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Abstract. We propose a compositional approach for the Partial Order
Reduction (POR) in the state space generation of asynchronous timed
actors. We define the concept of independent actors as the actors that
do not send messages to a common actor. The approach avoids exploring
unnecessary interleaving of executions of independent actors. It performs
on a component-based model where actors from different components,
except for the actors on borders, are independent. To alleviate the effect
of the cross-border messages, we enforce a delay condition, ensuring that
an actor introduces a delay in its execution before sending a message
across the border of its component. Within each time unit, our technique
generates the state space of each individual component by taking its
received messages into account. It then composes the state spaces of all
components. We prove that our POR approach preserves the properties
defined on timed states (states where the only outgoing transition shows
the progress of time). We generate the state space of a case study in the
domain of air traffic control systems based on the proposed POR. The
results on our benchmarks illustrate that our POR method, on average,
reduces the time and memory consumption by 76 and 34%, respectively.

Keywords: Actor model · Partial order reduction · Composition ·
Verification

1 Introduction

Actor [1,14] is a mathematical model of concurrent computations. As units of
computation, actors have single threads of execution and communicate via asyn-
chronous message passing. Different variants of actors are emerged to form the
concurrent model of modern programming languages, e.g. Erlang [26], Scala [12],
Akka [2], Lingua Franca [16], and simulation and verification tools, e.g. Ptolemy
[20] and Afra [21]. In the interleaving semantics of actors, the executions of
actors are interleaved with each other. State space explosion is a fundamental
problem in the model checking of actors. Interleaving of actor executions results
in a huge state space and henceforth exponential growth in the verification time.
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Fig. 1. (a): An actor model with two components. Connections show how actors com-
municate. (b): Different interleavings of executions of two independent actors B and
F . State space of (b) is reduced to (c) using POR.

Partial Order Reduction (POR) [10,18] is a well-known technique to tackle the
state space explosion problem. While generating the state space, POR avoids
the exploration of unnecessary interleaving of independent transitions.

In this paper, we propose a compositional approach for POR of timed actors.
We describe our approach on Timed Rebeca [22,24]. Actors in Timed Rebeca
can model the computation time or the communication delays in time-critical
systems. Standard semantics of Timed Rebeca is based on the Timed Transition
System (TTS) [15]. TTS has instantaneous transitions over which the time does
not progress (the so-called discrete transitions) and the timed transitions that
model the progress of time. In this semantics, there is a notion of logical time that
is a global time synchronized between the actors. The instantaneous transitions
model executions of the actors and are interleaved if more than one actor is
executed at each logical time. The time progresses if no instantaneous transition
is enabled. We call a state whose outgoing transition is a timed transition a
timed state.

Our POR method works on an actor model where actors are grouped together
as components. We define the concept of independent actors as the actors that do
not send messages to a common actor. Actors from different components, except
for the actors on the borders of the components, are independent. We show that
we can abstract the interleaved executions of independent actors within one time
unit while preserving all the properties on the timed states. Dependent actors
sending messages to a common actor within the same logical time are the cause
of different ordering of messages in the message queue of the common actor and
hence different future execution paths. The set of actors in a component are
dependent. The actors sitting on the border of a component may communicate
via cross-border messages to actors in other components. For such cross-border
messages, we enforce a delay condition in this paper. The delay condition forces
an actor to introduce a delay in its execution before sending a cross-border mes-
sage. This way, we can avoid the interleaved executions of actors from different
components in the current logical time and postpone any simultaneous arrival
of messages to a common actor on borders to the next logical time. We intro-
duce interface components to send such messages in the next logical time. Our
method performs two operations at each logical time to generate the state space:
first, builds the state space of each component, and second, composes the state
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spaces. We call the TTS built using our method the Compositionally-built TTS
(C-TTS). Figure 1(a) shows an actor model with two components where the
independent actors B and F are triggered at a logical time. As Fig. 1(b) shows,
two sequences of transitions s0

B−→ s1
F−→ s3 and s0

F−→ s2
B−→ s3 are different

interleavings of executions of B and F , both reaching the state s3. With respect
to the system properties, only one of these interleavings is necessary. Using our
method, each final state in the state space of a component at the current logical
time, e.g., s1, is the initial state to generate the state space of a second compo-
nent at the current logical time (Fig. 1(c)). Each final state in the state space of
the second component at the current logical time is the initial state to generate
the state space of a third one, and so on, no matter how the components are
ordered to generate their state spaces.

An actor can send a message across the boundary of its component, and
this message can interfere with another message if both messages are sent to a
common actor at the same logical time. Our POR method is only applicable if
an actor introduces a delay in its execution before sending a message across the
border of its component. This way, there is no need to interleave executions of
independent actors from different components. Let actor H in Fig. 1(a) sends a
message to actor C at a logical time. In response, C is triggered but does not
send a message to E at the current logical time, and it can only send a message
to E in the next logical time (or later). However, in the next logical time, the
message sent by C to E may interfere with a message sent to E by D (which
belongs to the same component as E). Our method is aware of communications
of actors over different components. For each component, we define an interface
component that simulates the behaviors of the environment of the component
by sending messages to the component while generating its state space.

