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Abstract

Unified Modeling Language (UML) is a de-facto standard modeling language with an
extensive syntax and notations that can be used to model systems of any kind. How-
ever, being a general-purpose language, its semantics are intrinsically under-specified
and broad to leave a room for different interpretations. This, in general, hinders the
ability to perform formal verification of models produced with a specific domain in
mind. In these cases, it is usually more suitable to map the UML models to other do-
mains, where modeling concepts have stricter semantics. Notably, Reactive Objects
Language (Rebeca) is an actor-based language with a formal foundation and formal
verification support. This paper aims to identify a subset of UML modeling concepts
compatible with the domain of reactive and distributed systems as modeled in Rebeca.
In this respect, this work proposes a conceptual mapping between a sub-portion of
UML and Rebeca, with the goal of enabling formal verification early in the design
process. In particular, we investigate Rebeca syntax, and for each Rebeca concept, we
provide the corresponding concept in the UML, as part of an iterative process. This
process ends when all Rebeca concepts are exhausted and comprehensive mapping
procedure emerges. Additionally, validation is an important part of this paper as it
aims to establish confidence in the developed mapping procedure (in post-conversion
validation) and avoid doing the transformation if the design is not compatible with
the mapping procedure (in pre-conversion validation). As part of the pre-conversion
validation, in order to establish the compatibility with the mapping procedure, we
provide an extensive list of correctness attributes. As part of the post-conversion
validation, the mapping procedure is validated by transformation on the provided ex-
amples. The results of this transformation show the wide range applicability of the
mapping procedure and serve as an assertion of its comprehensiveness.
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1 Introduction

The exponential growth of software complexity with a notable focus on safety-critical
applications [2] introduced the demand for a new approach to development. As a
positive reaction to this, the UML was created, that now represents the standard-
ized notation for modeling and documenting software systems [3]. UML initiated
the creation of a new approach to design, called Model-Driven Engineering (MDE)
that focuses on the use of models as the main building blocks of the system [4].
The most anticipated area of MDE is model transformation which, in its subset,
enables a code to be automatically generated from models [4]. Hence, the model
transformation facilitates a transition of the models towards other domains.
Despite its general use and acceptance as a de-facto standard modeling language,
the UML has a serious drawback [5]. This comes from the fact its semantics are
intrinsically under-specified and broad to leave a room for different interpretations.
Hence, multiple and potentially contradictory interpretations of one and the same
model are not excluded, and automatic interpretation must be hard-coded in some
way [6]. This, in general, hinders the ability to perform formal verification of models
produced with a specific domain in mind. This gap in the UML creates a demand,
for formal verification to establish the correctness of the models early in the process.
In these cases, it is usually more suitable to map the UML models to other domains,
where modeling concepts have stricter semantics.
That is where Rebeca comes into the picture. Rebeca is an actor-based language
with a formal foundation. Rebeca is an easy to use JAVA alike language and a
modeling language, with formal semantics and formal verification support [1].
To address the shortcomings of UML, it would be interesting to provide a detailed
conceptual mapping between a sub-portion of UML and Rebeca. In other words, we
want to identify a subset of UML modeling concepts compatible with the domain
of reactive and distributed systems as modeled in Rebeca. This should ultimately
lead to implementation of the model transformation for such mapping.
We also want to have an appropriate validation phase with different reasons:
First, after the creation of the mapping procedure, the necessity for its validation
on applicability scenarios is obvious. This could be performed differently depend-
ing on different factors including research limitations (i.e. time). In an optimistic
scenario, we would like to provide a model transformation tool, in which case the
automated tool would be running the transformation and afterward validation on
different applicability scenarios with the purpose to establish the correctness of the
target models (runnable in Rebeca and reflecting the source UML models). In a
more realistic scenario, the validation could be performed in cooperation with ex-
ternal subjects where they would do the transformation from source UML models to
the target Rebeca models by manual transformation, using the mapping procedure.
Second, by enabling a validation of the source UML models we want to avoid per-
forming the transformation if the design is not compatible with the mapping proce-
dure or in other words is outside the domain. In fact, in that case, the costs of fixing
design defects would be far more relevant than anticipating problems in obtained
Rebeca models.
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1.1 Goal and Problem Statement

The past decades have witnessed significant efforts towards simplifying a process
of developing a system, reducing system complexity and conducting a formal ver-
ification of the developed system. The creation of the UML and its confirmation
as a de-facto standard modeling language answered on the first problem, to some
extent [3]. Moreover, it shows a serious potential to reduce the complexity of the
developed system and therefore provide more easily maintainable software products.
However, UML has a serious shortcoming as it lacks complete formal semantics and
this hinders the ability to perform formal verification of models produced with a
specific domain in mind. On the other side, Rebeca language has formal semantics
and provides support for formal verification that enables more accurate evaluations
to be performed [5]. In this respect, it would be beneficial to establish a conceptual
mapping between a sub-portion of UML and Rebeca with the goal of enabling for-
mal verification early in the design process.
The main objective of this thesis is to investigate the viable ways of mapping UML
models towards Rebeca models. The mapping should be detailed enough while fo-
cusing on the minimalist diagrammatic approach in terms of what is the minimum
UML information (including both the set of diagrams and information contained in
the diagrams) that is needed for target Rebeca concepts. Following the aforemen-
tioned, it is logical and expected that there exists a need for the behavioral diagrams
to obtain meaningful information in Rebeca to be analyzed and verified by a formal
verification tool. Moreover, there could be a need for structural diagrams, in order
to model the structure before introducing behavior, and we consider them as well
for the mapping. The overall objective of the thesis is to conduct an analysis to
identify the minimum UML diagrams that will be used as sources for formal verifi-
cation in Rebeca. Additionally, we want to provide a detailed mapping procedure to
translate identified UML concepts towards fitting Rebeca concepts with considera-
tion of important factors as available resources for conducting the thesis. Hence, we
strive to provide an achievable detailed enough mapping procedure that is in accor-
dance with the scope of this research. The mapping procedure should be detailed
enough to enable the implementation of a model transformation tool. The model
transformation tool shall perform the automatic translation of the UML models to
Rebeca models within the established applicability scope of the mapping procedure.
In the end, the thesis aims to provide a proper validation of the proposed mapping
procedure in order to show the applicability on different scenarios.
The identified problems can be written in the form of research questions as follows:

1. RQ1: What are the minimum UML diagrams required to serve as sources
for target Rebeca concepts in order to obtain something meaningful to be
analyzed through Rebeca?

2. RQ2: What is the adequate mapping procedure between the identified UML
concepts and Rebeca concepts?

3. RQ3: What is the applicability of the proposed mapping procedure and its
proper substantiation?
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1.2 Thesis Outline

In Section 2, we explain what are the main development and life-cycle issues with
evolving software solutions. Directly related to this, we explain various concepts
among which is UML that is attempting to address this issue. However, due to
its shortcomings, it is required to go even further into the subject by introducing
Rebeca language and discussing how we can reap the benefits of a mapping between
Rebeca and UML, for modeling the domain of reactive and distributed systems.
This leads us to the main objectives of this research by conclusively proposing the
mapping procedure and the validation process. In Section 3, we discuss related work
and the contribution that this research is attempting to achieve. In Section 4, we are
reasoning about a research methodology that is used in this thesis, and we propose
our research goals. In Section 5 we are going deeper into the subject by executing
the proposed iterative process until we reach a satisfactory level of comprehensive-
ness of the emerged mapping procedure. Initially, this includes a specification of
all the Rebeca concepts. Then, for each of them, we attempt to provide minimum
information in the UML that is necessary for an adequate mapping to be accom-
plished between the two. Indeed, if any limitations are found we document these in a
separate subsection and we attempt to reason about them and provide a method for
addressing each of them. In section 6, we describe the emerged mapping procedure
on two examples constructed of the UML models and corresponding Rebeca models
that are produced by transformation, based on the proposed mapping procedure.
Initially, before the translation to Rebeca is performed, we provide an extensive list
of correctness attributes as part of the pre-conversion validation, to avoid performing
the transformation and reaching faulty Rebeca models if the design is not compat-
ible with the mapping procedure. After the transformation on pre-validated UML
models is done, we proceed by presenting the results of our research and evaluat-
ing this process regarding applicability. This indeed represents the post-conversion
validation phase, in particular, reasoning about the applicability of the mapping
procedure with the inclusion of the limitation analysis. Finally, in Section 8, we
conclude the work with a brief summary and possible future research directions.

2 Background

The common traditional techniques for software development including in its core
significant programming efforts are failing to meet the newly introduced demands
on the software market [3]. This situation, that caught everyone off guard, was
caused by the uncontrolled expansion of software throughout all domains including
safety-critical domain in which the consequences of failure could be catastrophic.
The software is becoming widespread and complex [2]. This implies it is harder
to build and maintain the software that causes an increase in the time and costs of
these activities. This also leads to lower quality of software and inability to properly
establish its correctness [2].
It is clear that there exists a need for simplifying the development process as well
as reducing the time and cost for development and maintenance of software while
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improving its reliability (continuity of correct service).
As an attempt to give an answer to these questions, different concepts, method-
ologies, and processes have been proposed during the past decade corresponding to
different sides of the problem.
These solutions include methodologies for simplifying development and maintenance
processes, reducing software complexity and providing new verification techniques
such as model checking, theorem proving, etc. as means of formal verification with
the inclusion of their automation.

On one side, we have a UML that is focused on reducing software complexity and
programming efforts. UML represents the standardized notation for modeling and
documenting software systems. UML initiated the creation of a new approach to the
development process, called MDE [4]. We will explore a model transformation that
is one of the most important concepts in MDE, that we want to use for transforming
the UML models towards other domains.
On the other side, the formal verification techniques that were introduced are fo-
cused on proving that a software conforms to a formal specification for its intended
behavior. Model checking is one of the most important formal verification tech-
niques. It exhaustively and automatically checks whether the observed model meets
its given specification. However, it is important to stress that not all languages are
supported by a model checker in which case it is necessary to perform a transfor-
mation to another language that is supported by a model checker.
Also, it depends on what kind of systems are we verifying. Currently, we are ex-
periencing a shift towards parallel systems that enable concurrent execution of the
programs. This change is mainly due to physical limitations of processing units,
that emerged, and caused a shift towards multicore processors (single integrated
circuit consisting of multiple core processing units capable of concurrently execut-
ing different tasks) [7]. As it wasn’t possible to keep up with making single core
processors any faster, multicore processors were introduced in hope that they will
result in increased processing speed.
However, these processors require software solutions to be accommodated for paral-
lel execution. In other words, if we want to take advantage of the hardware we have
available, we need a way to run our code concurrently.
One of the first approaches for parallel execution was established with the use of
Threads [8]. However, Threads proved to be extremely complex and volatile that
made them impossible to control, with additional danger of deadlock occurrences (a
condition in which each member of a group is waiting for another member, including
itself, to perform an action, i.e. sending a message or more commonly releasing a
lock) [8].
A counter-approach [8] that solves the shortcomings of Threads is actor-based mod-
eling.
The actor model is a conceptual model to deal with concurrent computation. It
defines some general rules for how the system’s components should behave and in-
teract with each other [9]. We will discuss in detail about actor-based modeling and
its constructing elements in Section 2.3.1.
As aforementioned, Rebeca is the actor-based language with a formal foundation,
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that is created in an effort to bridge the gap between formal verification approaches
and real applications [1].
Regarding the objectives of this thesis and how it relates to all this, by identifying a
subset of UML compatible with the domain of reactive and distributed systems as
modeled in Rebeca, we strive to enable formal verification early in the design process.

In the following sections, we will provide a detailed definition of UML and Rebeca
and all concepts related to them that will be covered in this thesis.

