to travel towards a sub-track in
the north, south, and east. The initial routes of the moving
objects are shown in Fig. 1(a). The moving object with
an unavailable sub-track in its route is rerouted and its
new route is shown in Fig. 1(b). The red sub-track is an
unavailable sub-track through which no moving object can
travel. For instance, if a storm happens in a part of the
airspace in an ATC, the aircraft cannot cross over the sub-
tracks affected by the storm and are rerouted. Suppose that
the traveling times of the moving objects through each sub-
track are the same and are equal to one. The initial traveling
planes of the purple and blue moving objects in Fig. 1(a)
are {(0, 7), (1, 8), (2, 9), (3, 10), (4, 11), (5, 12), (6, 6)} and
{(5, 17), (6, 11), (7, 5), (8, 4), (9, 3)}, respectively. The first
entry of each tuple shows the arrival time of the moving
object at the sub-track mentioned in the second entry. For
instance, two subsequent tuples (0, 7), (1, 8) mean that the
purple moving object arrives at sub-track 7 at time zero and
arrives at sub-track 8 at time 1 (which is the same time that
it exits sub-track 7).

Suppose that a change happens to sub-track 8
and it becomes unavailable. As a consequence, the
traveling plan of the purple moving object is changed to
{(0, 7), (1, 1), (2, 2), (3, 3), (4, 9), (5, 10), (6, 11), (7, 12), (8, 6)
}, shown in Fig. 1(b). With the new plan, the purple moving
object enters into sub-track 10 (next area) at time 5 instead
of 3, and this way the change propagates from C1 to
C2. Now, the purple moving object arrives at sub-track
11 at time 6. At this time, the blue moving object has to
enter into sub-track 11 based on its initial traveling plan.
To prevent the collision between two moving objects,
the controller employs a rerouting algorithm (adaptation
policy) and changes the plan of the blue moving object
to {(5, 17), (6, 16), (7, 15), (8, 9), (9, 3)}. As can be seen,
by the occurrence of a change, e.g. a storm, a sequence of
changes happens, e.g. rerouting a set of moving objects.
This example also shows that the change circulates between
two areas. Based on the new traveling plan obtained for the
blue moving object, it enters into C1 at time 7 instead of 9,
and this way the change propagates back to C1.

As a change in the context of a TTCS and its consequent
adaptations in the system happen at runtime, the satisfac-
tion of properties of interest should be checked at runtime.
The properties include: the moving objects have to arrive
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at their destinations at the pre-specified times, the collision
of the moving objects should be avoided, the fuel of the
moving objects should not be less than a threshold, and
the system should be deadlock-free. These properties are
checked by verification.

3 BACKGROUND

In this section, we present some background of our research.
We provide an overview of a TIOA and recall the definition
of a deadlock state in a TIOA that is used to define the
compatibility of two TIOAs in Section 5. Furthermore, we
introduce the coordinated adaptive actor model.

3.1 Timed Input-Output Automata
A timed automaton with a set of input actions and a set of
output actions is called a TIOA. Let # ∈ {≤, <,=,≥, >}
and c ∈ N. For a set A, B(A) denotes the set of conjunctions
of constraints of the form x#c or x − y#c for x, y ∈ A. A
TIOA with integer variables [16] is defined as follows.

Definition 3.1. (TIOA) A Timed Input-Output Automaton is a
tuple TA = (Q, q0,Var ,Clk ,Actin ,Actout , T, I) where Q is a
finite set of locations, q0 ∈ Q is the initial location, Var is the
set of integer variables, Clk is a finite set of clocks, Actin is a
set of input actions, Actout is a set of output actions, T ∈ Q ×
(B(Clk)∪B(Var))×(Actin ∪Actout ∪{τ})×2Clk×2Ass×Q
is a set of edges, and I is an invariant-assignment function. The
set of all variable assignments is denoted by Ass . The function
I : Q→ B(Clk) assigns invariants to locations.

Based on the above definition, the edge e =
(q, ψ, l, r, u, q′) ∈ T , besides action l, is labeled with a guard
ψ, a sequence u of assignments, and a set r of clocks. Let
vC , v

′
C : Clk → R≥0 and vV , v

′
V : Var → Z be clock

and variable valuations, respectively. A state of the system
modeled by a TIOA is in the form of (q, vC , vV ). There is
a discrete transition (q, vC , vV )

l−→ (q′, v′C , v
′
V ) for an edge

e = (q, ψ, l, r, u, q′) such that vC and vV satisfy ψ, v′C is
reached by resetting the clocks in the set r to zero, and
v′V is obtained as a subset of variables are set to their new
values in the assignment set u. The clocks and variables not
mentioned in r and u remain unchanged. Furthermore, v′C
satisfies I(q′). The TIOA can stay in the location q as long
as the invariant I(q) is valid. Let for x ∈ Clk and d ∈ R≥0,
(vC + d)(x) = y + d iff vC(x) = y. For each delay d ∈ R≥0
there is a timed transition (q, vC , vV )

d−→ (q, vC +d, vV ) such
that vC + d satisfies I(q). A state of the system can be a
deadlock state that, based on [17], is a state from which
no outgoing discrete transition is enabled, even after letting
time progress.

Definition 3.2. (Deadlock State) A state s is a deadlock state if
there is no delay d ∈ R≥0 and action l ∈ (Actin ∪Actout ∪{τ})
such that s d−→ s′

l−→ s′′.

Let N = {TAi |i = 1, · · · , n} denotes a network
of TIOAs, where they run in parallel and communicate
through global variables. TIOAs synchronize over time and
common input and output actions in their parallel composi-
tion (product). The detailed definition of the parallel prod-
uct of TIOAs TA1 , · · · ,TAn , denoted as TA1 ⊗ · · · ⊗ TAn ,
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Fig. 2: The CoodAA model. Areas and sub-tracks in the
managed system are represented as components and ac-
tors, respectively. Magnifier uses the actor model (the
model@runtime) for analysis and replanning.

is presented in [16]. We also recall this definition in our
technical report [18]. Based on [16], when two edges of
two TIOAs synchronize over an action, their variables are
updated by first executing the variable assignments of the
output transition, and then by executing the variable as-
signments of the input transition. Furthermore, the input
transitions do not update the shared variables. Note that
the state of the system modeled by a network of TIOAs is
obtained by clock values, values of all variables, and the
locations of all TIOAs in the network.

In the rest of the paper, we benefit from the syntax of
the UPPAAL modeling language [19] and use functions as
macros for expressions in guards and updates in TIOAs.

3.2 Coordinated Adaptive Actor Model

We introduced the coordinated adaptive actor model in [3].
In CoodAA, actors are units of computation, communicat-
ing via message passing, and grouped into components. As
shown in Fig. 2, each component has its own coordinator
with a set of coordination policies. Components themselves
can be grouped into composite components. For a precise
formal definition of composition refer to [18].

CoodAA is designed to model self-adaptive control sys-
tems for track-based systems and conforms to the MAPE-
K feedback control loop [20]. The managed system in a
self-adaptive system is controlled by the MAPE-K loop
consisting of Monitor, Analyze, Plan, and Execute activities
together with a Knowledge base. The model@runtime is an
abstract projection of the system and is kept in the Knowledge
base. The Monitor activity monitors the system and updates
the model@runtime. In the case of detecting a change, the
Analyze activity analyzes the model@runtime and passes the
analysis results to the Plan activity to make an adaptation
plan. The adaptation plan is applied to the model@runtime
and consequently, the model@runtime is analyzed again. If
the requirements of the system are satisfied, the adaptation
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plan is sent to the system through the Execute activity.
Otherwise, the Plan activity makes another adaptation plan.

