Monitoring Cyber-Physical Systems using a Tiny
Twin to Prevent Cyber-Attacks

Fereidoun Moradi*!, Maryam Bagheri?, Hanieh Rahmati®, Hamed Yazdi*, Sara
Abbaspour Asadollah!, and Marjan Sirjani!

! School of Innovation, Design and Engineering, Mélardalen University,
Vasteras, Sweden
2 Tehran Institute for Advanced Studies, Khatam University, Tehran, Iran
3 University of Tehran, Tehran, Iran
4 Chavoosh ICT, Isfahan, Iran
{fereidoun.moradi, sara.abbaspour, marjan.sirjani}@mdu.se
mbagheri@ce.sharif.edu, rahmati_hanie@ut.ac.ir, h.yazdi@chavoosh.com

Abstract. We propose a method to detect attacks on sensors and con-
trollers in cyber-physical systems. We develop a monitor that uses an
abstract digital twin, Tiny Twin, to detect false sensor data and faulty
control commands. The Tiny Twin is a state transition system that rep-
resents the observable behavior of the system from the monitor point
of view. At runtime, the monitor observes the sensor data and the con-
trol commands, and checks whether the observed data and commands
are consistent with the state transitions in the Tiny Twin. The moni-
tor produces an alarm when an inconsistency is detected. We model the
components of the system and the physical processes in the Rebeca mod-
eling language and use its model checker to generate the state space. The
Tiny Twin is built automatically by reducing the state space, keeping the
observable behavior of the system, and preserving the trace equivalence.
We demonstrate the method and evaluate it in detecting attacks using
a temperature control system.

Keywords: Monitoring - Model Checking - Abstraction - Cyber-Physical
Systems - Attack Detection and Prevention - Cyber-Security.

1 Introduction

Cyber-Physical Systems (CPSs) are mostly safety-critical systems that integrate
physical processes in the industrial plants (e.g., thermal power plants or smart
water treatment plants) with sensors, actuators and controller components. Since
these components are integrated via a communication network (usually wireless),
a CPS is vulnerable to malicious cyber-attacks that may cause catastrophic
damage to the physical infrastructure and processes. Cyber-attacks may be per-
formed over a significant number of attack points and in a coordinated way. So,
detecting and preventing attacks in CPSs are of significant importance.
Intrusion Detection Systems (IDSs) are deployed in communication networks
to defend the system against cyber-attacks. Regular IDSs cannot easily catch

complex attacks. They need to be equipped with complicated logic, based on
human (safety and security engineers) reasoning [26]. In rule-based IDSs [26],
a set of properties that are extracted from the system design specification are
considered as a rule-set to detect attacks. Indeed, if an IDS finds a deviation
between the observed packets in the network and the defined rules, it produces
an alarm and takes a predefined action such as dropping the packets. The key
challenge is the effort required to specify the correct system behavior as rules.

In this paper, we propose a method to detect cyber-attacks on sensors and
controllers of a CPS. We model the system components, the progress of time and
the interactions between components, and then abstract the model based on the
observable behavior of the system. The observable behavior is the set of events
that can be observed (sensor data) and controlled (control commands) by the
controllers. We develop a monitor module as an IDS that employs the created
abstract model to detect the cyber-attacks. The monitor walks over the abstract
model at runtime to check whether the behavior of the system is consistent with
the model generated at design time. Our approach is similar to using MAPE-K
architecture and models@runtime that support the monitoring and adaptation
at runtime [6]. Digital Twins [I0] are used as digital representation of the system
to advance the system monitoring. We call our abstract model a Tiny Twin as it
resembles an abstract version of a Digital Twin, and we use it as models@runtime
in our method.

To build the Tiny Twin, we start with developing a Timed Rebeca model [32]
of the system, and create the state space using a model checker tool. The state
space is often huge and usually contains state transitions reflecting the events
that are not observable for the controllers, therefore it cannot be directly used
in the monitoring. We then reduce the state space using our abstraction tool
while preserving the trace equivalence between the original transition system
and its abstracted version. In the abstraction process, we consider the observable
actions to be receiving sensor data by the controllers, and sending commands
to the actuators. These actions are related to the labels of the corresponding
transitions in the state space. Using our abstraction tool, the state variables in
the controller that store the receiving sensor data as well as the state variables
in the actuators that reflect the changes on the state of the actuators will stay
observable.

There is a rich literature on using formal models to detect and prevent cyber-
attacks on CPSs (e.g., [2IIBI7TIT4U34/TT]). For instance, authors in [2I] define the
behavior of the system using an automaton and employ it to detect man-in-the-
middle attacks. Authors in [5] build automaton models, determine the set of
unsafe system states, and check whether the system under attacks reaches these
states. Authors in [19] model the system as finite state machines and verify the
system behavior at runtime. In our work, we integrate the system monitoring
with a state space model to detect attacks. The advantage of our method is that
the model used by the monitor (the Tiny Twin) is automatically derived from
the Timed Rebeca model [32], not purely a specification, and then reduced based
on the observable state transitions. To simulate and check the attack detection

process, the Timed Rebeca model is mapped to an executable code in Lingua
Franca [23]. The mapping does not require much effort because both languages
use the same actor-based semantics. Building an actor-based model based on
the specification and requirements, then model check and debug it, can reveal
the inconsistencies and ambiguities in the specification. Going all the way to the
executable code and apply the necessary revisions, helps in reflecting back the
necessary details in the model.

In different situations, we may decide differently, for example keeping the sig-
nals passed between different controllers as the observable events in the abstract
state transition system of a distributed system. We also include logical time in
the Tiny Twin model which is related to the physical time with a limited amount
of deviation (guaranteed by Lingua Franca framework). Some of the meta-rules
regarding the system can be captured in the Tiny Twin. For example, the fact
that “seeing extreme changes in the temperature in a short period of time is
not possible” can be captured in the way we model the environment, and then
reflected in the state space and its abstracted version (Tiny Twin).

Contribution. We develop an abstraction tool that 1) reduces the state
transition system of a CPS (i.e., the state space which is the output of a model
checker tool) based on the observable behavior (a list provided by the modeler).
2) We propose and implement a monitor algorithm that uses the Tiny Twin to
detect cyber-attacks. 3) We develop a temperature control system case study in
Lingua Franca [23]. 4) We evaluate the method by simulating several attacks
and show how the monitor can catch them, and how the Tiny Twin model helps.