We prove that our method preserves the properties over timed states. We
reduce TTS (built by the standard semantics) and C-TTS by abstracting and
removing all instantaneous transitions, and prove that the reduced transition
systems are isomorphic. To investigate the efficiency of our method, we use a
case study from the air traffic control systems.

Related Work . To apply standard POR techniques to timed automata, [6]
proposes a new symbolic local-time semantics for a network of timed automata.
The paper [11] adopts this semantics and proposes a new POR method in which
the structure of the model guides the calculation of the ample set. In [17], the
author proposes a POR method for timed automata, where the method pre-
serves linear-time temporal logic properties. The authors of [13] introduce an
abstraction to relax some timing constraints of the system, and then define a
variant of the stubborn set method for reducing the state space. Compared to
our method, none of the above approaches are compositional. In [25], there is a
compositional POR method for hierarchical concurrent processes. The ample set
of a process in the orchestration language Orc is obtained by composing ample
sets of its subprocesses. Compared to [25], our method, instead of dynamically
calculating the ample sets, uses the static structure of the model to remove the
unnecessary interleavings.
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There are several approaches for formal specification and analysis of actor
models, i.e., Real-time Maude [27] is used for specifying and statistical model
checking of composite actors [9], and McErlang [8] is a model checker for the
Erlang programming language. The compositional verification of Rebeca is pro-
posed in [24], but it does not perform on timed actors. To the best of our knowl-
edge, none of them proposes a compositional approach for POR of timed actors
in generating the state space.

Contributions. The contributions of the paper are as follows:

1. We propose a compositional approach for POR of timed actors. Using inde-
pendent actors and the assumption of delay conditions for cross-border mes-
sage passing, this approach reduces the time and memory consumption in
generating state spaces by removing redundant interleavings in executions of
actors.

2. We prove that our POR method preserves properties over timed states. The
proof reduces TTS and C-TTS and shows that their reduced versions are
isomorphic.

Our method performs on a component-based actor model, so, in the case of
having a flat model, we need to organize actors into several groups of ideally
independent actors, or use actors that have a delay before sending a message to
determine the borders between different components. As future work, we plan
to perform static analysis of models for grouping actors as components.

2 Background: Timed Rebeca

Timed Rebeca is a timed version of Rebeca [24] created as an imperative interpre-
tation of the actor model [7]. In Timed Rebeca, communication is asynchronous,
and actors have message bags to store their incoming messages that are tagged
with their arrival times. Each actor takes a message with the least arrival time
from its bag and executes the corresponding method, called message server. In
message servers, an actor can send messages to its known actors and change
values of its state variables. The actor executes the method in an atomic and
non-preemptive way. Each actor can use the keyword delay to model passing
of time during the execution of the method. In Timed Rebeca, the keywords
delay and after are used to enforce the increase of logical time. To simplify the
description of the method, we only consider delay.

In the standard semantics of Timed Rebeca, the logical time is a global time
synchronized between actors. The only notion of time in our method is the logical
time, so hereafter, we use the term “time” and “logical time” interchangeably.
To simplify the description of the method, we assume that actors in this paper
only have one message server, so, we present the simplified standard semantics
of Timed Rebeca in this section.

Formal Specification of Timed Rebeca. A Timed Rebeca modelM =‖j∈AId

aj consists of actors {aj |j ∈ AId} concurrently executing, where AId is the set
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of the identifiers of all actors. An actor aj is defined as a tuple (Vj ,msvj ,Kj),
where Vj is the set of all state variables of aj , msvj is the message server of aj ,
and Kj is the set of all known actors of aj .

Simplified Standard Semantics of Timed Rebeca. The standard semantics
of M is the TTS T = (S, s0, Act,→, AP ,L), where S is the set of states, s0 is the
initial state, Act is the set of actions, →⊆ S × (Act ∪R≥0)× S is the transition
relation, AP is the set of atomic propositions, and L : S → 2AP is a labeling
function associating a set of atomic propositions with each state. The state s ∈ S
consists of the local states of all actors along with the current time of the state.
The local state of an actor aj is saj = (vj , Bj , resj , pcj), where vj is the valuation
of the state variables, Bj is the message bag storing a finite sequence of messages,
resj ∈ R≥0 is the resuming time, and pcj ∈ (N ∪ {0}) is the program counter
referring to the next statement after completing the execution of delay. In the
message mk = (valsk, ark) with the unique identifier k, valsk is a sequence of
values and ark is the arrival time. Let Saj be the set of all states of the actor aj .
The set S is defined as R≥0 ×

∏
j∈AId Saj , where

∏
is the Cartesian product.