As shown in Fig. 2, areas and sub-tracks in the man-
aged system are represented as components and actors in
CoodAA, respectively. Actors of each component construct
its model@runtime, and each coordinator consists of the
Analyze and Plan activities of the MAPE-K loop. CoodAA
does not contain the Monitor and Execute activities, and they
can be added to the model using the implementation plat-
form [1]. In CoodAA, actors of the components construct the
model@runtime of the composite component, and Magnifier
acts as the top-most coordinator; it is notified of a change
and analyzes the model@runtime to find a safe adaptation
plan. Magnifier analyzes iteratively and incrementally using
a compositional verification approach.

4 COMPOSITIONAL SEMANTICS OF SIMPLIFIED
COODAA FOR MAGNIFIER

In this section, we present a formal specification and com-
positional semantics for a simplified version of CoodAA,
where the coordinator and adaptation of actors are ig-
nored. In Magnifier, the analysis is performed on the
model@runtime after applying the adaptation policy. So, we
only consider parts of the model that have a role in the anal-
ysis, i.e., actors (without the adaptation state) grouped into
components. The complete semantics of CoodAA, consid-
ering the coordinator, its operation, and all states of actors,
including the adaptation state, is presented in [18]. In the
rest of the paper, we use the terms CoodAA and simplified
CoodAA in the context of Magnifier interchangeably.

4.1 Summary of Definitions

In this section, the basic elements of simplified CoodAA,
including actors and components are formally described,
and the most used notations are presented in TABLE 1. An
actor has a variable status that shows whether the actor is
free or occupied. It also has a variable plan to keep the
plan that specifies the direction and the time to send out
the message. An actor has several input and output ports
(modeling several directions that a moving object can arrive
at or depart from a sub-track). Input and output ports are
communication interfaces of the actor with other actors. An
actor also has a message handler.

Definition 4.1. (Actor) An actor, ai, with the unique identifier
i, is defined as (statusi , plani , interact i(j, transferredP),PIi ,
POi

), where statusi has a value of {Free,Occupied}, plani
stores the traveling plan of the moving object, PIi =
{pIi,j |j = 1, · · · , inDirectionsi} and POi

= {pOi,j
|j =

1, · · · , outDirectionsi} are respectively the sets of input and
output ports, and interact i(j, transferredP) is the message
handler where j = 1, · · · , inDirectionsi and transferredP =
(objectId, travelP lan). The constants inDirectionsi and
outDirectionsi are respectively the numbers of input and output
ports.

The main computation of the actor is performed in
its message handler, which receives a message, reads and
updates the status and plan variables, introduces a delay to
model the passage of time, and sends a message over an

output port. Two actors are connected if an output port of
one actor is bound to an input port of another one. Each
output port is connected to at most one input port. The
bindings between the ports are defined through the binding
set of the component, so, this set defines the topology of
the model. Each component has boundary input and output
ports through which it communicates with other compo-
nents. The boundary input and output ports of a component
are respectively input and output ports of the constituent
actors where these ports are not connected to any ports of
the constituent actors and stay lose to be connected to other
components. A component is defined as follows.

Definition 4.2. (Component) A component, Ci, with the unique
identifier i, is defined as Ci = (Ai,Bi , PICi

, POCi
), where Ai

is the set of internal actors of Ci, Bi = {(p1, p2)| f : PO 7→
PI ∧ f(p1) = p2} is the binding set of Ci, and PICi

= {p | p ∈
PI ∧ @(p1, p2) ∈ Bi · p2 = p} and POCi

= {p | p ∈ PO ∧
@(p1, p2) ∈ Bi · p1 = p} are respectively the sets of boundary
input and output ports of the component. The function f is a
partial function, PO =

⋃
aj∈Ai

POj
, and PI =

⋃
aj∈Ai

PIj .

The composition of two (or more) components forms
a composite component that is a component itself and is
defined as follows.

Definition 4.3. (Composite Component) A composite component
Ck = (Ak,Bk , PICk

, POCk
) is a component built from composi-

tion of other components, where ifCk be the composition ofCi and
Cj , denoted by Ck = Ci ‖ Cj , and Ci = (Ai,Bi , PICi

, POCi
)

and Cj = (Aj ,Bj , PICj
, POCj

), then Ak = Ai ∪ Aj and
Bk = Bi∪Bj∪NewB. The links between boundary output ports
of a component and boundary input ports of another component
are defined using the binding set NewB . So, PICk

is the set
of boundary input ports of Ci and Cj and POCk

is the set of
boundary output ports of Ci and Cj where these boundary ports
are not bound to any ports of actors of Ak.

The coordinated adaptive actor model is a component
composed of all components of the model.

4.2 Compositional Semantics of the Simplified
CoodAA Based on TIOAs

In this section, we present the compositional semantics of
CoodAA as TIOAs. Each actor is specified by a separate
TIOA, and hence, a component is presented in the form
of a network of TIOAs of actors. The TIOA of an actor aj
is shown in Fig. 3. We use different colors such as purple,
green, light blue, and dark blue to respectively distinguish
invariants, guards, synchronization actions, and clock reset
and variable assignments in the TIOA. The notations ! and
? mark the output and input actions, respectively.

The automaton of Fig. 3 has two locations, correspond-
ing to the values of the status variable of the actor, and a plan
variable that corresponds to the plan variable of the actor
in Definition 4.1. Let b = (pout , pin) denotes the binding
between a port of aj and a port of another actor. We call b
an input binding of aj if pin ∈ PIj and an output binding of
aj if pout ∈ POj

. The automaton has a set of input actions
interactb , where b is an input binding of the actor. These
actions correspond to the interact handler of the actor for
each input port. Similarly, for each output binding b of aj ,
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Notation Definition
ai An actor with the unique identifier i
statusi A variable with a value of {Free,Occupied}, denoting the status of an actor ai

plani
The variable of an actor ai storing the id and the travel plan (including the route, schedule, fuel,
and speed) of the moving object

interacti
The message handler of an actor ai with the input arguments j (denoting the port) and
transferredP = (objectId , travelPlan) (including the id and the travel plan of the moving object)

PIi The set of input ports of an actor ai
POi

The set of output ports of an actor ai
Ci A component with the unique identifier i
Ai The set of actors of Ci

Bi The binding set of Ci

PICi
The set of boundary input ports of Ci

POCi
The set of boundary output ports of Ci

TABLE 1: The most used notations for the simplified version of the CoodAA model used for the analysis by Magnifier

an output action interactb is defined. The automaton has
access to the global variable transferredP that corresponds to
the input argument of the interact handler and is used to
transfer a plan between TIOAs of two actors. The TIOA of
an actor is defined as follows.

Definition 4.4. (TIOA of an Actor) The TIOA of an ac-
tor aj is TA = (Q, q0,Var ,Clk ,Actin ,Actout , T, I), where
Q = {Free,Occupied}, q0 = Free , Var = {planj},
Clk = {clock}, Actin = {interactb |b ∈ allInBind(j )},
Actout = {interactb |b ∈ allOutBind(j )}, I(Occupied) =
clock ≤ travT (planj), and T is defined as follows.