2.1 Unified Modeling Language (UML)

UML represents a standardized notation for modeling and documenting software sys-
tems. UML is under constant evolution by the Object Management Group (OMG)
group [3]. Moreover, UML has become a general-purpose language, that means
any system can be modeled by using its concepts. The use of UML ultimately
leads towards reduction of the complexity of both the development process and the
developed system. Besides, having one standard language for modeling has many
advantages to software development, such as simplified training and unified commu-
nication between development teams [5].
Furthermore, UML initiated the creation of a new approach to the development
process, called MDE [4]. MDE is a software engineering branch that advocates the
use of models as the main building blocks of the system. Models represent high-level
abstractions of the observed real phenomena which focuses on the main segments
while hiding the unnecessary information from the modeler of the system. This con-
tributes to the reduction of the complexity of both the development process and the
developed system. UML diagrams are used for a visual representation of the system
based on different aspects and views, in order to provide a better understanding,
maintenance, alterations, and documentation of the system.
The most anticipated area of MDE is model transformation [4] which, in its sub-
set, includes automatic code generation from input models and aim to reduce the
programming efforts and therefore human-error that is part of the programming
process.
Despite its general use and acceptance as a de-facto standard modeling language, the
UML has some serious drawbacks [5]. It is complex and tools can support only a part
of its entire capability. Moreover, the expectation that training will become easier
with UML being a standard, unified language, did not produce expected results and
was characterized as over-promised. Also, UML still lacks complete formal semantics
even though many achievements have been made through extensive research towards
a common goal to define semi-formal semantics (with Object Constraint Language
(OCL)) as well as attempts towards formalizing UML semantics [5, 10–13].
This has a negative effect on the UML and the many expectations related to it.
These effects and risks associated with the use of UML are amplified if we take
into consideration safety-critical domain in which a failure could have catastrophic
consequences and therefore these systems cannot be left unverified under any cir-
cumstances. Furthermore, in such cases where the criticality of the systems is ac-
centuated, it is required to model systems in formal languages to be able to use
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formal verification techniques, early in the development process.
One of the advantages of UML that helps us deal with these drawbacks is the possi-
bility for UML customization that is established by definition of UML profiles [14,15].
A profile is a subset of UML syntax with the inclusion of a set of well-defined rules.
The provision of these rules add standard (known) UML elements to the subset
and define some additional semantics in a natural language that ultimately leads to
the creation of a hybrid UML language accommodated with the semantics of the
target language [5,14,15]. However, UML profiles are significantly limiting the true
potential of UML by creating a domain-specific UML language that is a hybrid be-
tween the source UML and other domain-specific languages used as a target. This
approach restricts the use of the new hybrid UML to only that domain (language).
With respect to this paper, we strive to keep the UML in its native form without
introducing a UML profile in order to avoid producing a restricted hybrid UML
language. Naturally, we need to set some rules that will be used as correctness at-
tributes for validating source UML models before conversion to Rebeca takes place
and establishing that the models are indeed in the Rebeca domain. These correct-
ness attributes essentially gives us an early answer about the compatibility of source
UML models with the mapping procedure.

2.2 UML Diagrams

UML is based on diagrammatic reasoning. It can be described with the proverb:
a picture is worth a thousand words. Models represent high-level abstractions of
the observed real phenomena which focuses on the main segments while hiding the
unnecessary information from the modeler of the system. UML diagrams are used
for a visual representation of the system based on different aspects and views that
define the information that is modeled within them [15,16].
By using visual representations, we are able to better understand possible flaws in
the software early in the process and provide easier development, modification and
documentation processes. UML diagrams can be defined as blueprints of software,
where each type of diagram is used for modeling a certain aspect of the software
whether it is its structure or behavior.
UML is not a stand-alone programming language like Java, C#, etc.. However,
with the use of certain automation tools for model transformations, it can be used
as a pseudo-programming language [16]. In such case, the whole system needs to be
modeled with the use of various UML diagrams and can be directly translated to
code with the use of specialized tools for automating model transformation between
UML and the desired programming language.
The broadest two categories of UML diagrams which encompass all other categories
are:

1. Structural Diagrams (Section 2.2.1)

2. Behavioral Diagrams (Section 2.2.2)

12



Mälardalen University Master Thesis

2.2.1 Structural Diagrams

Structural UML diagrams analyze and depict the structure of the software or process.
We provide the list of available structural diagrams:

1. Class Diagram

2. Object Diagram

3. Component Diagram

4. Composite Structure Diagram

5. Deployment Diagram

6. Package Diagram

7. Profile Diagram

We will only elaborate on those diagrams that are of interest for this thesis.
These diagrams are the ones that are most commonly used to represent the struc-
ture of the software and provide input information for model transformation. These
diagrams include Class Diagram and Object Diagram.

Class Diagram is the most common structural diagram for designing or doc-
umenting software. Considering the current trend and common use of Object-
Oriented Programming (OOP) paradigm that covers this thesis as well, using this
type of UML structural diagram is completely reasonable solution [16]. It is accom-
modated with the main building blocks used in OOP such as Classes that consist
of Attributes also known as data fields, and functions also known as behaviors.

13
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Figure 2.1: Class diagram example

As can be seen in Figure 2.1, a basic example of the class diagram is provided.
We notice that both classes: Checkings Account and Saving Account are generaliza-
tions (represented by a blank headed arrow) of the class Account, that means they
are the children, in the inheritance tree, of the class Account. This represents the
same type of inheritance as in any OOP language. Besides, the diagram is quite
self-explanatory and it clearly states the consisting classes and how they are inter-
related between each other.

Object Diagram is another type of structural diagram that we are going to
consider in this thesis. In order to define this type, we need to look at OOP paradigm
once again. We know that classes are used as blueprints upon which objects are built
by use of instantiation mechanism. A class can have objects instantiated from other
classes within. To represent any kind of instantiation of a class and keep track of all
objects we use object diagrams [16]. A clear example can be seen in Figure 2.2 that
represents the instantiated objects from the provided class diagram in Figure 2.1.

14
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Figure 2.2: Object diagram example

2.2.2 Behavioral Diagrams

Behavioral UML diagrams analyze and depict functional behavior of the software,
process and its building components [15]. We provide the available list of behavioral
diagrams:

1. Activity Diagram

2. Use Case Diagram

3. Interaction Overview Diagram

4. Timing Diagram

5. State Machine Diagram

6. Communication Diagram

7. Sequence Diagram

We will only elaborate on those diagrams that are of interest for this thesis.
These diagrams are the ones that are most commonly used to represent the be-
havior of the software and its components and provide input information necessary
for model transformation. These diagrams include a Sequence diagram and State
Machine Diagram.

Sequence diagram is the most commonly used diagram for defining software
behavior. This includes describing the behavior of several objects within a single
use case that is its primary use. Also, based on its name, we can describe it as a
sequence of messages that are exchanged between the objects [16]. These interactions
are represented in a chronological manner as can be seen in Figure 2.3, that establish
behavioral layer for the provided class diagram in Figure 2.1.
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Figure 2.3: Sequence diagram example

Each object or actor has a lifeline that goes towards the bottom and each lifeline
has activation bars used to represent when the object is in the active state (per-
forming some action etc.).

State-machine diagram also known as a statechart is a behavioral type of UML
diagram used to represent how a single object behaves within multiple use cases.
This basically refers to all the states that an object can have within a system or
how different internal and external events contribute to the state change. These
diagrams are used for reverse and forward system engineering [16]. An example of
the state machine diagram is given in Figure 2.4.
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Figure 2.4: State-machine diagram example

2.3 Reactive Objects Language (Rebeca)

Rebeca is an actor-based language with a formal foundation and is created with
reason to overcome an existing gap between formal verification approaches and real-
world applications. Rebeca is an easy to use JAVA alike language and a modeling
language, with formal semantics for models (encompassing their states, state transi-
tions, communications and provision of accessible interfaces), and formal verification
support [1].
Rebeca combines certain concepts from actor-based modeling with certain concepts
from object-based modeling. This indeed implies that Rebeca is used for develop-
ing object-based distributed systems that can be formally verified by using a model
checking tool. Notably, Rebeca uses abstraction techniques to reduce the state space
of the model in order to make it more appropriate for model checking.
Model checking in Rebeca can be done directly with the use of Rebeca Model Checker
(RMC) which is a tool for direct model checking of Rebeca models [17]. Besides,
when it is of interest Rebeca can be translated to other model-checker languages
among which Promela is the most popular for its model-checker SPIN that is ar-
guably one of the world’s most powerful tools for detecting software defects in dis-
tributed systems.
In Rebeca [1], computations are established by passing asynchronous messages be-
tween Reactive Objects (rebecs) and execution of the corresponding message servers
of passed messages. Each message is placed in the queue of the receiving rebec (re-
sponsible for handling upcoming messages) and it specifies the method to be called
when the message is finally serviced.
More about Rebeca, its semantics and its relation to the Actor-based modeling is
provided in the following two sections.
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2.3.1 Rebeca - Actor-based Modeling

When we elaborate on Rebeca we find it important to make a comparison with
actor-based.
Rebeca model is to some extent similar to the pure actor model based on two of its
main concepts:

1. Asynchronous message passing

2. Use of independent active objects

These independent active objects are reactive and self-contained [5]. They are
called rebecs that stands for reactive objects. In Rebeca, computations are es-
tablished by passing asynchronous messages between rebecs and execution of the
corresponding message servers of passed messages. Each message is placed in the
queue of the receiving rebec (responsible for handling upcoming messages) and it
specifies the method to be called when the message is finally serviced [1].
The queue of each rebec is a buffer used for storing messages in an order in which
they will be executed so that the first message that arrives is served first that is
based on the First Come First Served (FCFS) scheduling approach. The queue
length represents a maximum number of messages that can be stored in a queue
and it is defined in the reactive class definition (that is indicated next to the reac-
tive class name surrounded by parenthesis).
As aforementioned, we use FCFS scheduling of the messages inside the queue. No-
tably, when the message at the top of the queue of the reactive object is serviced
then the defined method, in the message, is called, which triggers the removal of the
message from the queue [1, 17].

2.3.2 Rebeca Syntax and Semantics

As can been seen in Figure 2.5, a list with Rebeca syntax is presented. We are going
to discuss briefly the most important concepts among them.
As we already mentioned in the previous sections, each reactive object (rebec) is
instantiated from the corresponding reactive class (reactiveclass), and it has a single
thread of execution [5, 17]. In Rebeca, we have a set of reactive classes and a main
part. In the main, rebecs are instantiated from the reactive classes. Furthermore,
each of the reactive classes contains known objects (knownrebecs), message servers
(msgsrv) and state variables (statevars) [1]. Known objects (knownrebecs) are actu-
ally the rebecs whose message servers can be called by instances of this rebec which
basically means that each rebec can send messages (invoke message servers) of the
rebecs specified in its parameter list (established when declaring a rebec) [1]. State
variables (statevars) are variables which are holding the state of the rebec to which
they belong. They can be accessed by the message servers in the same reactive class
but not outside of it. The message servers (msgsrv) are methods responsible for
handling the incoming messages. Beside message servers, we also have another type
of methods that can be defined and those are known as local methods. As they are
local, they can only be called by message servers and other methods within the same
rebec. Both message servers and local methods can have input parameters of type

18



Mälardalen University Master Thesis

ExtType that includes regular Type. This rebec (or the instantiation of this reactive
class) can be accessed (only within) by using a keyword self [1]. This is used by local
methods to send messages to the rebec that contains the method. There is another
type of variables aside from the variables that are part of the state space (statevars)
and these are known as local variables. The use of local variables is self-explanatory
as it is expected that we need to isolate certain variables or use them temporarily
without a global effect on the class level. Similarly, in JAVA we have both global
and local variables that can be comparably mapped with the state space variables
and local variables in Rebeca, respectively. A constructor has to be included in Re-
beca, in at least one of the reactive classes, as it serves its purpose being the initial
message server (containing initial message call), that sets things going. Constructor
is used in the initial state as a first message in the queue to be serviced that basi-
cally means that constructor will always be executed first. Additionally, it is used
to initialize state variables, similarly as in JAVA. A simple example for defining a
Rebeca model is provided in Listing 1.

r e a c t i v e c l a s s Producer (2 ) {
knownrebecs { Consumer knownconsumer ; }
s t a t e v a r s { boolean productsent ; }
Producer ( ) {

productsent = f a l s e ;
s e l f . produce ( ) ;

}
msgsrv produce ( ) {

knownconsumer . consume ( ) ;
productsent = true ;

}
}
r e a c t i v e c l a s s Consumer (2 ) {

knownrebecs { Producer knownproducer ; }
s t a t e v a r s { boolean product r ece ived ; }
Consumer ( ) {

product r ece ived = f a l s e ;
s e l f . consume ( ) ;

}
msgsrv consume ( ) {

knownproducer . produce ( ) ;
p roduct r ece ived = true ;

}
}
main {

Producer producer1 ( consumer1 ) : ( ) ;
Consumer consumer1 ( producer1 ) : ( ) ;

}

Listing 1: Model definition in Rebeca [1]
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Figure 2.5: Rebeca syntax [1]
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3 Related Work

Many research papers have been done on the subject of UML formal semantics and
formal verification with hope to define formal interpretations that in some cases go
even beyond it. Different approaches have been proposed with similar goals and we
will briefly mention the two most common approaches in this field. First is direct
UML formalization, and the second is transformation of UML concepts to formal
languages where they can be verified by using formal verification tools.