So, the state s ∈ S is (nows,Atrss), where nows is the current time in s and
Atrss contains the states of all actors. In s0, each actor aj has an initial message
in its bag, and resj , pcj , and nows0 are zero.

The set of actions is defined as Act = Msg ∪ {τj |j ∈ AId}, where Msg is the
set of all messages. The transition relation → contains the following transitions
that are related to taking a message and triggering an actor, resuming the exe-
cution of an actor, and progressing the time.

1−Message taking transition . (s,mk, s′),mk ∈ Msg , iff in the state s there
is an actor aj such that mk = (valsk, ark) is a message in Bj , ark ≤ nows, and
resj is zero. The state s′ results from the state s through the atomic execution of
two activities: mk is removed from Bj , and the message server of aj is executed.
The latter may change the local state of aj and send messages that are tagged
with the arrival time nows and are stored in bags of the receiver actors. If aj
executes delay, the execution of the actor is suspended, the sum of nows and
the introduced delay value is stored in resj , and pcj is set to the location of the
statement after the executed delay.

2 − Internal transition . (s, τj , s′) iff in the state s there is an actor aj such
that resj > 0 and resj = nows. The state s′ results from s by resuming the
execution of the message server of aj from the location referred to by pcj . This
case may add messages to actors’ bags and change the state of aj . Besides, resj
and pcj are set to zero unless delay is executed.

3 − Time progress transition . (s, d, s′), d ∈ R≥0, iff there is an actor aj
such that resj )= 0, and for each actor ak, either Bk is empty or resk > nows.
The state s′ results from s through progressing the time. The time progresses to
the smallest time of all resuming times that are greater than zero. The amount
of the time progress is denoted by d.

The message taking and internal transitions are instantaneous transitions
over which the time does not progress. These transitions have priority over the
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time progress transition; the third transition is only enabled when no transitions
from the other two types are enabled. The time progress transition is also called
a timed transition. An actor may show different behaviors depending on the
order in which the messages are taken from its bag.

Timed Rebeca Extended with Components. Our POR method performs
on a component-based Timed Rebeca model which consists of a set CO of com-
ponents {coi|i ∈ CID}, where CID is the set of all component identifiers. A
component coi =‖j∈AIdi aj encapsulates a set of actors {aj |j ∈ AId i}, where
AId i is the set of identifiers of all actors in coi, and AId =

⋃
i∈CID AId i. A

local state of coi consists of the local states of its actors and is an instance of
Scoi =

∏
j∈AIdi

Saj . So, the state s ∈ S is an instance of R≥0 ×
∏

i∈CID Scoi and
is defined as (nows,CAtrss), where nows is the current time in s and CAtrss
contains the states of all components.

3 Overview of the Proposed POR Method

At each logical time, our POR method iterates over the components. To avoid
exploring interleavings of executions of independent actors from different compo-
nents, it generates the set of reachable states of each component using the mes-
sage taking and internal transitions, and composes the sets of reachable states.
Using the time progress transition, the time progresses, and the same procedure
repeats for the newly generated states. Our method should be aware of the mes-
sages sent to the component while generating its state space. The order in which
these messages are sent to the component may affect the reachable state. Below,
we define interface components that are responsible for sending such messages
to the components. We also describe the delay condition making our method
applicable and explain the method using an example.

Modeling Interface Components. An actor of a component may send mes-
sages across the component’s border. An actor with this ability is called a bound-
ary actor. All actors of a component except for the boundary actors are called
internal actors. The message sent by a boundary actor across the border of its
component interferes with another message if both messages are sent at the
same time to the same actor. The order in which these messages are taken from
the bag of the receiver actor affects the system state. So we need to consider
the interleavings of executions of actors of a component and its neighboring
actors. A neighboring actor of a component coi is a boundary actor of coj , if this
actor can directly communicate with an actor in coi. To make the components
independent while considering the mentioned interleavings, our method defines
an interface component for each component. An interface component of coi,
denoted by coint,i, contains a set of actors called interface neighboring actors.
Corresponding to each neighboring actor aj of coi, an interface neighboring actor
with the same behaviors as aj is defined in coint,i. Instead of neighboring actors,
interface neighboring actors in coint,i are triggered or resume their executions to
send messages to coi. To generate the state space of coi in isolation, executions
of actors of coi and coint,i are interleaved with each other.
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Fig. 2. (a): Three components co1, co2, co3. (b): Interface component of co3.

Figure 2(a) shows an actor model with three components co1, co2, and co3.
The internal and boundary actors of each component are respectively shown
in blue (dotted rounded arrow) and red (dashed rounded arrow). The actors
a1, a2, and a3 are neighboring actors of co3. Let actors a1, a2, a3, a4, and a6
in Fig. 2(a) send messages to actor a5 at the current time. The order in which
these actors send their messages is important. The interface component of co3,
shown in Fig. 2(b), contains the interface neighboring actors of co3, i.e. actors
a′
1, a′

2, and a′
3 that respectively correspond to actors a1, a2, and a3. The same

as the neighboring actors, interface neighboring actors can communicate with
boundary actors of co3.