Outline. We give an overview of our method in Section [2] We introduce
Timed Rebeca and Lingua Franca in Section [3] We present our abstraction tool
and explain our monitor algorithm in Section[d] In Section 5] we describe a tem-
perature control system and evaluate our method by implementing the monitor
module in Lingua Franca. Section [6] covers the related works. The conclusion
and future directions of this work are discussed in Section [l

2 Overview of our Approach

The overview of our approach is shown in Fig. In [28], we explained our
method to develop the model of a CPS in Timed Rebeca [32] and use the Afra
model checker [I] to verify the model. In [28], it is shown that how entities of
a CPS, i.e., sensors, actuators, controllers, and physical plant are modeled as
actors, and interactions between them are modeled as messages passed between
the actors. In this paper, we develop an abstraction tool (part (A) in Fig. [I)) that
reduces the state space of the Timed Rebeca model (generated by Afra model
checker tool) to create the Tiny Twin based on the observable behavior for the
controllers in the system. The state space of a Timed Rebeca model is a state
transition system [33], in which a state represents a particular configuration of
the system and includes values of state variables of the actors, and a transition
represents triggering of an event (handling a message received by an actor) or
progressing the logical time of the model. We develop a monitor module that uses

/ Design Time \ / Runtime \

Commands ‘|T|Commands
|

! Network

Monitor Module (B)
(Using Tiny Twin)

Sensor data

[slP [al]

(System Specification)

Sensor data Commands

Timed Rebeca
Model [s | P [A

|
Afra Model Checker K /

{ —> Input and output models,

— » Communication network,

[Tool or module,
i [] System's component.

A Actuators, S: Sensors, C: Controllers, P: Physical plant.j

Model

(A)

Abstraction Tool

lState—Space

K|—§> Tiny Twin

\

Fig. 1: The overview of our approach. The state space of the Timed Rebeca model of
a CPS is generated by the Afra model checker and is reduced by our abstraction tool
(see Sec. [4.1)). The result is a Tiny Twin that is used by our monitor (see Sec. to
detect the attacks. The monitor executes together with the system at runtime.

the created Tiny Twin to track the order and the timing of events (part (B) in
Fig. . In safety-critical systems, an isolated and trusted hardware component
is leveraged to enhance the security of the complete system [27]. We implement
our monitor algorithm as a module that can run on an isolated platform with
hardware security support [2].

We implement our monitor module in Lingua Franca [23] that is a language
for programming CPSs. In principle, the Lingua Franca code can connect to
the physical plant and the controller through the input/output communication
channels in the actual system. In this paper, we use Lingua Franca to simulate
the system at runtime and evaluate the detection capability of our method by
defining compromised components. As shown in Fig. [I] the monitor module ob-
serves the sensor data entering the controller, and the control commands leaving
to the actuators. We rely on the logical time provided in Lingua Franca when we
compare the system execution time with the time represented in the Tiny Twin.
Lingua Franca relates logical time to physical time based on the approach intro-
duced in Ptides/Spanner design [8I35]. In the Lingua Franca program we have
a network of actors and a scheduler handles the order of events. The scheduler
watches the local clock of each actor and hold off processing the message until
its measurement of physical time exceeds a threshold. This threshold is defined
to align two timelines, logical time and physical time [22].

The Tiny Twin defines the observable behavior of the system in the absence
of an attack and contains the order and the time at which the sensor data and
control commands are communicated. Transitions in Tiny Twin are tagged by
a label that indicates an action or the progress of time. To detect an attack,
the monitor receives the sensors data and the control commands at runtime,

compares the sensors data with the values of the state variables and checks
whether the control commands are consistent with the outgoing transitions in
the Tiny Twin. If this is the case, the monitor compares the time of the current
state of the Tiny Twin with the time at which the sensor data or the control
commands are received. If the monitor observes an unexpected sensor data or
control command at an unexpected time, it raises an alarm and drops the faulty
control command.

3 Background: Timed Rebeca and Lingua Franca

In this section, we provide an overview on Timed Rebeca and describe the Lingua
Franca programming language.

Timed Rebeca. Rebeca [31] is an actor-based modeling language for model-
ing and formal verification of concurrent and distributed systems. Actors, called
rebecs, are instances of reactive classes and communicate via asynchronous mes-
sage passing, which is non-blocking for both sender and receiver. Timed Rebeca
as an extension of Rebeca has a notion of logical time that is a global time
synchronized between all actors. Each actor has a set of variables. Besides, it
has a message bag to store the received messages along with their arrival times
and their deadlines. The actor takes a message with the least arrival time from
its bag and executes the corresponding method that is called message server.
The actor can change values of its variables and send messages to its known
actors while executing a message server. In Timed Rebeca, the primitives delay
and after are used to model the progress of time while executing a method. The
generated state space of the Timed Rebeca model contains two or more outgoing
transitions at the same time for each state in which the value of variables are
nondeterministically changed.

Timed Rebeca is supported by the Afra model checker tool [I]. Afra generates
the state transition system (i.e., state space model) of the model where states
contain values of variables of actors along with the logical time, and transitions
represent progressing the logical time of the model or taking a message from
an actor’s bag and executing the corresponding method [30/16]. The transition
in the latter case is labeled with the name of the executed message server. The
transition in the first case is labeled with the amount of time progress and is
called a timed transition. Note that a model has an unbounded state space when
the logical time goes to infinite. In [16], the authors propose an approach, called
Shift Equivalence Relation, to make the state space of a Timed Rebeca model
bounded, where possible. Afra implements this approach to generate the finite
state space of the model.

Lingua Franca. Lingua Franca is a meta language based on the Reactor model
for programming CPSs [24]22]. A Reactor model is a collection of reactors. A
reactor has one or more routines that are called reactions. Reactions define the
functionality of the reactor, and have access to a state shared with other reac-
tions, but only within the same reactor. Reactors have named (and typed) ports
that allow them to be connected to other reactors. Two reactors can communicate

if an output port of a reactor is connected to an input port of the other reac-
tor. The usage of ports establishes a clean separation between the functionality
and composition of reactors; a reactor only references its own ports. Reactions
are similar to the message handlers in the actor model [12], except rather than
responding to messages, reactions are triggered by discrete events and may also
produce them. An event relates a value to a tag that represents the logical time
at which the value is present. An event produced by one reactor is only observed
by other reactors that are connected to the port on which the event is produced.
Events arrive at input ports, and reactions produce events via output ports.

In Lingua Franca, the logical time does not advance during a reaction. A
reactor can have one or more timers. Timers are like ports that can trigger re-
actions. A timer has the form timer name(offset, period) that once triggers at
the time shown by offset (if offset is zero, then timer triggers at the start time
of the execution), and then triggers every period. Lingua Franca has a built-in
type for specifying time intervals. A time interval consists of an integer value
accompanied with a time unit (e.g., sec for seconds or msec for milliseconds).
Timers are used for specifying periodic tasks, which are very common in embed-
ded computing. Each Lingua Franca program contains a main reactor that is an
entry point for the execution of the code.