∀b ∈ allInBind(j ) : (Free, true, interactb , {clock},
{planj =update(transferredP)},Occupied) (Receive)

(Occupied , clock = travT (planj), interactoutBind(j ,planj ),

∅, {transferredP = planj},Free) (Send)

In the following, we describe edges of TIOA of aj . An
actor aj is always ready to receive a message over an
input port if it is in the state Free. If a message is present
over the input port pj,l, the actor receives the message and
the interact handler interactj (l , transferredP) is triggered.
The Receive edge (the top edge of Fig. 3) represents this
operation. This edge is defined for every input binding of
the actor. When the message is received, the status variable
of the actor is set to Occupied. Accordingly, the automaton
moves from Free to Occupied, showing that a moving object
enters into the sub-track. The message transferredP includes
the object id of the message (objectId) and the travel plan
(travelPlan) which consists of the traveling route of the
moving object, its schedule, the amount of fuel, and its
speed. This information is stored in the plan variable of
the actor. The actor updates the traveling plan (the route
of the moving object) before storing it in plan. The route of
a moving object is a sequence of sub-tracks traveled by the
moving object. When a moving object passes from a sub-
track, the first entry in the route, referring to the current
sub-track, is removed.

The auxiliary functions used over the Receive edge are
described as follows. Let AId be the set of all actor iden-
tifiers and Msg be the set of all messages in the form

���� ��������

����� = ������ ������������ , ����� = 0
∀ � ∈ ��������� �    ���������?

����� ≤
�����(�����)

����� = ����� �����  

���������! 
������������ = �����

(� = ������� �, ����� )

Fig. 3: The TIOA of an actor aj . The actor receives a message
on the top edge. It stays at the location Occupied until the
time progresses up to a time calculated by travT and sends
a message on the lower edge.

of (objectId, travelPlan). The function allInBind(j ), where
allInBind : AId → 2PO×PI , returns the set of all input bind-
ings of the actor aj (PI and PO are defined in Definition 4.2).
The function update : Msg → Msg receives a message and
returns a new message in which the traveling plan is up-
dated.

The actor stays in the Occupied state for an amount of
time derived from the traveling plan stored in the plan vari-
able and showing the traveling time of the moving object
across the sub-track. This behavior is formulated as the
invariant clock ≤ travT (planj), where travT : Msg → R≥0
gets an input and outputs the amount of the delay.

After the time passes for the delay amount of time,
the actor sends out the message planj over an output
port derived from the traveling plan. The Send edge (the
lower edge of Fig. 3) represents this operation. The function
outBind(j , planj ), where outBind : AId ×Msg → PO ×PI ,
returns the binding b including the output port over which
planj is sent. After sending the message, the status variable
of the actor is set to Free. Accordingly, TIOA moves from
Occupied to Free, showing that the moving object leaves the
sub-track. The message is transferred between two actors
whenever TIOA of the sender is synchronized with TIOA
of the receiver over the interactb action. The message is
delivered to the receiver actor using the transferredP vari-
able. The function allOutBind(j ) in Definition 4.4, where
allOutBind : AId → 2PO×PI , returns the set of all output
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bindings of the actor aj .
As we mentioned earlier, a component is presented as a

network of TIOAs of actors. In the next section, we define
the notion of compatibility for the networks of TIOAs of
the components to detect the change propagation in the
Magnifier approach.

5 VERIFICATION OF MODEL@RUNTIME USING
MAGNIFIER

In this section, we explain our compositional approach to
verify the system in the case of a change occurring and
applying adaptation to components. Magnifier is a compo-
sitional and iterative approach for adaptation. We focus on
the area where the change happens, adapt to the change,
and then check whether the change is propagated. If the
change is propagated, we enhance the area by composing
the areas affected by the change and building a larger area.
We explain this in the following section (Section 5.1) in more
detail. We use TIOAs of components (representing areas) to
perform the analysis of whether the change is propagated
or not. If the changed component and its environment
components can interact without any problem, the change
is contained. In this case, TIOAs of the components are
compatible which means TIOAs can be composed without
reaching a deadlock state. In Section 5.2, we explain how
we abstract the environment components to reduce the cost
of compatibility analysis of TIOAs. Section 5.3 presents the
formal definition of compatibility of TIOAs and specifies
TIOAs of the abstracted environment. Section 5.4 includes
the proof of our compositional verification technique based
on abstract interface components.

5.1 Compositional and Iterative Approach

When a track-based system is designed, initial traveling
plans of the moving objects are selected in a way that no
conflict happens between the moving objects, and the mov-
ing objects arrive at their destinations at the pre-specified
times. In fact, the initial traveling plan of a moving object
imposes constraints on its arrival at each area of its route.
When a change happens to an area, the moving objects trav-
eling across the area are rerouted if there is an unavailable
sub-track in their routes. This way, the plan for the area is
adapted. Note that the presence of a change (or its effect)
in an area may last for a while, so any change in the plan
must consider the possible future effects. When an area is
adapted to the change, the validity of properties has to be
checked again.

The main required properties of track-based systems
include collision avoidance and on-time arrival of moving
objects at their destinations. The collision of moving objects
is avoided by design; a sub-track can only contain one
moving object at a time. On-time arrival at destinations is
checked by Magnifier. We also consider a certain amount
of fuel for each moving object, and Magnifier checks if the
amount of fuel goes under a certain threshold. A special
condition is a deadlock condition, and it happens whenever
moving objects are stuck in a traffic blockage in an area
and cannot find available routes towards their destinations,
and hence do not depart from the area. Specific functions

are used to detect deadlock and running out of fuel, and
the analysis stops if one of those is detected. Under the
following conditions, the main property of on-time arrival
and departure holds for an adapted area, and the change does
not propagate:

– Cond. 1. The departure of moving objects from the
area at the pre-specified times and over the pre-
specified ports is not changed. This condition applies
to both moving objects traveling across the area and
entering into the area at a future time.

– Cond. 2. The arrival of moving objects to the area
at the pre-specified times in future and over the pre-
specified ports is not changed.

In the case of violating any of the above conditions, the
change is propagated to the adjacent areas. The adaptation
for an adjacent area is triggered whenever the change prop-
agates into it. Therefore, all areas affected by the change
are composed to form a new composed area. The travel-
ing plans of the moving objects traveling across the new
composed area are adapted. If the moving objects arrive
and depart at/from this area based on their initial traveling
plans, the change propagation stops. This way, Magnifier
uses an iterative algorithm to involve the least number of
components in the analysis of the correctness of the system.

One can argue that in a compositional approach, we
can check the change in one component and then check its
propagation to the neighborhood components one by one.
But a change may propagate back to the component which
was the source of the change and develop a circular depen-
dency. This situation is shown in the example of Section 2.
In Magnifier, by composing the components and forming a
new larger component, all changes circulating between two
components happen inside of the new component and their
effects are considered.

5.2 Abstraction and Interface Components
In this section, we explain the abstraction technique and
present the definitions which our approach relies on. The
notations and the summary of definitions are given in
TABLE 2. We model a track-based system as a coordinated
adaptive actor model CM that is a composed component.
The component Ci of CM models an area of the system
and interacts with a set of components called environment
components of Ci. Environment components of a compo-
nent Ci are those components whose boundary ports are
connected to ports of Ci. We use Env(Ci) to denote the
set of all environment components of Ci. In Fig. 4(a), a
model consisting of five components is shown. The con-
nections between the actors are denoted by arrows. The
components C2, C3, and C4 are environment components
of C1, i.e. Env(C1 ) = {C2, C3, C4}. An environment actor
of a component is an actor whose input and output ports
are bound to the input and output ports of the component
(and hence directly sends or receives messages to/from the
component). The red actors shown in Fig. 4(a) are environ-
ment actors of C1, i.e. a1 and a2 are environment actors of
C1 included in C2.
Abstraction of the environment. In order to abstract the
environment of a component, we define interface compo-
nents. The interface components of a component Ci (or
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Notation Definition
Env(Ci) The set of all environment components of Ci

Cj ↓Ci

The set of augmented environment actors of Ci, where each actor of this set corresponds to an
environment actor of Ci in Cj (Cj ∈ Env(Ci))

NCi
The network of TIOAs of the actors of the component Ci

TA1 ⊗ · · · ⊗ TAn
The parallel product of TIOAs TA1 , · · · ,TAn . TIOAs are compatible if their parallel product does
not reach a deadlock state.