The Delay Condition . When an actor of a component coi sends a message to a
boundary actor of coi, in response, the boundary actor is triggered and may send
a message across the component’s border. Therefore, an internal actor may be the
source of interferences between messages. In such a case, interleaving executions
of internal actors of two components has to be considered. For instance, let actors
a1 and a2 in Fig. 2(a), by respectively taking a message from actors a7 and a8
at the current time, be triggered, and in response, send a message to actor a5.
Actor a5 may receive the message of actor a1 first if actor a7 is triggered first, and
may receive the message of actor a2 first if actor a8 is triggered first. Therefore,
interleaving executions of actors a8 and a7 is important. To reduce interferences
between messages and have independent transitions, we consider that a boundary
actor is not able to send a message across the border of its component unless it
has introduced a delay greater than zero before sending the message. So, actors
a1 and a2 do not send a message to actor a5 at the same time they receive a
message. Using this condition, interleaving the executions of internal actors of
two components (independent actors) is not needed. This condition is not out
of touch with reality, because this delay can be the communication delay or the
computation time.

We describe the POR method using Fig. 3. The right side shows three com-
ponents and the left side shows how the state space of the model is generated.
We divide each state into three parts, where each part denotes the local state of
a component and its interface component. We show the new local state of each
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Fig. 3. The left side shows how the state space of the model of the right side is generated
using the compositional approach. The interface component of coi is denoted by coint,i.

component with a different color. Since the state of an interface component does
not contribute to verifying a property, we remove it from the figure. Let the state
s be a timed state at which the time progresses. At the current time of the state
s′, the method generates the state space of co1, considering the messages sent
to it by coint,1. In this case, the local states of co2 and co3 do not change. The
new local states of co1 are shown with different colors in states {s1, · · · , si}.

Each state of {s1, · · · , si} is an initial state from which the state space of co2,
considering coint,2, is generated. The method generates the state space of co2
only once and copies the built state space for each state sv ∈ {s1, · · · , si}. Then,
the method updates states of the state space copied for sv such that the local
states of all components except for co2 are set to their values in sv. For instance,
the most left triangle in the second level of Fig. 3 shows that only the local state
of co2 has changed, while the local states of co1 and co3 have the same values
as the state s1. Similarly, for each state of {sj , · · · , sk}, the state space of co3 is
created. Finally, the time progresses at each state of {sl, · · · , sn}, and the same
procedure repeats. In the next section, we present the algorithm of the method.

4 The POR Algorithm

Figure 4 shows the high-level pseudo-code of our POR method. The function
porMethod progresses the time and invokes createInStateSpace to generate the
state space at the current time. The function createInStateSpace invokes exe-
cuteCOM to generate the state space of a component considering its interface
component. For instance, porMethod progresses the time in s in Fig. 3 and then
invokes createInStateSpace. This function generates the whole state space from
s′ to sl, · · · , sn in three iterations. It generates each level of Fig. 3 in one iteration
where it invokes executeCOM only once to generate a triangle and copies and
updates the triangle several times.

Let queuetimed in porMethod be a queue of timed states. The algorithm uses
the deQueue function to take the head of queuetimed (line 6) and calls timeProg
(line 7). The timeProg function progresses the time and returns s′ and d as the
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1 Function porMethod (CO , s0)
Input: CO set of components whose boundary actors follow the delay

condition, s0 the initial state
Output: S, T sets of states & transitions

2 (Stimed ,newS ,newT ) createInStateSpace(CO , s0 )
3 queuetimed Stimed〉
4 S s0} ∪ newS , T newT
5 while queuetimed #= ∅ do
6 s deQueue(queuetimed)
7 (s′, d) timeProg(s)
8 S S ∪ {s′}, T T ∪ {(s, d, s′)}
9 (Stimed ,newS ,newT ) createInStateSpace(CO , s ′)

10 queuetimed

〈
{

〈queuetimed |Stimed〉
11 S S ∪ newS , T T ∪ newT

3131 return (S, T )
14 Function createInStateSpace (CO , s)

Input: CO set of components, s a state
Output: Sfrontier ,S sets of states, T set of transitions

15 Sfrontier s}, S , T
16 updateIntComp(s,CO)
17 foreach co ∈ CO do
18 (st , trans,finalSt) executeCOM (co, s)
19 leavesOfaCom

{ ∅ ∅

∅
20 while Sfrontier #= ∅ do
21 s′ take(Sfrontier )
22 (newS ,newTr ,newFS) updateSts(CO , co, s′, st , trans,finalSt)
23 leavesOfaCom leavesOfaCom ∪ newFS
24 T T ∪ newTr , S S ∪ (newS ∪ newFS)
25 Sfrontier leavesOfaCom

