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Abstract—Autonomous traffic control systems are large-scale systems with critical goals. To satisfy expected properties, these

systems adapt themselves to possible changes in their environment and in the system itself. The adaptation may result in further

changes propagated throughout the system. For each change and its consequent adaptation, assuring the satisfaction of properties of

the system at runtime is important. A prominent approach to assure the correct behavior of these systems is verification at runtime,

which has strict time and memory limitations. To tackle these limitations, we propose Magnifier, an iterative, incremental, and

compositional verification approach that operates on an actor-based model where actors are grouped in components, and components

are augmented with a coordinator. The Magnifier idea is zooming on the area (component) affected by a change and verifying the

correctness of properties of interest of the system after adapting the component to the change. Magnifier checks if the change is

propagating, and if that is the case, then it zooms out to perform adaptation on a larger area to contain the change. The process is

iterative and incremental, and considers areas affected by the change one by one. In Magnifier, we use the Coordinated Adaptive Actor

model (CoodAA) for traffic control systems. We present a formal semantics for CoodAA as a network of Timed Input-Output Automata

(TIOAs), and prove the correctness of our compositional reasoning. We implement our approach in Ptolemy II. The results of our

experiments indicate that the proposed approach improves the verification time and the memory consumption compared to the non-

compositional approach.

Index Terms—Self-adaptive systems, model@runtime, compositional verification, track-based traffic control systems, Ptolemy II

Ç

1 INTRODUCTION

MANY activities of the modern society are entirely man-
aged by traffic control systems. These systems are

large-scale, time and safety-critical systems that consist of
numerous moving objects whose movements are adjusted
and coordinated by controllers. The application domain of
these systems is not only limited to air traffic control sys-
tems or rail traffic control systems but also includes robotic
systems, maritime transportation, smart hubs, intelligent
factory lines, etc. The traffic in such systems can pass
through pre-specified tracks, that based on the minimum
safe distance between the moving objects, are partitioned
into a set of sub-tracks. A system with this structural design
is called a Track-based Traffic Control System (TTCS) [1].

Due to the dynamic nature of a TTCS and its surround-
ing world, a TTCS is vulnerable to failures, threatening
human lives or causing intolerable costs. Autonomous
response to context changes is a mechanism to prevent a
failure in self-adaptive systems that are able to adjust their
structures and behaviors in response to changes. The con-
troller in an autonomous TTCS uses the track-based design
to safely and efficiently manage the traffic whenever an
unpredicted change happens. For each change and its con-
sequent adaptation, verifying the system’s safety and qual-
ity is necessary, which should be performed at runtime. For
performing the analysis and verification at runtime, an
abstract model of the system and its environment, the so-
calledmodel@runtime [2], is generated, updated, and verified
during the system execution.

In [3], we introduced the Coordinated Adaptive Actor
model (CoodAA) for constructing and analyzing self-adap-
tive track-based traffic control systems. CoodAA is an actor-
based model [4], [5], where actors are grouped in multiple
components, and each component has its own coordination
policy. In CoodAA, we model each sub-track as an actor,
moving objects as messages passed by the actors, and the
controller as a coordinator. A TTCS is a large-scale system
partitioned into a set of control areas where each area has
its own controller, so, a model of a TTCS can be intrinsically
built as a set of components and is matched to CoodAA.
The moving objects are sent and received at specified times
through specified routes.

In this paper, our focus is on the analysis that is per-
formed for adaptation at runtime, and we propose the Mag-
nifier idea. Magnifier uses an iterative and incremental
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process on CoodAA. When a change occurs, Magnifier
zooms-in on the affected component and checks if proper-
ties of interest still hold. If not, it adapts the component
affected by the change by finding a new plan. Then, Magni-
fier checks if, because of the new plan, the change is propa-
gated to other components. If not, the properties of interest
are satisfied. Otherwise, Magnifier zooms out and runs
another adaptation plan for a larger area. The same process
is repeated iteratively and the area under consideration is
enlarged incrementally until the change is contained. The
idea is to instead of analyzing the whole system for each
change, check the effects of the change on the smallest possi-
ble area, i.e., the least number of neighborhood components,
and try to contain it by adaptation. The general idea of Mag-
nifier is not specific for TTCSs and can be applied for any
autonomous control system. But in our work, we focus on
CoodAA and TTCSs, provide formal semantics and neces-
sary theorems for compositional verification of TTCSs, and
illustrate the results by implementing the approach.

In Magnifier, we use a compositional approach, we focus
on the interface of each component, which in CoodAA
means the inputs and outputs of the component at a speci-
fied time from/to a specified source/destination. According
to the new plan, if the adapted component generates new
outputs or generates outputs by making new assumptions
on its inputs, the effects of the change may propagate to the
connected components. So, the connected components (or
the so-called environment components) are adapted consid-
ering the new interface of the component. Then, Magnifier
zooms-out and creates a new component by composing all
components adapted to the change. The propagation of the
change stops if the interface of the new (composite) compo-
nent remains unchanged.

To prove the correctness of our incremental compositional
approach, we present a formal compositional semantics for
CoodAA as a network of Timed Input-Output Automata
(TIOAs) [6], and adopt the compositional verification theo-
rem of Clark et al. [7]. Each component is represented by
TIOAs of its constituent actors and its coordinator. We check
the propagation of a change by checking the compatibility of
TIOAs of the adapted component and TIOAs of its environ-
ment components. We call two (or more) TIOAs compatible
if they do not reach a deadlock state in their parallel product.

In [7], each component of the model is supplied with a
correctness property. By composing a component with an
abstraction of its environment components and verifying a
property over the composition, the satisfaction of the prop-
erty over the whole system is proved. Similar to [7], we use
abstractions of the environment components. To reduce the
state space, instead of TIOAs of the environment compo-
nents, we only consider TIOAs of border actors that directly
communicate with the adapted component. In contrast to
[7], we do not use any logical formula to express the proper-
ties, since it is enough to check whether the adapted compo-
nent interacts with its environment as expected (i.e., their
compatibility).

Note that the verification of the propagation of a change is
checking whether the interface of a component remains
unchanged after adapting to a new plan. The verification is
performed on a static snapshot of the system ( the actor-
based model@runtime in CoodAA) after each adaptation.

To illustrate the applicability of our approach, we imple-
ment it in Ptolemy II [8]. Ptolemy II is an actor-oriented
open-source modeling and simulation framework. A
Ptolemy model consists of actors that communicate via mes-
sage passing. Actors are grouped together and coordinated
by directors. The semantics of communications of the actors
in Ptolemy is defined by different models of computation,
implemented in directors. Here, to perform verification in
Ptolemy II, we develop a Magnifier director. Our director
generates the state space of the affected component, auto-
matically extends its domain to include other components,
and performs the reachability analysis over this extended
domain. Comparing the compositional and non-composi-
tional approaches, the results of our experiments for an
example in the domain of air traffic control systems indicate
a significant improvement in the verification time and the
memory consumption for Magnifier.

Novelty, Importance, and Contribution. Our contribution is
proposing a compositional, iterative and incremental
approach for verification of a component-based actor model
for traffic control. We propose an interface theorem for our
abstraction and composition technique. Proposing a compo-
sitional approach and proving its correctness is not at all
trivial. Components may be tightly coupled and dependent
on each other, and the problem becomes more serious when
we encounter circular dependency. In Magnifier, we take
advantage of the structure of TTCSs and the encapsulation
and decoupling of actors [9] to build our compositional
approach and prove its correctness.

Although compositional verification can be a successful
approach for alleviating the state-space explosion, like any
other divide-and-conquer techniques, its usage in practice
is limited. According to Clarke et al. in [7] and Bensalem
et al. in [10], the dependency and specially circular depen-
dency of components can be problematic, and a correct
abstraction of interactions is crucial. We also need to be
careful with the time alignments in timed systems [11].

An advantage ofMagnifier is that it can be seen as a decen-
tralized adaptationmechanism.Adaptation in a decentralized
setting is a well-known challenge [12], [13]. It significantly
improves scalability and is a suitable option in hard real-time
settings, when the reaction to a change should be performed
in a negligible amount of time [13]. On the other hand, pre-
serving global goals in a decentralized setting is difficult [13],
as several components may need to reach a consensus about
an adaptation policy to satisfy a global goal. Magnifier meets
the global goals by first applying local adaptation to the com-
ponent affected by a change. If it is not successful, it dynami-
cally extends its adaptation (and verification) domain to
consider more components. The Magnifier approach relies
upon the assumption that the environment components of a
component are recognisable at the analysis time.

CoodAA is introduced in [3] and its applicability in
modeling TTCSs is shown by implementing a case study. In
[1], the coordinator is augmented with different rerouting/
rescheduling policies, a look-ahead prediction is done for
each policy at the time of the change using simulation, and
the best policy is selected. We briefly presented the Magni-
fier idea as a future work in a short work-in-progress paper
[14]. In the current paper, we present the formal foundation
of CoodAA and Magnifier, and support the idea of
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effectiveness of Magnifier by an implementation of Magni-
fier in Ptolemy II and experimental results. The summary of
the main contributions is:

� Proposing an approach for compositional, iterative
and incremental verification of model@runtime in
CoodAA using Magnifier,

� Proposing an abstraction technique for environment
components in Magnifier to reduce the state space
while preserving the effects of interactions between
the components, and proof of correctness of the com-
positional approach using the interface theorem.