TABLE 2: The most used notations for the abstraction of the environment and the compatibility definition in Magnifier
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�� ↓�� �� ↓��

(a) (b)

�� ��

��� ���

Fig. 4: A model consisting of 5 components is shown in
(a). The connections between actors are shown with dashed
arrows. The red actors are environment actors of the com-
ponent C1. The interface components of C1, i.e. Cj ↓C1 ,
j = 2, 3, 4, are shown in (b). The augmented environment
actors of C1 along with their ports are shown in blue.

visible parts of its environment) are defined based on the
sets of environment actors of Ci. For each environment
actor, we define an augmented environment actor. Let Cj

be an environment component of Ci. We use Cj ↓Ci to
denote the set of augmented environment actors ofCi where
each actor of this set corresponds to an environment actor
of Ci included in Cj . The augmented environment actors in
Cj ↓Ci are augmented with all the significant information
of the environment component Cj which can affect Ci.

An augmented environment actor has a list, called ERS,
containing the crucial data related to conditions Cond. 1
and Cond. 2 in Section 5.1. Each entry of ERS contains a
message, a delay value, and a pair of output and input
ports (a binding). Besides, this actor has an init method,
and similar to Definition 4.1 for actors, has a set of input
ports, a set of output ports, and an interact handler. The
input and output ports of the augmented environment actor
are only those ports of its corresponding environment actor
that are connected to the component Ci. The augmented
environment actors of C1 along with their ports are shown
in blue in Fig. 4(b), i.e. C2 ↓C1

= {aa1 , aa2} where aa1
and aa2 correspond to the actors a1 and a2 in Fig. 4(a),
respectively. The detailed formal definition of augmented
environment actors is available in our technical report [18].

Definition 5.1. (Interface Component) For each Cj ∈ Env(Ci),
Cj ↓Ci

is called an interface component of the component Ci.

The definition of the interface component is inspired
from the approach of Clarke et al. in [7], where interface
processes are defined. For two processes P1 and P2, P1 ↓ ΣP2

is an interface process of P2, where ΣP2 is the set of symbols
(i.e. atomic propositions) associated with P2. The interface
process P1 ↓ ΣP2 is the process P1 in which all symbols that

����� ≤ �, ���, �, � = ℎ���(����)

   � = (����, ���)

� ∈ ���������(�) &&  ����ℎ ����, ���  && ����� = �   
���������? 

              ����= ������� ���� , ����� = 0

                                               � ∈ ����������(�) && ����� = �
���������! 

������������ = ���, ���� = ������� ���� , ����� = 0

��

Fig. 5: The TIOA of an augmented environment actor aaj ,
which has a list ERS of messages that have to be sent or
received by the actor at the pre-specified times and over the
pre-specified ports. aaj receives an expected message on the
top edge and sends a message on the lower edge.

do not belong to ΣP2
are hidden.

5.3 Semantics of Interface Components
Here, we present the semantics of an interface component.
Each augmented environment actor is specified by a sepa-
rate TIOA, and hence, an interface component is presented
as a network of TIOAs of the augmented environment
actors. To check the change propagation in Magnifier, we
check whether the network of TIOAs of the changed compo-
nent and the networks of TIOAs of its interface components
are compatible. We call two networks of TIOAs compatible
if all TIOAs in these networks are compatible. A set of
networks of TIOAs are compatible if they are pairwise
compatible. Here we define compatible TIOAs.

Definition 5.2. (Compatible TIOAs) Two or more TIOAs are
compatible if the parallel product of them does not reach a deadlock
state.

Our definition of compatibility is inspired from the ap-
proach of [21], in which two components (timed interfaces)
are compatible if there is an environment to avoid the paral-
lel product of the components from reaching an error state
(the environment makes the components work together). In
our approach, we do not consider any helpful environment
to check the compatibility. Note that a deadlock state in the
product of two TIOAs is different from a deadlock in a track-
based system.

The TIOA of an augmented environment actor, which
is used in the model@runtime, is shown in Fig. 5. This
automaton has an ERS variable that corresponds to the ERS
list of the actor. ERS is an ordered list. Each entry of this
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list contains a message, a delay value, and a binding, and
specifies that the augmented environment actor expects to
receive a message over an input port or intends to send
a message over an output port after a certain amount of
time. Let t and t′ be the delay values kept in the first and
the second entry of ERS, respectively. The message of the
first entry is sent or received at time t. The augmented
environment actor will send or receive the message of the
second entry at time t + t′. The same argument is valid for
the rest of the entries, and the delay value in none of the
entries is zero. As ERS in a model of a track-based system
is calculated from the initial traveling plans of the moving
objects, the schedules of the moving objects in ERS do not
lead to any conflicts between the moving objects.

Besides ERS, the automaton has a set of actions interactb .
These actions correspond to the interact handler of the ac-
tors and can be an input action (for the input binding b) or an
output action (for the output binding b). The automaton has
access to the global variable transferredP that corresponds to
the input argument of the interact handler and is used to
transfer a value between TIOAs of an actor of CoodAA and
the augmented environment actor.

Definition 5.3. (TIOA of an Augmented Environment Ac-
tor) The TIOA of an augmented environment actor aaj is
TA = ({q0}, q0 ,Var , {clock},Actin ,Actout , T, I), where
Var = {ERS j}, Actin = {interactb |b ∈ allInBind(j )},
and Actout = {interactb |b ∈ allOutBind(j )}. Let (msg , t, b),
where b = (pout , pin), denotes the first entry of ERS j in the
location q0. Then, I(q0 ) = clock ≤ t, and T is defined as follows.

(q0, b ∈ allInBind(j ) ∧match(pout ,msg) ∧ clock = t ,

interactb , {clock}, {ERSj =updateL(ERSj )}, q0)
(Receive)

(q0, b ∈ allOutBind(j ) ∧ clock = t , interactb , {clock},
{transferredP = msg ,ERSj = updateL(ERSj )}, q0)

(Send)

Herein, we describe edges of TIOA of aaj . To have sim-
ple expressions in Fig. 5, we access the first entry of ERSj
using head(ERSj ). The actor aaj looks at (msg , t, b) =
head(ERSj ) in the location q0, where b = (pout , pin), and
stays at this location until the time progresses up to t at
which aaj sends or receives the message msg. The automa-
ton synchronizes on the action interactb to send msg over
the output port pout or receive it over the input port pin .