7272 return (Sfrontier , S, T )
28 Function executeCOM (co, s)

Input: co a component, s a state
Output: Sin ,T sets of states & transitions, leavesOfCom final states of the

state space of co
29 leavesOfCom , Sin , T∅ ∅ ∅
30 enabledActors getEnabledActors(s, co)
31 if enabledActors = ∅ then
32 return (∅, ∅, {s})
33 while enabledActors #= ∅ do
34 (aid ,msg) take(enabledActors)
35 s′ trigger(s, aid ,msg)
36 if msg = null then
37 T T ∪ {(s, τaid , s′)}
38 else
39 T T ∪ {(s,msg , s′)}
40 (newS ,newTr ,newFS) executeCOM (co, s ′)
41 leavesOfCom leavesOfCom ∪ newFS
42 T T ∪ newTr
43 if newFS #= {s′} then
44 Sin Sin ∪ newS ∪ {s′}
6464 return (Sin ,T , leavesOfCom)

Fig. 4. State-space generation by the compositional approach
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new state and the amount of the time progress based on which the state space
is updated (line 8). Then, the algorithm invokes createInStateSpace to generate
the state space at the current time (line 9). This function returns the set of
timed states (leaves), the set of states, and the set of transitions of the state
space. The timed states are added to the end of queuetimed (line 10), over which
porMethod repeats the same process (line 5). Based on the semantics described
in Sect. 2, the initial state s0 is not a timed state. The function handles s0 as a
separate case; without progressing the time, uses createInStateSpace to generates
the state space at time zero (line 2).

Let Sfrontier, including the given state s in createInStateSpace (line 15),
stores final states of state spaces generated for a component from different ini-
tial states. For instance, it stores states {s1, · · · , si} in the first level or states
{sj , · · · , sk} in the second level of Fig. 3. Assume aid is a neighboring actor
and a′

id is the interface neighboring actor corresponding to aid, where id is an
arbitrary index. The algorithm first uses the function updateIntComp(s,CO) to
update states of interface components of all components (line 16). Using this
function, the local state of each interface neighboring actor, i.e. a′

id, is updated
to the local state of the corresponding neighboring actor, i.e. aid, in s. The vari-
ables, the resuming time, and the program counter of the interface neighboring
actor a′

id are respectively set to values of the variables, the resuming time, and
the program counter of the corresponding neighboring actor aid in s. Then, the
algorithm iterates over components (lines 17 to 25) and performs as follows. For
each component co, it uses the function executeCOM to generate the state space
of co from the given base state s (line 18). This function returns the states of the
state space that are not final states, the transitions, and the final states of the
state space. The algorithm then iterates over Sfrontier (lines 20 to 24). It uses
the take function to take a state s′ from Sfrontier (line 21) and uses the function
updateSts to make a copy from the generated state space and update the states
of the copy one based on s′ (line 22); except for the state of the component co,
states of all components are set to their values in s′. The final states (leaves)
of the copied state space are stored in leavesOfaCom (line 23), and all created
states and transitions are stored (line 24). When for each state of Sfrontier as an
initial state, the state space of co is built, Sfrontier is updated to leavesOfaCom
(line 25). The final states of the state spaces of the last component are timed
states that are returned.

The function executeCOM in Fig. 4 has a recursive algorithm that uses depth
first search to generate the state space of a given component from a given state
considering only themessage taking and internal transitions. This function inter-
leaves executions of actors and the interface neighboring actors of the component.
The function getEnabledActors returns a set of tuples (aid,msg) where aid is
the identifier of an actor or an interface neighboring actor of the component and
msg is a message or a null value (line 30). This function returns (aid,msg) with
msg )= null if actor aaid can take the message msg from its bag in the state
s (the message taking transition) and returns (aid,msg) with msg = null if
aaid can resume its execution in s (the internal transition). The algorithm then
iteratively takes a tuple (line 34). The algorithm triggers the actor or resumes
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(a)

(b) (c)

Fig. 5. (a),(b): Three components and their interface components. (c): State space in
t = 1. Bj , B

′
j bags of aj and a′

j , respectively.

its execution using the function trigger (line 35). As a result, a new state is gen-
erated, and a transition is added to the set of transitions (lines 36 to 39). Then,
the algorithm is executed for the new state (line 40). It stores the final states
of the state space of the component (line 41) and the states that are not final
states (line 44) in two disjoint sets. Finally, the transitions and the states of the
state space of the component are returned (line 46). It is worthy to mention that
messages sent by a component coi to a component coj are not stored, because
these messages are generated for coj using coint,j .

