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Abstract The formal modelling and verification of distributed systems represents
a complex process in which multiple tools are involved. Rebeca is a language
which is developed to make modelling and verification of distributed systems
with asynchronous message passing easier. This chapter shows how different tool
orchestration methods are used for developing different verification engines for
Rebeca models. As the first step, the way of enabling performance evaluation for
Rebeca models is shown. To this end, state spaces which are generated for Rebeca
models are transformed to the input of a third party tool and the result of the
verification is given to the modeller. The second one is developing a search-based
optimisation for wireless sensors and actuators applications. Running the model
checker in a loop with different input parameters helps in finding the optimum
values for parameters with respect to a given optimisation goal. The third one
is for safety verification and performance evaluation of collaborative autonomous
machines of Volvo car. The verification is done through developing and evaluating
models by the model checking tool and Volvo car simulator (VCE Simulator).

This case-study chapter illustrates concepts introduced in Chap. 5 and addresses
Challenge 2 in Chap. 3 of this book.

13.1 Introduction

Rebeca is a modelling language which is developed based on Hewitt and Agha’s
actors [AH87]. The actor model is a well-known model for the development of
highly available and high-performance concurrent applications. It benefits from the
universal primitives of concurrent computation, called actors. Hewitt introduced the
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actor model as an agent-based language [Hew72] and is later developed by Agha
as a mathematical model of concurrent computation [Agh]. Actors in Rebeca are
independent units of concurrently running programs that communicate with each
other through message passing. The message passing is an asynchronous non-
blocking call to the actor’s corresponding message server. Message servers are
methods of the actor that specify the reaction of the actor to its corresponding
received message. In the Java-like syntax of Rebeca, actors are instantiated from
reactive class definitions that are similar to the concept of classes in Java. Actors in
this sense can be assumed as objects in Java. Each reactive class declares a set of
state variables and the messages to which it can respond.

Rebeca is usable for software engineers and programmers. They are famil-
iar with the Java-like syntax of Rebeca, and with the object-oriented style of
programming. For concurrent programming, programmers are mostly using thread-
based programming, and the event-based model of computation may not be as
widely used by all the programmers. Usually it would be enough to tell them
that each actor is one thread of execution, and message servers run atomically
with no preemption. Different extensions for Rebeca are proposed to make it more
usable for different domains and types of analysis. Timed Rebeca [Rey+14] is an
extension on Rebeca with time features which supports modelling and verification
of time-critical systems [KKS18, Kha+15, SK16]. Probabilistic Rebeca is another
extension of Rebeca which is developed to consider the probabilistic behaviour of
actor systems [VKI12]. Probabilistic Timed Rebeca (PTRebeca) is an extension of
Rebeca which benefits from modelling features of Timed Rebeca and Probabilistic
Rebeca, combining the syntax of both languages [Jaf+14]. Inheritance for Rebeca
is introduced in [ You+20] to make modelling easier and enable modellers to define
custom communication mechanisms.

Afra is a toolset which is developed for the purpose of providing modelling
and verification facilities for Rebeca models and its extensions. Similar to many
other Eclipse plugins, Afra contains a set of Eclipse views and editors together
with a set of Java components for implementing models and analysing them.
Considering the tool orchestration strategies which are presented in Chap.5 of
this book [Hei+21], this chapter shows how Afra is used together with other tools
and libraries for the analysis of Rebeca models. We explain how orchestration of
Afra with other tools is used in various domains for different purposes like model
checking, performance evaluation, or search-based optimisation. Chapter 5 of this
book [Hei+21] proposed a reference architecture along with important concepts
that can be used to orchestrate analysis tools. Among six different strategies, single
analysis orchestration (strategy A), cooperating analysis orchestration (strategy D),
and sequential analysis orchestration (strategy E) are used in analysis tools of
Rebeca. Single analysis orchestration uses a tool driver to translate the model into a
valid input for an external black-box analysis tool. Then the modelling environment
translates back the result of the analysis tool by using the tool driver again. Using
sequential analysis orchestration the modelling environment invokes one tool, then
translates the result into an input to another tool, and then translates the results of the
second tool back to the domain-specific model to provide it to the domain expert.



13 Using Afra in Different Domains by Tool Orchestration 285

In cooperating analysis orchestration the modelling environment invokes one tool,
then translates the result into an input to another tool, and then translates the results
of the second tool back into an input of the first tool to run another analysis.