In the first approach mathematical theories are used for formalization of UML.
In [18], authors propose a flexible and modular formalization approach based on
temporal logic to deal with the lack of well-defined semantics, open to different in-
terpretations. It also identifies some of the pitfalls, in many works done, due to the
predefined, fixed semantics with limited interoperability, and proposes a modular,
flexible semantics able to cope with existing interpretations and highlight the new
ones [18]. In [10], authors describe the formalization of the UML meta-model in
Slang (that is a formal methods language) while stating that these concepts, they
researched in the paper, can be ascribed to any algebraic theory based formal lan-
guage. They aim to formalize the whole checking procedure with a goal to present
a process in which a UML translation can be formally verified. In [19], authors
specify axiomatic semantics for UML (representing classes, associations, instances
and general sub-models of UML) that are given in terms of structured theories in
a simple temporal logic. These introduced semantics are appropriate for modu-
lar reasoning about UML models and they are based on the set-theoretic Z-notation
model adopted by Syntropy (that is an object-oriented analysis and design method).

In the second approach, the formal semantics are provided to UML through
conceptual mapping followed by a transformation of UML concepts to established
formal languages where they can be verified by using formal verification tools. Our
thesis can be classified as an effort oriented towards this approach where we aim
to bridge the gap between UML and formal verification by providing a mapping
procedure of the UML concepts towards Rebeca (that is an actor-based formal lan-
guage). Related works for this approach include the mapping between UML models
and Object-Z specifications (that is an object-oriented extension of Z-notation and
represents a formal specification language for modeling computing systems) [20].
This paper also provides a formal semantic mapping between the two languages
at the meta-level, that is responsible for making this transition more systematic.
Besides, we have another related research paper regarding a formal method based
around Abstract Machine Notation (AMN) or more precisely the transformation of
state-machine diagrams towards the AMN of the B method [21]. Notably, B method
is a software development methodology grounded on B which is a formal method
(tool-supported) and is based on the AMN.

The use of UML profiles to facilitate transition to other domains is one of the
most common approaches used for mapping UML to other languages. In the past
decade, there have been many UML profiles proposed to OMG [22], and some of
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them even became standards. In case of Rebeca and UML, the two research pa-
pers [3,5] are also proposing the use of UML profiles for enforcing transition of UML
towards Rebeca. However, as we could see from their examples and many other ex-
amples that are available, UML profiles are significantly limiting the true potential
of UML by creating a domain-specific UML language that is in a way a hybrid be-
tween the source UML and other domain-specific languages used as a target. This
approach restricts the use of the new hybrid UML to only that domain (language).

Moreover, in the field of modeling reactive systems a lot of work have been done.
Related papers cover the modeling of reactive systems by using UML and the trans-
formation (generating code) from UML to target languages. For modeling of reactive
systems, most research papers propose the use of the state-machine diagrams [14,21].
In [14], a UML profile is proposed for building concurrent reactive systems (that is
grounded on state-machine diagrams). In [21], graphical design of reactive systems is
introduced which is based on the transformation of state-machine diagrams towards
the AMN of the B method. However, as we already mentioned there are two research
papers directly related to the transformation of UML to Rebeca that are in fact not
proposing the use of state-machine diagrams but a combination of structural and
behavioral diagrams where sequence diagrams are used instead [3, 5]. These papers
clearly justify such decision by stating that Rebeca and its underlying execution
mechanisms (based on the actor-based modeling paradigm) are unique and require
a different behavioral type of diagram. Notably, state-machine diagrams should only
be used to portray the external and temporal events as well as the reaction of an
object to them, as stated by different authors. This, however, does not apply in
the case of Rebeca where dequeuing a message server and its execution cannot be
considered as an external event [3, 5].

In this paper, we want to keep the UML in its native form without introducing a
UML profile. In addition to that, we need to set some rules that will be used as cor-
rectness attributes for validating source UML models before conversion to Rebeca
takes place and establish compatibility with the mapping procedure or essentially
that we are in Rebeca domain. The combination of these rules implies a design pat-
tern for modeling of the considered UML diagrams. Furthermore, we consider both
structural and behavioral diagrams as UML models, particularly Class diagram and
Object diagram as structural diagrams and Sequence diagram and State-machine
diagram as behavioral diagrams. However, as we strive to get the maximum from
the provided UML information and reduce the number of diagrams in the process,
we primarily focus on three of the mentioned diagrams (Class diagram, Object di-
agram and one of the behavioral diagrams). Notably, the main differences between
this paper and other two papers that also propose mapping between UML and Re-
beca [3,5] is in the extensiveness and detailness of the mapping procedure as well as
the lack of UML profile. In this respect, the two related papers only provide brief
semantical mappings for structural concepts and include partial behavioral concepts
without specifying the mappings for them, this work includes detailed conceptual
mappings on the syntax level for complete structural and behavioral concepts of
Rebeca.
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4 Research Process

Evaluating the viable ways towards mapping of UML to Rebeca including identi-
fication of the required UML diagrams and their consisting information (for such
mapping to be achievable) and providing a detailed enough mapping procedure with
applicability scenarios to support the given procedure, requires a detailed research
design taking into account all these activities that have to be accomplished. Consid-
ering this, we defined a clear process that corresponds to the given activities (Figure
4.1). Problem space phase of the research process cycle fully corresponds to the pro-
posed research questions that are indeed the main sources of interest and motivation
in this thesis. Solution space and assessment parts of the aforementioned process
are high-level abstractions and are refined further as a separate process (Figure 4.2),
in order to provide a more detailed description of the overall research process. This
newly introduced process starts with a bottom-up approach where we first identify
Rebeca concepts. Due to the extensiveness of Rebeca and its syntax we consider only
Core Rebeca, although we briefly discuss how can Timed Rebeca and Probabilistic
Timed Rebeca be modeled in the UML, as part of the potential improvements sec-
tion. The next step in the process (Figure 4.2) is for each identified Rebeca concept
to identify the minimum information needed to provide in the UML, for the map-
ping to be viable. This process is iterative, and it is repeated until all the identified
Rebeca concepts have the matching pair in the UML. When this condition passes,
as a result, the detailed mapping procedure emerges that will be validated in the
final step of the process. The validation phase itself will be an important step in the
whole story. It is divided into pre-conversion validation and post-conversion valida-
tion, where the latter entirely depends on the success of the former. In other words,
the transformation shall not be done until all the correctness attributes from the
pre-conversion validation are satisfied. Hence, the validation phase can be described
as another important and structured bottom-up process consisting of pre-conversion
validation of source models and post-conversion validation of target models (Figure
4.3).
We can define the research to be performed as a descriptive study that is charac-
terized by a structured approach where at each stage, we go deeper into the core of
the problem from which the descriptive solution emerges. The comprehensive de-
scription of the emerged mapping procedure is the main descriptive object, during
the research.
Along with it, the identification of adequate validation techniques is the second de-
scriptive object.

23



Mälardalen University Master Thesis

Figure 4.1: Research process cycle

Figure 4.2: Mapping procedure - iterative creation process
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Figure 4.3: Validation process

Our main research goal is to propose a subset of UML modeling concepts that
can be used for modeling the domain of reactive and distributed systems as mod-
eled in Rebeca. Besides, this would enable transformation of UML models to Rebeca
models and use of its formal verification tool. This mapping procedure is to be used
after the design of a software solution is done, using a subset of UML diagrams.
Among the many benefits, we mainly strive to cut the production and maintenance
time as well as the cost of software solutions through formal verification early in
the design process. Moreover, after establishing the correctness of Rebeca models,
we can go even further and use model transformation to obtain executable JAVA
code from Rebeca models. The overall objective of this thesis is to design the afore-
mentioned mapping procedure and provide validation of the source UML models in
pre-conversion validation and target Rebeca models in post-conversion validation.
The research started with the formulation of research goals which are then investi-
gated in the paper, followed by a literature review of papers and articles that focus
on UML and model transformations on one side and Rebeca with the inclusion of
the mapping between UML and Rebeca on the other side. The next step was a
requirements analysis that lead to identification of the requirements based on which
we built the conceptual mapping procedure. After the thorough investigation of
Rebeca syntax [1,17], we proceeded by extraction of the complete Core Rebeca con-
cepts. Afterward, the iterative process for the identification of corresponding subset
of UML concepts and potential limitations, with respect to them, was conducted. It
is worth mentioning that we used Papyrus modeling environment (in Eclipse) and
UML specification for identification and modeling of UML concepts. The overview
of the obtained results (comprehensive mapping procedure) is presented in the form
of three tables, followed by validation phases including both pre-conversion valida-
tion and post-conversion validation. Conclusively, we discussed the limitations of
this thesis and proposed directions upon which future research can be established.
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5 A Mapping Procedure for Transformation of

UML Models to Rebeca Models

5.1 Requirements Analysis

As aforementioned, one of the goals is to identify the Rebeca concepts that will
be covered in this thesis which requires source models, to encapsulate the required
information within them. These source models are represented by the identifica-
tion of the corresponding subset of UML concepts. The requirement for selection
of appropriate types of UML diagrams is essential while focusing on reducing their
number and at the same time preserving the meaningful information within them
that is necessary for mapping to be viable. Hence, we just consider a Class diagram
and Object diagram as structural types of diagrams and State-machine diagram and
Sequence diagram as behavioral types of diagrams.
The identification and the mapping of target Rebeca and source UML concepts
results in the creation of the complete mapping procedure between the observed
languages, in an optimistic scenario. However, in a more realistic scenario, when
resources (as time) are considered, a line needs to be drawn and a reasonable merit
of a detailed enough achievable mapping procedure has to be established. Hence, we
consider only Core Rebeca by excluding Timed Rebeca, although we briefly discuss
how can Timed Rebeca and Probabilistic Timed Rebeca be modeled in the UML,
as part of the potential improvements section. Moreover, we are possibly going to
identify certain Rebeca concepts for which there is no matching pair in the source
UML or the critical merits as time, cost and complexity of introducing additional
types of UML diagrams do not reflect the desired, expected results and objectives.
In such situations, we document these cases as limitations of the emerged mapping
procedure and we propose a possible solution for them, that is in the scope of the
mapping procedure, when applicable. Some of these solutions are deemed as unrea-
sonable for the scope of this thesis based on the available resources and objectives.
The other requirements of this thesis concern the identification of correctness at-
tributes that will be used as a merit of the correctness/compatibility of source UML
models in the pre-conversion validation. Here, we need to consider syntactic correct-
ness regarding Rebeca concepts and what is possible or not possible to accomplish in
Rebeca. Also, closely related merit of correctness is design correctness with respect
to the design pattern used to convey the information within diagrams. Neverthe-
less, we include this category as part of the syntactic correctness, as it also deals
with boundaries of Rebeca language and therefore can be attributed to its syntax.
Notably, boundaries in Rebeca implies boundaries in the mapping procedure, hence
necessity to equalize the source UML models and establish compatibility with the
mapping procedure which inherently erases interpretations and enables to focus on
the domain. As a result of the identification of such correctness attributes, we strive
to provide definite correctness rules that convey the design pattern for modeling of
the considered subset of UML diagrams.
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5.2 Identification of Rebeca Concepts

Rebeca syntax and semantics are not explained as part of this section as they are
already discussed in Section 2.3.2. This section strictly identifies the Rebeca con-
cepts for which we will provide the mapping. These concepts are extracted from the
domain [1, 17]. Hence, this section is organized as a single part that describes the
identification of the sub-portion of Rebeca concepts for which we attempt to provide
mapping with corresponding UML concepts.