As shown on the top edge of Fig. 5 (the Receive edge),
if b is an input binding, the clock equals t, and the mes-
sage msg derived from the head of ERSj matches the ex-
pected message (checked by the function match(pout ,msg)),
then the actor aaj pops the current entry of ERSj by
calling the function updateL, resets the clock to zero and
goes back to q0. The function allInBind(j), defined in Sec-
tion 4.2, returns all input bindings of aaj . The function
match : PO ×Msg → Boolean checks whether a given mes-
sage (msg) matches the message ready to be sent from the
sender actor over a given output port (pout ), where PO

is the set of all output ports of all actors. The function
updateL : 2En → 2En removes the first entry of a given list
and returns the rest of the list, where En is the set of all

entries of all ERS lists.
As shown on the lower edge of Fig. 5 (the Send edge),

if b is an output binding and the clock equals t, then the
actor sends out the message msg by putting the message
in the global variable transferredP, pops the current entry
of ERSj by calling the function updateL, resets the clock to
zero, and goes back to q0. The function allOutBind(j), defined
in Section 4.2, returns all output bindings of aaj .

In Magnifier, if there is a deadlock in the product of
TIOAs of the component Ci and the interface component
Cj ↓Ci

, the change propagates from the component Ci

to the component Cj ∈ Env(Ci). This means that there
is an augmented environment actor in Cj ↓Ci

that is not
able to either send a message or receive a message over a
pre-determined port at a pre-specified time, and hence no
transition is performed in the location q0 of the actor (see
Definition 5.3).

In the rest of the section, we use NCi
and NCj↓Ci

to
respectively denote the network of TIOAs of the component
Ci and the network of TIOAs of the interface component
Cj ↓Ci

, such that all TIOAs in each network are compatible.
For a better understanding of the Magnifier approach,

consider the following example.
Example. Suppose that a change in the component C1 of
Fig. 4(a) is detected and this component is adapted. If after
adaptation, NC1

and one or more of the networks NC2↓C1
,

NC3↓C1
, and NC4↓C1

are not compatible, the change propa-
gates into one or more of the components C2, C3, and C4.
Let’s assume that the change propagates to the components
C2 and C3. It means that C1 with its current adaptation
is not able to either receive messages from C2 and C3 or
send messages to those components at the pre-specified
times and over the pre-specified ports. Consequently, the
adaptation for C2 and C3 is triggered. The components C1,
C2, and C3 are adapted and are composed to provide the
new component C1,2,3. If NC5↓C3

, NC4↓C1
, and NC1,2,3

are
compatible, the change propagation stops, and the change
is not propagated further than C1, C2, and C3.

5.4 Correctness of the Compositional Reasoning
In the previous section, we defined the interface components
of a component. An interface component is an abstraction of
an environment component. In the absence of a change, the
correctness properties of the system are preserved as each
component of the system preserves a set of local correctness
properties, i.e. each component receives and sends messages
at the pre-specified times and over the pre-specified ports.
In the presence of a change, the correctness properties are
satisfied if the adapted component can work with its envi-
ronment, i.e. the adapted component and its environment
satisfy their input and output assumptions. This is where
the networks of TIOAs of the adapted component and its
interface components are compatible. In this section, the cor-
rectness of the proposed approach is proved in Theorem 5.1,
explaining that reducing the environment components to
the interface components is correct.

Theorem 5.1. ( Interface Theorem) The networks of TIOAs of the
adapted component and its interface components are compatible if
and only if the networks of TIOAs of the adapted component and
its environment components are compatible.
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Proof. ”if”: By contradiction. Let the networks of TIOAs
of the adapted component Ci and its environment com-
ponents be compatible, but the networks of TIOAs of
Ci and its interface components are not compatible, i.e.
NCi

, NCj1↓Ci
, · · · , NCjn↓Ci

, where Cjk ∈ Env(Ci), k =
1, · · · , n, and n = |Env(Ci)|, are not compatible. It means
that there exists an interface component Cjl ↓Ci

, Cjl ∈
Env(Ci), and an augmented environment actor aaj ∈
Cjl ↓Ci

such that this actor is not able to either receive an
expected message from an expected port at a pre-specified
time or send a message over a pre-specified port at a pre-
specified time. Let aaj corresponds to the environment actor
aj . However, the actor aj belongs to Cjl , e.g. aj ∈ Ajl . This
means thatNCi

, NCj1
, · · · , NCjn

are not compatible, which
contradicts the assumption.

”only if”: By contradiction. Let the networks of TIOAs
of the adapted component Ci and its interface compo-
nents be compatible, but the networks of TIOAs of Ci

and its environment components are not compatible, i.e.
NCi , NCj1

, · · · , NCjn
, where Cjk ∈ Env(Ci), k = 1, · · · , n,

and n = |Env(Ci)|, are not compatible. We assumed that the
adaptation results in a new network of compatible TIOAs
for the component Ci. Furthermore, as each component
Cj ∈ Env(Ci) is not yet affected by a change, all TIOAs in
NCj are compatible. Therefore, there exists Cj ∈ Env(Ci)
and an environment actor aj ∈ Aj such that this actor
is not able to either receive an expected message from an
expected port at a pre-specified time or send a message
over a pre-specified port at a pre-specified time. However,
this actor corresponds to an actor of Cj ↓Ci . This means
that NCi , NCj1

↓Ci
, · · · , NCjn↓Ci

are not compatible, which
contradicts the assumption.

Focusing on the TIOA model of CoodAA, note that each
TIOA interacts with a fixed set of TIOAs and over a fixed set
of input and output actions. An specific feature of the TIOA
modeling an actor in CoodAA is that the actions shared
between two TIOAs are not shared with a third TIOA.
Moreover, there are no shared variables among TIOAs
except for the one used to represent the characteristics of
communication, e.g., transferredP in Definition 4.4.

6 EVALUATING MAGNIFIER

We compared CoodAA and our approach to perform the
analysis at runtime with similar approaches in [1], [3]. We
include a subsection on this comparison in Section 7. The
focus of this paper is on comparing the non-compositional
verification approach and our compositional approach. To
this end, we compare the time and memory consumption
of both approaches in this section. We implement an ATC
case study with several control areas in Ptolemy II [8]
as a proof of concept for effectiveness and efficiency of
the compositional approach. We decided to use Ptolemy
II because the framework enables us to automate the it-
erative and incremental process of Magnifier using its so-
called director. The change propagated through the system
can be automatically traced, and the verification scope can
be extended to bring more components into the analysis
incrementally. We used TIOA for defining the compositional
semantics of CoodAA, as compositionality can be easily rep-
resented using automata, but we did not find UPPAAL the

best tool for implementing the rather complicated iterative
and incremental approach of Magnifier whereas Ptolemy II
is a Java-based tool giving us the necessary programming
power.

In [1], we developed a Ptolemy template for CoodAA to
model and analyze self-adaptive TTCSs. In this template, we
modeled each sub-track as a Ptolemy actor and the moving
objects as messages passed by the actors. The pathways
between the sub-tracks are modeled by interconnections
between the actors. Furthermore, we modeled the controller
(coordinator) as a Ptolemy director. In this paper, we use this
template and extend its director to develop the Magnifier
director that supports formal verification.

In each iteration, after replanning, Magnifier checks the
compatibility of components. This is done by generating the
state space of a given component, and checking if every-
thing is performed according to the plan (satisfying Cond. 1
and Cond. 2 in Section 5.1) using reachability analysis. For
the sake of simplicity, we assume that all coordinators of
all components (the ATC controllers of all areas) have the
same adaptation policy (rerouting algorithm). This way, we
have only one coordinator (instead of a nested model and
multiple coordinators). The Magnifier director generates the
state space of the model of an ATC example with several
components, where the components are composed to create
a new component. The rerouting algorithm and the algo-
rithm to generate the state space are implemented in the
director. It is notable that designing the rerouting algorithm
is not the concern of this paper. The details of the implemen-
tation of Magnifier in Ptolemy II and the pseudo-code of the
algorithm to generate the state space are available in [18].
The Ptolemy model and implementations of the provided
algorithms in the next section are also available1.