4 Abstraction Tool and Monitor Algorithm

In this section, we first present our developed abstraction tool, which reduces
the state space of a Timed Rebeca model based on the observable behavior for
the controllers in the system and creates the Tiny Twin. Then, we explain how
our monitor detects attacks by checking the consistency between the observed
sensor data and control commands and the state transitions in the Tiny Twin.

4.1 Abstraction Tool

Our abstraction method is implemented in a tool EI by considering the re-
duction algorithm proposed by Jansen et al. [13]. In order to create an abstract
model of a Timed Rebeca model, the modeler provides the tool a list of vari-
ables whose values are changed by the observable actions. The tool reduces the
state space of a Timed Rebeca model based on the given list. It is applied to
the original state space, preserves observable traces (i.e., sequences of actions
that represent the observable behavior) where it iteratively refines indistinguish-
able states, i.e., the classes containing equivalent states, while hides transitions
that are called silent transitions. The abstract and original models of the sys-
tem show the same observable behavior when hiding silent transitions. It begins
at the initial state and traverses the outgoing transitions one by one (i.e., BF'S

! https://github.com/fereidoun-moradi/Abstraction-tool

graph search). It merges a pair states into an equivalence class if they have the
same values for the given variables (the time variable in each state is preserved
in the abstraction process). All transitions that modify the given variables in the
list stay observable and other transitions that do not change the values of these
variables become silent transitions.

Ezample. Fig. 2] illustrates how the abstraction tool performs on an exam-
ple. We depict the transition system of a Timed Rebeca model with the set of
variables {s,w,h} in Fig. a). We show the values of variables in each state
and use time+ = 10 to denote that the logical time progresses by 10 units of
time over a transition. The transitions that are not timed transitions are la-
beled with a label of {getsense, activate_h, heating, switchof f}. The notation
(a > b) on each transitions denotes that the source state has the time value
a (the value of variable now), which is shifted by the value b and becomes the
time value at the leading state. In this system, we may want to check properties
such as "the command activate h will be issued if s = 20 and h = false" and
"the command switchof f will be issued in less than 10 units of time if s = 20
and h = true". Two paths {activate_h} and {heating, getsense*, switchof f},
respectively, from state S3 to state S4 and from state S4 to state S2, sat-
isfy these properties. The action heating is an unobservable action. The tool
receives V' = {s,h} to reduce the transition system of Fig. a). These state
variables reflect the changes occur in the system after the observable actions
{getsense, switchof f} are executed. The equivalence classes created by the tool
and the resulting abstract model is shown in Fig. [J(b). Our abstraction tool
names each state of Fig. b) with G'Si that corresponds to the class e class 1.
For instance, e class_6 is replaced with GS6. Two paths are preserved in the
abstract transition system, respectively, from class GS2 to class GS3 and from
GS3 to class GS1.

4.2 Monitor Algorithm

Algorithm [] shows the pseudo-code of our monitor algorithm. The algorithm
observes the sensor data and the control commands transmitted in the network
and decides to drop or pass the control commands to the actuators. Suppose that
p number of sensors send the sensed data y = {y1,...,y,} to the controller. The
time k indicates a time value which is derived using Lingua Franca code and it is
advanced based on the logical timeline defined in the language. The commands
u = {uq,...,un} are issued by the controller for n actuators to maintain the
physical plant in the certain desirable state. The sensor data are all within a
defined range, i.e., Vi € [1,p],y; € [y, ymee).

The algorithm gets (S, T') as an input, where S and T are respectively the sets
of states and transitions in the Tiny Twin. The algorithm returns commands « or
produces an alarm. The monitor starts its observation when the system executes.
Upon receiving sensor data y and/or commands u, the algorithm compares y and
v (the values stored in the state variables of the model and correspond to the
sensors, i.e., v = {v1,v2...,0,}) at the current state s in the Tiny Twin. If the
algorithm finds no differences between them, it proceeds and checks whether the

activate_h
@(0>>0)

getsense
@(0>>0)

w\ time +=10
@(0>>10)

time +=10
@(0>>0)

S9 S6

s:21 s:20
w: true w: true
h: true h: true
(now: 20) (now: 10) s: 20
h: false

(now: 0)

activate_h
@(0>>0)

getsense getsense

getsense
@(10>>0) |@(10>>0)

@(20>>10)

time +=10 | getsense
@(10>50) | @(205>10)

(now: 0)

switchoff
@(10>>10)

S8 s7

getsense [time +=10 s: 21 s: 21
@(0>> 0 w: true w: false
@(0>>0) |@(0>>10) b true " s -
(now: 10) (now: 10) 521
h: true

(now: 20)

switchoff
@(10>>10)

time +=10
@(10>>0)

getsense
@(10>>0)

(now: 0)

e_class 1

(a) (b)

Fig.2: (a) The transition system of an example Timed Rebeca model with the equiv-
alence classes created by the abstraction tool. (b) The Tiny Twin of the transition

system is depicted in Fig.

commands v are consistent with the corresponding transitions in the model. If
this is the case, the algorithm sends the commands u to the actuators. Otherwise,
the algorithm produces an alarm and terminates the process of monitoring.

In the following, we explain the details of the algorithm. The algorithm sets
the current state of the system to the initial state of the model that is sg € S
(line . The algorithm begins its iteration by observing the sensor data y and
the commands « (line [3)). We use the function getTime to obtain the logical
time of the current state and put it in the time variable z (line . The algo-
rithm checks the branching states if it observes the sensor data y (lines @-@
The function traverse returns the next state by traversing the given transitions
(line . The function empSensor Data compares the data y and v and the func-
tion cmpTimes compares the time k (at which y are observed) with the time x
in the model (line [9)). If y and v are the same and are observed at time z (the
order in which the sensor data is observed is consistent with the order of transi-
tions in the model), the algorithm proceeds and repeats the monitoring process
(lines . Otherwise, the algorithm returns an alarm (line and terminates
the process of monitoring. The algorithm then compares the commands u with
the corresponding transitions in the model at time x (line . This comparison
is performed by the functions checkTransitions and empTimes (line . The
function checkTransitions extracts labels of the outgoing transitions of the cur-
rent state and checks whether the commands are equal to these labels. If this is
the case, the algorithm uses the function traverse to reach the next state and
returns the commands w (lines [14{{15)). Otherwise, it drops the commands and
produces an alarm (lines current state is updated if the time k is
advanced (lines . The algorithm repeats its monitoring.