5.2.1 Extraction and Analysis of Rebeca Concepts

After the analysis is performed, following Rebeca concepts have been identified:

1. Definition of reactive class

(a) Generic: reactiveclass ClassName(queue size) {class body}
(b) Example: reactiveclass Producer(2) {...}
(c) Rule: Class name should start with a capital letter.

2. Definition of known rebecs or known reactive objects

(a) Generic: knownrebecs {specification of known rebecs}
(b) Example: knownrebecs { Consumer knownconsumer; }
(c) Rule: Each known rebec is defined by a class name followed by the name

of the object that is instantiated.

3. Definition of state variables

(a) Generic: statevars {specification of state variables}
(b) Example: statevars { boolean productsent; }
(c) Rule: Each state variable is defined by a type (Type excluding ExtType)

followed by the name of the variable.

4. Definition of constructor

(a) Generic (without arguments): ClassName() {constructor body}
(b) Generic (with arguments): ClassName(ExtType argument,...) {constructor

body}
(c) Example (without arguments): Producer() { productsent = false; self.produce();
}

(d) Example (with arguments): Producer(boolean prodsent) { productsent =
prodsent; self.produce(); }

(e) Rule: Constructor is not preceded by any keyword other than the name
of the class and it is used for initializing state variables and calling appro-
priate message servers. Notably, it is the first message that is executed
by each rebec.
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5. Definition of message servers

(a) Generic (without arguments): msgsrv MessageServerName() {message
server body}

(b) Generic (with arguments): msgsrv MessageServerName(ExtType argu-
ment,...) {message server body}

(c) Example (without arguments): msgsrv produce() {...}
(d) Example (with arguments): msgsrv produce(int numberOfUnits) {...}
(e) Rule: Message servers accept ExtType for its arguments and, in compare

with local methods, message servers can be accessed from other reactive
classes as well.

6. Definition of local methods

(a) Generic (without arguments): MethodName() {local method body}
(b) Generic (with arguments): MethodName(ExtType argument,...) {local

method body}
(c) Example (without arguments): produce() {...}
(d) Example (with arguments): produce(int numberOfUnits) {...}
(e) Rule: Local methods accept ExtType for its arguments and in compare

with message servers, local methods can not be accessed from other re-
active classes. Local methods can be void and return methods.

7. Definition of main

(a) Generic: main {main body}
(b) Example: main { Producer producer1(consumer1):(); Consumer con-

sumer1(producer1):(); }
(c) Rule: After the reactive classes are defined, we use main for instantiating

reactive classes and passing required arguments and known rebecs which
enables the execution.

Moreover, with respect to the building blocks of the message servers, local meth-
ods and constructors, or more specifically their behavior and usage, we also identified
certain semantics, as follows:

1. Conditional statements (if/else)

(a) Generic: if(condition) {logic if condition is TRUE} else {logic if condition
is false}

(b) Example: if(signal2 == false) {...} else {...}
(c) Rule: Conditional statement if can be defined alone without definition

of else depending on the outcome that we are trying to achieve. In other
words, else is optional. We can nest conditional statements and have a
condition inside a condition.
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2. Conditional logical operators

(a) Generic: logical AND - condition && condition, logical OR - condition ||
condition, negation - !condition

(b) Example: logical AND - signal1 == true && signal2 == false, logical
OR - signal1 == true || signal2 == false, negation - !signal1

(c) Rule: Conditional logical operators are used for connecting multiple con-
ditions inside a single clause with the use of logical AND (&&) and logical
OR (||) and to negate the value of a certain condition with the use of
negation (! ).

3. Conditional comparisons

(a) Generic: equality comparison - variable == value, inequality comparison
- variable != value. Other types: variable < value, variable > value,
similarly: <= (less than or equal to) and >= (greater than or equal to)

(b) Example: signal1 == true, signal2 != true etc.

(c) Rule: Comparative operators are self-explanatory and do not require
additional description.

4. Assignment

(a) Generic: variable = value;

(b) Example: signal1 = true;

(c) Rule: Beside this, we can also use following assignment operations +=,
-=, *=, /=, %=.

5. Call of message servers (and local methods)

(a) Generic (message server defined in same rebec):
self.messageServerName();

(b) Generic (message server from known rebec):
knownRebec.messageServerName();

(c) Generic (message server with arguments in same rebec):
self.messageServerName(argument,...)

(d) Generic (message server with arguments from known rebec):
knownRebec.messageServerName(argument,...)

(e) Example (message server defined in same rebec): self.Passed();

(f) Example (message server from known rebec):
knownconsumer.consume();

(g) Rule: Local methods are not presented. However, the same procedure
applies for local methods except that local methods can only be called
within the same rebec. This means that only the first case of message
server invocation (within same rebec) applies to local methods.
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Besides all the semantics that we identified from the provided examples, we will
consider some additional Rebeca semantics that are important to provide a mapping
for. As follows:

1. Loops (for and while)

(a) Generic (for loop): for(i = 0; i < N; i = i + 1) {loop body} OR for(i =
N; i > M; i = i - 1) {loop body}, where N and M are natural numbers
and i is iteration variable name

(b) Generic (while loop): while(condition) {loop body}
(c) Example (for loop): for(i = 0; i < 5; i = i + 1) {...}
(d) Example (while loop): while(i < 5) {...}
(e) Rule: Loop condition can be defined slightly different but the core struc-

ture remains the same.

2. Arrays (definition and usage)

(a) Generic (definition): Type [size] variable;

(b) Generic (usage): variable[N] to get the value at the specified array po-
sition OR variable[N] = value; to assign the value to the array position.
Notably, N is natural number within the scope of array size (N >= 0, N
< variable.length).

(c) Example (definition): int [4] numberArray;

(d) Example (usage): numberArray[0] to get the value OR numberArray[0]
= 5; to set the value.

(e) Rule: The arrays can only be of type Type excluding ExtType.

3. Non-deterministic expressions

(a) Generic: variable = ?(value1, value2,.. valueN);

(b) Example: signal1 = ?(true, false);

(c) Rule: Value that is passed in the non-deterministic clause can be an
expression and it is deemed as valid if it’s value is determined at the
compile time.

5.3 Identification of Corresponding UML Concepts - Itera-
tive Mapping

When all the considered Rebeca concepts have been identified and documented we
can proceed by providing a corresponding UML concepts that can be used as map-
ping pairs in the process of creation of the mapping procedure. This process is
iterative as we iterate both through UML and identified Rebeca concepts and per-
form detection of mapping pairs. After the deep analysis of the documented Rebeca
concepts is completed, we considered the subset of modeling concepts of the Class
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Diagram, Object Diagram and Sequence Diagram, by excluding a State-machine di-
agram. This was done with reasons to avoid adding an unnecessary additional layer
of complexity that would not significantly benefit the already provided mapping
procedure and semantic richness of the other three included diagrams. Moreover,
we opt to provide a behavioral richness that is significant and sufficient by the use
of only sequence diagram that will be enriched with minor additional concepts, to
compensate for the elimination of the State-machine diagram.

We divide this section based on the type of UML diagrams that are used as
sources for mapping with identified Rebeca concepts. Hence, we have a separation
of structural and behavioral UML concepts and for each of them, a specification of
corresponding Rebeca concepts is identified and documented.

5.3.1 Structural UML Concepts

UML structural diagrams are very important for a provision of a skeleton of the
modeled system and establishing a connection with Rebeca’s structural blocks. Only
two structural diagrams are considered in this thesis and these are class diagram
and object diagram. This was done as an attempt towards a minimalist approach
for the provision of a detailed mapping procedure as these two types of diagrams
provide the exact structural information that is necessary for mapping to be viable
and complete. A class diagram is a natural choice of a structural diagram when
object-oriented languages are considered which in this case is true as Rebeca uses
JAVA like syntax and therefore certain concepts from Object Modeling. Moreover,
as Rebeca has a main block in which it instantiates the objects and passes the
required known rebecs for all instantiated objects as well as constructor arguments
when applicable, we need another type of UML diagram that can serve as a source
of information for this cause. Object diagram suits perfectly for this purpose as it
lets us to define relations between instantiated objects as well as define the values of
constructor arguments when applicable. On the other side, the class diagram could
not be used for this purpose as it focuses strictly on modeling the class level layer.

Class Diagram Class diagram and its semantics include the following elements
that can be used for mapping with Rebeca concepts in the following manner:

1. Class

(a) Mapped with: Rebeca’s definition of reactive class

(b) Definition of mapping: ClassName
mapped−−−−→ reactiveclass ClassName (??queue

size??) {class body}
(c) Comment/Limitation: The queue size is not an explicitly available op-

tion when setting a class name in the class diagram and we propose two
approaches that can be applied here. One is to leave it as it is and define
it afterward manually which is not a solution but limitation. The other
concerns the definition of the altered class name to accommodate for the
queue size, Rebeca property. An example of this is given in the next list
item.
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(d) Possible solution: Definition of altered class name in a Class diagram:
ClassName[queuesize], or as an example: Producer[2].

2. Attribute

(a) Mapped with: Rebeca’s definition of state variable

(b) Definition of mapping (regular attributes): attributeName:Type[1]
mapped−−−−→

Type variableName; ENCLOSED by the state space container: state-
vars{}. WHERE, attributeName and variableName are the same.

(c) Definition of mapping (regular attributes with default value): attribute-

Name:Type[1] = value
mapped−−−−→ Type variableName;, PLUS assignment in

the constructor: variableName = value;

(d) Definition of mapping (array attributes): attributeName:Type[N]
mapped−−−−→

Type [N] variableName;, ENCLOSED by the state space container: stat-
evars{}. WHERE N>1

(e) Comment/Limitation: Notably, the definition of state variables in Rebeca
requires a state space that is defined by statevars{} and inside which the
state variables are specified. This means that along with the first state
variable, we must also provide state space used as a container for all
the upcoming state variables inside the observed class. Regarding the
constraints ([1] and [N]), that separates singular variables from arrays,
there is a minor limitation here in the UML. This comes from the fact
that in order to define an array, the N constraint has to be greater than
one (N>1) which therefore excludes the creation of single element arrays.
In favor of this approach, we state that there is no logical explanation for
the creation of singular arrays, as the main reason for their existence, in
the first place, is having a variable capable of containing more than one
element.
Additionally, default value for the regular attributes has to be assigned in
the constructor and provided for all attributes whose values are statically
assigned in the constructor (without dynamic argument passing). The
assignment has to be done after the constructor has been generated as
part of the operation to constructor mapping, considering that we do not
know if the constructor has arguments or not at this point.

(f) Possible solution: Not applicable.

3. Operation/method

(a) Mapped with: Rebeca’s definition of message server or local method or
constructor

(b) Definition of mapping (message server): methodName(in parameterName:

Type,...)
mapped−−−−→msgsrv MessageServerName(ExtType argument,...) {message

server body}
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(c) Definition of mapping (local method): methodName(in parameterName:

Type,...):Type
mapped−−−−→ ExtType LocalMethodName(ExtType argument,...)

{local method body with a return statement of the adequate type}
(d) Definition of mapping (constructor): methodName(in parameterName:

Type,...)
mapped−−−−→ ClassName (ExtType argument,...) {constructor body}

(e) Comment/Limitation: Notably, arguments are optional and the map-
ping remains the same without them, in which case we just exclude them
from the mapping. A constructor has to be included in Rebeca, in at
least one of the reactive classes, as it serves its purpose being the initial
message server (containing initial message call), that sets things going.
Additionally, it is used to initialize state variables. The rules for the con-
structor arguments are defined in the next mapping. Additionally, there
is a limitation regarding a definition of operations in the class diagram
with respect to the available Rebeca semantics or more precise definition
of message servers and local methods and constructors. This is due to
the possibility to have message servers, local methods and constructors in
Rebeca that are defined in a different way. However, on the UML side, we
have just regular operations defined in the class diagram. Moreover, as
we want to avoid introducing Rebeca semantics into the UML we need to
find a better way to distinguish between message servers, local methods
and constructors, on the UML side, to be able to provide an adequate
mapping between these semantics in UML and Rebeca. We identified
a possible way to deal with this issue and we document it under the
following list item.