In the rest of this chapter, first, Sect. 13.2 introduces Rebeca modelling language
and how correctness properties are defined for Rebeca models using a running
example. The main features of Afra are presented in Sect. 13.3. The next four
sections show how orchestration of Afra with other tools is used to develop new
analysis tools, i.e., Sect. 13.4 for performance evaluation, Sect. 13.5 for schedula-
bility analysis, and Sects. 13.6 and 13.7 for flow management. Finally, Sect. 13.8
concludes the chapter.

13.2 Reactive Object Language (Rebeca)

We illustrate the Rebeca language with the example of a simple ticket service
system. The actor model of this system is presented in Fig. 13.1. The model consists
of three actors: Customer, Agent, and Ticket Service System. Customer asks Agent
for issuing a ticket. The Agent actor forwards the request to Ticket Service System
and it replies to Agent by sending a ticket is issued response. Agent responds to
Customer by sending the issued ticket information. A Rebeca model has reactive
objects with no shared variables, asynchronous message passing with no blocking
send and no explicit receive, and unbounded buffers for messages. Objects in Rebeca
are reactive and self-contained. Communication takes place by message passing
among actors. The unbounded buffer of actors, called message queue, is used to
store its arriving messages. Actor takes a message—that can be considered as an
event—from the top of its message queue and executes its corresponding message
server (also called a method). The execution of a message server is atomic which
means that there is no way to preempt the execution of a message server of an actor
and start executing another message server of that actor.

Issue a Ticket Issue a Ticket
Customer Agentf | g j( | E Ticket Service
N~ N~ System
Ticket is Issued Ticket is Issued

Fig. 13.1 The actor model of Ticket Service System
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1 reactiveclass TicketService (3) { 26 }

2 knownrebecs {Agent a;} 27 }

3 statevars { 28 reactiveclass Customer (2) {
4 int nextId; 29 knownrebecs {Agent a;}
5 } 30 statevars {

6 TicketService () 31 boolean waiting;

7 nextId = 0; 32 }

8 } 33 Customer () {

9 msgsrv requestTicket () 34 self.try();

10 delay (?(0.4:2, 0.6:3)); 35 waiting = false;

11 a.ticketIssued (nextId) ; 36 }

12 nextId = nextId + 1; 37 msgsrv try ()

13 } 38 waiting = true;

14 } 39 a.requestTicket () ;

15 reactiveclass Agent (2) { 40 }

16 knownrebecs { 41 msgsrv ticketIssued (byte id) {
17 TicketService ts; 42 waiting = false;

18 Customer c; 43 self.try() after(30);
19 } 44 }
20 msgsrv requestTicket () 45 }
21 delay (1) ; 46 main {
22 ts.requestTicket () deadline (5) ;47 Agent a(ts, c):();
23 } 48 TicketService ts(a): ();
24 msgsrv ticketIssued (byte id) { 49 Customer c(a): ();
25 c.ticketIssued (id) ; 50 }

Listing 13.1 The Rebeca model of ticket service system

Listing 13.1 shows the Rebeca model of the ticket service system of Fig. 13.1. A
Rebeca model consists of a set of reactive classes (i.e., actor types) and the main
block. In the main block, actors which are instances of the reactive classes are
declared (lines 47-49). The body of the reactive class includes the declaration of
its known actors, state variables, and message servers. For the case of Customer
reactive class, its only known actor is an Agent which is accessible by variable
a (line 29). As declared in line 31, Customer has one state variable which
shows that and actor is sent a request and waits for the response. It also has two
message servers try and t icket Issued and one constructor (line 33). Message
servers consist of the declaration of formal parameters (e.g., 1d in line 41) and
the body of the message server. The statements in the body can be assignments
(line 38), conditional statements, enumerated loops, nondeterministic assignment,
and method calls (line 39). Method calls are sending asynchronous messages to
other actors (or to itself).

A reactive class has an argument of type integer denoting the maximum size of
its message queue (e.g., 2 for Customer as depicted in line 28). Although message
queues are unbounded in the semantics of Rebeca, to ensure that the state space is
finite, we need a user-specified upper bound for the queue size. The operational
semantics of Rebeca has been introduced in [Sir+04] in more detail. In comparison
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1 property ({

2  define {

3 waiting = c.waiting == true;

4}

5 LTL {

6 NoStarvation : G(waiting -> F(!waiting)) ;
7}

8 }

Listing 13.2 The property file for the Rebeca code in Listing 13.1 stating the safety property as
an LTL formula

with the standard actor model, dynamic creation and dynamic topology are not
supported by Rebeca. Also, actors in Rebeca are single-threaded.