Example. Let the Tiny Twin of Fig. b) be the input model of Algorithm
The algorithm sets the current state to GS1. It observes the sensed value 20 and
the control command activate h at time k, i.e. kK = 0. The monitor traverses the
transition getSense and sets GS2 as the current state. The monitor compares
the sensed value and the value of the state variable in the current state. If the
values are the same and the logical time of the current state is equal to k, i.e.
x = 0, the monitor proceeds and checks the label of the outgoing transition. It
compares the command and the activate_h label. Since the command and the
label are the same, the monitor traverses the outgoing transition and sets the
current state to GS3. The current state has an outgoing timed transition, the
monitor repeats its monitoring and waits to observe the logical time k advances.
The monitor observes a new sensed value 21 and control command switchoff at
time k£ = 10. The monitor traverses the timed transition and sets the current
state to GS4. It traverses getSense transition and compares the sensed value and
the value of the state variable. It checks whether the values are the same and
the logical time of the current state is equal to k, i.e. x = 10. The monitor pro-
ceeds and checks the label of the outgoing transition, i.e., switchoff label. Since
the command and the label are the same, the monitor traverses the outgoing
transition switchoff and sets the current state to GS1. The monitor repeats the
monitoring process. In GS5, if the monitor observes a new sensed value 21 at

Algorithm 1: Monitor algorithm

Input: An abstract state space (S, 7))
Output: Commands u, or an alarm

1 begin
2 §4 89 €5
3 while observes y, u or time k do
4 x + getTime(s);
5 if y is present then
6 s« s
7 for each leading state of s’ do
8 s + traverse(y,s’,S,T);
9 if empSensorData(y,v) and cmpTimes(k, z) then
10 ‘ break;
11 return alarm;
12 if u is present then
13 if checkTransitions(u, s, S,T) and cmpTimes(k, z) then
14 s < traverse(u, s, S,T);
15 return u;
16 else
17 drops(u);
18 return alarm;
19 s < timeProgress(s, S, T);

time k = 20, without observing a control command, it traverses the timed tran-
sition and sets the current state to G.S6. It then traverses getSense transition
and sets the current state to G.S5. The monitor updates the logical time with
the time value in G'S5 and the amount of time progress, i.e., k = 20 (i.e., shift
equivalence relation between states G.S6 and G'S5). It compares the sensed value
and the value of the state variable in GS5. The monitor repeats the same pro-
cess by observing the sensor data or control commands. The monitor produces
an alarm and terminates the monitoring process if it observes a sensed value or a
control command inconsistent with the model. It returns an alarm containing a
tuple [k, y*, u?, vy, v, ..., v,] where k is a time value showing at which time dur-
ing system execution an inconsistency is identified, 3* is the inconsistent sensor
data, u? is the dropped control command and v; are values of state variables in
the state GSi where the monitor terminated the system execution.

5 Case Study: a Temperature Control System

We evaluate the applicability of our method in detecting and preventing cyber-
attacks using a temperature control system. The goal of attacks is to change the
temperature out of the desired range or cause damage on the physical infrastruc-
ture (i.e., the heating and cooling unit). We assume that attackers can send false
sensor data or compromise the controller to alter the commands issued by the
controller. We developed the Timed Rebeca model of the temperature control

10

system (see Listing[I|(a)) in which four reactive classes are defined to specify the
system components and the physical process. We use the Afra model checker
to produce the state space of the developed Timed Rebeca model and exploit
our abstraction tool to generate the Tiny Twin. We implement both the system
and the monitor module in Lingua Franca. We use the mapping between Timed
Rebeca and Lingua Franca [33] to write a Lingua Franca code of the system (see
Listing b)) This code can be executed on a single core, on multiple cores, or
on separate processors connected via a network. In this case study, we configure
the number of threads to 1 since the code is mapped form a Rebeca model in
which each actor has a single thread of execution. The complete codes of the
system and the monitor are available on GitHub []]

The temperature control system is responsible for maintaining the temper-
ature of a room at a desired range (i.e., the values between 21 and 23). This
system includes a sensor, a hc_unit (heating and cooling unit) as an actuator,
and a controller (lines and [7)in Listing [[[a)). The controller receives sen-
sor data from the sensor and transmits the activate c, activate h or switch off
command to the hc_unit to respectively activate the cooling or heating process,
or switch the heating/cooling process off (lines . Assume that there is a
window inside the room (line and the outside air blows inside when the
window is open (line . The controller does not know whether the window is
open or closed but can activate the heating/cooling process based on the sensed
temperature value. The cooling process is activated if the temperature value is
higher than the desired range (e.g., the value 24) (line 21)). The heating process
is activated if the temperature value is lower than the desired range (e.g., the
value 20) (line . The heating/cooling process is switched off if the tempera-
ture value is regulated to the desired range. The physical process is temperature
regulation (lines , and the desired state is a specific range for the temper-
ature. We assume that the temperature of the room is within the desired range
at the beginning (i.e., the value 22) (line [)).

Similar to the Timed Rebeca model of the system, the Lingua Franca code
implements all components of the system (Listing b)) The input port getSense
in the reactor controller (line[3) is defined to get a sensor value, and three output
ports activate_ h, activate_ c, and switchoff (lines are defined to send values
as commands to the hc_ unit. We set the value of activate h to 1 to trigger the
heating (line , and the value of switchoff to 0 to trigger the switch off in
the he_unit (line . The main reactor instantiates the components and binds
their input and output ports to connect the components together (line . For
example, we connect the output port out in the reactor sensor to the input port
getSense in the reactor controller (line . This way, the new temperature value
is transferred from the sensor to the controller. In the main reactor, the use of
after indicates that a value reaches the input port of the reactor controller after
10 units of time (line. Note that we use a time function to measure the logical
time elapsed since the code started to run (line [37).