The rest of the paper is organized as follows. We provide
a general overview of TTCSs in Section 2. We recall the defi-
nition of a TIOA in Section 3. In Section 4, the formal com-
positional semantics of CoodAA is described in terms of
TIOAs. Section 5 describes the details of the Magnifier
approach. The implementation of Magnifier in Ptolemy II
and the results of our experiments are shown in Section 6.
We describe the related work in Section 7, and conclude the
paper in Section 8.

2 PROBLEM DEFINITION AND AN EXAMPLE

Track-based Traffic Control Systems (TTCSs) are safety-criti-
cal systems. A TTCS works based on the track-based design
of the traveling space. To reduce the risk of collision between
moving objects, they move on certain tracks instead of mov-
ing around freely. Based on the safe distance between two
moving objects, each track is divided into a set of sub-tracks.
Each sub-track is a critical section that accommodates only
one moving object in-transit. A large-scale TTCS is divided
into a set of areas, while the traffic of each area is controlled
by a centralized controller. Considering congestion and envi-
ronmental changes, the controller uses the track-based infra-
structure of the area to navigate the moving objects safely.
As explained in [1], the application domain of TTCSs ranges
from Air Traffic Control Systems (ATCs), rail traffic control
systems, maritime transportation, to centralized robotic sys-
tems and intelligent factory lines. For instance, ATC in the
North Atlantic follows a track-based structure that is called
an organized track system [15]. The North Atlantic orga-
nized track system consists of a set of nearly parallel tracks
positioned in light of the prevailing winds to suit the traffic
between Europe andNorth America.

In the real-world applications of TTCSs, each moving
object has an initial traveling plan that is generated prior to
the departure of the moving object from its source. A travel-
ing plan consists of a route, time schedule decisions, and
depending on the application, fuel, etc. The route is a
sequence of sub-tracks traveled by the moving object from
its source to its destination. The time schedule decisions con-
sist of the departure time of the moving object from its
source, assumed arrival time at each sub-track in its route,
and assumed arrival time at its destination. TTCSs are sensi-
tive to unforeseen changes in their context. It may need to
modify the traveling plans of moving objects when a
dynamic environmental change happens. Therefore, follow-
ing a change in the context, a sequence of changesmight hap-
pen. For instance, in an ATC, the aircraft flight plans are
changed if a storm happens in a part of their flight routes.

While changing traveling plans, several safety issues should
be considered, i.e., loss of the separation between two mov-
ing objects should be avoided and the remaining fuel should
be checked. To avoid conflicts, changing the traveling plan of
amoving object may result in changing the traveling plans of
other moving objects. These changes can be propagated to
the whole system. Besides the safety concerns, performance
metrics such as arrival times of the moving objects at their
destinations or sub-tracks in their routes are important. In a
TTCS, the controller is in charge of coordinating the moving
objects by rerouting/rescheduling them.

Example. An example of the change propagation is descri-
bed for a TTCS as follows. Assume Figs. 1a and 1b show a
TTCS with two control areas (C1; C2), where each area has
nine sub-tracks. The traffic flows from the west to the east
and vice versa. Each moving object of the eastbound traffic
is able to travel towards a sub-track in the north, south, and
east. The initial routes of the moving objects are shown in
Fig. 1a. The moving object with an unavailable sub-track in
its route is rerouted and its new route is shown in Fig. 1b.
The red sub-track is an unavailable sub-track through which
no moving object can travel. For instance, if a storm hap-
pens in a part of the airspace in an ATC, the aircraft cannot
cross over the sub-tracks affected by the storm and are
rerouted. Suppose that the traveling times of the moving
objects through each sub-track are the same and are equal
to one. The initial traveling planes of the purple and blue
moving objects in Fig. 1a are fð0; 7Þ; ð1; 8Þ; ð2; 9Þ; ð3; 10Þ;
ð4; 11Þ; ð5; 12Þ; ð6; 6Þg and fð5; 17Þ; ð6; 11Þ; ð7; 5Þ; ð8; 4Þ; ð9; 3Þg,
respectively. The first entry of each tuple shows the arrival
time of the moving object at the sub-track mentioned in the
second entry. For instance, two subsequent tuples (0,7),(1,8)
mean that the purple moving object arrives at sub-track 7 at
time zero and arrives at sub-track 8 at time 1 (which is the
same time that it exits sub-track 7).

Suppose that a change happens to sub-track 8 and it
becomes unavailable. As a consequence, the traveling plan
of the purple moving object is changed to fð0; 7Þ; ð1; 1Þ; ð2; 2Þ;
ð3; 3Þ; ð4; 9Þ; ð5; 10Þ; ð6; 11Þ; ð7; 12Þ; ð8; 6Þg, shown in Fig. 1b.
With the new plan, the purple moving object enters into sub-
track 10 (next area) at time 5 instead of 3, and this way the
change propagates from C1 to C2. Now, the purple moving
object arrives at sub-track 11 at time 6. At this time, the blue
moving object has to enter into sub-track 11 based on its ini-
tial traveling plan. To prevent the collision between two
moving objects, the controller employs a rerouting algorithm
(adaptation policy) and changes the plan of the blue moving
object to fð5; 17Þ; ð6; 16Þ; ð7; 15Þ; ð8; 9Þ; ð9; 3Þg. As can be seen,
by the occurrence of a change, e.g., a storm, a sequence of
changes happens, e.g., rerouting a set of moving objects. This

Fig. 1. A TTCS with 18 sub-tracks. The effect of the change in sub-track
8 is propagated to the component c2. To avoid the collision in sub-track
11, the blue moving object is rerouted.
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example also shows that the change circulates between two
areas. Based on the new traveling plan obtained for the blue
moving object, it enters into C1 at time 7 instead of 9, and
this way the change propagates back toC1.

As a change in the context of a TTCS and its consequent
adaptations in the system happen at runtime, the satisfac-
tion of properties of interest should be checked at runtime.
The properties include: the moving objects have to arrive at
their destinations at the pre-specified times, the collision of
the moving objects should be avoided, the fuel of the mov-
ing objects should not be less than a threshold, and the sys-
tem should be deadlock-free. These properties are checked
by verification.

3 BACKGROUND

In this section, we present some background of our
research. We provide an overview of a TIOA and recall the
definition of a deadlock state in a TIOA that is used to
define the compatibility of two TIOAs in Section 5. Further-
more, we introduce the coordinated adaptive actor model.

3.1 Timed Input-Output Automata

A timed automaton with a set of input actions and a set of
output actions is called a TIOA. Let # 2 f�; < ;¼;�; > g
and c 2 N. For a set A, BðAÞ denotes the set of conjunctions
of constraints of the form x#c or x� y#c for x; y 2 A. A
TIOA with integer variables [16] is defined as follows.

Definition 3.1 (TIOA). A Timed Input-Output Automaton is a
tuple TA ¼ ðQ; q0; Var;Clk;Actin;Actout; T; IÞ where Q is a
finite set of locations, q0 2 Q is the initial location, Var is the set of
integer variables,Clk is a finite set of clocks,Actin is a set of input
actions, Actout is a set of output actions, T 2 Q� ðBðClkÞ [
BðVarÞÞ � ðActin [Actout [ ftgÞ � 2Clk � 2Ass �Q is a set of
edges, and I is an invariant-assignment function. The set of all
variable assignments is denoted by Ass. The function I : Q !
BðClkÞ assigns invariants to locations.
Based on the above definition, the edge e ¼ ðq;c; l; r;

u; q0Þ 2 T , besides action l, is labeled with a guard c, a
sequence u of assignments, and a set r of clocks. Let vC; v

0
C :

Clk ! R�0 and vV ; v
0
V : Var ! Z be clock and variable valu-

ations, respectively. A state of the system modeled by a
TIOA is in the form of ðq; vC; vV Þ. There is a discrete transi-
tion ðq; vC; vV Þ l!ðq0; v0C; v0V Þ for an edge e ¼ ðq;c; l; r; u; q0Þ
such that vC and vV satisfy c, v0C is reached by resetting the
clocks in the set r to zero, and v0V is obtained as a subset of
variables are set to their new values in the assignment set u.
The clocks and variables not mentioned in r and u remain
unchanged. Furthermore, v0C satisfies Iðq0Þ. The TIOA can
stay in the location q as long as the invariant IðqÞ is valid.
Let for x 2 Clk and d 2 R�0, ðvC þ dÞðxÞ ¼ yþ d iff vCðxÞ ¼
y. For each delay d 2 R�0 there is a timed transition
ðq; vC; vV Þ d!ðq; vC þ d; vV Þ such that vC þ d satisfies IðqÞ. A
state of the system can be a deadlock state that, based on
[17], is a state from which no outgoing discrete transition is
enabled, even after letting time progress.

Definition 3.2 (Deadlock State). A state s is a deadlock state
if there is no delay d 2 R�0 and action l 2 ðActin [Actout [
ftgÞ such that s d!s0

l!s00.

