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Abstract. In this paper, we report our ongoing work on safe and secure
controller synthesis for cyber-physical systems (CPS). Our approach sep-
arates the synthesis process into three phases, in which we alternatively
perform exhaustive and selective exploration of the system’s state space.
In this way, we combine the strengths of exhaustive search and learning to
mitigate the state-space-explosion problem in controller synthesis while
preserving the guarantee of safety and security. We implement the syn-
thesis algorithms in the Rebeca (Reactive Objects Language) platform,
which provides modelling, verification, and state-space visualization. We
evaluate the new approach in an experiment, demonstrating the reduced
number of explored states, which shows the potential of our approach
for synthesizing safe and secure controllers for complex CPS.

1 Introduction

Correctness by Construction was introduced by Church [7], who first brought up
the famous synthesis problem. Since then, a great amount of effort has been made
to address this problem [4,11,16]. Controller synthesis for cyber-physical systems
(CPS) is different from that of pure software or hardware systems due to the close
interaction of the cyber components and the physical components. Hence, the
correctness of CPS depends on not only what and when actions are performed
but also the reactions of the environment, which can be nondeterministic or
stochastic. Besides, safety and security are also crucial for CPS. Safety means the
system must not cause damage to itself and the environment, whereas security
is concerned with external intrusion into the system [5]. In this paper, we aim
to synthesize CPS controllers that are functionally correct, safe, and secure.

Exhaustive-Search-Based Synthesis. As synthesis is about finding a com-
bination of the desired behaviour of CPS, a natural method is to exhaustively
explore the state space of the system while collecting the desired execution traces,
i.e., sequences of state-action pairs [1,6]. The exhaustive-search-based synthe-
sis has a correctness guarantee by the nature of exhaustive search. However,
the state space for searching can easily grow to a scale that is unsolvable by
the exhaustive-search-based methods [16]. Although many heuristics have been
proposed to improve the performance of such methods in practical problems,
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bounded scalability is still the dominant factor limiting the application of the
exhaustive-search-based synthesis.

Learning-Based Synthesis. Learning bears the hope of overcoming the chal-
lenge of scalability in synthesis, as it has the potential to exploit the experience
of other systems [11] or its own experience in the previous episodes of learning
[10]. The key advantage of learning is that exhaustive exploration is not needed
anymore. Instead, learning uses traces sampled from random simulations, and
thus the state-space-explosion problem is alleviated. However, the sacrifice of
using random simulation is the correctness guarantee. As a safety-critical sys-
tem, an error in CPS may cause casualties, whereas accidents and attacks on
CPS are becoming pervasive in our society, such as crashes involving Tesla’s
driver-assistance system [17], Jeep hacking on a highway [19], and a fatal crash
caused by a self-driving car of Uber [3]. Therefore, learning needs complementary
methods for safety and security guarantees.

Fig. 1. Synthesis process

Our Aim. In this paper, we aim to combine the
strengths of exhaustive exploration and learning in
controller synthesis of CPS to tackle the state-space-
explosion problem and preserve the guarantee of

safety and security for the synthesized controllers. We model the CPS and its
external environment as a Markov Decision Process where the actions of the CPS
(resp., environment) are modelled as controllable (resp., uncontrollable) actions.
Now controller synthesis is about finding the combination of controllable actions
that satisfy the requirements regardless of how the uncontrollable actions take
place. Our method is called Guess and Check as the synthesis starts with guess-
ing a controller that may be correct and then thoroughly checks the guessed con-
troller in the following phases (see Fig. 1). Briefly, we alternatively adopt exhaus-
tive search and learning (or random search) in different phases, which enable us
to deal with large state spaces that are not solvable by pure exhaustive methods
and still guarantee the safety and security of the synthesized controllers.

The remainder of the paper is organized as follows. Section 2 defines the
problem and illustrates it in an example. Section 3 describes the algorithms, the
platform, and a preliminary evaluation. In Sect. 4, we compare our method to
other studies and envision future work.

2 Problem Description

2.1 Problem Definition

Functional correctness, safety, and security may refer to different meanings in
different areas. To avoid confusion, we adapt the definitions of system models in
the literature [14] and define CPS and its requirements as follows.

Definition 1 (CPS). A CPS denoted by C is a quadruple C=(X,X0, A, T ),
where X is a (possibly infinite) set of states, X0 ⊆ X is a (possibly infinite) set
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of initial states, A is a (possibly infinite) set of actions, and T ⊆ X × A × X is
a transition relation.