! https://github.com /fereidoun-moradi/RoomTemp

11

1 env int desiredValue = 22; //environment wariables 1 target Cpp {fast: false, threads: 1};
2 env int timingInterval = 10; 2 reactor Controller { //input and output ports
3 reactiveclass Controller(8){ 3 input getSense:int;
4 knownrebecs{ HC_Unit hc_unit; Sensor semsor;} 4 output activate_h:int;
5 statevars{ int sensedValue; 5 output activate_
6 boolean heating; boolean cooling;} 6 output switchoff:int;
7 Controller){ 7 state heating:bool(false);
8 sensedValue = desiredValue; 8 state cooling:bool(false);
9 heating = false; cooling = false;} 9 reaction(getSense) ->
10 msgsrv getSense(int temp){ 10 activate_c, activate_h, switchoff {=
11 sensedValue = temp; 11 if (+getSense.get () <= 23 &k
12 if (temp <= 23 && temp >= 21) { //desired range 12 *getSense.get () >= 21){
13 if (heating == true || cooling == true) { 13 if (heating == true || cooling == true) {
14 hc_unit.switchoff(); 14 switchoff.set(0);
15 heating = false; cooling = false; 15 heating = false; cooling = false;}
16 } else { semsor.start();} 16 } else if (*getSemse.get () < 21){
17 } else if (temp < 21) { 17 if (heating == false){
18 if (heating == false) { //control command 18 activate_h.set(1); heating = true;
19 hc_unit.activate_h(); heating = true; 19 } else { activate_h.set(0); }
20 } else { sensor.sense(sensedValue); } 20 } else if (*getSense.get() > 23) {
21 } else if (temp > 23) { 21 Y72
22 s 22 ¥
23 } 23 =}
24 } 24 }
25 reactiveclass Room(8){ 25 reactor Room {
26 knownrebecs{ Sensor sensor;} 26 input cooling:int;
27 statevars{ int temperature; int outside_air_blowing; } 27 input heating:int;
28 Room() { 28 input status:int;
29 temperature = 22; //initial value 29 output sensedValue:int;
30 outside_air_blowing = 0; //window is closed 30 state temperature:int(22);
31 } 31 state outside_air_blowing:int(0);
32 msgsrv status() { //nondeterministic assignment 32 reaction(status) -> sensedValue {=
33 outside_air_blowing = 7(1,0,-1); 33 outside_air_blowing = rand() % 3 + (-1);
34 temperature = temperature - outside_air_blowing; 34 temperature =
35 sensor.sense (temperature) ; 35 temperature - outside_air_blowing;
36 } 36 sensedValue.set (temperature) ;
37 msgsrv heating() { 37 auto elapsed_time =
38 temperature = temperature + 1; 38 get_elapsed_logical_time();
39 self.status(); 39 =}
40 } 40 reaction(heating) {=
41 msgsrv cooling() { 41 temperature = temperature + *heating.get();
42 temperature = temperature - 1; 42 reaction(cooling) {= //...
43 self.status(); 43 =}
44 } 44 }
45 } 45 reactor Semsor {
46 reactiveclass Sensor(8){ 46 input sensedValue:int;
47 knownrebecs{ Room room; Controller controller;} 47 output out:int;
48 Sensor){ self.start();} 48 output sense:int;
49 msgsrv start(){ 49 timer start(0, 1 sec);
50 room.status(); 50 reaction(start) -> sensedValue {=
51 } 51 sense.set(1); =}
52 msgsrv sense(int temp) { //sensing intervals 52 reaction(sensedValue) -> out {=
53 controller.getSense (temp) after(timingInterval); 53 out.set (sensedValue.get ());=}
54 } 54 }
55 } 55 reactor HC_Unit {
56 reactiveclass HC_Unit(8){ 56 input activate_h:int;
57 knownrebecs{ Room room;} 57 input activate_c:int;
58 statevars{ 58 input switchoff:int;
59 boolean heater_on; 59 i
60 boolean cooler_on;} 60 output cooling:int;
61 HC_Unit() { heater_on = false; cooler_on = false;} 61 reaction(activate_h) -> heating {=
62 msgsrv activate_h() { 62 if (xactivate_h.get() == 0){
63 heater_on = true; cooler_on = false; 63 heating.set(0);
64 room.heating(); //heating 64 } else { heating.set(1); }
65 } 65 =} //..
66 msgsrv activate_c(){ 66 }
67 cooler_on = true; heater_on = false; 67 main reactor RoomTemp {
68 room.cooling(); //cooling 68 /]
69 ¥ 69 room.sensedValue -> sensor.sensedValue;
70 e 70 sensor.out -> controller.getSense after 10 sec;
71 } 71 sensor.sense -> room.status;
72 main{ 72 unit.heating -> room.heating;
73 Room room(sensor): (); 73 unit.cooling -> room.cooling;
74 Controller controller(hc_unit,sensor):(); 74 controller.activate h -> unit.activate_h;
75 Sensor sensor(room,controller):(); 75 controller.activate_c -> unit.activate_c;
76 HC_Unit hc_unit(room):(); 76 controller.switchoff -> unit.switchoff;
77 } T }
(a) Timed Rebeca model (b) Lingua Franca code

Listing 1: Timed Rebeca model (a) and Lingua Franca code (b) of the temperature
control system.

12

5.1 Tiny Twin

Fig. |3 shows the Tiny Twin of the state space of the developed Timed Rebeca
model for the temperature control system. The Tiny Twin is generated by the
abstraction tool based on the list V={sensedValue, cooler on, heater on} of
state variables. The original state space of the model includes 76 states and 103
transitions while the generated Tiny Twin contains 21 states (i.e., equivalence
classes) and 36 transitions. The Tiny Twin is trace equivalent to the original
state space (projected on the variables containing sensors data and control com-
mands). The values of state variables in the list V' are shown on each state of
the model. The variables are indicated by the first letter of the variable names
in Fig. B] The variable now shows the logical time of the model. The transi-
tion between two states is either labeled with an action or the progress of time
(i.e., time+=10). In the initial state (GS1), the stored temperature value in the
controller is within the desired value, i.e., s: 22, and the cooling and heating pro-
cesses have been switched off, i.e., ¢: false and h: false (GS1). The logical time
of the model progresses by 10 units (GS2). The controller receives a new sensor
data that its value depends on the current temperate in the room (GS3 and
GS4). The controller begins a new cycle of temperature regulation by reading
sensor data that indicates the current temperature value is higher/lower than
the desired range (GS8 and GS9). The controller sends activate c/activate h
command to the hc_unit for activating the cooling/heating process, i.e., c: true
or h: true (GS11 and GS12). The temperature value is regulated by the heat-
ing/cooling process and reaches the desired range if the window is closed (GS15
and GS17). Otherwise, the temperature value is regulated further by keeping the
heating/cooling process activated. In addition to the activation of the heating/-
cooling process, the outside air blowing inside through the open window causes
the temperature to increase/decrease (GS13 and GS14). The controller sends
the switchoff command if the new sensor data is within the desired value and
the heating/cooling process has been activated (GS16 and GS18). If the sensed
temperature value is higher/lower than the desired range, the controller does
not send any command to the he_unit because the cooling/heating process has
been activated (GS13 and GS14).