Let N ¼ fTAiji ¼ 1; . . . ; ng denotes a network of TIOAs,
where they run in parallel and communicate through global
variables. TIOAs synchronize over time and common input
and output actions in their parallel composition (product).
The detailed definition of the parallel product of TIOAs
TA1; . . . ; TAn, denoted as TA1 � 	 	 	 � TAn, is presented in
[16]. We also recall this definition in our technical report
[18]. Based on [16], when two edges of two TIOAs synchro-
nize over an action, their variables are updated by first exe-
cuting the variable assignments of the output transition,
and then by executing the variable assignments of the input
transition. Furthermore, the input transitions do not update
the shared variables. Note that the state of the system mod-
eled by a network of TIOAs is obtained by clock values, val-
ues of all variables, and the locations of all TIOAs in the
network.

In the rest of the paper, we benefit from the syntax of the
UPPAAL modeling language [19] and use functions as macros
for expressions in guards and updates in TIOAs.

3.2 Coordinated Adaptive Actor Model

We introduced the coordinated adaptive actor model in [3].
In CoodAA, actors are units of computation, communicat-
ing via message passing, and grouped into components. As
shown in Fig. 2, each component has its own coordinator
with a set of coordination policies. Components themselves
can be grouped into composite components. For a precise
formal definition of composition refer to [18].

CoodAA is designed to model self-adaptive control sys-
tems for track-based systems and conforms to the MAPE-K
feedback control loop [20]. The managed system in a self-
adaptive system is controlled by the MAPE-K loop consist-
ing of Monitor, Analyze, Plan, and Execute activities together
with a Knowledge base. The model@runtime is an abstract
projection of the system and is kept in the Knowledge base.
The Monitor activity monitors the system and updates the
model@runtime. In the case of detecting a change, the Ana-
lyze activity analyzes the model@runtime and passes the
analysis results to the Plan activity to make an adaptation

Fig. 2. The CoodAA model. Areas and sub-tracks in the managed sys-
tem are represented as components and actors, respectively. Magnifier
uses the actor model (the model@runtime) for analysis and replanning.
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plan. The adaptation plan is applied to the model@runtime
and consequently, the model@runtime is analyzed again. If
the requirements of the system are satisfied, the adaptation
plan is sent to the system through the Execute activity. Oth-
erwise, the Plan activity makes another adaptation plan.

As shown in Fig. 2, areas and sub-tracks in the managed
system are represented as components and actors in Coo-
dAA, respectively. Actors of each component construct its
model@runtime, and each coordinator consists of the Ana-
lyze and Plan activities of the MAPE-K loop. CoodAA does
not contain the Monitor and Execute activities, and they can
be added to the model using the implementation platform
[1]. In CoodAA, actors of the components construct the
model@runtime of the composite component, and Magni-
fier acts as the top-most coordinator; it is notified of a
change and analyzes the model@runtime to find a safe
adaptation plan. Magnifier analyzes iteratively and incre-
mentally using a compositional verification approach.

4 COMPOSITIONAL SEMANTICS OF SIMPLIFIED

COODAA FOR MAGNIFIER

In this section, we present a formal specification and com-
positional semantics for a simplified version of CoodAA,
where the coordinator and adaptation of actors are ignored.
In Magnifier, the analysis is performed on the model@run-
time after applying the adaptation policy. So, we only con-
sider parts of the model that have a role in the analysis, i.e.,
actors (without the adaptation state) grouped into compo-
nents. The complete semantics of CoodAA, considering the
coordinator, its operation, and all states of actors, including
the adaptation state, is presented in [18]. In the rest of the
paper, we use the terms CoodAA and simplified CoodAA
in the context of Magnifier interchangeably.

4.1 Summary of Definitions

In this section, the basic elements of simplified CoodAA,
including actors and components are formally described,
and the most used notations are presented in Table 1. An
actor has a variable status that shows whether the actor is
free or occupied. It also has a variable plan to keep the plan
that specifies the direction and the time to send out the mes-
sage. An actor has several input and output ports (modeling
several directions that a moving object can arrive at or
depart from a sub-track). Input and output ports are com-
munication interfaces of the actor with other actors. An
actor also has a message handler.

Definition 4.1 (Actor). An actor, ai, with the unique identifier i,
is defined as ðstatusi; plani; interactiðj; transferredP Þ; PIi ;
POi

Þ, where statusi has a value of fFree;Occupiedg, plani stores
the traveling plan of the moving object, PIi ¼ fpIi;j jj ¼ 1; . . . ;
inDirectionsig and POi

¼ fpOi;j
jj ¼ 1; . . . ; outDirectionsig

are respectively the sets of input and output ports, and interacti
ðj; transferredP Þ is the message handler where j ¼ 1; . . . ;
inDirectionsi and transferredP ¼ ðobjectId; travelPlanÞ. The
constants inDirectionsi and outDirectionsi are respectively the
numbers of input and output ports.

The main computation of the actor is performed in its
message handler, which receives a message, reads and

updates the status and plan variables, introduces a delay to
model the passage of time, and sends a message over an
output port. Two actors are connected if an output port of
one actor is bound to an input port of another one. Each out-
put port is connected to at most one input port. The bind-
ings between the ports are defined through the binding set
of the component, so, this set defines the topology of the
model. Each component has boundary input and output
ports through which it communicates with other compo-
nents. The boundary input and output ports of a component
are respectively input and output ports of the constituent
actors where these ports are not connected to any ports of
the constituent actors and stay lose to be connected to other
components. A component is defined as follows.

Definition 4.2 (Component). A component, Ci, with the
unique identifier i, is defined as Ci ¼ ðAi;Bi; PICi

; POCi
Þ,

where Ai is the set of internal actors of Ci, Bi ¼ fðp1; p2Þj f :
PO 7! PI ^ fðp1Þ ¼ p2g is the binding set of Ci, and PICi

¼
fp j p 2 PI ^ @ðp1; p2Þ 2 Bi 	 p2 ¼ pg and POCi

¼ fp j p 2
PO ^ @ðp1; p2Þ 2 Bi 	 p1 ¼ pg are respectively the sets of
boundary input and output ports of the component. The func-
tion f is a partial function, PO ¼ S

aj2Ai
POj

, and PI ¼S
aj2Ai

PIj .

The composition of two (or more) components forms a
composite component that is a component itself and is
defined as follows.

Definition 4.3 (Composite Component). A composite com-
ponent Ck ¼ ðAk;Bk; PICk

; POCk
Þ is a component built from

composition of other components, where if Ck be the composi-
tion of Ci and Cj, denoted by Ck ¼ Ci k Cj, and Ci ¼
ðAi;Bi; PICi

; POCi
Þ and Cj ¼ ðAj;Bj; PICj

; POCj
Þ, then Ak ¼

Ai [Aj and Bk ¼ Bi [Bj [NewB. The links between bound-
ary output ports of a component and boundary input ports of
another component are defined using the binding set NewB.
So, PICk

is the set of boundary input ports of Ci and Cj and
POCk

is the set of boundary output ports of Ci and Cj where
these boundary ports are not bound to any ports of actors of Ak.

TABLE 1
The Most Used Notations for the Simplified Version of the Coo-

dAA Model Used for the Analysis by Magnifier

Notation Definition

ai An actor with the unique identifier i
statusi A variable with a value of fFree; Occupiedg,

denoting the status of an actor ai
plani The variable of an actor ai storing the id and the

travel plan (including the route, schedule, fuel,
and speed) of the moving object

interacti The message handler of an actor ai with the input
arguments j (denoting the port) and
transferredP ¼ ðobjectId; travelPlanÞ (including
the id and the travel plan of the moving object)

PIi The set of input ports of an actor ai
POi

The set of output ports of an actor ai
Ci A component with the unique identifier i
Ai The set of actors of Ci

Bi The binding set of Ci

PICi
The set of boundary input ports of Ci

POCi
The set of boundary output ports of Ci
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The coordinated adaptive actor model is a component
composed of all components of the model.

4.2 Compositional Semantics of the Simplified
CoodAA Based on TIOAs

In this section, we present the compositional semantics of
CoodAA as TIOAs. Each actor is specified by a separate
TIOA, and hence, a component is presented in the form of a
network of TIOAs of actors. The TIOA of an actor aj is
shown in Fig. 3. We use different colors such as purple,
green, light blue, and dark blue to respectively distinguish
invariants, guards, synchronization actions, and clock reset
and variable assignments in the TIOA. The notations ! and ?
mark the output and input actions, respectively.

The automaton of Fig. 3 has two locations, corresponding
to the values of the status variable of the actor, and a plan
variable that corresponds to the plan variable of the actor in
Definition 4.1. Let b ¼ ðpout; pinÞ denotes the binding
between a port of aj and a port of another actor. We call b an
input binding of aj if pin 2 PIj and an output binding of aj if
pout 2 POj

. The automaton has a set of input actions
interactb, where b is an input binding of the actor. These
actions correspond to the interact handler of the actor for
each input port. Similarly, for each output binding b of aj,
an output action interactb is defined. The automaton has
access to the global variable transferredP that corresponds to
the input argument of the interact handler and is used to
transfer a plan between TIOAs of two actors. The TIOA of
an actor is defined as follows.