We perform our experiments for different settings in-
cluding different sizes of the traffic network, different times
for occurring the change, different parameters of the ex-
ponential distribution to generate the departure times of
aircraft from their sources (different traffic volumes), and
different numbers of aircraft. The results denote that Mag-
nifier significantly decreases the usage of time and memory.

6.1 Experimental Setting
To compare the compositional and non-compositional ap-
proaches, we focused on an ATC example with a n × n
mesh map. We also considered 2n − 1 source airports and
2n − 1 destination airports (each one of the source and
destination airports is connected to a sub-track). We devel-
oped an algorithm to generate the initial flight plans of m
aircraft and an algorithm (an adaptation policy) to reroute
the aircraft as follows. We described the algorithms in detail
in our technical report [18].

ALG1: Generating the initial plans. This algorithm ran-
domly generates the source, the destination, and a departure
time from the source airport for each aircraft. Similar to
the XY routing algorithm [22], ALG1 finds a route from the
source to the destination by first traversing the X dimension
and then traversing the Y dimension of the mesh. It finds
time conflict-free routes, where two or more aircraft are not
allowed to travel across a sub-track at the same time. ALG1

1. https://github.com/maryambagheri1989/Magnifier

https://github.com/maryambagheri1989/Magnifier


JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, JANUARY 2020 11

does not guarantee to find the most efficient (e.g., shortest)
route.

ALG2: Rerouting algorithm. This algorithm gradually
substitutes a part of the initial route with a new sub-
route, such that the resulting route has the same length
as the initial route. If no such route is found, ALG2 finds
a route ignoring the length of the initial route. If using
both above approaches no route is found, the aircraft will
stay one more unit of time in its current location. It then
will fly based on its initial route if the first sub-track in its
route becomes available. Otherwise, the procedure of ALG2
repeats. ALG2 uses the same procedure as ALG1 to find a
route. It avoids the stormy track but does not check the time
conflict with other aircraft in the future. If a potential conflict
is detected, we will take care of it by rerouting the aircraft
upon detecting the conflict.

Scenarios. Different parameters such as the rerouting
algorithm, the time of the storm, the place of the storm,
the network traffic volume, the amount of concurrency
arisen from flight plans of the aircraft, and the network
dimension change the results of experiments. We perform
three sets of experiments; (ES1) that is to compare the time
and memory consumptions between the compositional and
non-compositional approaches, (ES2) that is to depict the
variation of the time consumption in a set of experiments
for each approach, and (ES3) that is to compare the scala-
bility of the approaches. The scenarios are described in the
following. In our experiments, we assume that the traveling
time of an aircraft across a sub-track is one. We also assume
that the aircraft consumes one unit of fuel per one unit of the
traveling time. Furthermore, the fuel of each aircraft is more
than the length of the longest path in the traveling network.
For the place of the storm, we select the middlemost sub-
track of the network.
(ES1). We consider a 15 × 15 mesh structure, divided into
9 regions of 5 × 5, as the traffic networks in (ES1). The
fuel of each aircraft is set to 325. We use ALG1 to generate
150 batches of flight plans per each λ in {0.5, 0.25, 0.125},
where λ is the parameter of the exponential distribution to
generate departure times of the aircraft from source airports.
By increasing the value of λ, the mean interval time between
two departures decreases. As a result, the network traffic
volume and subsequently the concurrency contained in the
model might increase. We expect that the compositional
approach performs better than the non-compositional ap-
proach even in a low concurrency model. Each generated
batch contains flight plans of 2000 aircraft. Per each batch
Pi, 1 ≤ i ≤ 150, we generate 4 batches Pij , 1 ≤ j ≤ 4,
such that Pi1 contains the first 500 flight plans of Pi, Pi2

contains the first 1000 flight plans of Pi, and so on. We
use both approaches to analyze each batch Pij per each
time of the storm in {100, 200, 400, 600, 800}. Obviously,
whenever the storm occurs late, most of the moving objects
have arrived at their destinations. We remove the batch Pi

from the experiments of both approaches if for a batch Pij

and a time of the storm, the model in one of the approaches
is not deadlock-free, or its verification time passes the
threshold (the results of experiments in which the models
are not deadlock-free are investigated in (ES2)). Table. 3
shows the number of experiments in which the model in
both approaches runs to completion within the time limit

TABLE 3: The number of experiments in which the model
in both approaches runs to completion within the time limit
(Complete), faces a deadlock (Deadlock), does not reach a
result within the time limit (TimeOver). The traffic network
has a n × n mesh structure. λ is the parameter of the
exponential distribution to generate the departure times of
the aircraft.

n λ Complete Deadlock TimeOver
15 0.5 120 27 3
15 0.25 110 37 3
15 0.125 94 56 0

(Complete), faces a deadlock (Deadlock), and verification
does not reach a result within the time limit (TimeOver).
The threshold of the analysis time is set to an hour. In our
experiments, per each j, we calculate the averages of the
analysis time and the number of states of the batches Pij .
(ES2). The traffic network in (ES2) has the same config-
uration as the traffic network in (ES1). In (ES2), we use
the batches of flight plans generated in (ES1) for λ = 0.5.
The reason for considering λ = 0.5 is that the network
might have the highest traffic volume for λ = 0.5 compared
to λ ∈ {0.25, 0.125}. We use both approaches to analyze
each batch Pi, containing the flight plans of 2000 aircraft.
Since the possibility of propagating the change increases
when the storm happens early, we suppose that the storm
happens at time 100. As shown in Table. 3, the model in 120
experiments is deadlock-free and is analyzed in less than the
predefined threshold. Compared to (ES1) that calculates the
average of the analysis time for this set of experiments, (ES2)
illustrates the variation of the analysis time in this set for
each approach. Furthermore, (ES2) depicts the variation of
the time consumption to detect a deadlock in 27 experiments
that are not deadlock-free.
(ES3). As the aim in (ES3) is to compare the scalability of
those two approaches, we consider a larger traffic network
that is a 18 × 18 mesh structure with 9 regions of 6 × 6 in
our experiments. The fuel of each aircraft is set to 425. We
assume that the change happens at time 100. We use ALG1
to generate a batch P of 5500 flight planes with λ = 0.5.
In (ES3), we start with the first 100 flight plans of P , and
gradually increase the number of flight plans to compare
the scalability of the two approaches. The scalability of the
approaches is measured by the number of the aircraft. We
define a threshold for the verification time and set this
threshold to 45 minutes. The approach that can analyze a
model with more number of the aircraft in less than the
defined threshold is more scalable.

6.2 Comparison of the Magnifier Approach and the
Non-compositional Approach
We run our experiments on an ubuntu 18.04 LTS amd64
machine with 67G memory and Intel (R) Xeon (R) CPU
E5-2690 v2 @ 3.00GHZ. A part of our experimental re-
sults is shown in Figures 6, 7, 8 and 9. In these
figures, ”C” and ”NC” refer to the compositional and non-
compositional approaches, respectively. The legend entry
C − i , i ∈ {100, 200, 400, 600, 800} depicts the experimental
results of the compositional approach for the time i at which
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the storm happens. The legend entry NC − i depicts the
results for the non-compositional approach. As shown in
Fig. 6 and Fig. 7, using the compositional approach results in
decreasing the verification time and the number of states. As
expected, by increasing the number of aircraft, the number
of states, and accordingly, the verification time increase.
The same results are valid for the smaller value of the
time at which the storm occurs, since fewer aircraft have
arrived at their destinations when the storm happens. By
increasing the time at which the storm occurs, the differ-
ences between the results of the compositional and non-
compositional approaches decrease. It is because most of
the aircraft have arrived at their destinations when the
storm happens late. To have a better representation of the
verification time difference between the compositional and
non-compositional approaches, we depict the results of the
verification time for λ = 0.5 in two diagrams with two
different time scales, shown in Fig. 7. As can be seen, the
compositional approach is able to verify a model with 2000
aircraft in a few seconds for the smallest value of the time
at which the storm happens. By increasing the time interval
between two departures from a source airport, the number
of aircraft entering into the traffic network after the storm
happens increases. Therefore, as shown in Fig. 6, the number
of states in the compositional approach increases whenever
the value of λ decreases.