5.2 Attack Types and Detection Capability

We evaluate the capability of the developed monitor module in detecting attacks.
We consider three types of attacks that target the integrity aspect of a CPS. (1)
Attackers have the ability of tampering sensor data or injecting any arbitrary
values into the vulnerable channel between controller and sensors, i.e., replay
or tampering attack, (2) attackers are able to manipulate the controller through
malicious code injection into the software of the controller, i.e., fabrication or
masquerade attack, and (3) one or more attackers can perform a coordinated
attack to force the system to change its correct functionally. Any of the above
attacks could be performed in a stealthy way when attackers try to remain

13

tau
@(30>>30)

GS1
5:22
h: false
c: false
(now: 0)

tau
@(10>>10)

(now: 10)

getsense
@(10>>0)

tau
@(20>>20)

(now: 20)

getsense
& @(20>>0)

(now: 20) (now: 20)
activate_c
@(20>>0)

c: true

(now: 20)

time +=10
@(20>>0)

GS13

hs-:fgge ' getsense
e @(30>50)
(now: 30)

getsense getsense

@(30>>0)

(now: 30)

(now: 30)

switchoff
@(30>>0)

switchoff
@(30>>0)

(now: 10)

D

tau
@(20>>10)

getsense
@(20>>0)

getsense
@(10>>0)

tau

switghoff

@3

>>0)

14

@(30>>20)

getsense
@(10>>0)

(now: 10)

tau
@(20>>10)

' getsense
@(20>>0)

(now: 20)

getsense
@(20>>0)

(now: 20)

activate_h
@(20>>0)

(now: 20)

time +=10
@(20>>0)

GS14

hsf tige ' getsense
c: false @(30>>0)
(now: 30)

getsense
@(30>>0)

getsense
@(30>>0)

GS18 GS17

s:22 s:21

h: true h: true

c: false c: false
(now: 30) (now: 30)

switchoff'
@(30>>0)

etsense
(20>>0)

tau
@(30>>20)

(now: 20)

tau
@(20>>20)

Fig. 3: The Tiny Twin of the temperature control system. The labels on each state show
the temperature value s and the status of the cooling ¢ and heating h processes. The
variable now shows the logical time on each state. The transition between two states
is labeled with an action or the progress of time.

undetected by doing slow damage and keeping the impact of the attack close to
the changes in the correct behavior of the system.

According to [28], we model these types of attacks using the defined attack
schemes. To implement the attacks, we modify the reactions of the sensor and
the controller reactors in the developed Lingua Franca code. This way, these
reactors behave as compromised components and respectively send false sensor
data and faulty control commands on the output ports.

We consider the number of false sensor data and faulty control commands as
the number of attacks. In our experiments, we simulate 20 false sensor data and
12 faulty control commands as listed in Table[I] We also simulate 240 coordinated
attacks (combination of the false sensor data and the faulty control commands).
For each attack, we execute the Lingua Franca compiler once and generate an
executable file. We calculate the detection rate of the monitor with respect to
the detected /undetected attacks. In this case study, the detection rate is around
68.8 percent and the average time of the state checking of the monitor is around
0.0008 seconds.

Table 1: Attacks and detection capability of the monitor module.

System # False sensor data/ Detection Capability

States Attacks Faulty control commands (DS/DC)

GS1 and GS2 4 Sensor data (20, 21, 23, or 24) DS (20 and 24)

GS3 and GS5 4 Sensor data (20, 21, 22, or 24) DS (20 and 21)

GS4 and GS6 4 Sensor data (20, 22, 23, or 24) DS (23 and 24)

GS8 2 Command (activate_h or switchoff) DC (activate_h and switchoff)
GS9 2 Command (activate ¢ or switchoff) DC (activate c¢ and switchoff)
GS11 and GS13 4 Sensor data (20, 21, 22, or 23) DS (20 and 21)

GS12 and GS14 4 Sensor data (21, 22, 23, or 24) DS (23 and 24)

GS15, GS16, GS17, GS18 2 Command (activate_h or activate_ c) DC (activate_h and activate_ c)

#Attacks.: Number of simulated attacks, DS: Detect false sensor data, DC': Detect faulty control commands.

Table [1] shows the states with one or more outgoing transitions that corre-
spond to the sensor data or control commands. If the compromised controller
sends a command that differs from the outgoing transition, the monitor module
can detect/drop the faulty control command. From states G.S2, GS5, GS6, GS13
and GS14 (see Fig[3) you may move to different states. For instance, assume
that 23 is sensed as the temperature value in GS2 but the compromised sensor
sends the value 20. According to the Tiny Twin of the case study, the value for
the next states can be either 21 (GS4), 22 (GS1 or GS2), or 23 (GS3) so the
monitor module detects the false sensor data. Note that the controller should
in principle sends activate h to activate the heating process by sensing 20. But
this is where in modeling the behavior of the environment, in the Timed Rebeca
model, we do not model any jumps in the temperature from 22 to 20. So, this is
captured as an unexpected behavior. As another example, assume that the value
22 is sensed as the temperature value in GS2 but the compromised sensor sends
a sensed value 23 or 21. In this case, the monitor module can not detect the
false sensor data. We are able to use meta-rules to check if the paths between
turning the heating (or cooling) unit(s) are taken too quickly, or any of these
units stay turned on for a time longer than expected.

15

Table 2: Alarms of the monitor module in case of attacks.

System False sensor data/ Alarms

States Faulty control commands list

GS1 and GS2 Sensor data (20) [time, y':20,y:23,5:22,¢: false, h: false]

GS3 and GS5 Sensor data (21) [time, y':21,y:22,s:23,c: false, h : false]

GS4 and GS6 Sensor data (23) [time,y® : 23,y : 22,5 : 23,¢c: false, h : false]

GS8 Command (activate_h) [time, u? activate _h,y :24,s:24,c: false, h : false]
GS9 Command (switchoff) [time, u? : switchoff,y:20,s:20,c: false, h : false]
GS11 and GS13 Sensor data (21) [time, Yyt :21,y:22,5:24,c: true, h : false]

GS12 and GS14 Sensor data (24) [time,y® : 24,y : 22,5 : 20, ¢ : false, h : true]

GS16 Command (activate_c) [time, u? activate ¢,y :22,s:22,c: true, h : false]

time: The logical time which is derived using Lingua Franca code.

Table [2| shows the alarms list returned by the monitor module when a false
sensor data or a faulty control command is detected. The alarm is comprised of
a time value, a false sensor data or a faulty control command, the status of the
physical plant reported by the sensor and the value of the state variables in the
state where the monitor module terminated the system execution. Having this
report would be very helpful for system testers/developers to find the situation
of the system state when the alarm happened and find the actual source of the
attack.