Definition 4.4 (TIOA of an Actor). The TIOA of an actor aj
is TA ¼ ðQ; q0; Var; Clk; Actin; Actout; T; IÞ, where Q ¼
fFree;Occupiedg, q0 ¼ Free, Var ¼ fplanjg, Clk ¼ fclockg,
Actin ¼ finteractbjb 2 allInBindðjÞg, Actout ¼
finteractbjb 2 allOutBindðjÞg, IðOccupiedÞ ¼ clock �
travT ðplanjÞ, and T is defined as follows.

8b 2 allInBindðjÞ : ðFree; true; interactb; fclockg;
fplanj ¼updateðtransferredP Þg; OccupiedÞ ðReceiveÞ

ðOccupied; clock ¼ travT ðplanjÞ; interactoutBindðj;planjÞ;

;; ftransferredP ¼ planjg; FreeÞ ðSendÞ

In the following, we describe edges of TIOA of aj. An
actor aj is always ready to receive a message over an input
port if it is in the state Free. If a message is present over the
input port pj;l, the actor receives the message and the

interact handler interactjðl; transferredP Þ is triggered. The
Receive edge (the top edge of Fig. 3) represents this opera-
tion. This edge is defined for every input binding of the
actor. When the message is received, the status variable of
the actor is set to Occupied. Accordingly, the automaton
moves from Free to Occupied, showing that a moving object
enters into the sub-track. The message transferredP includes
the object id of the message (objectId) and the travel plan
(travelPlan) which consists of the traveling route of the mov-
ing object, its schedule, the amount of fuel, and its speed.
This information is stored in the plan variable of the actor.
The actor updates the traveling plan (the route of the mov-
ing object) before storing it in plan. The route of a moving
object is a sequence of sub-tracks traveled by the moving
object. When a moving object passes from a sub-track, the
first entry in the route, referring to the current sub-track, is
removed.

The auxiliary functions used over the Receive edge are
described as follows. Let AId be the set of all actor iden-
tifiers and Msg be the set of all messages in the form
of (objectId, travelPlan). The function allInBindðjÞ, where
allInBind : AId ! 2PO�PI , returns the set of all input bind-
ings of the actor aj (PI and PO are defined in Definition 4.2).
The function update : Msg ! Msg receives a message and
returns a new message in which the traveling plan is
updated.

The actor stays in the Occupied state for an amount of
time derived from the traveling plan stored in the plan vari-
able and showing the traveling time of the moving object
across the sub-track. This behavior is formulated as the
invariant clock � travT ðplanjÞ, where travT : Msg ! R�0

gets an input and outputs the amount of the delay.
After the time passes for the delay amount of time, the

actor sends out the message planj over an output port
derived from the traveling plan. The Send edge (the lower
edge of Fig. 3) represents this operation. The function
outBindðj; planjÞ, where outBind : AId�Msg ! PO � PI ,
returns the binding b including the output port over which
planj is sent. After sending the message, the status variable
of the actor is set to Free. Accordingly, TIOA moves from
Occupied to Free, showing that the moving object leaves the
sub-track. The message is transferred between two actors
whenever TIOA of the sender is synchronized with TIOA of
the receiver over the interactb action. The message is deliv-
ered to the receiver actor using the transferredP variable. The
function allOutBindðjÞ in Definition 4.4, where allOutBind :
AId ! 2PO�PI , returns the set of all output bindings of the
actor aj.

As we mentioned earlier, a component is presented as a
network of TIOAs of actors. In the next section, we define
the notion of compatibility for the networks of TIOAs of the
components to detect the change propagation in the Magni-
fier approach.

5 VERIFICATION OF MODEL@RUNTIME USING

MAGNIFIER

In this section, we explain our compositional approach to
verify the system in the case of a change occurring and
applying adaptation to components. Magnifier is a composi-
tional and iterative approach for adaptation. We focus on

Fig. 3. The TIOA of an actor aj. The actor receives a message on the top
edge. It stays at the location Occupied until the time progresses up to a
time calculated by travT and sends a message on the lower edge.
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the area where the change happens, adapt to the change,
and then check whether the change is propagated. If the
change is propagated, we enhance the area by composing
the areas affected by the change and building a larger area.
We explain this in the following section (Section 5.1) in
more detail. We use TIOAs of components (representing
areas) to perform the analysis of whether the change is
propagated or not. If the changed component and its envi-
ronment components can interact without any problem, the
change is contained. In this case, TIOAs of the components
are compatible which means TIOAs can be composed with-
out reaching a deadlock state. In Section 5.2, we explain
how we abstract the environment components to reduce the
cost of compatibility analysis of TIOAs. Section 5.3 presents
the formal definition of compatibility of TIOAs and specifies
TIOAs of the abstracted environment. Section 5.4 includes
the proof of our compositional verification technique based
on abstract interface components.

5.1 Compositional and Iterative Approach

When a track-based system is designed, initial traveling plans
of the moving objects are selected in a way that no conflict
happens between the moving objects, and the moving objects
arrive at their destinations at the pre-specified times. In fact,
the initial traveling plan of a moving object imposes con-
straints on its arrival at each area of its route. When a change
happens to an area, the moving objects traveling across the
area are rerouted if there is an unavailable sub-track in their
routes. This way, the plan for the area is adapted. Note that
the presence of a change (or its effect) in an areamay last for a
while, so any change in the plan must consider the possible
future effects. When an area is adapted to the change, the
validity of properties has to be checked again.

The main required properties of track-based systems
include collision avoidance and on-time arrival of moving
objects at their destinations. The collision of moving objects
is avoided by design; a sub-track can only contain one mov-
ing object at a time. On-time arrival at destinations is checked
by Magnifier. We also consider a certain amount of fuel for
each moving object, and Magnifier checks if the amount of
fuel goes under a certain threshold. A special condition is a
deadlock condition, and it happens whenever moving
objects are stuck in a traffic blockage in an area and cannot
find available routes towards their destinations, and hence
do not depart from the area. Specific functions are used to
detect deadlock and running out of fuel, and the analysis
stops if one of those is detected. Under the following condi-
tions, the main property of on-time arrival and departure holds
for an adapted area, and the change does not propagate:

– Cond. 1. The departure ofmoving objects from the area
at the pre-specified times and over the pre-specified
ports is not changed. This condition applies to both
moving objects traveling across the area and entering
into the area at a future time.

– Cond. 2. The arrival of moving objects to the area at
the pre-specified times in future and over the pre-
specified ports is not changed.

In the case of violating any of the above conditions, the
change is propagated to the adjacent areas. The adaptation
for an adjacent area is triggered whenever the change

propagates into it. Therefore, all areas affected by the
change are composed to form a new composed area. The
traveling plans of the moving objects traveling across the
new composed area are adapted. If the moving objects
arrive and depart at/from this area based on their initial
traveling plans, the change propagation stops. This way,
Magnifier uses an iterative algorithm to involve the least
number of components in the analysis of the correctness of
the system.

One can argue that in a compositional approach, we can
check the change in one component and then check its prop-
agation to the neighborhood components one by one. But a
change may propagate back to the component which was
the source of the change and develop a circular depen-
dency. This situation is shown in the example of Section 2.
In Magnifier, by composing the components and forming a
new larger component, all changes circulating between two
components happen inside of the new component and their
effects are considered.

5.2 Abstraction and Interface Components

In this section, we explain the abstraction technique and
present the definitions which our approach relies on. The
notations and the summary of definitions are given in
Table 2. We model a track-based system as a coordinated
adaptive actor model CM that is a composed component.
The component Ci of CM models an area of the system and
interacts with a set of components called environment compo-
nents of Ci. Environment components of a component Ci are
those components whose boundary ports are connected to
ports of Ci. We use EnvðCiÞ to denote the set of all environ-
ment components of Ci. In Fig. 4a, a model consisting of
five components is shown. The connections between the
actors are denoted by arrows. The components C2, C3, and
C4 are environment components of C1, i.e., EnvðC1Þ ¼
fC2; C3; C4g. An environment actor of a component is an actor
whose input and output ports are bound to the input and
output ports of the component (and hence directly sends or
receives messages to/from the component). The red actors
shown in Fig. 4a are environment actors of C1, i.e., a1 and a2
are environment actors of C1 included in C2.

Abstraction of the Environment. In order to abstract the
environment of a component, we define interface components.
The interface components of a component Ci (or visible

TABLE 2
The Most Used Notations for the Abstraction of the Environment

and the Compatibility Definition in Magnifier

Notation Definition

EnvðCiÞ The set of all environment components ofCi

Cj #Ci
The set of augmented environment actors
of Ci, where each actor of this set
corresponds to an environment actor of Ci

in Cj (Cj 2 EnvðCiÞ)
N Ci

The network of TIOAs of the actors of the
component Ci

TA1 � 	 	 	 � TAn The parallel product of TIOAs
TA1; . . . ; TAn. TIOAs are compatible if their
parallel product does not reach a deadlock
state.
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parts of its environment) are defined based on the sets of
environment actors of Ci. For each environment actor, we
define an augmented environment actor. Let Cj be an environ-
ment component of Ci. We use Cj #Ci

to denote the set of
augmented environment actors of Ci where each actor of
this set corresponds to an environment actor of Ci included
in Cj. The augmented environment actors in Cj #Ci

are aug-
mented with all the significant information of the environ-
ment component Cj which can affect Ci.