(f) Possible solution: We make local methods private in the class diagram
(as they are only accessible from the same rebec and can be perceived
as the class level methods). On the other side, we leave message servers
public. Additionally, when we consider constructors we can notice that
they are defined in the same manner as message servers in the class
diagram (as public operations), which is problematic. To deal with this
issue, we specify that any public operation, whose name is equal (in
addition to case sensitive) to the name of the consisting class, is taken as
the constructor. Otherwise, it is taken as the message server.
We take this approach for the mapping as it appears to be the most
meaningful and simple solution. Public and private markers represent a
modeling semantic in the class diagram, that is not expressed in a textual
format but graphical (as green plus or a red minus signs at the bottom
right corner, respectively).

4. Constructor operation/method argument

(a) Mapped with: Rebeca’s definition of constructor argument and assign-
ment to corresponding state variable

(b) Definition of mapping: in parameterName: Type
mapped−−−−→ ExtType argu-

mentName PLUS assignment in the constructor body to the state vari-
able: stateVariableName = argumentName;
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(c) Comment/Limitation: Notably, assigning the argument to the adequate
state variable is not straightforward as we need to match the appropriate
argument with its corresponding state variable. We identified two possi-
ble ways of handling this issue and we present them in the following list
item.

(d) Possible solution

i. We add a separate sequence diagram to model the assignment of the
arguments to their corresponding state variables. This makes sense
as this is how we handle the assignment in local methods and message
servers.

ii. We decide on a naming convention for constructor arguments. For
example, arguments are named as follows: argumentName = stat-
eVariableName + ”Arg” keyword => argumentName = stateVari-
ableNameArg

We choose the second approach for this issue with reasons to avoid in-
troducing additional complexity that arises with the provision of too
many sequence diagrams. Additionally, constructors are not equivalent
to message servers and local methods as constructors are used for ini-
tializing objects and are invoked implicitly whereas message servers and
local methods are used to exhibit functionality of an object and are in-
voked explicitly. Also, a sequence diagram is a behavioral diagram while
assignment conducted in the constructors is predictable from the aspect
of structural diagrams in the UML. On the other side, constructors may
exhibit some behavioral aspects as well, but more with respect to invo-
cation of message servers that serve as a behavioral initialization of the
class level logic in Rebeca. For this part of constructors, we truly need a
sequence diagram as it is impossible to represent it in any other way, in
a reasonable fashion. These are some of the arguments that go in favor
of the selection of the second approach.

5. Association or relation with other classes

(a) Mapped with: Rebeca’s definition of known rebecs

(b) Definition of mapping: associationCardinalityAndName
mapped−−−−→ dictates

the number of known rebecs (of the specified type or class from which
association is drawn) and the name of instantiated objects

(c) Comment/Limitation: Notably, we could argue if this information should
be used for mapping with instantiated objects within known rebecs with
reasons that it may not be provided in its adequate form in UML class
diagram, that is necessary for mapping to be viable. Most often, only
the cardinality is defined in a proper form while the name may not be
defined appropriately as the list of comma-separated object names or a
single object name (if the cardinality is one). However, we could make
an assumption that the consisting information within the class diagram
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is modeled accordingly. In any case, we could use this information for es-
tablishing correctness or identifying inconsistencies with the information
provided elsewhere in the structural or behavioral UML semantics, that
could then be used for correctness evaluation of source UML models as
part of the pre-conversion validation with respect to these concepts.

(d) Possible solution: Not applicable.

Object Diagram Notably, since UML 2.5, there is no explicit specification of
Object diagram. But, considering its similarity and close relation with the class
diagram (without which it makes no sense for the object diagram to exist), the
UML 2.5+ specifies a notation for instances of classifiers. This is essentially the class
diagram with the use of specialized modeling elements for representing the instances
of the class. Basically, it requires a class diagram from which it will reference the
classes and properties, that are instantiated. Moreover, this new definition of the
object diagram representation is employed by Papyrus, where instance specifications
(both nodes and edges) are used for definition of objects, in the class diagram. As
aforementioned, the object diagram is used for mapping with the corresponding
Rebeca concepts that are defined as a part of the main. It suits perfectly for this
purpose as it enables us to define relations between instantiated objects. Object
diagram representation and its semantics include the following elements that can be
used for mapping with Rebeca concepts in the following manner:

1. Object name

(a) Mapped with: Rebeca’s rebec name when instantiating a class within
main

(b) Definition of mapping: objectName: ClassName
mapped−−−−→ ClassName ob-

jectName():(); , ENCLOSED by the main block

(c) Comment/Limitation: The definition of the main or enclosing main block
is not exactly the part of the mapping but will be created with the first
mapped object as the container that all subsequent objects from the
object diagram will use.

(d) Possible solution: Not applicable.

2. Object argument

(a) Mapped with: Rebeca’s definition of constructor argument when instan-
tiating a class within main

(b) Definition of mapping: attributeName:Type[N] = argumentValue
mapped−−−−→

ClassName objectName():(argumentValue); , ENCLOSED by the main
block

(c) Comment/Limitation: The definition of the main or enclosing main block
is not exactly the part of the mapping but will be created with the first
mapped object as the container that all subsequent objects from the ob-
ject diagram will use. Nonetheless, the definition of mapping shows how
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a single argument is mapped. Notably, multiple arguments are handled
in a similar fashion except they appear as a comma-separated list of argu-
ments in the Rebeca. Here, we can argue on how to provide the mapping
between object arguments and constructor arguments to ensure that the
right argument is passed in the constructor. However, considering that,
in Papyrus, we cannot explicitly specify the name of the object argument,
but need to provide a reference to the attribute from the corresponding
class diagram, we can simply use that referenced name for the mapping
with the constructor argument. This is only true because we specified
that the name of the constructor argument is equal to the attribute name
with an addition of ”Arg” keyword at the end.

(d) Possible solution: Not applicable.

3. Object relation

(a) Mapped with: Rebeca’s definition of known rebec argument when instan-
tiating a class within main

(b) Definition of mapping: object1 in relation with object2
mapped−−−−→ Class-

Name objectName1(objectName2):(); ClassName objectName2(objectName1):();
, ENCLOSED by the main block

(c) Comment/Limitation: The definition of the main or enclosing main block
is not exactly the part of the mapping but will be created with the first
mapped object as the container that all subsequent objects from the ob-
ject diagram will use. Nonetheless, these known rebecs that are mapped
and passed as arguments along with the instantiation of classes within
main has to coincide with the known rebecs defined within reactive classes
and we assume their correctness. Hence, it will be used as part of the
correctness check in the pre-conversion validation.

(d) Possible solution: Not applicable.

Conclusively, we noticed how certain semantics of the object diagram can also be
used for establishing correctness of the source UML models, with respect to the pre-
conversion validation. These semantics include the known rebecs that are defined
within each reactive class and correctness is accomplished by comparing relations
between objects modeled in the object diagram with the closely related semantics
defined in the sequence diagram as well as associations between classes defined in
the class diagram. Nonetheless, these semantics also include the arguments defined
in the constructors and correctness is accomplished by comparing the object argu-
ments defined in the object diagram with the constructor arguments defined in the
class diagram.

5.3.2 Behavioral UML Concepts

UML behavioral diagrams are necessary for injection of logic into the skeleton of
application established by structural diagrams. The requirement for the behavior
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is well expected in order to obtain something meaningful to be analyzed in Re-
beca. Only the sequence diagram is considered in this thesis as a behavioral type
of diagram. This was done with reasons to avoid introducing an additional layer of
complexity that arises with the usage of State-machine diagrams (considering the
complexity of its semantics) that would not significantly benefit the already pro-
vided mapping procedure. The reason why we favor a sequence diagram over the
state-machine diagram is due to its clear and rich semantics that are adequate for
the behavioral semantics of the Rebeca. As aforementioned, a sequence diagram
describes the behavior of several objects within a single use case which is suitable
for modeling the behavior of the Rebeca’s message servers and local methods that
are indeed the major containers of behavioral logic in Rebeca. Moreover, we opt
to provide the behavioral richness, that is sufficient, by the use of only sequence
diagrams, that will be enriched with minor additional semantics, for certain Rebeca
concepts, to compensate for the elimination of State-machine diagrams.

Sequence Diagram As aforementioned, a sequence diagram is used for mapping
with the corresponding behavioral Rebeca concepts that are defined as a part of
the message servers and local methods as well as the constructor logic. In other
words, each sequence diagram represents a single method (whether it is a message
server, local method or constructor). It suits perfectly for this purpose as it lets us
to define sequences of messages that are exchanged between the objects via message
servers as well as internal circular messages that are exchanged via message servers
and local methods. Moreover, as can be seen in the Figure 5.5, the lifeline that
is the source of the message call is presented on the left side with only the class
specified in its name and the lifeline that is the target of the message call is on the
right side with both the object name and the corresponding class name specified.
The reason for this becomes clear when we consider that we are modeling a single
method within each sequence diagram (which is attributed to class level logic) and
each of these methods can invoke methods from the objects of other classes, that
are defined within them (which is common when it comes to Rebeca and definition
of known rebecs). This is the expected modeling notation with respect to this thesis
and these minor additional semantics, that we introduced, will be part of the pre-
conversion validation.
For most of the semantics of the sequence diagram we provide a figure along with
the mapping to clarify used textual representations of UML modeling elements.
Sequence diagram and its semantics include the following elements that can be used
for mapping with Rebeca’s concepts in the following manner:

1. Combined Fragment of type ALT

(a) Mapped with: Rebeca’s conditional statements (if/else)

(b) Definition of mapping: [condition] and [else] (see Figure 5.1)
mapped−−−−→

if(condition) {logic if condition is TRUE} else {logic if condition is false}
(c) Comment/Limitation: Before the condition statement inside the first In-

teraction Operand (Figure 5.1), we do not specify any keyword as it is
common knowledge when in the ALT Combined Fragment the condition
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is stated, it refers to the if statement. Hence, specifying only condition is
self-sufficient. On the other side, we do not specify any condition for else
(except the keyword itself) as we logically assume it is the negation of the
if condition. Moreover, else is optional and we can have one Interaction
operand representing specification of if condition, if we do not need an
alternative branch.

(d) Possible solution: Not applicable.

Figure 5.1: Combined Fragment of type ALT

2. Combined Fragment of type ALT with logical operator

(a) Mapped with: Rebeca’s conditional logical operators

(b) Definition of mapping: logical AND - [condition1 && condition2 ] and

[else] (see Figure 5.2)
mapped−−−−→ if(condition1 && condition2) {logic if con-

dition is TRUE} else {logic if any of two conditions is FALSE}
(c) Comment/Limitation: Similarly, we can use logical OR (||) as well as

negation (!). However, this is not exactly the common UML practice.
Usually, conditions are plain and singular and in the case when mul-
tiple conditions are necessary, they can be nested. Anyway, the pre-
sented approach can also be used mostly with reasons to avoid nesting
too many conditions that might produce unreadable and unclear sequence
diagrams.

(d) Possible solution: Not applicable.

Figure 5.2: Combined Fragment of type ALT - with logical operator

3. Combined Fragment of type ALT with conditional comparisons

(a) Mapped with: Rebeca’s conditional comparisons

38



Mälardalen University Master Thesis

(b) Definition of mapping: equality comparison - [variable == value] (see

Figure 5.3)
mapped−−−−→ if(variable == value) {logic if condition is TRUE}

(c) Comment/Limitation: Similarly, we use other conditional comparisons
as inequality comparison (!=) as well as the others (<, >, <=, >=).
Conditional comparisons are handled in the same manner in both the
UML and Rebeca. Although, UML provides more freedom when spec-
ifying conditional comparisons, this is the most common approach and
the expected one for this mapping. Moreover, these semantics are taken
as correctness rules and will be used to validate source UML models in
pre-conversion validation.