The results of our experiments in (ES2) are shown in
Fig. 8. For the compositional approach, the variation of the
verification time in a set of experiments with no deadlock is
shown in Fig. 8(a). The results of the same set of experiments
for the case in which the non-compositional approach is
used are depicted in Fig. 8(b). We also depict the variation of
the time needed to detect a deadlock in a set of experiments
using the compositional and non-compositional approaches
in Fig. 8(c). As shown in Fig. 8(a), excluding the outliers, the
model in our experiments is analyzed in less than 22 seconds
using the compositional approach, while this time is around
2190 seconds in the non-compositional approach. Also, in
our experiments, the average time for detecting a deadlock
in the compositional approach is around 11 minutes, while
this value in the non-compositional approach is around 20
minutes.

To detect a deadlock situation, we set up a timeout
mechanism. In ALG2, the aircraft may circulate between a
few sub-tracks trying to find a way out. We can only detect
this situation using a timeout. This is not the best way to
detect the deadlock; we set a large timeout value, and it
causes an increase in the deadlock detection time. So, we
exclude these scenarios from reported experiments in (ES1).

We can define a time limit for running the adaptation
algorithm, and when we reach the limit, human intervention
will take place. For example, if we consider a time limit
of three minutes, from 150 experiments, only 21 experi-
ments need human intervention in the compositional ap-
proach. These 21 experiments include the three experiments
in which the verification time passes the threshold, the
outlier experiment in Fig. 8(a), and 17 experiments (of 27
experiments) that face a deadlock. All experiments in the
non-compositional approach need more than three minutes
analysis time.

The results of our experiment in (ES3) are shown in

Fig. 9. To compare the scalability of both approaches, we
run both approaches for the same scenario, and we define a
threshold of 45 minutes for the verification time. The non-
compositional approach does not scale for more than 2800
aircraft. The results of the compositional approach in Fig. 9
have fluctuations appeared between 4600 to 5000 aircraft.
By adding new aircraft to the traffic network, some areas
are congested, and consequently, the concurrency of the
model increases. This results in some fluctuations and the
fast growth of the ”C” plot between 4600 to 5000 aircraft.
Except for this range, this plot has a normal growth, since
by adding the new aircraft, the behaviors of the congested
areas have not sensibly changed.

6.3 Discussion and Threats to Validity

We discuss an observation regarding a comparison between
the non-compositional approach and the worst case for
Magnifier when the change propagates all the way to in-
clude the whole system. We argue that even in the worst
case, Magnifier performs better than the non-compositional
approach. Our experiments testify this argument. This ob-
servation can be justified as follows. Suppose that a change
happens at time t. The non-compositional approach involves
all actors of the model that have a message at time t into the
analysis, and starts to generate the state space. In contrast,
Magnifier focuses on the component affected by the change,
and starts to generate the state space by involving those
actors of the component having a message at time t. Let
the branching factor for a state be the number of outgoing
transitions of the state or the number of actors that can
be triggered at the state. At the beginning, Magnifier has
a lower branching factor on all states of the state space com-
pared to the non-compositional approach. At some point in
future, e.g. at time t’, when all components are affected by
the change, both approaches involve the same number of
actors into the analysis, and both approaches generates the
same number of states and transitions. However, between t
and t’, the graph of the state space in Magnifier is smaller
than the graph of the state space in the non-compositional
approach. Therefore, even in the worst case, Magnifier per-
forms better than the non-compositional approach in terms
of the verification time and the memory consumption.

It is also possible that the rerouting algorithm contains
the change in a small area of the network. Regarding this
case, we considered the same termination condition for both
approaches to have a fair comparison. Same as Magnifier,
the non-compositional approach follows the change propa-
gation and terminates whenever the propagation stops. As
discussed, Magnifier incrementally adds components into
the analysis and hence performs better.

The main threat to validity lies in possible implemen-
tation errors. To reduce this threat, we checked the prop-
agation of the change and reviewed the state space of
various small to large batches of flight plans to validate the
operation of both approaches. Another threat concerns the
traffic volume and the size of the traffic network that affect
the results. To reduce this threat, we considered different λ
to randomly generate departure times from source airports,
different times for happening the storm, and different size
for the traffic network.
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Fig. 6: The number of states in (ES1) for each value of λ in {0.5, 0.25, 0.125}, where λ is the parameter of the exponential
distribution to generate the departure times of the aircraft. The notations C and NC refer to the compositional and non-
compositional approaches, respectively. The time at which the storm happens varies in the set {100, 200, 400, 600, 800}. As
an instance, C − 100 depicts the results of the compsitional approach when a storm occurs at time 100.
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Fig. 7: The verification time in (ES1) for λ = 0.5. The left side depicts the verification time in the compositional (C) and
non-compositional (NC) approaches when a storm occurs at a time in {100, 200}. The right side depicts the verification
time of each approach when a storm occurs at a time in {400, 600, 800}. The right and the left side figures show the
verification time with different scales.

7 RELATED WORK

In this section, we concentrate on four classes of most
related studies, modeling and verifying traffic control sys-
tems, formal analysis of self-adaptive systems at runtime,
compositional methods for verification, and interface theory.

Modeling and Verifying Traffic Control Systems
(TCSs). TCSs such as ATC and train control systems, due to
the tight interconnection of the physical plant and the con-
troller software, are mostly categorized as hybrid systems.
There is a vast literature on verifying dynamic models of
TCSs to detect the future conflicts among the moving objects
[23], [24], [25], to resolve the potential conflicts through the
trajectory planning [26], [27], and to evaluate the correctness
of the communication protocols among different entities
of the system [28], [29], [30]. These approaches use the
Lagrangian models in which the moving objects along with
their operational details are the concern of modeling [31],
[32]. Modeling the dynamic behaviors of each moving object
in these approaches needs a set of differential equations,
which due to a large number of the moving objects, makes
the analysis of TCSs difficult [31]. This approach of model-
ing is only necessary when we need to have a microscopic
view of the traffic for our analysis purposes.

Our approach is based on Eulerian models in which
the regions of the traveling space, e.g. sub-tracks, are the
concern of modeling [31], [32]. This kind of modeling is

more appropriate for modeling rerouting/rescheduling of
the moving objects [32]. By modeling each sub-track as an
actor, we develop a one-dimensional model of the traveling
space instead of a complex multi-dimensional model of
the moving objects. This approach of modeling not only
provides an acceptable fidelity for the problem [1], but also
relieves the analysis difficulties. It is notable that a few of
the mentioned approaches such as [23] verify the system
at runtime. The approach of [23] is not compositional. The
approach of [24] uses simulation, and [26] and [25], [28], [29]
respectively analyze one aircraft and one to four trains.