If a CPS has finite sets of states and actions, it is a finite or symbolic system.
A transition t ∈ T is denoted as t = (x, a, x′), or t(x, a) = x′, where x′ is the
successor of state x when the system’s action is a. If a CPS is deterministic,
given any state x ∈ X and any action a ∈ A, t(x, a) returns either an empty set
or a set with only one state; otherwise, the CPS is either non-deterministic (i.e.,
t(x, a) can return multiple states) or stochastic (i.e., t(x, a) returns a probabilistic
distribution over X). Given a CPS and an action sequence a1a2... ∈ A∗, one can
induce a state sequence x1x2... ∈ X∗, where xn = t(xn−1, an−1). We also call
a state sequence a trace and denote it by π. One can obtain a finite trace by
cutting a trace at any of its states. A finite part of a trace is denoted by πf . A
CPS’s states can be partially observable, so we call O(π) the observable part of
trace π and H(π) the hidden part.

Definition 2 (Controller). Given a CPS C, a controller of C is a partial func-
tion σ : πf → A. If C is Markovian, the controller can be memoryless, that is,
σ : last(πf ) → A, where last(πf ) is the last state of trace πf .

Given a CPS C controlled by a controller σ (denoted by C|σ), one can induce
a set of traces Πσ s.t. ∀π ∈ Πσ, ∃a ∈ σ(πf ). Let G ⊆ X be the goal states that
CPS aims to reach and U ⊆ X be the unsafe states that CPS must avoid, this
paper is about synthesizing C|σ for a nondeterministic and Markovian CPS such
that its Πσ satisfies the following three properties.

– Functional correctness: ∀π ∈ Πσ, ∃x ∈ π s.t. x ∈ G.
– Safety: ∀π ∈ Πσ, ∀x ∈ π s.t. x ∩ U = ∅.
– Security: ∀π ∈ Πσ, ∃π′ ∈ Πσ s.t. H(π) ̸= H(π′) and O(π) = O(π′).

Assuming a CPS is non-deterministic due to the uncertain reaction from
the environment, intuitively, functional correctness means the CPS must always
eventually reach the goal state regardless of the environment’s reaction. Simi-
larly, safety means the system must always avoid unsafe states. We can express
the safety and functional correctness as invariance and reachability properties of
temporal logic [2], respectively. Assuming confidential information is contained
in the hidden part of a CPS’s states, security here means this information must
not be revealed to unauthorized ones, like intruders. Therefore, the definition
of security above means that intruders must not be able to deduce confidential
information from the observable states. Formally, security is also formulated as
hyperproperties [8] as it involves multiple traces. We elaborate CPS and the
three types of requirements in the following example.

2.2 Illustrative Example

In this section, we illustrate the problem in an example abstracted from an
industrial use case, where robots are employed in a factory for goods delivery
(Fig. 2). For simplicity, we discretize the environment as a 7 × 4 grid, in which
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robot R1 (resp., R2) must finish tasks T1 and T2 (resp., J1 and J2) at the right
cells, and then they meet at an M cell as the destination of the mission. The
robots can go through the cells without performing the tasks. The grey (resp.,
blue) cells are obstacles (resp., wet floors), where the robots must not enter
(resp., may slip). When robots slip on a wet floor, they may end in the wrong
position, i.e., one cell below the target. The robots’ trajectories are planned at
the edge-computing server (ECS) whereas the high-level tasks are scheduled at
the cloud-computing server (CCS). An intruder is trying to attack the ECS and
change the task order but he cannot access the CCS.

Fig. 2. An example of CPS: two robots collaborating in a confined environment.

When modelling this example, we employ a Markov Decision Process (MDP)
for a 2-player game [12], where actions of the CPS and the environment are
assigned to different transitions of the model (see Fig. 2(b)), that is, controllable
ones (blue arrows) and uncontrollable ones (dotted violet arrows). At each state,
a robot gets to choose a controllable action, e.g., moving up/down, after which
the environment’s actions take place, which decides the robot’s ending positions.
A correct and safe controller must guarantee the robot reaches the specific cells
for task execution and never enters the unsafe cells despite the environment’s
actions. For security, we mean confidential information, e.g., task order, must
not be revealed to the intruder. Although the intruder does not have access to
the CCS, he can deduce the task order by using the robots’ trajectories. For
instance, trace1 is insecure because the only chance for R1 to execute T1 is at
cell (2,1), and it is before the T2 cells being visited (e.g., (2,2)). In contrast,
trace2 is secure as R1 visits the T1 and T2 cells alternatively more than once, so
the intruder cannot deduce R1’s task execution order from its moving trajectory.

trace1: (0,0)->(0,1)->(1,1)->(2,1)->(2,2)->(2,3)->(3,3)

trace2: (0,0)->(0,1)->(1,1)->(2,1)->(2,2)->(2,1)->(2,2)->(2,3)->(3,3)

Functional correctness means the robots must finish all tasks within a time
frame. To synthesize a functional correct, safe and secure controller is not trivial,
especially when considering the uncertain actions of the environment. Next, we
introduce our solution.