A Rebeca code can be model checked against a given set of linear temporal
logic (LTL) properties. These properties specify the correct behaviours/states of the
model. For example, in the case of Ticket Service System, one correctness property
is that there is no starvation in issuing tickets for customers. This property can be
specified in LTL using ((waiting — {(—waiting)) formula which means that
now and forever in the future, waiting for a ticket results in not waiting for a ticket
(having ticket) eventually in the future.

Listing 13.2 shows how the mentioned LTL property is specified in the Rebeca
property file. At the first step, the atomic propositions of the formula are defined
in the def ine section of a Rebeca property file, considering the state variables of
the actors (line 3). The name of the atomic propositions is set to waiting and its
corresponding formula is put after the equal sign. In the LTL section, the correctness
property is specified (line 5). In this example, only one property with the name
NoStarvation is defined. Textual presentation of LTL modality L] (now and
forever in the future) is G and ¢ (eventually in the future) is F in Rebeca property
files.

Timed Rebeca [Rey+14] is an extension on Rebeca with time features for
modelling and verification of time-critical systems. To this end, three primitives
are added to Rebeca to address computation time, message delivery time, message
expiration, and period of occurrence of events. In a Timed Rebeca model, each
actor has its own local clock and the local clocks evolve uniformly. Methods are
still executed atomically, however passing time while executing a method can be
modelled. In addition, instead of a queue for messages, there is a bag of messages
for each actor.

The timing primitives that are added to the syntax of Rebeca are delay, deadline,
and after. The delay statement models the passing of time for an actor during
execution of a message server. The keywords affer and deadline can only be used
in conjunction with a method call. The value of the argument of affer shows how
long it takes for the message to be delivered to its receiver. The deadline shows the
timeout for the message, i.e., how long it will stay valid.
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As shown in line 21 of the model of Listing 13.1, processing time of a request
in the agent is one time unit. At line 22 the actor instantiated from Agent sends
a message requestTicket to actor ts instantiated from TicketService, and gives a
deadline of five to the receiver to take this message and start serving it. The periodic
task of retrying for a new ticket is modelled in line 39 by the customer sending a try
message to itself and letting the receiver to take it from its bag only after 30 units
of time (by stating after(30)). Model checker of Timed Rebeca models considers
schedulability of message servers. It means schedulability is preserved if none of
the specified deadlines of messages is missed.

PTRebeca language supports modelling and verification of real-time systems
with probabilistic behaviours [Jaf+16]. PTRebeca introduced probabilistic assign-
ment which is similar to nondeterministic assignment but associate a probability
with each value option. In the probabilistic assignment, probabilities are real values
between 0 and 1, and sum up to 1. Notably, by using probabilistic assignments,
the values of the timing constructs (delay, after, and deadline) can also become
probabilistic.

Different probabilistic behaviours can be modelled using the PTRebeca lan-
guage, depending on the system under study. In the Rebeca code of Listing 13.1,
issue time of a ticket in the ticket service system is set to two with the probability of
0.4 and three with the probability of 0.6 (line 10). Finding the expected value of the
waiting time for issuing a ticket or computing the probability of deadline misses are
two examples of probabilistic analysis which can be done using PTRebeca.

13.3 Afra

Afra is the integrated development environment (IDE) for model checking Rebeca
and Timed Rebeca models.! It is developed as an Eclipse plugin and released as a
standalone Eclipse product. It contains a set of Eclipse views and editors together
with four Java components for implementing models and analysing them. Afra
plugin contains a compiler component for compiling its given models and the
Rebeca model checker (RMC) component for generating model checking codes
for models. Using Afra, syntactically and semantically correct Rebeca models are
transformed into a set of C++ source codes which generate the transition system
of the model and perform property checking. In other words, running the generated
C++ codes provides the model checking result. The working environment of Afra
is shown in Fig. 13.2 which contains project explorer, Rebeca code editor, analysis
result viewer, and counterexample viewer.