(d) Possible solution: Not applicable.

Figure 5.3: Combined Fragment of type ALT - with conditional comparison

4. Initiating message call from generic sender

(a) Mapped with: Rebeca’s identification of message server or local method
that represents a container of all the proceeding semantics from the cor-
responding sequence diagram

(b) Definition of mapping: Action Execution Specifications between generic
sender and containing class (of the modeled message server or local method):

messageName() (see Figure 5.4)
mapped−−−−→ No target of the mapping.

(c) Comment/Limitation: Notably, initiating message call is used for locating
the message server or local method, that is generated as part of the class
diagram, which is indeed the main modeling object or container of the
corresponding sequence diagram. In other words, we do not get any target
Rebeca semantics as part of this mapping, but simply get the crucial
information about the name of the message server or local method and
its containing class where all the proceeding semantics of the particular
sequence diagram will be contained. Sender represents any possible call
of the certain message (from inside or outside the class) and it serves its
purpose as the identifier or pointer to the location where the proceeding
translated semantics, from the sequence diagram, will be extracted. The
name of the class that contains the aforementioned message server or local
method is retrieved from the sequence diagram Lifeline name of the target
node, in the scope of the invoked method. Notably, actor-based modeling
is by definition based on the asynchronous message passing which is why
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it is reasonable to only expect the async calls in the sequence diagram or
to treat all calls as async no matter of their modeled definition.

(d) Possible solution: Not applicable.

Figure 5.4: Initiating message call

5. Message call representing invocation of method of a different class from the
initiating (excluding initiating message call)

(a) Mapped with: Rebeca’s call of message server of a different class from
the initiating

(b) Definition of mapping: async message call between two Action Execution

Specifications of different classes: messageName() (see Figure 5.5)
mapped−−−−→

knownRebec.messageServerName();

(c) Comment/Limitation: Notably, in the sequence diagram, another class is
represented as an object of that class that is contained by the initiating
class, in the list of its known rebecs. The name of the known rebec,
inside the mapping, is retrieved from the Lifeline name of the target
object in the scope of the invoked method. Also, actor-based modeling
is by definition based on the asynchronous message passing which is why
it is reasonable to only expect the async calls in the sequence diagram or
to treat all calls as async no matter of their modeled definition.

(d) Possible solution: Not applicable.

Figure 5.5: Asynchronous message call to another class
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6. Message call representing invocation of method of the same class as the initi-
ating

(a) Mapped with: Rebeca’s call of message server or local methods of the
same class as initiating

(b) Definition of mapping: async message call within one Action Execution

Specification of the same class: messageName() (see Figure 5.6)
mapped−−−−→

self.messageServerName(); OR
self.localMethodName();

(c) Comment/Limitation: Message servers and local methods are mapped
here with reasons that both can be invoked inside the same class, in the
same manner. In other words, we do not need to make a separation
between them as in the sequence diagram they appear identically as well
as in Rebeca where they are preceded by keyword self followed by the
method name (which in one case is message server and in the other local
method). Notably, actor-based modeling is by definition based on the
asynchronous message passing which is why it is reasonable to only expect
the async calls in the sequence diagram or to treat all calls as async no
matter of their modeled definition.

(d) Possible solution: Not applicable.

Figure 5.6: Asynchronous message call to self

Considering that we can have two types of loops (for and while) we need to ration
about appropriate representations in the sequence diagram to distinguish between
them. Based on the definition of a while loop we can conclude that any loop that has
only the specified boolean condition without the range is considered to be a while
loop. On the other side, any loop that besides a boolean condition also includes the
range is considered to be a for loop. Notably, while loop can include a wider range
of conditions (generally all possible boolean conditions). On the other side, for loop
is focusing only on range conditions as it is commonly used to iterate over the range
of values (i.e. arrays etc.). The mapping is as follows:

1. Combined Fragment of Type Loop with the inclusion of only boolean condition
(excluding range)

(a) Mapped with: Rebeca’s while loop
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(b) Definition of mapping: [condition] (see Figure 5.7)
mapped−−−−→ while(condition)

{...}
(c) Comment/Limitation: In the while loop, any boolean condition can be

passed down in the condition clause. However, keep in mind that, that
use of conditions that are always true (refers commonly to static condition
clauses but also certain dynamic clauses), result in infinite loops.

(d) Possible solution: Not applicable.

Figure 5.7: Combined Fragment of type LOOP - excluding range

2. Combined Fragment of Type Loop with the specification of range (excluding
explicit iteration variable)

(a) Mapped with: Rebeca’s for loop

(b) Definition of mapping: [startRangeValue, endRangeValue] (see Figure

5.8)
mapped−−−−→ for(int i = startRangeValue; i < endRangeValue; i++) {...}

(c) Comment/Limitation: Notably, when the iteration variable is not speci-
fied, then the default name is used. In this case, it is crucial not to declare
the variable with the same name inside the loop (to avoid overriding its
value), which means that the chosen default name of iteration variable
is, up to some degree, a reserved word. Moreover, it is on the modeler to
be self-aware of these rules in order to avoid unexpected results. All the
rules are specified under pre-conversion validation. It is also important
to mention a scenario when multiple loops are nested in which case the
name of the iteration variable is incrementally created (when not explic-
itly specified), so that inside each nested loop except the first, iteration
variable gets an incremented number to its name, starting by two (i.e. i,
i2, i3, i4, etc.).

(d) Possible solution: Not applicable.
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Figure 5.8: Combined Fragment of type LOOP with the inclusion of range

3. Combined Fragment of Type Loop with the specification of range and iteration
variable

(a) Mapped with: Rebeca’s for loop

(b) Definition of mapping: [startRangeValue, endRangeValue, iterationVa-

riableName] (see Figure 5.9)
mapped−−−−→ for(int iterationVariableName =

startRangeValue; iterationVariableName < endRangeValue; iterationVa-
riableName++) {...}

(c) Comment/Limitation: Notably, in the case of nested loops with the inclu-
sion of the iteration variable specification, it is obvious that their names
should differ to avoid overriding the value of the iteration variable defined
in the parent loop.

(d) Possible solution: Not applicable.

Figure 5.9: Combined Fragment of type LOOP with the inclusion of range and
iteration variable

Considering that sequence diagram represents the sequence of messages or method
invocations, performing common inline assignment expression for assigning the value
to a variable is therefore not possible in the way it is done in Rebeca. Hence, we
need a way to express the assignment as the message call that will then be mapped
to corresponding assignment expression in Rebeca. Nonetheless, we distinguish be-
tween two types of assignment expressions: inline assignment that is commonly used
for both local and global variables with special accent on local variables, and use
of setter methods that can only be used for setting the value of global variables.
Hence, we provide mapping for both of them. As follows:
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1. Assignment of values to attributes (global)

(a) Mapped with: Rebeca’s setter method

(b) Definition of mapping: setStateVariableName(value) (see Figure 5.10)
mapped−−−−→ self.setStateVariableName(value);, WHILE auto-generated form
of setter is: void setStateVariableName(ExtType value) { stateVariable-
Name = value; }

(c) Comment/Limitation: There is no explicit information to be provided
on the UML side for the creation of setter methods as they are auto-
matically created when mapping of state variables is performed. These
methods follow the naming convention of the corresponding setter meth-
ods commonly defined in the JAVA so that for all types, setter method
name starts with the word set followed by the name of the variable (using
camel-case practice). Naturally, in the setter argument clause, there is a
new value of the same type as the state variable, to be set. Notably, state
variables defined as array could potentially employ two types of setters.
First, regular setter of a certain type of array. Second, setter of the value
on the particular position in the array, so that besides the new value that
is passed as an argument we also have a position in the array on which
the new value is written. In this case, the value argument is not of array
type but basic singular type. This being said, the call of these setter
methods is done as for any other local method (Figure 5.10).

(d) Possible solution: Not applicable.

Figure 5.10: Setter global method call

2. Inline assignment of values to attributes (local and global)

(a) Mapped with: Rebeca’s inline assignment of value

(b) Definition of mapping (regular assignment): set(variable, value) (see Fig-

ure 5.11)
mapped−−−−→ variable = value;

(c) Definition of mapping (array assignment at specified position): set(array[position],

value) (see Figure 5.12)
mapped−−−−→ array[position] = value;,
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(d) Definition of mapping (assignment with specified argument operator):

set(variable, value, assignmentOperator) (see Figure 5.12)
mapped−−−−→ vari-

able assignmentOperator value;

(e) Comment/Limitation: Notably, instead of the value, we can also pass
a casted value as well as non-deterministic expression, in the same way
as it is accomplished in Rebeca. Additionally, a regular inline setter
can be used to set an array but only if we are assigning an array to
some array variable. While, on the other side, if we want to assign the
value to a certain position in the array, then we can use the presented
approach (Figure 5.11). Nonetheless, it is important to provide support
for other assignment operators. Default assignment operator is =, and
the available arithmetic assignment operators are +=, -=, *=, /=, %=,
that can be used as it is presented (Figure 5.13).

(f) Possible solution: The limitation of the sequence diagram with respect
to the inline assignment is identified and the solution is provided as part
of the mapping above.

Figure 5.11: Regular inline set

Figure 5.12: Array position inline set
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Figure 5.13: Inline set by overriding default assignment operator

Similarly, as for the inline assignment, declaration of local variables in the se-
quence diagrams faces the same issues. Hence, we need to express the declaration
as a message call in the sequence diagram. As follows:

1. Declaration of local attributes (with and without initialization)

(a) Mapped with: Rebeca’s declaration of local variables

(b) Definition of mapping (declaration of regular local variable without ini-

tialization): declare(variableName, Type) (see Figure 5.14)
mapped−−−−→ Ext-

Type variableName;

(c) Definition of mapping (declaration of regular local variable with initial-

ization): declare(variableName, Type, value) (see Figure 5.15)
mapped−−−−→

ExtType variableName = value;

(d) Definition of mapping (declaration of local array without initialization):

declare(variableName, Type[N]) (see Figure 5.16)
mapped−−−−→ Type [N] vari-

ableName; WHERE N>1

(e) Comment/Limitation: Notably, declared variables can be initialized with
casted values as well as non-deterministic expressions (provided as value
argument), in the same form as they are defined in Rebeca. It is worth
mentioning, that regular local variables are of type ExtType in Rebeca.
However, the arrays are limited to the type Type.
As for the declaration of local arrays with initialization, it is handled in an
identical manner as for the regular variables, except that for arrays, the
value has to be an appropriate array. Additionally, instead of the value,
we can also pass a casted value and in that manner provide support for
casting. Same goes for non-deterministic expressions.

(f) Possible solution: The limitation of the sequence diagram with respect to
the declaration of local variables is identified and the solution is provided
as part of the mapping above.
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Figure 5.14: Regular local variable declaration

Figure 5.15: Regular local variable declaration with initialization

Figure 5.16: Local array declaration

Regarding the definition and usage of arrays, we already covered the definition
as part of the class diagram attributes mapping and usage as part of the sequence
diagram assignment mapping. Apart from that, arrays are used similarly as regular
variables with a slight difference in specifying a position when writing to or reading
from arrays, which is not the case with regular variables.