Based on the related work, there is an increased interest
towards the scheduling and path planning of moving ob-
jects in TCSs, i.e. [33], [34] use priced timed automata for the
resource scheduling and the aircraft landing problem, [35],
[36] use timed automata for the path planning in robotic
systems, and [37] use the P programming language and
attempts to compute an optimal collision-free motion plan
for a robot. The scheduling and the path planning are not
concerns of this paper.

Formal Analysis of Self-adaptive Systems at Runtime.
PobSAM [38], [39] is an integration of algebraic formalism
and actor-based Rebeca [40] models for modeling and ver-
ification of self-adaptive systems. In PobSAM there is no
notion of timing constraint, and no focus on the verification
at runtime.

The approach of [41] uses an incremental verification
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Fig. 8: The verification time in (ES2) for λ = 0.5. The storm occurs at time 100. The variations of the time needed to verify
the experiments with no deadlock using the compositional (C) and non-compositional approaches (NC) are depicted in
parts (a) and (b), respectively. The variations of the time needed to detect a deadlock using both approaches are depicted
in part (c).
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Fig. 9: The scalability of compositional (C) and non-compositional (NC) approaches in (ES3). Both approaches are run for
the same scenario with λ = 0.5. The storm occurs at time 100. The scalability is measured in the number of aircraft, while
the verification time is set to a threshold. The non-compositional approach is not able to verify a model with more than
2800 aircraft in a time less than the defined threshold.

technique to verify a Markov Decision Process (MDP) when
parameters of the model are changed at runtime. The MDP
is constructed incrementally by inferring a set of states
needed to be rebuilt. In [42], a parametric Discrete Time
Markov Chain (DTMC) is analyzed and a set of symbolic
expressions is reported as the result. This way, the runtime
verification of a DTMC is reduced to calculating the expres-
sions’ values when parameters get values at runtime. The
work of [43] designs a self-adaptive software as a dynamic
software product line, and uses parametric DTMCs to model
common behaviors and variation points of the products
separately. Therefore, there is no need to verify each con-
figuration separately. RINGA [44] develops a design-time
model of a system using Finite State Machines (FSM), where
transitions are assigned equations parameterized by envi-
ronmental variables and trigger the adaptations encoded in
the states. RINGA abstracts the model for using at runtime.
Lotus@runtime [45] monitors execution traces of the system
and updates probabilities of a model designed by a transi-
tion system. The desirable properties in [45] are explained
through a source state, a target state, a condition to be
satisfied, and the probability of satisfying the condition. In
comparison to [41], [42], [43], [44], [45] which use state-based
models, an actor model is in a higher level of abstraction.
Our actor-based approach besides decreasing the semantic
gap between the model@runtime and applications, facili-
tates the modular analysis of the system.

The failure propagation is studied in [46] that checks

whether the structural adaptation of the system is fast
enough to prevent a hazard. Our approach, besides detect-
ing a hazard, checks timing properties over a model. The
latency-aware adaptation is studied in [47], where a prob-
abilistic model checker proactively selects an adaptation
strategy to maximize the utility of the system. Unlike [47],
our focus is on effectively verifying the system behavior.
The work of [48] investigates which state of the system is
a safe state to update the implementation of the system
whenever an environment assumption is changed. It also
automatically synthesizes a new controller for the system.
The approach of [48] is applied on a RailCab system where
an accident should be avoided before the RailCabs enter into
a crossing. [48] does not verify the system after adapting it.

Compositional Methods. The idea of compositional ver-
ification of actor-based models are first introduced for Re-
beca in [40], [49], and providing a compositional semantics
for Rebeca using automata is presented in [50]. Composi-
tional methods for Timed Rebeca [51], [52] models are not
yet investigated in depth. The approaches of [53], [54] use
an assume-guarantee reasoning to respectively verify self-
adaptive systems at design time and check the satisfaction
of a property over a real-time system. [53] focuses on safety
properties and uses a backward reasoning to generate new
assumptions on the context of an adapted component. If it
reaches a null assumption on the context of the system, the
adaptation is incorrect. A property in [54] is divided into
a set of subspecifications for which an assumption and a
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guarantee are defined. The property is satisfied if its sub-
specifications refine a combination of their corresponding
assumptions and guarantees. This approach is not proposed
for self-adaptive systems. The approach of [55] partitions the
state space of a MDP into regions, magnifies on each region,
and calculates the maximal probabilities by obtaining the
upper and lower bounds of probabilities on each region.
Unlike [55], we focus on timed systems.

In [56], a variant of UML diagrams is used to define
components of a system, their interactions, and their tim-
ing and hybrid behaviors. Besides separately checking the
safety of each component, [56] checks whether interfaces of
components are well-defined. Compared to our approach,
[56] models hybrid behaviors. The verification at runtime is
not a concern in [56]. The approach of [57] groups com-
ponents of the system in a way that a group is verified
separately and its adaptation affects the satisfaction of one
requirement. In contrast to [57], instead of considering a
fixed number of components per each requirement, we
increase the verification domain whenever it is needed.
None of the above studies consider the change propagation.

Interface Theory. The theory of interfaces is a widely
studied topic, describing the main features that each
component-based design should obey, such as refinement,
structural composition, and conjunction. The approach of
composition in the studies is either optimistic [21], [58], [59],
meaning that two components are compatible if there is a
helpful environment to avoid an error state in their parallel
product, or pessimistic [60], [61], meaning that two compo-
nents should work together in all environments. In [21], a
theory of timed interfaces is proposed, and the interfaces
in [58] are specified by Timed Input Output Transition Sys-
tems. Compared to [21], the system in [58] is input-enabled
that is also an assumption in [58], where [58] uses TIOAs
to specify interfaces. In [59], an interface theory for Modal
Input Output Automata is proposed, and the interfaces in
[61] are specified by Modal Input Output transition systems
in which timing constraints are not specified. Compared
to the related work, we follow a pessimistic approach of
composition. Also the same as [21], we are able to express
the input assumptions and there is no need for the input-
enabledness assumption.

8 CONCLUSION AND FUTURE WORK

We proposed Magnifier, a compositional approach that it-
eratively detects the propagation of a change and incre-
mentally involves the components affected by a change
into the analysis. An adaptation policy may contain the
change and prevent the change to be propagated. In the
worse case, the change propagates to the whole system, and
Magnifier needs to compose all components of the model.
We compared the compositional approach of Magnifier and
the non-compositional approach in Section 6. We argued
that even in the worst case, Magnifier performs better than
the non-compositional approach. Looking more carefully
into this comparison and building a formal proof is a part
of our future work. The comparisons between our model,
CoodAA, and other similar models on self-adaptive systems
are presented in [1], [3]. In Section 7, we included a compar-

ison of Magnifier with other analysis approaches for TTCS
and other compositional methods.

Our Ptolemy II implementation of Magnifier is spe-
cialised for ATC. In [32], Lee and Sirjani show how CoodAA
can capture TTCS applications in general. Here we consider
a constant number of ports for all actors, and the topology
formed by connecting the ports is a mesh. The extension to a
dynamic number of ports and further than that to dynamic
bindings, seem like natural future work. The general idea
of Magnifier is not limited to TTCSs. It can be generalised
for any control system with a modular design. We need
to extend our model to include more general actors with
different behaviors and different bindings among the ports.
To investigate the details of such extension is another future
direction. The possibility of analyzing actors in a composi-
tional way is a consequence of their isolation discussed in
[9] by Sirjani et al. Hence, we believe that CoodAA and
Magnifier can be further extended and used in different
areas and applications based on the foundations provided
in this paper.
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