We use the example in Fig. 5 to describe our approach. Figure 5(a) shows an
actor model with three components, Fig. 5(b) shows the interface component of
each component, and Fig. 5(c) shows the state space of the model for time t = 1.
We assume that a2 and a3 resume their executions at time t = 1 and respectively
send v and v′ as the sequences of values to actor a1. For j = 1, 2, 3, we use Bj

and B′
j to denote the bag of actor aj and the bag of the interface neighboring

actor a′
j , respectively. We also use τj and τ ′

j to denote the internal transitions
over which aj and a′

j resume their executions, respectively. The actor a1 takes a
message and performs a computation. The algorithm generates the state spaces
of co1, co2, and co3 in order. To generate the state space of co1, instead of actors
a2 and a3, actors a′

2 and a′
3 resume their executions to send messages to actor

a1. The time in all states is 1. To have a simple figure, we do not label the states
with state variables of the actors. The label of each state only shows how the bag
of an actor is changed when the actor is triggered or the execution of another
actor is resumed. For instance, over the transition from s0 to s2, B1 changes to
{(v′, 1)} and the bags of other actors remain unchanged. The actors a2 and a3
are respectively triggered in the states s9 and s11 (s8 and s10) and values of their
state variables are stored.

5 Correctness Proof

We prove that our POR method preserves the properties with state formulas
over timed states. We reduce TTS and C-TTS by removing all instantaneous
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transitions and prove that the reduced TTS and the reduced C-TTS are isomor-
phic. A similar reduction is used (with no proof) in [23] by Sirjani et al., where
they show how a hardware platform can be used to hide from the observer the
interleaved execution of a set of events (instantaneous transitions) occurring at
the same logical time.

We prove that our POR method preserves deadlock: if there is a deadlock
state, TTS and C-TTS reach it at the same logical time. Let T = (S, s0, Act,→,
AP ,L) be the transition system of a component-based timed Rebeca model.
The set S contains two sets of states: timed states and instantaneous states. The
only enabled transition of a timed state is a timed transition and all outgoing
transitions from an instantaneous state are instantaneous transitions.

Definition 1. (Timed state) s ∈ S in a given T is a timed state if there exists
a state s′ ∈ S and a value d ∈ R>0 such that (s, d, s′) ∈→. *+

Definition 2. (Instantaneous state) s ∈ S in a given T is an instantaneous
state if there exists a state s′ ∈ S and an action act ∈ Act such that
(s, act, s′) ∈→. *+

According to the standard semantics in Sect. 2, the sets of timed states and
instantaneous states are disjoint since a timed transition is enabled in the state
which does not have an enabled instantaneous transition. The set S contains
a deadlock state if deadlock happens in the system. A state with no outgoing
transition is a deadlock state.

Definition 3. (Deadlock state) s ∈ S in T is a deadlock state if there is no
state s′ ∈ S and l ∈ (Act ∪ R>0) such that (s, l, s′) ∈→. *+

To simplify the proofs of this section, we add a dummy state to the set S and
define a dummy transition as a timed transition with an infinite value between
a deadlock state and the dummy state. If s d−→ s′ is a dummy transition where s
is a deadlock state, s′ is the dummy state, and d is infinite. The dummy state
has no outgoing transition. Let TTTS = (S1, s0, Act,→1, AP ,L) and TCTTS =
(S2, s0, Act,→2, AP ,L) be respectively TTS and C-TTS of a component-based
Timed Rebeca model. We use (vsj , Bs

j , res
s
j , pc

s
j) to denote the local state of the

actor aj in a state s.

Definition 4. (Relation between a State of TTS and a State of C-TTS). A state
s ∈ S1 and a state s′ ∈ S2 are in the relation R ⊆ S1 × S2 if and only if s and
s′ are equal, which means:

– nows = nows′ ,
– ∀i ∈ CID,∀j ∈ AId i, vsj = vs

′

j , Bs
j = Bs′

j , ressj = ress
′

j , and pcsj = pcs
′

j . *+

Let e = s1
l1−→ s2

l2−→ · · · sn−1
ln−1−−−→ sn be an execution path from a given

state s1 to a reachable state sn, where for all x ∈ [1, n − 1], lx ∈ (Act ∪ R>0).
Having the relation R between two states s and s′, i.e. (s, s′) ∈ R, we are able to
prove that all executions from s and s′ reach the same set of timed states. Note
that by defining a dummy transition, a deadlock state is also a timed state.
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Lemma 1. Let (s1, s′
1) ∈ R and for all x ∈ [1, n − 1], actx ∈ Act and for all

y ∈ [1, n′ − 1], act′y ∈ Act . For each execution e = s1
act1−−−→ s2

act2−−−→ · · · actn−1−−−−→

sn
d−→ t in TTTS, there is an execution e′ = s′

1
act′

1−−−→ s′
2

act′
2−−−→ · · ·

act′
n′−1−−−−−→ s′

n′
d−→ t′

in TCTTS such that (sn, s′
n′) ∈ R, and vice versa.