In addition to using Afra for the analysis of Rebeca models, its internal
components (i.e., shown in Fig. 13.3) can be orchestrated in collaboration with other
components to provide more comprehensive analysis solutions. Having an explicit

! Afra can be downloaded from http://rebeca-lang.org/alltools/Afra.
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Fig. 13.3 Afra tool architecture

output language in the form of a standard abstract syntax tree (AST), the result of
the Compiler component can be consumed by other components and tools. Using
sequential orchestration of the components, the RMC component transforms this
AST to C++ codes and the Model Transformer component transforms it to Real-
Time Maude [OMO07] (for bounded model checking), ROS [Qui+09] (for deploying
in autonomous robots), and Akka [AkkO9] (for running on Java Virtual Machine).
Real-Time Maude is a rewriting-logic-based language which supports the formal
specification and analysis of real-time systems. Robotic Operating System (ROS) is
a robot middleware which has been widely used as an open source framework for
the development of robotic applications and has become a standard in academic and
industrial environments. Akka is a toolkit for building distributed, highly concurrent
and event driven implementation of Hewitt’s Actor Model on JVM.

As we will show in the following sections, the majority of analysis orchestrations
for Rebeca models are realised by the analysis of the state space of models. By
running the C++ codes which are generated by RMC, the state space of the model
is generated together with applying model checking algorithms. This state space is
presented in the XML format and can be used for further analysis, including third
party applications or the Rebeca State Space Transformer and Model Transformer
components. How the State Space Analysis tool is used is explained further in this
section.

13.4 PTRebeca Model Checking: Sequential Analysis
Orchestration

In the model checking of PTRebeca we have Sequential Analysis Orchestration
strategy of RMC and IMCA (strategy E), shown in Fig. 13.4. interactive Markov
chain analyzer (IMCA) is a tool for the quantitative analysis of interactive Markov
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Fig. 13.4 Orchestration of tools and components for the analysis of Probabilistic Timed Rebeca
models using IMCA tool

chains. In particular, it supports the verification of interactive Markov chains against
reachability objectives, timed reachability objectives, expected time objectives,
expected step objectives, and long-run average objectives. Figure 13.4 is developed
based on the reference architecture for the integration of analysis tools in Chap. 5
of this book [Hei+21]. In this figure, Afra modelling environment is responsible
for both, interacting with analysis tools and interacting with the domain expert.
The modelling environment comprises four components: (a) the domain-specific
modelling languages (DSMLs), (b) a set of tools to create, manipulate, or verify
models conforming to these DSMLs, (c) a set of orchestration strategies to manage
the interaction with and combination of analysis tools, and (d) the tool drivers that
are responsible for actually interacting with the specific analysis tools.

As shown in Fig. 13.4, the modelling environment invokes RMC analysis tool
then translates the result into the IMCA [Guc+12] input for performing additional
performance analysis. In this case, the modelling DSML is the PTRebeca language
and the input PTRebeca model is directly fed to RMC, and running the resulting
C++ file, generates the state space of the given model in time-dependent Markov
decision process (TMDP) format. The IMCA driver tool is developed using State
Space Transformer component to convert the XML file of the TMDP of the model
to the input language of IMCA model checker. It also uses the specification of the
goal states of the model to generate one Markov automaton as the input of the IMCA
model checking tool.
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Note that the output of this tool as the malfunctioning which is detected in
the model checking phase (i.e., RMC counterexample) and property violation in
performance evaluation are lifted to Afra IDE viewer format to be usable for the
domain expert.

13.5 Schedulability Analysis and Optimisation: Cooperating
Analysis Orchestration

Orchestrating Afra components with some searching scripts for performing search-
based optimisation is used in the analysis of wireless sensor and actuator networks
(WSANSs) applications. WSANSs provide low-cost continuous monitoring but re-
quire dealing with the complexity of concurrent and distributed programming,
networking, real-time requirements, and power constraints. So, it is hard to find
a configuration that satisfies these constraints while optimising resource use. In
[Kha+18] we build a script for search-based optimisation using schedulability
analysis of Afra. This script computes the maximum sampling rate that nodes of
WSAN can collect data from the environment without saturating the communication
network and missing deadlines of their internal tasks.