5.4 Detailed Mapping Procedure Description and Overview

After the detailed mapping procedure emerges, we find it important to present a
summary, in the form of a table, for readability and understandability reasons.
Such a representation of the mapping procedure should point to the most important
segments while attempting to encompass the complete information behind the map-
ping. As part of this section, we created three tables. The first table (Table 5.1)
is a simple textual representation of the comprehensive mapping procedure. This
table has three main columns (Rebeca concept, UML diagram and UML concept)
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and one identification column (ID). The identification column is used to identify a
certain mapping row and it is used in the second and third table as well (to provide a
reference to the particular mapping row in the first table and establish traceability).
In the second table (Table 5.2), we identified four main columns (UML concept to
Rebeca concept, Source UML, Target Rebeca and Additional semantics), and refer-
ence identification section (that connects the second table with the first). Additional
semantics column provides additional information (including any additional seman-
tics that are generated along with the mapping but not explicitly part of it, as for
example containers). Considering that a big chunk of Rebeca semantics are reused
from the JAVA programming language, especially the behavioral ones, we feel re-
sponsible to provide an additional table (Table 5.3), that is a subset of the second
table (Table 5.2) and includes only the mappings with respect to the Rebeca-specific
semantics.
This section combines a complete list of all semantics and their appropriate map-
ping pairs, that is described in Section 5.3 and provides an overview of the emerged
comprehensive mapping procedure. Notably, in all provided tables, the mapping
with respect to the Setter method (with table ID = 15), is marked with a star as it
is a entirely theoretical proposition that is based on a JAVA programming paradigm
and not grounded in Rebeca, just yet. That’s why it is treated, in this thesis, as an
optional semantic and is not included in any examples, that follow.
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ID Rebeca Concept UML Diagram UML Concept
1 Reactive class Class Class
2 State variable Class Attribute

3
Message server /
local method / Constructor

Class Operation

4 Known rebec Class Association / relation
5 Main / Rebec name Object Object name

6
Main / Rebec constructor
argument

Object Object argument

7
Main / Rebec known rebec
argument

Object Object relation

8 Conditional statement (if/else) Sequence
Combined Fragment of type
ALT

9 Conditional logical operators Sequence
Combined Fragment of type
ALT with logical operator

10 Conditional comparisons Sequence
Combined Fragment of type
ALT with conditional comparison

11
Call of message server of
different class from initiating

Sequence
Message call representing the
invocation of a method of a different
class from the initiating

12
Call of message server or
local method of the same class
as initiating

Sequence
Message call representing the
invocation of a method of the same
class as the initiating

13 While loop Sequence
Combined Fragment of Type Loop
with the inclusion of only boolean
condition (excluding range)

14 For loop Sequence
Combined Fragment of Type Loop
with the specification of the range
(with and without iteration variable)

15* Setter method Sequence
Assignment of values to attributes
(global)

16 Inline assignment Sequence
Inline assignment of values to attributes
(global and local)

17 Declaration of local variables Sequence Declaration of local attributes

18

Identification of message
server or local method
(container of the semantics
from the sequence diagram)

Sequence
Initiating message call from
generic sender

Table 5.1: Comprehensive mapping procedure - textual representation
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Ref.
ID

UML concept ->
Rebeca concept

Source UML Target Rebeca Additional semantics

1
Class ->
Reactive class

ClassName
reactiveclass ClassName (??queue
Size??) {class body} UML: ClassName[queuesize]

2
Regular
attribute ->Regular
state variable

attributeName:Type[1] Type variableName; Rebeca (container): statevars{}

2

Regular attribute
with default value ->
Regular state variable
with assignment in the
constructor

attributeName:Type[1] = value
Type variableName; PLUS assignment in
the constructor: variableName = value;

Rebeca (container): statevars{}

2
Array
attribute ->Array
state variable

attributeName:Type[N] Type [N] variableName; Rebeca (container): statevars{}

3
Operation ->
Message server

methodName
(in parameterName: Type,..)

msgsrv MessageServerName(ExtType
argument,...) {message server body}

UML: Operation has to be
marked as public

3
Operation ->
Local method
(return)

methodName
(in parameterName: Type,..)
:Type

ExtType LocalMethodName
(ExtType argument,..) {local method body
with return statement}

UML: Operation has to be
marked as private

3
Operation ->
Local method
(void)

methodName
(in parameterName: Type,..)

void ExtType LocalMethodName
(ExtType argument,..) {local method body}

UML: Operation has to be
marked as private

3
Operation ->
Constructor

methodName
(in parameterName: Type,...)

ClassName
(ExtType argument,...) {constructor body}

UML: Operation has to be
marked as public and the name
has to coincide with the
Class name

3

Constructor operation
argument ->
Constructor argument
and assignment to
corresponding state
variable

in parameterName: Type
ExtType argumentName PLUS assignment
in the constructor:
stateVariableName = argumentName;

UML: Constructor argument
has to be named as follows:
argumentName =
stateVariableName + “Arg”

4
Association ->
Known rebec

[associationCardinalityAnd
Name]

reactiveClassName rebecName;
Rebeca (container):
knownrebecs{}

5
Object name ->
Main - rebec name

objectName: ClassName ClassName objectName():(); Rebeca (container): main {}

6
Object argument ->
Main - constructor
argument

attributeName:Type[N] =
argumentValue

ClassName objectName():(argumentValue); Rebeca (container): main {}

7
Object relation ->
Main - known
rebec argument

[object1 in relation
with object2]

ClassName objectName1(objectName2):();
ClassName objectName2(objectName1):();

Rebeca (container): main {}

8

Combined Fragment
of type ALT ->
Conditional
statements (if/else)

[condition] and [else]
(see Figure 5.1)

if (condition) {logic if condition is TRUE}
else {logic if condition is false}

UML: Else is optional
Can be defined as one.
Interaction operand for if
statement.

9

Combined Fragment
of type ALT (logical
operator) ->
Conditional logical
operator

[condition1] && [condition2]
and [else] (see Figure 5.2)

if (condition1 && condition2) {logic if
condition is TRUE} else {logic if any of
two conditions is FALSE}

Other: logical OR (||),
negation (!)

10

Combined Fragment
of type ALT
(conditional
comparisons) ->
Conditional
comparisons

[variable == value]
(see Figure 5.3

if (variable == value)
{logic if condition is TRUE}

Other: inequality comparison
(!=) and others (<, >, <=,
>=)

11

Message call of
method of a different
class ->Call of
message server of a
different class

[Aync message call between
two Action Execution
Specifications of different
classes]: messageName()
(see Figure 5.5)

knownRebec.messageServerName();

UML: Target lifeline
definition has to contain the
object name along with the
class name in the format:
objectName: ClassName

12

Message call of
method of the same
class ->
Call of message server
of the same class

[Async message call within
one Action Execution
Specification of the same
class]: messageName()
(see Figure 5.6)

self.messageServerName(); N/A
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12

Message call of
method of the same
class ->
Call of local method
of the same class

[Async message call within
one Action Execution
Specification of the same
class]: messageName()
(see Figure 5.6)

self.localMethodName(); N/A

13

Combined Fragment
of Type Loop with
only boolean condition
(excluding range) ->
While loop

[condition]
(see Figure 5.7)

while (condition) {logic if condition is
TRUE} N/A

14

Combined Fragment of
Type Loop with the
specification of range
(excluding explicit
iteration variable) ->
For loop

[startRangeValue,
endRangeValue]
(see Figure 5.8)

for (int i = startRangeValue;
i <endRangeValue; i++) {logic if condition
is TRUE}

N/A

14

Combined Fragment of
Type Loop with the
specification of range
and iteration variable ->
For loop

[startRangeValue,
endRangeValue,
iterationVariableName]
(see Figure 5.9)

for (int iterationVariableName =
startRangeValue; iterationVariableName <
endRangeValue; iterationVariableName++)
{logic if condition is TRUE}

N/A

15*
Assignment of values
to attributes (global) ->
Setter method

setStateVariableName (value)
(see Figure 5.10)

self.setStateVariableName(value);

Rebeca: Auto-generated setter
along with the state variable
in the form:
void setStateVariableName
(ExtType value) {
stateVariableName = value; }

16

Inline assignment of
values to attributes
(local and global) ->
Inline assignment of
value (regular
assignment)

set(variable, value)
(see Figure 5.11)

variable = value;

Instead of a value we can
also pass a casted value as well
as non-deterministic expression.
Same applies for all inline
assignment variations

16

Inline assignment of
values to attributes
(local and global) ->
Inline assignment of
value (Array
assignment at position)

set(array[position], value)
(see Figure 5.12)

array[position] = value;
Regular assignment is possible
with arrays but than one array
is assigned to the other

16

Inline assignment of
values to attributes
(local and global) ->
Inline assignment of
value (assignment with
specified assignment
operator)

set(variable, value,
assignmentOperator)
(see Figure 5.13)

variable assignmentOperator value;
Operators: = (default), +=,
-=, *=, /=, %=

17

Declaration of local
attributes ->Declaration of
local variables (regular
local variable without
initialization)

declare(variableName, Type)
(see Figure 5.14)

ExtType variableName; N/A

17

Declaration of local
attributes ->Declaration of
local variables (regular
local variable with
initialization)

declare(variableName, Type,
value)
(see Figure 5.15)

ExtType variableName = value;
Instead of a value we can
also pass a casted value as well
as non-deterministic expression.

17

Declaration of local
attributes ->Declaration of
local variables (local
arrays)

declare(variableName, Type[N])
(see Figure 5.16)

Type [N] variableName;

Initialization of arrays,
along with declaration
is possible, identically as for
regular local variables with
initialization

18

Initiating message
call from generic
sender ->Identification of
message server or
local method

[Async initiating message call
between two Action Execution
Specification]: messageName()
(see Figure 5.4)

No target of the mapping.

UML: Name sender has to
be static. Rebeca: It is used
for locating the message
server or local method
(container of the semantics
from the sequence diagram)

Table 5.2: Comprehensive mapping procedure - detailed conceptual representation
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Ref.
ID

UML concept ->
Rebeca concept

Source UML Target Rebeca Additional semantics

1
Class ->
Reactive class

ClassName
reactiveclass ClassName (??queue
Size??) {class body} UML: ClassName[queuesize]

2
Regular
attribute ->Regular
state variable

attributeName:Type[1] Type variableName; Rebeca (container): statevars{}

2

Regular attribute
with default value ->
Regular state variable
with assignment in the
constructor

attributeName:Type[1] = value
Type variableName; PLUS assignment in
the constructor: variableName = value;

Rebeca (container): statevars{}

2
Array
attribute ->Array
state variable

attributeName:Type[N] Type [N] variableName; Rebeca (container): statevars{}

3
Operation ->
Message server

methodName
(in parameterName: Type,..)

msgsrv MessageServerName(ExtType
argument,...) {message server body}

UML: Operation has to be
marked as public

4
Association ->
Known rebec

[associationCardinalityAnd
Name]

reactiveClassName rebecName;
Rebeca (container):
knownrebecs{}

5
Object name ->
Main - rebec name

objectName: ClassName ClassName objectName():(); Rebeca (container): main {}

6
Object argument ->
Main - constructor
argument

attributeName:Type[N] =
argumentValue

ClassName objectName():(argumentValue); Rebeca (container): main {}

7
Object relation ->
Main - known
rebec argument

[object1 in relation
with object2]

ClassName objectName1(objectName2):();
ClassName objectName2(objectName1):();

Rebeca (container): main {}

11

Message call of
method of a different
class ->Call of
message server of a
different class

[Aync message call between
two Action Execution
Specifications of different
classes]: messageName()
(see Figure 5.5)

knownRebec.messageServerName();

UML: Target lifeline
definition has to contain the
object name along with the
class name in the format:
objectName: ClassName

12

Message call of
method of the same
class ->
Call of message server
of the same class

[Async message call within
one Action Execution
Specification of the same
class]: messageName()
(see Figure 5.6)

self.messageServerName(); N/A

12

Message call of
method of the same
class ->
Call of local method
of the same class

[Async message call within
one Action Execution
Specification of the same
class]: messageName()
(see Figure 5.6)

self.localMethodName(); N/A

Table 5.3: Comprehensive mapping procedure - Rebeca-centric concepts

As can be seen in Table 5.2 and 5.3, a detailed mapping procedure (semantic
level of detail), focusing on the minimal types of UML diagrams for accomplishing
comprehensive results, is displayed. Moreover, each row in these tables can be traced
back, based on the reference identification number, to the Table 5.1, that represents
a brief textual representation of the mapping. Considering the similarities between
Rebeca and JAVA, we provided an additional table (Table 5.3), that only includes
the semantics specific to Rebeca language. The provided mapping procedure gives
an answer to the two of the three proposed research questions and those include:

1. RQ1: What are the minimum UML diagrams required to serve as sources
for target Rebeca concepts in order to obtain something meaningful to be
analyzed through Rebeca?