Proof. This proof consists of two parts:

Part1 : For each execution e in TTTS there is an execution e′ in TCTTS

such that (sn, s′
n′) ∈ R. Let BAcoi = {aj | j ∈ AId i ∧ ∃z ∈ Kj · ∃i′ ∈

CID · (i )= i′ ∧ z ∈ AId i′)} be the set of boundary actors of the component
coi. Assume that a boundary actor aj is triggered at the current time of s1, i.e.,
∃x ∈ [1, n− 1] ·actx = mk ∧ mk ∈ Bsx

j ∧aj ∈ BAcoi . Based on the input of the
function porMethod in Fig. 4, aj follows the delay condition and does not send
a cross-border message at the current time, and hence, interleaving executions
of internal actors of different components does not affect the reachable timed
state. Let seqcoi,e contains the messages and the orders in which those massages
are taken from the bags of actors of the component coi over e, i.e., if seqcoi,e =
〈mk1,1,mk2,2, · · · ,mkw,w〉, then ∀j, z ∈ [1, w] · z > j · ∃actx, actx′ · x, x′ ∈ [1, n−
1]∧actx = mkj ,j∧actx′ = mkz,z∧x′ > x∧mkj ,j ∈ Bsx

b ∧mkz,z ∈ Bsx′
p ∧b, p ∈ AId i.

Similarly, seqcoi,e′ can be defined for an execution e′ in TCTTS . If for the
execution e in TTTS there exists an execution e′ in TCTTS such that for all
i ∈ CID, seqcoi,e = seqcoi,e′ , then e′ reaches a state s′

n′ where (sn, s′
n′) ∈ R.

This is because the messages and the orders in which these messages are taken
from the bags affects the reachable system states. We use proof by contradic-
tion to show that there is such an execution. Assume that (s1, s′

1) ∈ R but
there is no execution e′ with the mentioned condition. This means that for all
executions e′ in TCTTS , seqcoi,e )= seqcoi,e′ for some coi. In our POR method,
createInStateSpace generates the reachable states of all components at each log-
ical time. It first uses the function updateIntComp to update the local state of
each interface neighboring actor of each component to the local state of the cor-
responding neighboring actor of the component. The set of neighboring actors of
coi is {aj | ∃i′ ∈ CID·(i )= i′ ∧ aj ∈ BAcoi′ ∧ ∃z ∈ AId i ·(z ∈ Kj∨j ∈ Kz)}. The
function createInStateSpace then invokes executeCOM to generate the reachable
states of each component. The function executeCOM selects an actor from the
set of enabled actors (line 34) and triggers the actor or resumes its execution. The
set of enabled actors (line 30) includes actors of the component and its interface
neighboring actors, where these actors can be triggered or resume their execu-
tions at the current time. Therefore, our POR method besides interleaving exe-
cutions of actors of each component, interleaves executions of neighboring actors
(through interface neighboring actors) and actors of a component. So the only
case in which none of the executions e′ corresponds to e, i.e. seqcoi,e )= seqcoi,e′ ,
is that (s1, s′

1) /∈ R, that contradicts the assumption.

Part2 : For each execution e′ in TCTTS there is an execution e in TTTS

such that (sn, s′
n′) ∈ R. As mentioned before, an interleaving of executions of

actors is considered in the generation of C-TTS; however, all interleavings of
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Fig. 6. The left side shows a timed transition system in which all instantaneous transi-
tions are τ transitions and the right side shows its reduced version. The dotted arrows
show the mappings between states.

executions of actors are considered in the generation of TTS. So, all reachable
timed states in C-TTS can be found in TTS. *+

To show that our POR method preserves the properties over timed states,
we reduce TTS and C-TTS by changing the instantaneous transitions to τ
transitions and removing the τ transitions. We define Actτ = {τ} and use
Tτ = (S, s0, Actτ ,→τ , AP ,L) to denote a transition system in which all instan-
taneous transitions are changed to τ transitions.

Definition 5. (Reduced Transition System) For Tτ = (S, s0, Actτ ,→τ , AP ,L),
its reduced transition system is T ′ = (S′, s0, ∅,→′, AP ,L), where:

– S′ ⊆ S that contains all timed states and the state s0,
– For all s, s′ ∈ (S′ \{s0}), (s, d, s′) ∈→′ if and only if there exists an execution

s
d−→ s1

τ−→ . . . sn
τ−→ s′ in Tτ , where s1, · · · , sn are not timed states,

– For all s′ ∈ (S′ \ {s0}), (s0, 0, s′) ∈→′ if and only if there exists an execution
s0

τ−→ s1 . . . sn
τ−→ s′ in Tτ , where s1, · · · , sn are not timed states. *+

There is a transition between two states of T ′ if and only if those are con-
secutive timed states or are the initial state and its following timed states in
Tτ (or T ). The reduced version of a transition system is shown in Fig. 6. In the
following theorem, we prove that the reduced TTS and the reduced C-TTS have
the same sets of states and transitions and so are isomorphic.