An augmented environment actor has a list, called ERS,
containing the crucial data related to conditions Cond. 1
and Cond. 2 in Section 5.1. Each entry of ERS contains a
message, a delay value, and a pair of output and input ports
(a binding). Besides, this actor has an init method, and simi-
lar to Definition 4.1 for actors, has a set of input ports, a set
of output ports, and an interact handler. The input and out-
put ports of the augmented environment actor are only
those ports of its corresponding environment actor that are
connected to the component Ci. The augmented environ-
ment actors of C1 along with their ports are shown in blue
in Fig. 4b, i.e., C2 #C1

¼ faa1; aa2g where aa1 and aa2 corre-
spond to the actors a1 and a2 in Fig. 4a, respectively. The
detailed formal definition of augmented environment actors
is available in our technical report [18].

Definition 5.1 (Interface Component). For each Cj 2 EnvðCiÞ,
Cj #Ci

is called an interface component of the componentCi.

The definition of the interface component is inspired
from the approach of Clarke et al. in [7], where interface pro-
cesses are defined. For two processes P1 and P2, P1 # SP2 is
an interface process of P2, where SP2 is the set of symbols
(i.e., atomic propositions) associated with P2. The interface
process P1 # SP2 is the process P1 in which all symbols that
do not belong to SP2 are hidden.

5.3 Semantics of Interface Components

Here, we present the semantics of an interface component.
Each augmented environment actor is specified by a sepa-
rate TIOA, and hence, an interface component is presented
as a network of TIOAs of the augmented environment
actors. To check the change propagation in Magnifier, we
check whether the network of TIOAs of the changed compo-
nent and the networks of TIOAs of its interface components
are compatible. We call two networks of TIOAs compatible
if all TIOAs in these networks are compatible. A set of net-
works of TIOAs are compatible if they are pairwise compat-
ible. Here we define compatible TIOAs.

Definition 5.2 (Compatible TIOAs). Two or more TIOAs
are compatible if the parallel product of them does not reach a
deadlock state.

Our definition of compatibility is inspired from the
approach of [21], in which two components (timed interfa-
ces) are compatible if there is an environment to avoid the
parallel product of the components from reaching an error
state (the environment makes the components work
together). In our approach, we do not consider any helpful
environment to check the compatibility. Note that a dead-
lock state in the product of two TIOAs is different from a
deadlock in a track-based system.

The TIOA of an augmented environment actor, which is
used in the model@runtime, is shown in Fig. 5. This autom-
aton has an ERS variable that corresponds to the ERS list of
the actor. ERS is an ordered list. Each entry of this list con-
tains a message, a delay value, and a binding, and specifies
that the augmented environment actor expects to receive a
message over an input port or intends to send a message
over an output port after a certain amount of time. Let t and
t0 be the delay values kept in the first and the second entry
of ERS, respectively. The message of the first entry is sent or
received at time t. The augmented environment actor will
send or receive the message of the second entry at time tþ
t0. The same argument is valid for the rest of the entries, and
the delay value in none of the entries is zero. As ERS in a
model of a track-based system is calculated from the initial
traveling plans of the moving objects, the schedules of the
moving objects in ERS do not lead to any conflicts between
the moving objects.

Besides ERS, the automaton has a set of actions interactb.
These actions correspond to the interact handler of the
actors and can be an input action (for the input binding b) or
an output action (for the output binding b). The automaton
has access to the global variable transferredP that corre-
sponds to the input argument of the interact handler and is
used to transfer a value between TIOAs of an actor of Coo-
dAA and the augmented environment actor.

Definition 5.3 (TIOA of an Augmented Environment
Actor). The TIOA of an augmented environment actor aaj
is TA ¼ ðfq0g; q0; Var; fclockg; Actin; Actout; T; IÞ, where
Var ¼ fERSjg, Actin ¼ finteractbjb 2 allInBindðjÞg, and
Actout ¼ finteractbjb 2 allOutBindðjÞg. Let ðmsg; t; bÞ,

Fig. 4. A model consisting of 5 components is shown in (a). The connec-
tions between actors are shown with dashed arrows. The red actors are
environment actors of the component C1. The interface components of
C1, i.e., Cj #C1

, j ¼ 2; 3; 4, are shown in (b). The augmented environ-
ment actors of C1 along with their ports are shown in blue.

Fig. 5. The TIOA of an augmented environment actor aaj, which has a
list ERS of messages that have to be sent or received by the actor at the
pre-specified times and over the pre-specified ports. aaj receives an
expected message on the top edge and sends a message on the lower
edge.
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where b ¼ ðpout; pinÞ, denotes the first entry ofERSj in the loca-
tion q0. Then, Iðq0Þ ¼ clock � t, and T is defined as follows.

ðq0; b 2 allInBindðjÞ ^matchðpout;msgÞ ^ clock ¼ t;

interactb; fclockg; fERSj ¼updateLðERSjÞg; q0Þ
ðReceiveÞ

ðq0; b 2 allOutBindðjÞ ^ clock ¼ t; interactb; fclockg;
ftransferredP ¼ msg;ERSj ¼ updateLðERSjÞg; q0Þ

ðSendÞ

Herein, we describe edges of TIOA of aaj. To have simple
expressions in Fig. 5, we access the first entry of ERSj using
headðERSjÞ. The actor aaj looks at ðmsg; t; bÞ ¼ headðERSjÞ
in the location q0, where b ¼ ðpout; pinÞ, and stays at this loca-
tion until the time progresses up to t at which aaj sends or
receives the message msg. The automaton synchronizes on
the action interactb to send msg over the output port pout or
receive it over the input port pin.

As shown on the top edge of Fig. 5 (the Receive edge), if b
is an input binding, the clock equals t, and the message msg
derived from the head of ERSj matches the expected mes-
sage (checked by the function matchðpout;msgÞ), then the
actor aaj pops the current entry of ERSj by calling the func-
tion updateL, resets the clock to zero and goes back to q0. The
function allInBind(j), defined in Section 4.2, returns all input
bindings of aaj. The function match : PO �Msg ! Boolean
checks whether a given message (msg) matches the message
ready to be sent from the sender actor over a given output
port (pout), where PO is the set of all output ports of all
actors. The function updateL : 2En ! 2En removes the first
entry of a given list and returns the rest of the list, where En
is the set of all entries of all ERS lists.

As shown on the lower edge of Fig. 5 (the Send edge), if b
is an output binding and the clock equals t, then the actor
sends out the message msg by putting the message in the
global variable transferredP, pops the current entry of ERSj

by calling the function updateL, resets the clock to zero, and
goes back to q0. The function allOutBind(j), defined in Sec-
tion 4.2, returns all output bindings of aaj.

In Magnifier, if there is a deadlock in the product of
TIOAs of the component Ci and the interface component
Cj #Ci

, the change propagates from the component Ci to the
component Cj 2 EnvðCiÞ. This means that there is an aug-
mented environment actor in Cj #Ci

that is not able to either
send a message or receive a message over a pre-determined
port at a pre-specified time, and hence no transition is per-
formed in the location q0 of the actor (see Definition 5.3).

In the rest of the section, we use N Ci
and N Cj#Ci

to
respectively denote the network of TIOAs of the component
Ci and the network of TIOAs of the interface component
Cj #Ci

, such that all TIOAs in each network are compatible.
For a better understanding of the Magnifier approach,

consider the following example.
Example. Suppose that a change in the component C1 of

Fig. 4a is detected and this component is adapted. If after
adaptation, N C1

and one or more of the networks N C2#C1
,

N C3#C1
, and N C4#C1

are not compatible, the change propa-
gates into one or more of the components C2, C3, and C4.

Let’s assume that the change propagates to the components
C2 and C3. It means that C1 with its current adaptation is
not able to either receive messages from C2 and C3 or send
messages to those components at the pre-specified times
and over the pre-specified ports. Consequently, the adapta-
tion for C2 and C3 is triggered. The components C1, C2, and
C3 are adapted and are composed to provide the new com-
ponent C1;2;3. If N C5#C3

, N C4#C1
, and N C1;2;3

are compatible,
the change propagation stops, and the change is not propa-
gated further than C1, C2, and C3.

5.4 Correctness of the Compositional Reasoning

In the previous section, we defined the interface compo-
nents of a component. An interface component is an abstrac-
tion of an environment component. In the absence of a
change, the correctness properties of the system are pre-
served as each component of the system preserves a set of
local correctness properties, i.e., each component receives
and sends messages at the pre-specified times and over the
pre-specified ports. In the presence of a change, the correct-
ness properties are satisfied if the adapted component can
work with its environment, i.e., the adapted component and
its environment satisfy their input and output assumptions.
This is where the networks of TIOAs of the adapted compo-
nent and its interface components are compatible. In this
section, the correctness of the proposed approach is proved
in Theorem 5.1, explaining that reducing the environment
components to the interface components is correct.