In a CPS, there may be several variables involved in the physical process as
well as various sensors and actuators. The monitoring approach using the Tiny
Twin enables us to consider only variables are affected during an attack (i.e.,
violation of properties). Tiny Twin provides relevant information about attacks
that can be employed in mitigation techniques, backtracking and recovering the
system after attacks. We have developed the Timed Rebeca models and the Lin-
gua Franca codes of two case studies (Secure Water Treatment system (SWaT) E|
and Pneumatic Control System (PCS) E[) available on the GitHub, for which the
monitor module can properly detect attacks on the system. In these case stud-
ies, the original state space model of the Timed Rebeca model of the SWaT
contains 614 states and 777 transitions and the original state space model of
the PCS has 1388 states and 2686 transitions. The Tiny Twin models of these
systems respectively have 85 states and 139 transitions and 120 states and 224
transitions.

6 Related Work

There are interesting works based on formal methods and also using models for
detecting attacks at runtime.

Lanotte et al. [I8] propose a formal approach based on runtime enforcement
to ensure specification compliance in networks of controllers. They define a syn-
thesis algorithm with respect to Ligatti et al.’s edit automata [20]. The algorithm
takes an alphabet of observable actions and a timed correctness property, and

! https://github.com /fereidoun-moradi/SWaT-Rebeca-Model
2 https://github.com/fereidoun-moradi/Reconfigurable-Pneumatic-System

16

returns an edit automaton as an enforcer. In their work, the enforcers are syn-
thesized regarding deterministic behaviors of the controllers. The network of
enforcers preserves weak bisimilarity equivalence in relation to the networks of
controllers. The enforcers contain clock variables and specify safe behaviors of
controllers. At runtime, they are used to detect the compromised controllers and
emit the actions (i.e., faulty control commands) that cause failures on the phys-
ical plant. Similar to their approach, we detect/drop faulty control commands
if they deviate from the behavioral model of the system. We develop the CPS
model as an actor model that contains the progress of time and shows the inter-
actions between the system components. We drive the abstract behavioral model
with respect to the trace equivalence that ignores the actions are not observable
for the controllers while preserving the actions order in the original model.

Cheng et al. [7] propose a methodology to detect/prevent attacks modifying
the data that are used for control decisions in the controllers. These attacks can
violate control branches or control integrity (i.e., the number of loop iterations)
in the software of the controller. They derive a finite-state automaton (FSA)
model in a training phase by monitoring the normal behavior of the program at
runtime. They assume sensors data are trustable and therefore they augment the
FSA model with the sensors data that report states of the physical plant. In their
approach, a controller is considered as a compromised controller when it behaves
inconsistently with the corresponding state transitions and the augmented data
in the model. In our approach, we perform model checking to generate a model at
design time without employing any training phase at runtime. We detect faulty
control commands either if they are caused by compromised controllers or the
commands are sent based on the receiving false sensor data.

Krikava et al. [I7] use data driven models@runtime and create the logic of
control systems based on the feedback control loops. They use networks of actors
to represent the target system and the adaptation logic. In [3], authors explore
the benefits of using the Ptolemy II framework [29] for model-based development
of large-scale self-adaptive systems with multiple interacting feedback control
loops. They propose a Ptolemy template based on a coordinated actor model
to build a self-adaptive system. In their work, model@runtime is used by a
coordinator to ensure the satisfaction of the safety properties and to adapt the
system by predicting the violation of requirements, e.g. performance degradation.
In [33], Sirjani et al. use the Rebeca modeling language to conduct a formal
verification of the CPS programs developed in the Lingua Franca language. They
study different ways to construct a transition system model for the distributed
and concurrent software components of a CPS. They focus on the cyber part and
model a faithful interface to the physical part. In our work, we develop executable
code that represents system behavior at runtime by mapping the Timed Rebeca
to the Lingua Franca, whereas the work in [33] validates a program written in
Lingua Franca using model checking.

In [25], authors propose adaptive security policies at runtime. They use ProB
model checker to automatically detect the root cause of security violations. They
check design models (UML models are transformed to B-method) against secu-

17

rity constraints at runtime. The authors in [I5] propose monitors expressed as
automaton models [4] to detect injection attacks against a system. Their au-
tomaton models represent parametric specifications to be checked at runtime.
Their monitors support event duplication to prevent the system against attacks.
They validate the approach by implementing the monitors and performing attack
examples on a program taken from the FISSC benchmark [9].

7 Conclusion and Future Work

In this paper, we proposed a method for detecting cyber-attacks on CPSs. In
particular, we used a Tiny Twin to detect the attacks on sensors and controllers.
We developed an abstraction tool to build the Tiny Twin, which is an abstract
version of a state transition system representing the system correct behavior
in the absence of an attack. The abstraction tool reduces the transition system
based on a list of state variables. The list of state variables includes the variables
that store the receiving sensor data and the state variables in the actuators that
reflect the changes on the state of the actuators. In our method, we built a
monitor module that executes together with the system. It produces an alarm
if the sensor data or the control commands are not consistent with the state
transitions in the Tiny Twin. We evaluated the capability of our method in
detecting attacks on a temperature control system. As the future work, we aim
to build a module to recover the system after attacks based on the adaptation
plans. We plan to automatically generate potential protection strategies using
reinforcement learning.

Acknowledgment

The work of a subset of authors is partly supported by SSF Serendipity project,
KKS DPAC Project (Dependable Platforms for Autonomous Systems and Con-
trol), and KKS SACSys Synergy project (Safe and Secure Adaptive Collaborative
Systems).

References

1. Afra: an integrated environment for modeling and verifying Rebeca family designs.
https://rebeca-lang.org/alltools/Afra (2021), [Online; accessed Jul 09, 2021]

2. Abera, T., Asokan, N., Davi, L., Ekberg, J.E., Nyman, T., Paverd, A., Sadeghi,
A.R., Tsudik, G.: C-flat: control-flow attestation for embedded systems software.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security. pp. 743-754 (2016)

3. Bagheri, M., Sirjani, M., Khamespanah, E., Khakpour, N., Akkaya, I., Movaghar,
A., Lee, E.A.: Coordinated actor model of self-adaptive track-based traffic control
systems. Journal of Systems and Software 143, 116-139 (2018)

4. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
event automata: Towards expressive and efficient runtime monitors. In: Interna-
tional Symposium on Formal Methods. pp. 68-84. Springer (2012)

18

https://rebeca-lang.org/alltools/Afra

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Carvalho, L.K., Wu, Y.C., Kwong, R., Lafortune, S.: Detection and mitigation of
classes of attacks in supervisory control systems. Automatica 97, 121-133 (2018)
Cheng, B.H., Eder, K.I., Gogolla, M., Grunske, L., Litoiu, M., Miiller, H.A., Pellic-
cione, P., Perini, A., Qureshi, N.A., Rumpe, B., et al.: Using models at runtime to
address assurance for self-adaptive systems. In: Models@ run. time, pp. 101-136.
Springer (2014)