The characteristics of real-time variants of the actor model make them appro-
priate for using as the DSML of WSAN applications: many concurrent processes
with interdependent real-time deadlines. Considering the specification of the WSAN
applications, there are many nodes which have the role of data acquisition and data
transmission. For data acquisition, nodes have different sensors which periodically
acquire data from the environment and send the data to the processing unit of
the node. The processing unit validates the data and sends it to a central node
using a wireless communication device, which is another actor of the model. As
shown in [Kha+18], the node-level Timed Rebeca [Rey+14, KKS18] model of a
WSAN application is developed to check for the possibility of deadline violations.
Specifically, by changing the timing parameters of the model, the maximum safe
sampling rate in the presence of other (miscellaneous) tasks in the node is found.
Composing the models of standalone nodes to have a multi-node model requires
that the wireless communication protocol is implemented for radio communication
devices. Changing the configuration of the network and timing parameters of the
model, the new maximum safe sampling rate is found. This optimisation of the
sampling rate is implemented by the search-based optimisation technique.

Assigning different values for the parameters of the model, different maximum
sampling rates are achieved as the result of the optimisation problem, shown by 3D
surfaces in [Kha+18]. This requires running the model checker of Rebeca multiple
times and integrating the result. To this end, we developed a script which runs the
given model using different configurations to solve the optimisation problem. The
script assigns different values for the maximum transmission time of the network,
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Fig. 13.5 Orchestration of tools and components for the schedulability analysis and optimisation
of WSAN models

delay of sensors, the number of nodes in the system, the network packet size, etc.
The orchestration of the tools for this problem is shown in Fig. 13.5.

The strategy of orchestration between the optimiser script and RMC component
is Cooperating Analysis Orchestration (strategy D) as the result of the model
checking part (RMC) is lifted to be given as the feedback to the optimiser. The result
of model checking has to be lifted and transformed to the input of the Optimiser
and the values which are generated by the Optimiser have to be transformed to the
input of RMC, which are done by the Optimiser and RMC drivers, using simple
text processing shell scripts. Note that in this tool, Timed Rebeca is the DSML for
specifying input models.

13.6 Flow Management: Nested Analysis Orchestrations

AdaptiveFlow [Sir+19, For+20] is an actor-based framework which is used for track-
based flow management. There are different track-based flow management systems
such as warehouse management systems and transportation systems which play a
crucial role in our daily life. All of these systems include a set of moving objects
which travel on predefined tracks, e.g., trains on rails, cars on roads, automated
vehicles in aisles of a warehouse, and airplanes in predefined airspace-tracks. In this
view, the flowing entities move around some environments to transport some assets
between some points of interest. AdaptiveFlow as a formal framework provides a
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common abstraction for movement scenarios in these systems, and utilises model
checking for safety checking and performance evaluation of models. Additionally,
AdaptiveFlow allows the designer to specify policies for adapting the system
behaviour with respect to possible changes in the environment. Sudden changes
like blocking of a track, or change of a point of interest like a charging station being
out of order can be modelled, too [For+20].

In the AdaptiveFlow framework, the DSML that is used for the specifica-
tion of the model is in XML format and is given in three different files. The
environment .xml file defines the base layer of the environment of the system,
as a matrix. The layer is split into segments, each is surrounded by neighbouring
segments and each neighbouring segment is labelled based on the location relative
to the current one (i.e., NE-northeast, SW-southwest, E-east, etc.). The location
of point of interests (Pols) in the environment is defined in the topology .xml
file. The Pols can be perceived as key spots on which tasks are executed and are
specified by unique identifiers, x and y coordinates, type of the point, and operating
time. As the third input of AdaptiveFlow, the system configuration is specified in
the configuration.xml file which includes information such as the number
of moving objects, re-sending periods for requests, safe distance between moving
objects, etc. The specification of moving objects and their properties are given to
AdaptiveFlow using configuration.xml. Each moving object has a list of
tasks IDs that are assigned to it, together with its attributes: unique identifiers,
machine type, leaving time from parking station, fuel capacity, CO2 emission, etc.

One round of AdaptiveFlow workflow is split into three phases, shown in
Fig. 13.6. The initial phase is the pre-processing phase in which different Timed
Rebeca models are generated based on the XML input files (using a Python script)
by running the model generator script. The second phase consists of formal verifica-
tion of the generated model by generating the state space [Sir+19]. This verification
is performed with model checking tools such as Afra or RMC [Sir+19]. These
tools convert Rebeca models to C++ files which are afterwards compiled to an
executable file [Sir+19]. Aside from checking regular properties such as deadlock-
freedom and safety, AdaptiveFlow also verifies properties like fuel consumption of