Theorem 5.1 (Interface Theorem). The networks of TIOAs of
the adapted component and its interface components are com-
patible if and only if the networks of TIOAs of the adapted com-
ponent and its environment components are compatible.

Proof. “if”: By contradiction. Let the networks of TIOAs of
the adapted component Ci and its environment compo-
nents be compatible, but the networks of TIOAs of Ci and
its interface components are not compatible, i.e.,
N Ci

, N Cj1 #Ci
, . . . , N Cjn#Ci

, where Cjk 2 EnvðCiÞ, k ¼
1; . . . ; n, and n ¼ jEnvðCiÞj, are not compatible. It means
that there exists an interface component Cjl #Ci

; Cjl 2
EnvðCiÞ, and an augmented environment actor aaj 2
Cjl #Ci

such that this actor is not able to either receive an
expected message from an expected port at a pre-speci-
fied time or send a message over a pre-specified port at a
pre-specified time. Let aaj corresponds to the environ-
ment actor aj. However, the actor aj belongs to Cjl , e.g.,
aj 2 Ajl . This means that N Ci

, N Cj1
, . . . , N Cjn

are not
compatible, which contradicts the assumption.

”only if”: By contradiction. Let the networks of TIOAs
of the adapted component Ci and its interface compo-
nents be compatible, but the networks of TIOAs of Ci

and its environment components are not compatible, i.e.,
N Ci

, N Cj1
, . . . , N Cjn

, where Cjk 2 EnvðCiÞ, k ¼ 1; . . . ; n,
and n ¼ jEnvðCiÞj, are not compatible. We assumed that
the adaptation results in a new network of compatible
TIOAs for the component Ci. Furthermore, as each com-
ponent Cj 2 EnvðCiÞ is not yet affected by a change, all
TIOAs inN Cj

are compatible. Therefore, there exists Cj 2
EnvðCiÞ and an environment actor aj 2 Aj such that this
actor is not able to either receive an expected message
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from an expected port at a pre-specified time or send a
message over a pre-specified port at a pre-specified time.
However, this actor corresponds to an actor of Cj #Ci

.
This means that N Ci

, N Cj1 #Ci
, . . . , N Cjn#Ci

are not com-
patible, which contradicts the assumption. tu
Focusing on the TIOA model of CoodAA, note that each

TIOA interacts with a fixed set of TIOAs and over a fixed
set of input and output actions. An specific feature of the
TIOA modeling an actor in CoodAA is that the actions
shared between two TIOAs are not shared with a third
TIOA. Moreover, there are no shared variables among
TIOAs except for the one used to represent the characteris-
tics of communication, e.g., transferredP in Definition 4.4.

6 EVALUATING MAGNIFIER

We compared CoodAA and our approach to perform the
analysis at runtime with similar approaches in [1], [3]. We
include a subsection on this comparison in Section 7. The
focus of this paper is on comparing the non-compositional
verification approach and our compositional approach. To
this end, we compare the time and memory consumption of
both approaches in this section. We implement an ATC case
study with several control areas in Ptolemy II [8] as a proof
of concept for effectiveness and efficiency of the composi-
tional approach. We decided to use Ptolemy II because the
framework enables us to automate the iterative and incre-
mental process of Magnifier using its so-called director. The
change propagated through the system can be automatically
traced, and the verification scope can be extended to bring
more components into the analysis incrementally. We used
TIOA for defining the compositional semantics of CoodAA,
as compositionality can be easily represented using autom-
ata, but we did not find UPPAAL the best tool for implement-
ing the rather complicated iterative and incremental
approach of Magnifier whereas Ptolemy II is a Java-based
tool giving us the necessary programming power.

In [1], we developed a Ptolemy template for CoodAA to
model and analyze self-adaptive TTCSs. In this template,
we modeled each sub-track as a Ptolemy actor and the mov-
ing objects as messages passed by the actors. The pathways
between the sub-tracks are modeled by interconnections
between the actors. Furthermore, we modeled the controller
(coordinator) as a Ptolemy director. In this paper, we use
this template and extend its director to develop the Magni-
fier director that supports formal verification.

In each iteration, after replanning, Magnifier checks the
compatibility of components. This is done by generating the
state space of a given component, and checking if every-
thing is performed according to the plan (satisfying Cond. 1
and Cond. 2 in Section 5.1) using reachability analysis. For
the sake of simplicity, we assume that all coordinators of all
components (the ATC controllers of all areas) have the same
adaptation policy (rerouting algorithm). This way, we have
only one coordinator (instead of a nested model and multi-
ple coordinators). The Magnifier director generates the state
space of the model of an ATC example with several compo-
nents, where the components are composed to create a new
component. The rerouting algorithm and the algorithm to
generate the state space are implemented in the director. It

is notable that designing the rerouting algorithm is not the
concern of this paper. The details of the implementation of
Magnifier in Ptolemy II and the pseudo-code of the algo-
rithm to generate the state space are available in [18]. The
Ptolemy model and implementations of the provided algo-
rithms in the next section are also available.1

We perform our experiments for different settings
including different sizes of the traffic network, different
times for occurring the change, different parameters of the
exponential distribution to generate the departure times of
aircraft from their sources (different traffic volumes), and
different numbers of aircraft. The results denote that Magni-
fier significantly decreases the usage of time and memory.

6.1 Experimental Setting

To compare the compositional and non-compositional
approaches, we focused on an ATC example with a n� n
mesh map. We also considered 2n� 1 source airports and
2n� 1 destination airports (each one of the source and des-
tination airports is connected to a sub-track). We developed
an algorithm to generate the initial flight plans of m aircraft
and an algorithm (an adaptation policy) to reroute the air-
craft as follows. We described the algorithms in detail in
our technical report [18].

ALG1: Generating the Initial Plans. This algorithm ran-
domly generates the source, the destination, and a depar-
ture time from the source airport for each aircraft. Similar to
the XY routing algorithm [22], ALG1 finds a route from the
source to the destination by first traversing the X dimension
and then traversing the Y dimension of the mesh. It finds
time conflict-free routes, where two or more aircraft are not
allowed to travel across a sub-track at the same time. ALG1
does not guarantee to find the most efficient (e.g., shortest)
route.

ALG2: Rerouting Algorithm. This algorithm gradually sub-
stitutes a part of the initial route with a new sub-route, such
that the resulting route has the same length as the initial
route. If no such route is found, ALG2 finds a route ignoring
the length of the initial route. If using both above
approaches no route is found, the aircraft will stay one
more unit of time in its current location. It then will fly
based on its initial route if the first sub-track in its route
becomes available. Otherwise, the procedure of ALG2
repeats. ALG2 uses the same procedure as ALG1 to find a
route. It avoids the stormy track but does not check the time
conflict with other aircraft in the future. If a potential con-
flict is detected, we will take care of it by rerouting the air-
craft upon detecting the conflict.

Scenarios. Different parameters such as the rerouting
algorithm, the time of the storm, the place of the storm, the
network traffic volume, the amount of concurrency arisen
from flight plans of the aircraft, and the network dimension
change the results of experiments. We perform three sets of
experiments; (ES1) that is to compare the time and memory
consumptions between the compositional and non-compo-
sitional approaches, (ES2) that is to depict the variation of
the time consumption in a set of experiments for each
approach, and (ES3) that is to compare the scalability of the

1. https://github.com/maryambagheri1989/Magnifier
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approaches. The scenarios are described in the following. In
our experiments, we assume that the traveling time of an
aircraft across a sub-track is one. We also assume that the
aircraft consumes one unit of fuel per one unit of the travel-
ing time. Furthermore, the fuel of each aircraft is more than
the length of the longest path in the traveling network. For
the place of the storm, we select the middlemost sub-track
of the network.

(ES1). We consider a 15� 15mesh structure, divided into
9 regions of 5� 5, as the traffic networks in (ES1). The fuel
of each aircraft is set to 325. We use ALG1 to generate 150
batches of flight plans per each � in f0:5; 0:25; 0:125g, where
� is the parameter of the exponential distribution to gener-
ate departure times of the aircraft from source airports. By
increasing the value of �, the mean interval time between
two departures decreases. As a result, the network traffic
volume and subsequently the concurrency contained in the
model might increase. We expect that the compositional
approach performs better than the non-compositional
approach even in a low concurrency model. Each generated
batch contains flight plans of 2,000 aircraft. Per each batch
Pi; 1 � i � 150, we generate 4 batches Pij; 1 � j � 4, such
that Pi1 contains the first 500 flight plans of Pi, Pi2 contains
the first 1,000 flight plans of Pi, and so on. We use both
approaches to analyze each batch Pij per each time of the
storm in f100; 200; 400; 600; 800g. Obviously, whenever the
storm occurs late, most of the moving objects have arrived
at their destinations. We remove the batch Pi from the
experiments of both approaches if for a batch Pij and a time
of the storm, the model in one of the approaches is not dead-
lock-free, or its verification time passes the threshold (the
results of experiments in which the models are not dead-
lock-free are investigated in (ES2)). Table 3 shows the num-
ber of experiments in which the model in both approaches
runs to completion within the time limit (Complete), faces a
deadlock (Deadlock), and verification does not reach a
result within the time limit (TimeOver). The threshold of
the analysis time is set to an hour. In our experiments, per
each j, we calculate the averages of the analysis time and
the number of states of the batches Pij.