3 Solution and Preliminary Evaluation

In this section, we introduce the algorithms of our method Guess and Check and
explain the thoughts behind the algorithms.
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Phase 1: Guess for a Controller. Our goal of the first phase is to guess
a controller that may satisfy the requirements. Generally, we explore the state
space of the model by following two rules: i) exhaustive exploration of control-
lable actions, and ii) selective exploration of uncontrollable actions. Algorithm 1
presents how guessing is conducted. For simplicity, we assume that the state-
space exploration is depth-first. However, using other orders of exploration does
not affect the correctness of the algorithm. As a recursive function, the termi-
nation conditions of Algorithm 1 are defined in lines 3–8. Specifically, when the
state-space exploration reaches a state where the reachability property is satis-
fied (line 3), the trace is added to the controller, which is a global variable used
in all algorithms. Alternatively, when the exploration reaches an unsafe state,
or a loop, or a deadlock where no action is available (line 6), the trace is pruned
from the controller. In both cases, the trace is fed into a learning algorithm
(line 4 and line 7), e.g., Q-learning [18], for calculating a policy that enables
the environment to win the game faster (i.e., the BEST function in line 10),
that is, leading the exploration to an unsafe state. Lines 9–14 implement the
exploration rules i) and ii). After phase 1, we find an optimistic controller that
may be correct as we only explore the environment’s actions partially.
Algorithm 1: Guess for an optimistic controller
1 Set<Pair<State, Action>> σ // controller
2 Function GUESS(State x, Trace π, Set<State> G, Set<State> U)
3 if x ∈ G then
4 LEARN&ADD(σ, π)
5 return

6 if x ∈ U ∨ (∃pair ∈ π ∧ x ∈ pair) ∨ x.actions = ∅ then
7 LEARN&PRUNE(σ, π)
8 return

9 if ∃a ∈ x.actions ∧ a.type = ENVIRONMENT then
10 Action best := BEST(x.actions)
11 GUESS(best.target, π.push(x, best), G, U)

12 if ∀a ∈ x.actions ∧ a.type = SYSTEM then
13 while (Action next := NEXT(x.actions) ̸= LAST(x.actions)) do
14 GUESS(next.target, π.push(x, next), G, U)

15 return

Algorithm 2: Check for the safety requirement
1 Function C4SA(State x, Trace π, Set<State> G, Set<State> U)
2 Boolean pass := false
3 if x ∈ G then
4 return (true)

5 if x ∈ U ∨ (∃pair ∈ π ∧ x ∈ pair) ∨ x.actions = ∅ then
6 LEARN&PRUNE(σ, π)
7 return (false)

8 if ∃a ∈ x.actions ∧ a.type = ENVIRONMENT then
9 pass := true

10 for a ∈ x.actions ∧ a.type = ENVIRONMENT ∧ pass do
11 pass := pass ∧ C4SA(a.target, π.push(x, a), G, U)

12 if ∀a ∈ x.actions ∧ a.type = SYSTEM then
13 if x /∈ σ.getAllStates() then
14 for a ∈ x.actions do
15 GUESS(a.target, π.push(x, a), G, U)

16 for a ∈ x.actions ∧ Pair(x, a) ∈ σ do
17 pass := pass ∨ C4SA(a.target, π.push(x, a), G, U)

18 return (pass)
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Phase 2: Check for Safety. In Algorithm 2, we start to check the opti-
mistic controller for the safety property. Generally, we replace the rules of state-
space exploration with two new rules: i) selectively exploring controllable actions
that are contained in the optimistic controller, and ii) exhaustive exploration of
uncontrollable actions. Similarly to Algorithm 1, lines 3–7 in Algorithm 2 show
the termination conditions of the recursive algorithm, that is, when the check
passes or fails. Lines 8–11 depict the exhaustive exploration of the environment’s
actions until one trace fails to pass the check. If we see a state that only has the
system’s actions to choose but is not contained in the controller (line 13), we go
back to guess a new controller starting from that state (line 15). We use ∨ in line
17 because one of the system’s actions passing the check is enough for the state
to be included in the controller. However, we use ∧ in line 11 because all the
environment’s actions need to pass the check. After phase 2, we have obtained
a safe and functionally correct controller. Next, we check for security.