& &

eenvironment.xml estatespace.xml
stopology.xml

s ) eadaptiveflow.rebeca eFuel Consumption
econfiguration.xml

*Material Delivered
eOperating Time
eEmissions

& o)

Fig. 13.6 AdaptiveFlow workflow, after [Sir+19]
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Fig. 13.7 Orchestration of tools and components for AdaptiveFlow (Presented in Fig. 5.4)

machines, correct machine movement, absence of machine collision with obstacles,
and no-starvation property [For+20]. Reviewing counterexamples and fixing model
errors iteratively, a modeller can develop functionally correct models. As mentioned
before, model checking tools also generate state space of models used for the
final, post-processing phase. In this phase, a state space which is generated from
a functionally correct model goes through the Python script that analyses each state.
The state space file, generated by RMC, is analysed with a Python script that extracts
the evaluation of performance properties. The performance evaluation includes total
CO2 emissions of machines, the amount of consumed fuel, moved material, and
operating time of the collaborative system.

The orchestration of components for AdaptiveFlow is presented in Fig. 13.7
(Note that this figure is the same as Fig.5.4 in Sect.5.7 with some minor modi-
fications). As shown in this figure, the orchestration strategy in AdaptiveFlow is
nested orchestration strategies; a smaller cycle with Single Analysis Orchestration
(strategy A) within a larger cycle of Sequential Analysis Orchestration (strategy
E). The pre-processing python script of AdaptiveFlow works as the transformer
component of RMC driver. The lifting component L. of RMC driver translates
counterexamples from XML format to Afra counterexample viewer format and
L’ only performs no modification to the state space file. On the other hand, state
space analyser (SSA) driver components only feed and retrieve data to/from SSA
components.
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13.7 Safe Scenarios for Volvo CE Simulator: Sequential
Analysis Orchestration

AdaptiveFlow can be used for the analysis of any track-based flow management
system. In VMap project, AdaptiveFlow is extended to make it appropriate for
the analysis of the behaviour of Volvo construction equipment, as an example of
track-based flow management systems [Mrv20]. The Volvo Construction Equipment
Simulator’ (VCE Simulator) is a high-fidelity platform for simulating and testing
Volvo construction equipment in a virtual environment. The simulator’s core system
is a distributed component-based system that is made up of several tasks. Each
task has a single well-defined purpose and can communicate with other tasks by
passing messages. The simulator is equipped with an editor that permits to create
new scenarios. A scenario is a sequence of actions that are organised in tracks where
tracks are executed in parallel and actions inside each track is executed in sequence.
Scenarios are built manually for testing some properties of construction machines
working on the desired environment or to measure the productivity of a working
plan in a construction environment for example.

The orchestration of tools and components for VMap is shown in Fig. 13.8. In
VMap, the iterative development of AdaptiveFlow is used to develop a correct model
with an acceptable level of performance. Then, XMLs of AdaptiveFlow models
are transformed to the VCE simulator input format for the simulation purpose.
Finally, the results of the VCE simulator are given as feedback to the designer to
improve the model. The scenario in the VCE simulator is described by an XML
file, namely dynamic.content. The dynamic.content file contains a list
of the objects inside the scenario, the components of each object with its properties,
and the communication between the objects. It could also include links to objects
defined in other files.

As a result, the orchestration strategy of AdaptiveFlow and VMap is Sequential
Analysis Orchestration (strategy E). The transformer of VCE driver is responsible
for transforming AdaptiveFlow specifications and other simulation-specific files to
the dynamic.content format. The lifting component of VCE driver makes the
simulation results human readable.

2VCE Simulator: https://www.volvoce.com/europe/en/services/volvo-services/productivity-
services/volvo-simulators.
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Fig. 13.8 Orchestration of tools and components for VMap

13.8 Conclusion

Different verification engines are developed for Rebeca models using orchestrations
of a set of analysis tools. In Chap. 5 of this book [Hei+21], a catalogue of strategies
for tools orchestration is proposed. For each of them, strategies name, explanation,
and examples are proposed in a systematic way. We studied a few Rebeca analysis
tools and classified them as one of the orchestration strategies presented in this
catalogue.

Using the proposed patterns makes it easier to reuse the existing tools and put
them together in different ways. This way, the future analysis tools of Rebeca
will be developed easier and faster. Orchestration strategies also improved the
documentation and maintenance of the existing verification engines by furnishing
an explicit specification of tools interactions.
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