(ES2). The traffic network in (ES2) has the same configu-
ration as the traffic network in (ES1). In (ES2), we use the
batches of flight plans generated in (ES1) for � ¼ 0:5. The
reason for considering � ¼ 0:5 is that the network might
have the highest traffic volume for � ¼ 0:5 compared to � 2
f0:25; 0:125g. We use both approaches to analyze each batch
Pi, containing the flight plans of 2,000 aircraft. Since the

possibility of propagating the change increases when the
storm happens early, we suppose that the storm happens at
time 100. As shown in Table 3, the model in 120 experiments
is deadlock-free and is analyzed in less than the predefined
threshold. Compared to (ES1) that calculates the average of
the analysis time for this set of experiments, (ES2) illustrates
the variation of the analysis time in this set for each
approach. Furthermore, (ES2) depicts the variation of the
time consumption to detect a deadlock in 27 experiments
that are not deadlock-free.

(ES3). As the aim in (ES3) is to compare the scalability of
those two approaches, we consider a larger traffic network
that is a 18� 18 mesh structure with 9 regions of 6� 6 in
our experiments. The fuel of each aircraft is set to 425. We
assume that the change happens at time 100. We use ALG1
to generate a batch P of 5,500 flight planes with � ¼ 0:5. In
(ES3), we start with the first 100 flight plans of P , and grad-
ually increase the number of flight plans to compare the
scalability of the two approaches. The scalability of the
approaches is measured by the number of the aircraft. We
define a threshold for the verification time and set this
threshold to 45 minutes. The approach that can analyze a
model with more number of the aircraft in less than the
defined threshold is more scalable.

6.2 Comparison of the Magnifier Approach and the
Non-Compositional Approach

We run our experiments on an ubuntu 18.04 LTS amd64
machine with 67 G memory and Intel (R) Xeon (R) CPU E5-
2690 v2 @ 3.00 GHZ. A part of our experimental results is
shown in Figs. 6, 7, 8 and 9. In these figures, “C” and “NC”
refer to the compositional and non-compositional approaches,
respectively. The legend entry C � i; i 2 f100; 200; 400; 600; 800g

TABLE 3
The Number of Experiments in Which the Model in Both

Approaches Runs to Completion Within the Time Limit (Com-
plete), Faces a Deadlock (Deadlock), Does Not Reach a Result

Within the Time Limit (TimeOver)

n � Complete Deadlock TimeOver

15 0.5 120 27 3

15 0.25 110 37 3

15 0.125 94 56 0

The traffic network has a n� n mesh structure. � is the parameter of the expo-
nential distribution to generate the departure times of the aircraft.

Fig. 6. The number of states in (ES1) for each value of � in f0:5; 0:25; 0:125g, where � is the parameter of the exponential distribution to generate the
departure times of the aircraft. The notations C and NC refer to the compositional and non-compositional approaches, respectively. The time at
which the storm happens varies in the set f100; 200; 400; 600; 800g. As an instance, C � 100 depicts the results of the compsitional approach when a
storm occurs at time 100.
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depicts the experimental results of the compositional appro-
ach for the time i at which the storm happens. The legend
entry NC � i depicts the results for the non-compositional
approach. As shown in Figs. 6 and 7, using the compositional
approach results in decreasing the verification time and the
number of states. As expected, by increasing the number of
aircraft, the number of states, and accordingly, the verification
time increase. The same results are valid for the smaller value
of the time at which the storm occurs, since fewer aircraft
have arrived at their destinations when the storm happens.
By increasing the time at which the storm occurs, the diffe-
rences between the results of the compositional and non-
compositional approaches decrease. It is because most of the
aircraft have arrived at their destinations when the storm hap-
pens late. To have a better representation of the verification
time difference between the compositional and non-composi-
tional approaches, we depict the results of the verification time
for � ¼ 0:5 in two diagrams with two different time scales,
shown in Fig. 7. As can be seen, the compositional approach is
able to verify a model with 2,000 aircraft in a few seconds for
the smallest value of the time at which the storm happens. By
increasing the time interval between two departures from a
source airport, the number of aircraft entering into the traffic
network after the storm happens increases. Therefore, as
shown in Fig. 6, the number of states in the compositional
approach increaseswhenever the value of � decreases.

The results of our experiments in (ES2) are shown in
Fig. 8. For the compositional approach, the variation of the
verification time in a set of experiments with no deadlock is
shown in Fig. 8a. The results of the same set of experiments
for the case in which the non-compositional approach is
used are depicted in Fig. 8b. We also depict the variation of

the time needed to detect a deadlock in a set of experiments
using the compositional and non-compositional approaches
in Fig. 8c. As shown in Fig. 8a, excluding the outliers, the
model in our experiments is analyzed in less than 22 sec-
onds using the compositional approach, while this time is
around 2,190 seconds in the non-compositional approach.
Also, in our experiments, the average time for detecting a
deadlock in the compositional approach is around 11
minutes, while this value in the non-compositional
approach is around 20 minutes.

To detect a deadlock situation, we set up a timeout mech-
anism. In ALG2, the aircraft may circulate between a few
sub-tracks trying to find a way out. We can only detect this
situation using a timeout. This is not the best way to detect
the deadlock; we set a large timeout value, and it causes an
increase in the deadlock detection time. So, we exclude
these scenarios from reported experiments in (ES1).

We can define a time limit for running the adaptation
algorithm, and when we reach the limit, human intervention
will take place. For example, if we consider a time limit of
three minutes, from 150 experiments, only 21 experiments
need human intervention in the compositional approach.
These 21 experiments include the three experiments inwhich
the verification time passes the threshold, the outlier experi-
ment in Fig. 8a, and 17 experiments (of 27 experiments) that
face a deadlock. All experiments in the non-compositional
approach needmore than threeminutes analysis time.

The results of our experiment in (ES3) are shown in
Fig. 9. To compare the scalability of both approaches, we
run both approaches for the same scenario, and we define a
threshold of 45 minutes for the verification time. The non-
compositional approach does not scale for more than 2,800

Fig. 7. The verification time in (ES1) for � ¼ 0:5. The left side depicts the verification time in the compositional (C) and non-compositional (NC)
approaches when a storm occurs at a time in f100; 200g. The right side depicts the verification time of each approach when a storm occurs at a time
in f400; 600; 800g. The right and the left side figures show the verification time with different scales.

Fig. 8. The verification time in (ES2) for � ¼ 0:5. The storm occurs at time 100. The variations of the time needed to verify the experiments with no
deadlock using the compositional (C) and non-compositional approaches (NC) are depicted in parts (a) and (b), respectively. The variations of the
time needed to detect a deadlock using both approaches are depicted in part (c).
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aircraft. The results of the compositional approach in Fig. 9
have fluctuations appeared between 4,600 to 5,000 aircraft.
By adding new aircraft to the traffic network, some areas
are congested, and consequently, the concurrency of the
model increases. This results in some fluctuations and the
fast growth of the ”C” plot between 4,600 to 5,000 aircraft.
Except for this range, this plot has a normal growth, since
by adding the new aircraft, the behaviors of the congested
areas have not sensibly changed.

6.3 Discussion and Threats to Validity

We discuss an observation regarding a comparison between
the non-compositional approach and the worst case forMag-
nifier when the change propagates all the way to include the
whole system. We argue that even in the worst case, Magni-
fier performs better than the non-compositional approach.
Our experiments testify this argument. This observation can
be justified as follows. Suppose that a change happens at
time t. The non-compositional approach involves all actors
of the model that have a message at time t into the analysis,
and starts to generate the state space. In contrast, Magnifier
focuses on the component affected by the change, and starts
to generate the state space by involving those actors of the
component having amessage at time t. Let the branching fac-
tor for a state be the number of outgoing transitions of the
state or the number of actors that can be triggered at the state.
At the beginning, Magnifier has a lower branching factor on
all states of the state space compared to the non-composi-
tional approach. At some point in future, e.g., at time t’,
when all components are affected by the change, both
approaches involve the same number of actors into the anal-
ysis, and both approaches generates the same number of
states and transitions. However, between t and t’, the graph
of the state space in Magnifier is smaller than the graph of
the state space in the non-compositional approach. There-
fore, even in the worst case, Magnifier performs better than
the non-compositional approach in terms of the verification
time and thememory consumption.

It is also possible that the rerouting algorithm contains
the change in a small area of the network. Regarding this
case, we considered the same termination condition for
both approaches to have a fair comparison. Same as Magni-
fier, the non-compositional approach follows the change
propagation and terminates whenever the propagation
stops. As discussed, Magnifier incrementally adds compo-
nents into the analysis and hence performs better.

The main threat to validity lies in possible implementa-
tion errors. To reduce this threat, we checked the

propagation of the change and reviewed the state space of
various small to large batches of flight plans to validate the
operation of both approaches. Another threat concerns the
traffic volume and the size of the traffic network that affect
the results. To reduce this threat, we considered different �
to randomly generate departure times from source airports,
different times for happening the storm, and different size
for the traffic network.