Phase 3: Check for Security. By following the generated controller, we
explore the state space again to check for the security properties (Algorithm 3).
We formulate the confidential and public information as properties Ps and Pc,
respectively. As lines 3 - 4 show, if a trace π1 satisfies Ps, there must be a trace
π2 that satisfies Pc, and π1 and π2 are similar enough to prevent the intruders
from distinguishing them (i.e., D(π1, π2) ≤ τ), where D is a function for com-
puting the distance of two traces. The function can be replaced by an equation
O(π1) = O(π2) for discrete state spaces, where O returns the observable part of
a trace. The definition of the distance function is not the focus of this paper.
Interested readers are referred to the literature [14].

Algorithm 3: Check for the security requirement
1 Function C4CE(State x, Property Ps, Property Pc)
2 Set<Trace> Πσ := EXPLORE(x, σ)
3 for π1 ∈ Π ∧ π1 |=Ps do
4 if ¬((∃π2 ∈ Πσ ∧ π2 |= Pc) ∧ D(π1,π2) ≤ τ) then
5 LEARN&PRUNE(σ, π1)

6 return

Fig. 3. Platform

Platform and Evaluation. We aim to realize the algo-
rithms in a platform including a GUI for modelling CPS
in various branches of Rebeca, a back-end state-space
explorer, and external libraries for learning. Figure 3 shows
the architecture of our platform, where the GUI supports
modelling the CPS in two languages, which are all based
on Rebeca and extended to support games [12], that is, the
modelling of controllable actions of CPS and uncontrol-
lable actions of the environments. The back-end explorer
includes a simulator that can randomly explore the state
space via Monte-Carlo Simulation, a set of model check-
ers that are suitable for different kinds of models, and a
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synthesizer that calls the simulator and model checkers for controller synthesis.
The learning module is an external library such that the platform is extendable
and adaptive.

Now, we present our experiment for a preliminary evaluation of the platform1

We show how theGuess and Check method reduces the number of states explored
in phase 1 and phase 22. We build several models based on the example in Fig. 2.

Fig. 4. Result

In these models, we set the maximum number of
steps that robots can move and adjust their goals
accordingly. Then we generate the state space of the
models and synthesize a controller for each of the
models using our algorithms. Note that we use ran-
dom simulation instead of learning in phase 1, and we
repeat the experiment 10 times and use a box plot
to show the numbers of explored states in the experi-
ments (Fig. 4). The experimental results show that in
both phases 1 and 2, the number of explored states is
much less than the total number of states. The encour-
aging results demonstrate that our approach has the
potential to solve problems that are too complex to
be solved by the exhaustive-search-based methods and
preserve the guarantee of safety and security that is
impossible for pure reinforcement learning.

4 Discussion and Future Work

Related Work. Due to the page limit, we only compare our method with the
latest studies in this section. The most recent work in learning-based synthesis
[11] introduces a method for winning strategy synthesis in parity games derived
from LTL synthesis. Parker et al. [13,15] propose binary decision diagrams and
synthesis algorithms based on probabilistic model checking. Our primary dis-
tinction from prior methods is that we integrate exhaustive search and learning,
leveraging the unique advantages of each in a synergistic manner.

Future Work. We will finish implementing our platform in an open-source
toolset of Rebeca [9], in which we integrate the features of Rebeca, Timed Rebeca,
and Probabilistic Timed Rebeca to facilitate the synthesis algorithms. As Rebeca
has been applied in many CPS applications, we will experiment with our new
algorithms on these real-world problems. We implement the learning module as
an external library, which enables us to explore various learning models, such as
neural networks (NN), in our synthesis algorithms. In this line of research, we
will try to see how model checking and machine learning can benefit each other in
controller synthesis. As safety-critical CPS are often working alongside humans,

1 Code of the experiment is published: https://github.com/rgu01/RebecaLearning.
2 The number of states in phase 3 depends on the controller size, not on the approach.
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we would like to consider the human factors in the controller synthesis of CPS,
such as investigating best-effort strategies when the environmental constraints
are too restrictive for the CPS to achieve all of their goals. We aim to make our
approach adaptive for multiple objectives aligned with human preferences.
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