Theorem 1. The reduced TTS and the reduced C-TTS are isomorphic.

Proof. Let T ′
TTS = (S′

1, s0, Act,→′
1, AP ,L) and T ′

CTTS = (S′
2, s0, Act,→′

2,
AP ,L) be respectively the reduced versions of TTS and C-TTS. We have

(s0, s0) ∈ R. Now, let (s1, s2) ∈ R and s1
d−→

′
1 t1. Based on Lemma 1, all exe-

cutions from s1 and s2 reach the same set of timed states in TTS and C-TTS.
Based on Definition 5, the set of states in the reduced TTS and the reduced
C-TTS includes timed states. Therefore, there is t2 ∈ S′

2 such that s2
d−→

′
2 t2

and (t1, t2) ∈ R. Therefore, T ′
TTS and T ′

CTTS have the same sets of states and
transitions, and hence, are isomorphic.
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Fig. 7. The number of states and time consumption of model checking in (S1) and
(S2), where “SS” stands for the standard semantics and “POR” for the POR method.

6 Experimental Results

In this section, we report our experiments on a benchmark in the domain of air
traffic control systems (ATCs) [3–5] to compare the model checking time and
memory consumption of using the standard semantics and the proposed POR
method. We model an ATC application with four components. Each component
consists of n2/4 actors modeling the traveling routes in the ATC application
and might consist of several actors modeling the source and destination airports.
Similar to [3], we use Ptolemy II as our implementation platform to generate the
state space based on both approaches. Our source codes are available in [19].

We consider three scenarios in our experiments: (S1) and (S2) that respec-
tively use a low-concurrency model with n = 10 and n = 18, and (S3) that uses
a high-concurrency model with n = 18. We generate a batch p of flight plans for
10000 aircraft in each scenario, where aircraft are modeled as messages passed
between the actors. We partition the batch p into smaller batches pi, 1 ≤ i ≤ 100,
where p1 contains the first 100 flight plans of p, p2 contains the first 200 flight
plans of p, and so on. By increasing the number of aircraft, the concurrency con-
tained in the model increases. Similarly, by increasing n, the number of actors
involved in the analysis and subsequently the concurrency of the model increase.
Compared to (S1) and (S2), the flight plans in (S3) are selected in a way that
many actors can send or receive messages corresponding to the aircraft at the
same time, which lead to a high-concurrency model. We use both approaches to
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generate the state space of the model for each batch pi and measure the number
of states and the time consumed to generate the state space. We consider a time
threshold of 45min for generating the state space.

Figure 7 shows some results from our experiments. The legend “SS” refers to
executions with the standard semantics and “POR” refers to the POR method.
The POR method reduces the number of states and the time consumption of
generating state spaces. Increasing the number of flights and the number of actors
results in increases in the concurrency of the model, and subsequently, the time
consumption and the size of state spaces. Growth in “POR” is significantly lower
than “SS”, which means the POR method is more efficient when concurrency of
the model increases. As Fig. 7(a) shows, the standard semantics is not scalable
to a model with more than 3800 flights in (S1). The state space of a model with
more than 3800 flights cannot be generated based on the standard semantics in
less than 45min. The POR method generates 286427 states for a model with
7100 flights in around 45min. Similarly, the standard semantics cannot generate
the state space of the model with more than 2400 flights in (S2). The POR
method generates 333,283 states for a model with 5100 aircraft. We observe that
the trends of growth in time consumption of both approaches are exponential
(Figs. 7(a) and 7(c)). However, compared to “POR”, the growth order of “SS” is
quadratic for our case study. The results in (S2) denote that our POR method, on
average, reduces the time and memory consumption by 76 and 34%, respectively.
The POR method removes unnecessary execution paths. Since several execution
paths may pass through a common state, the number of transitions removed
is more than the number of states removed. As the time consumption mostly
relates to creation of the transitions, the reduction in the time consumption is
more than the reduction in the memory consumption.

The scenario (S3) examines a model with highly concurrent actors. The stan-
dard semantics is not scalable to more than 13 flights: it generates 15,280,638
states for the model with 13 flights in 45min. The POR method scales to the
model with 220 flights. It generates 412,377 states for the model with 220 flights
in 45min.

7 Conclusion

We proposed a compositional method for POR of timed actors. Instead of inter-
leaving executions of actors of all components to generate the state space, our
method iterates over components at each logical time, generates the set of reach-
able states of each component, and composes the sets of reachable states. By con-
sidering the communications of actors over different components, our method
interleaves executions of actors and neighboring actors of each component to
generate the set of reachable states. We proved that our POR method preserves
the properties of our interest.
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