7 RELATED WORK

In this section, we concentrate on four classes of most related
studies, modeling and verifying traffic control systems, for-
mal analysis of self-adaptive systems at runtime, composi-
tionalmethods for verification, and interface theory.

Modeling and Verifying Traffic Control Systems (TCSs). TCSs
such as ATC and train control systems, due to the tight inter-
connection of the physical plant and the controller software,
aremostly categorized as hybrid systems. There is a vast litera-
ture on verifying dynamic models of TCSs to detect the future
conflicts among the moving objects [23], [24], [25], to resolve
the potential conflicts through the trajectory planning [26],
[27], and to evaluate the correctness of the communication pro-
tocols among different entities of the system [28], [29], [30].
These approaches use the Lagrangian models in which the
moving objects alongwith their operational details are the con-
cern ofmodeling [31], [32].Modeling the dynamic behaviors of
eachmoving object in these approaches needs a set of differen-
tial equations, which due to a large number of the moving
objects,makes the analysis of TCSs difficult [31]. This approach
of modeling is only necessary when we need to have a micro-
scopic view of the traffic for our analysis purposes.

Our approach is based on Eulerian models in which the
regions of the traveling space, e.g., sub-tracks, are the con-
cern of modeling [31], [32]. This kind of modeling is more
appropriate for modeling rerouting/rescheduling of the
moving objects [32]. By modeling each sub-track as an actor,
we develop a one-dimensional model of the traveling space
instead of a complex multi-dimensional model of the mov-
ing objects. This approach of modeling not only provides an
acceptable fidelity for the problem [1], but also relieves the
analysis difficulties. It is notable that a few of the mentioned
approaches such as [23] verify the system at runtime. The
approach of [23] is not compositional. The approach of [24]
uses simulation, and [26] and [25], [28], [29] respectively
analyze one aircraft and one to four trains.

Based on the related work, there is an increased interest
towards the scheduling and path planning of moving

Fig. 9. The scalability of compositional (C) and non-compositional (NC) approaches in (ES3). Both approaches are run for the same scenario with
� ¼ 0:5. The storm occurs at time 100. The scalability is measured in the number of aircraft, while the verification time is set to a threshold. The non-
compositional approach is not able to verify a model with more than 2800 aircraft in a time less than the defined threshold.
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objects in TCSs, i.e., [33], [34] use priced timed automata for
the resource scheduling and the aircraft landing problem,
[35], [36] use timed automata for the path planning in
robotic systems, and [37] use the P programming language
and attempts to compute an optimal collision-free motion
plan for a robot. The scheduling and the path planning are
not concerns of this paper.

Formal Analysis of Self-adaptive Systems at Runtime. PobSAM
[38], [39] is an integration of algebraic formalism and actor-
based Rebeca [40] models for modeling and verification of
self-adaptive systems. In PobSAM there is no notion of timing
constraint, and no focus on the verification at runtime.

The approach of [41] uses an incremental verification tech-
nique to verify a Markov Decision Process (MDP) when
parameters of the model are changed at runtime. The MDP is
constructed incrementally by inferring a set of states needed
to be rebuilt. In [42], a parametric Discrete TimeMarkovChain
(DTMC) is analyzed and a set of symbolic expressions is
reported as the result. This way, the runtime verification of a
DTMC is reduced to calculating the expressions’ values when
parameters get values at runtime. The work of [43] designs a
self-adaptive software as a dynamic software product line,
and uses parametric DTMCs tomodel common behaviors and
variation points of the products separately. Therefore, there is
no need to verify each configuration separately. RINGA [44]
develops a design-time model of a system using Finite State
Machines (FSM), where transitions are assigned equations
parameterized by environmental variables and trigger the
adaptations encoded in the states. RINGA abstracts the model
for using at runtime. Lotus@runtime [45] monitors execution
traces of the system and updates probabilities of a model
designed by a transition system. The desirable properties in
[45] are explained through a source state, a target state, a con-
dition to be satisfied, and the probability of satisfying the con-
dition. In comparison to [41], [42], [43], [44], [45] which use
state-based models, an actor model is in a higher level of
abstraction. Our actor-based approach besides decreasing the
semantic gap between the model@runtime and applications,
facilitates themodular analysis of the system.

The failure propagation is studied in [46] that checks
whether the structural adaptation of the system is fast
enough to prevent a hazard. Our approach, besides detect-
ing a hazard, checks timing properties over a model. The
latency-aware adaptation is studied in [47], where a proba-
bilistic model checker proactively selects an adaptation
strategy to maximize the utility of the system. Unlike [47],
our focus is on effectively verifying the system behavior.
The work of [48] investigates which state of the system is a
safe state to update the implementation of the system when-
ever an environment assumption is changed. It also auto-
matically synthesizes a new controller for the system. The
approach of [48] is applied on a RailCab system where an
accident should be avoided before the RailCabs enter into a
crossing. [48] does not verify the system after adapting it.

Compositional Methods. The idea of compositional verifi-
cation of actor-based models are first introduced for Rebeca
in [40], [49], and providing a compositional semantics for
Rebeca using automata is presented in [50]. Compositional
methods for Timed Rebeca [51], [52] models are not yet
investigated in depth. The approaches of [53], [54] use an
assume-guarantee reasoning to respectively verify self-

adaptive systems at design time and check the satisfaction
of a property over a real-time system. [53] focuses on safety
properties and uses a backward reasoning to generate new
assumptions on the context of an adapted component. If it
reaches a null assumption on the context of the system, the
adaptation is incorrect. A property in [54] is divided into a
set of subspecifications for which an assumption and a
guarantee are defined. The property is satisfied if its subspe-
cifications refine a combination of their corresponding
assumptions and guarantees. This approach is not proposed
for self-adaptive systems. The approach of [55] partitions
the state space of a MDP into regions, magnifies on each
region, and calculates the maximal probabilities by obtain-
ing the upper and lower bounds of probabilities on each
region. Unlike [55], we focus on timed systems.

In [56], a variant of UML diagrams is used to define com-
ponents of a system, their interactions, and their timing and
hybrid behaviors. Besides separately checking the safety of
each component, [56] checks whether interfaces of compo-
nents are well-defined. Compared to our approach, [56]
models hybrid behaviors. The verification at runtime is not
a concern in [56]. The approach of [57] groups components
of the system in a way that a group is verified separately
and its adaptation affects the satisfaction of one require-
ment. In contrast to [57], instead of considering a fixed num-
ber of components per each requirement, we increase the
verification domain whenever it is needed.

None of the above studies consider the change
propagation.

Interface Theory. The theory of interfaces is a widely studied
topic, describing the main features that each component-
baseddesign should obey, such as refinement, structural com-
position, and conjunction. The approach of composition in the
studies is either optimistic [21], [58], [59], meaning that two
components are compatible if there is a helpful environment
to avoid an error state in their parallel product, or pessimistic
[6], [60], meaning that two components should work together
in all environments. In [21], a theory of timed interfaces is pro-
posed, and the interfaces in [58] are specified by Timed Input
Output Transition Systems. Compared to [21], the system in
[58] is input-enabled that is also an assumption in [58], where
[58] uses TIOAs to specify interfaces. In [59], an interface the-
ory for Modal Input Output Automata is proposed, and the
interfaces in [60] are specified by Modal Input Output transi-
tion systems in which timing constraints are not specified.
Compared to the related work, we follow a pessimistic
approach of composition. Also the same as [21], we are able to
express the input assumptions and there is no need for the
input-enabledness assumption.

8 CONCLUSION AND FUTURE WORK

We proposed Magnifier, a compositional approach that iter-
atively detects the propagation of a change and incremen-
tally involves the components affected by a change into the
analysis. An adaptation policy may contain the change and
prevent the change to be propagated. In the worse case, the
change propagates to the whole system, and Magnifier
needs to compose all components of the model. We com-
pared the compositional approach of Magnifier and the
non-compositional approach in Section 6. We argued that
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even in the worst case, Magnifier performs better than the
non-compositional approach. Looking more carefully into
this comparison and building a formal proof is a part of our
future work. The comparisons between our model, Coo-
dAA, and other similar models on self-adaptive systems are
presented in [1], [3]. In Section 7, we included a comparison
of Magnifier with other analysis approaches for TTCS and
other compositional methods.

Our Ptolemy II implementation of Magnifier is specialised
for ATC. In [32], Lee and Sirjani show how CoodAA can cap-
ture TTCS applications in general. Here we consider a con-
stant number of ports for all actors, and the topology formed
by connecting the ports is a mesh. The extension to a dynamic
number of ports and further than that to dynamic bindings,
seem like natural future work. The general idea of Magnifier
is not limited to TTCSs. It can be generalised for any control
system with a modular design. We need to extend our model
to include more general actors with different behaviors and
different bindings among the ports. To investigate the details
of such extension is another future direction. The possibility
of analyzing actors in a compositional way is a consequence
of their isolation discussed in [9] by Sirjani et al. Hence, we
believe that CoodAA and Magnifier can be further extended
and used in different areas and applications based on the
foundations provided in this paper.
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