Cheng, L., Tian, K., Yao, D., Sha, L., Beyah, R.A.: Checking is believing: Event-
aware program anomaly detection in cyber-physical systems. IEEE Transactions
on Dependable and Secure Computing (2019)

Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J.J., Ghemawat,
S., Gubarev, A., Heiser, C., Hochschild, P., et al.: Spanner: Google’s globally dis-
tributed database. ACM Transactions on Computer Systems (TOCS) 31(3), 1-22
(2013)

Dureuil, L., Petiot, G., Potet, M.L., Le, T.H., Crohen, A., de Choudens, P.: Fissc:
A fault injection and simulation secure collection. In: International Conference on
Computer Safety, Reliability, and Security. pp. 3-11. Springer (2016)

Eckhart, M., Ekelhart, A.: A specification-based state replication approach for
digital twins. In: Proceedings of the 2018 workshop on cyber-physical systems
security and privacy. pp. 36-47 (2018)

Gao, C., Seatzu, C., Li, Z., Giua, A.: Multiple attacks detection on discrete event
systems. In: 2019 IEEE International Conference on Systems, Man and Cybernetics
(SMC). pp. 2352-2357. IEEE (2019)

Hewitt, C.: Viewing control structures as patterns of passing messages. Artificial
intelligence 8(3), 323-364 (1977)

Jansen, D.N., Groote, J.F., Keiren, J.J., Wijs, A.: An O (m log n) algorithm for
branching bisimilarity on labelled transition systems. In: International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 3—20.
Springer (2020)

Kang, E., Adepu, S., Jackson, D., Mathur, A.P.: Model-based security analysis
of a water treatment system. In: Proceedings of Software Engineering for Smart
Cyber-Physical Systems. pp. 22-28. ACM (2016)

Kassem, A., Falcone, Y.: Detecting fault injection attacks with runtime verification.
In: Proceedings of the 3rd ACM Workshop on Software Protection. pp. 65-76
(2019)

Khamespanah, E., Sirjani, M., Sabahi-Kaviani, Z., Khosravi, R., Izadi, M.: Timed
Rebeca schedulability and deadlock freedom analysis using bounded floating time
transition system. Sci. Comput. Program. 98, 184-204 (2015)

Krikava, F., Collet, P., France, R.B.: Actor-based runtime model of adaptable
feedback control loops. In: Proceedings of the 7th Workshop on Models@ run.
time. pp. 39-44 (2012)

Lanotte, R., Merro, M., Munteanu, A.: A process calculus approach to detection
and mitigation of plc malware. Theoretical Computer Science 890, 125-146 (2021)
Lee, E., Seo, Y.D., Kim, Y.G.: A cache-based model abstraction and runtime ver-
ification for the internet-of-things applications. IEEE Internet of Things Journal
7(9), 8886-8901 (2020)

Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for
run-time security policies. International Journal of Information Security 4(1), 2—
16 (2005)

Lima, P.M., Alves, M.V., Carvalho, L.K., Moreira, M.V.: Security against network
attacks in supervisory control systems. IFAC-PapersOnLine 50(1), 12333-12338
(2017)

19

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Lohstroh, M., Menard, C., Bateni, S., Lee, E.A.: Toward a lingua franca for deter-
ministic concurrent systems. ACM Transactions on Embedded Computing Systems
(TECS) 20(4), 1-27 (2021)

Lohstroh, M., Menard, C., Schulz-Rosengarten, A., Weber, M., Castrillon, J., Lee,
E.A.: A language for deterministic coordination across multiple timelines. In: 2020
Forum for Specification and Design Languages (FDL). pp. 1-8. IEEE (2020)
Lohstroh, M., Romeo, I.I., Goens, A., Derler, P., Castrillon, J., Lee, E.A.,
Sangiovanni-Vincentelli, A.: Reactors: A deterministic model for composable reac-
tive systems. In: Cyber Physical Systems. Model-Based Design, pp. 59-85. Springer
(2019)

Loulou, H., Saudrais, S., Soubra, H., Larouci, C.: Adapting security policy at run-
time for connected autonomous vehicles. In: 2016 IEEE 25th International Confer-
ence on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET-
ICE). pp. 26-31. IEEE (2016)

Mitchell, R., Chen, I.LR.: A survey of intrusion detection techniques for cyber-
physical systems. ACM Computing Surveys (CSUR) 46(4), 1-29 (2014)

Mohan, S.; Bak, S., Betti, E., Yun, H., Sha, L., Caccamo, M.: S3a: Secure system
simplex architecture for enhanced security and robustness of cyber-physical sys-
tems. In: Proceedings of the 2nd ACM international conference on High confidence
networked systems. pp. 65-74 (2013)

Moradi, F., Asadollah, S.A., Sedaghatbaf, A., Causevié, A., Sirjani, M., Talcott,
C.: An actor-based approach for security analysis of cyber-physical systems. In:
International Conference on Formal Methods for Industrial Critical Systems. pp.
130-147. Springer (2020)

Ptolemaeus, C.: System design, modeling, and simulation: using Ptolemy II, vol. 1.
Ptolemy. org Berkeley (2014)

Reynisson, A.H., Sirjani, M., Aceto, L., Cimini, M., Jafari, A., Ingélfsdottir, A.,
Sigurdarson, S.H.: Modelling and simulation of asynchronous real-time systems
using timed Rebeca. Sci. Comput. Program. 89, 41-68 (2014)

Sirjani, M., Jaghoori, M.M.: Ten years of analyzing actors: Rebeca experience. In:
Formal Modeling: Actors, Open Systems, Biological Systems, pp. 20-56. Springer
(2011)

Sirjani, M., Khamespanah, E.: On time actors. In: Theory and Practice of Formal
Methods, pp. 373-392. Springer (2016)

Sirjani, M., Lee, E.A., Khamespanah, E.: Verification of cyberphysical systems.
Mathematics 8(7), 1068 (2020)

Zhang, Q., Li, Z., Seatzu, C., Giua, A.: Stealthy attacks for partially-observed
discrete event systems. In: 2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA). vol. 1, pp. 1161-1164. IEEE (2018)
Zhao, Y., Liu, J., Lee, E.A.: A programming model for time-synchronized dis-
tributed real-time systems. In: 13th IEEE Real Time and Embedded Technology
and Applications Symposium (RTAS’07). pp. 259-268. IEEE (2007)

20

	Monitoring Cyber-Physical Systems using a Tiny Twin to Prevent Cyber-Attacks