(a) Answer: The minimum UML diagrams necessary for establishing a de-
tailed enough mapping procedure that ensures a meaningful Rebeca infor-
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mation, include Class diagram and Object diagram as structural diagrams
and Sequence diagram as behavioral (see Table 5.1).

2. RQ2: What is the adequate mapping procedure between the identified UML
concepts and Rebeca concepts?

(a) Answer: This cannot be simply answered in a few words, as the answer is
essentially conveyed in a complete emerged mapping procedure (Section
5.3 and Tables 5.2 5.3).
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6 Method Evaluation

The validation phase is an important step in the whole story, as it strives to establish
confidence in the developed mapping procedure (through applicability scenarios in
post-conversion validation) and avoid performing the transformation and reaching
faulty Rebeca models if the design is not compatible with the mapping procedure
(in pre-conversion validation).
Initially, as part of the pre-conversion validation, we need to set some rules or identify
the correctness attributes that will be used as a merit of correctness/compatibility
in the process of evaluating the source UML models, before conversion to Rebeca
takes place. Hence, these correctness attributes are inherently used for establishing
that the models are translatable to Rebeca.
Moreover, the necessity for the evaluation of the mapping procedure is crucial for
establishing confidence and identifying its applicability scope. This section gives an
answer to the last research question:

1. RQ3: What is the applicability of the proposed mapping procedure and its
proper substantiation?

6.1 Pre-Conversion Validation

The basis for pre-conversion validation is grounded on the definition of correct-
ness attributes (or correctness rules) for establishing the correctness/compatibility
of source UML models. Here, we need to consider semantic correctness regarding
Rebeca concepts and what is achievable in Rebeca. Also, closely related merit of
correctness is design correctness with respect to the design pattern used to convey
the information within diagrams. Nevertheless, we include this category as part of
the semantic correctness, as it also deals with boundaries of Rebeca language and
therefore can be attributed to its semantics. Considering we already established
a comprehensive mapping procedure, that includes detailed semantics of the UML
appropriate for target Rebeca models, we will indeed use these UML semantics as
the main objects for the creation of such correctness attributes (Table 5.2). Hence,
these correctness attributes can be seen as the approximation of the models within
the scope of the defined mapping procedure and its boundaries.
As the result of the identification of such correctness attributes, we strive to provide
definite correctness rules that convey the design pattern for modeling of the consid-
ered UML diagrams within the scope of the proposed detailed mapping procedure
and its semantics.
To capture the correctness rules in a readable and traceable manner, we provide a
table (Table 6.1) in which for each applicable semantic in the Table 5.2 we docu-
ment a correctness rule associated with it. This new table shares the same first two
columns of the associated Table 5.2, including both Reference ID and UML concept
to Rebeca concept, supplied with an additional column Correctness attribute whose
purpose is self-explanatory.
Additionally, any semantics that are not covered by the mapping procedure are ex-
cluded by definition. This basically means that they need to be filtered out by the
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pre-conversion validation or approximated within the scope of the mapping proce-
dure (and included semantics), if applicable. Ideally, the source UML semantics
should not exceed the defined semantics in the mapping procedure. Hence, these
defined semantics governs the applicability scope that is discussed further in Section
6.2 on a practical example.

Ref.
ID

UML concept ->
Rebeca concept

Correctness attribute

1
Class ->
reactive class

Queue length has to be defined along with the class name:
ClassName[queueLength]

2
Regular
attribute ->regular
state variable

The regular attribute has to be defined with constraint [1], after a definition of the
type, that symbolizes the singular value attribute. It can also be defined without
any constraint after the definition of type.

The type of attribute has to be compatible with Rebeca’s type
(excluding ExtType).

2
Array
attribute ->array
state variable

The array attribute has to be defined with constraint [N], after a definition of the
type, where N is greater than 1 and symbolizes the array.

The type of attribute has to be compatible with Rebeca’s type (excluding ExtType).

3
Operation ->
message server

Operation (representing message server) has to be marked as public and it cannot
have a return statement as it is void by definition.

3
Operation ->
local method
(return)

Operation (representing local method with return statement) has to be marked
as private.

3
Operation ->
local method
(void)

Operation (representing void local method) has to be marked as private.

3
Operation ->
constructor

Constructor operation has to be marked as public and it cannot have a return
as it is void by definition. The name has to coincide with the Class name.
A constructor has to be included in Rebeca, in at least one of the reactive classes,
as it serves its purpose being the initial message server (containing initial message
call), that sets things going. Additionally, it is used to initialize state variables.

3

Constructor operation
argument ->
constructor argument
and assignment to
corresponding state
variable

Constructor argument has to be named as follows:
argumentName = stateVariableName + Arg

If constructor contains any additional behavioral logic (i.e. message calls, etc.),
then the sequence diagram has to be constructed for the corresponding
constructor, excluding the initialization of state variables with arguments.

4
Association ->
Known rebec

Known rebecs defined by associations should match the known rebecs defined
in the sequence diagram and the known rebecs defined by relations in the
object diagram.

6
Object argument ->
Main - constructor
argument

Each argument has to be referenced to the corresponding attribute in the
class diagram and the value has to be specified.

7
Object relation ->
Main - known
rebec argument

Known rebecs defined by relations should match the known rebecs defined in the
sequence diagram and the known rebecs defined by associations in the class
diagram.
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8

Combined Fragment
of type ALT ->
conditional
statements (if/else)

Before the condition statement inside the first Interaction Operand, we should not
specify any keyword. It is by definition accepted that the first interaction operand
in ALT fragment refers to the if statement. We only specify a condition.
The second ALT fragment, by default, takes the word else and no additional
alterations should be made in the else. Also, else is optional and we can have one
Interaction operand representing specification of if statement.
A condition is built as a combination of four paradigms including variable, value,
conditional logical operator, conditional comparison.

9

Combined Fragment
of type ALT (logical
operator) ->
conditional logical
operator

Conditional logical operators have to be one of the following:
logical AND (&&), logical OR (||), negation (!).

The first two have to be placed between two conditions while the last is placed
before condition or group of conditions to negate their value.

10

Combined Fragment
of type ALT
(conditional
comparisons) ->
conditional
comparisons

Conditional comparison operators have to be one of the following: equality
comparison (==), inequality comparison (!=) or following operators
(<, >, <=, >=).

11

Message call of
method of a
different class ->
call of message
server of a different
class

The source lifeline has to be defined as a class so that in the lifeline name it
contains only the class name.
The target lifeline has to be defined as an object of a specific class so that in the
lifeline name it contains both name of the class and name of the object, as follows:
objectName:ClassName

12

Message call of
method of the same
class ->
call of message server
of the same class

The message call has to be modeled with a recursive arrow or a message call
towards the same class as initiating.

12

Message call of
method of the same
class ->
call of local method
of the same class

The message call has to be modeled with a recursive arrow or a message call
towards the same class as initiating.

13

Combined Fragment
of Type Loop with
only boolean condition
(excluding range) ->
While loop

Any conditional statement can be modeled in a while loop. But, keep in mind,
that certain conditions may result in the infinite loop (refers commonly to static
condition clauses but also certain dynamic clauses).

14

Combined Fragment of
Type Loop with the
specification of range
(excluding explicit
iteration variable) ->
For loop

The comma-separated start and end range value has to be specified.

Considering that the iteration variable is not specified, then the default name (i)
is used. In this case, it is crucial not to use the variable with the same name inside
the loop (to avoid overriding its value).
Also, when multiple conditions are nested, the name of the iteration variable is
incrementally created, so that inside each nested loop except the first, iteration
variable gets an incremented number to its name (i.e. i, i2, i3, i4 etc.).

14

Combined Fragment of
Type Loop with the
specification of range
and iteration variable ->
For loop

The specified name of the iteration variable should not be used to define variables
inside the loop (including other iteration variables of nested loops) to avoid
overriding its value.
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15*
Assignment of values
to attributes (global) ->
Setter method

There is no explicit information to be provided on the UML side for the creation
of setter methods as they are automatically created when mapping of the state
variables is performed.

Invoking the setter method or initiating a message call has to be done by
asynchronous call to the same class, with the name of the setter method
call as follows: setStateVariableName(value)

16

Inline assignment of
values to attributes
(local and global) ->
Inline assignment of
value (regular
assignment)

Inline regular assignment has to be defined in the form, as follows:
set(variable, value)

This has to be defined as a message call to the same class as initiating.

Instead of a value, we can also pass a casted value (in the form: (CastType) value)
as well as non-deterministic expression (in the form: ?(value1, value2,.. valueN)).
Same applies for all inline assignment variations.

16

Inline assignment of
values to attributes
(local and global) ->
Inline assignment of
value (Array
assignment at position)

Inline array assignment at the specified position has to be defined in the form,
as follows:
set(array[position],value)

This has to be defined as a message call to the same class as initiating.
Regular assignment is possible here but then an array has to be passed as value.

16

Inline assignment of
values to attributes
(local and global) ->
Inline assignment of
value (assignment with
specified assignment
operator)

Inline assignment with the specified operator has to be defined in the form,
as follows:
set(variable, value, assignmentOperator)

Operators has to coincide with: = (default), +=, -=, *=, /=, %=.
This has to be defined as a message call to the same class as initiating.

17

Declaration of local
attributes ->Declaration of
local variables (regular
local variables without
initialization)

Declaration of regular local variable has to be defined in the form, as follows:
declare(variableName, Type)

This has to be defined as a message call to the same class as initiating.

17

Declaration of local
attributes ->Declaration of
local variables (regular
local variable with
initialization

Declaration of regular local variable with initialization has to be defined
in the form, as follows:
declare(variableName, Type, value)
This has to be defined as a message call to the same class as initiating.

Instead of a value, we can also pass a casted value (in the form: (CastType) value)
as well as non-deterministic expression (in the form: ?(value1, value2,.. valueN)).

17

Declaration of local
attributes ->Declaration of
local variables (local
arrays)

Declaration of local array has to be defined in the form, as follows:
declare(variableName, Type[N])

This has to be defined as a message call to the same class as initiating.

Declaration of local array with value assignment is achieved in the same manner as
for regular local variables. However, in this case, an array is expected as the value.

18

Initiating message call
from generic sender ->
Identification of message
server or local method

Name of the initiating lifeline (source of the message) has to be sender
(it is static and unchangeable).
The name of the message call and its arguments has to coincide with the operation
(in the class diagram), that is modeled. The target lifeline has to be defined as a
class so that in the lifeline name it contains only the class name.

Table 6.1: Pre-conversion validation correctness rules
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The provided Table 6.1, contains a detailed list of correctness attributes for each
mapping element. Against these rules, source UML models have to be assessed in
order to establish their correctness and ultimately proceed to the next stage where
actual transformation is conducted. The objective of the pre-conversion validation
is the case in which the source UML models coincide with the correctness attributes.
The practical example, upon which we do the transformation based on the mapping
procedure, in post-conversion validation is validated by these rules, until all of them
successfully passed, before transformation was done.

6.2 Post-Conversion Validation

After the detailed mapping procedure is created, the necessity for its validation on
applicability scenarios is obvious. Notably, the process in which the transformation
is done and target models acquired and validated can be done differently depending
on the available resources (i.e. time) and other factors.
The post-conversion validation is organized as a manual transformation of source
UML models to Rebeca models that is performed by two subjects on a uniform ex-
ample. We are investigating the possibility for variations in the target Rebeca mod-
els, although we expect the variations to be minor. From our understanding, the
pre-conversion validation should equalize the source UML models and significantly
reduce the possibility for different interpretations. This is expected to propagate and
eliminate the variations in target Rebeca models. Hence, the examples are given val-
idated by the correctness attributes of the pre-conversion validation. The subjects
involved were responsible for performing the manual transformation by following
the principles of the mapping procedure and obtaining the target Rebeca models.
These models are then inspected to check if they reflect the source UML models
and identify any defects or unintended behaviors. Also, we check for variations in
two comparative model transformations. The subjects had no prior knowledge of
Rebeca which we perceive as a good thing because they have to rely entirely on
the mapping procedure to do the transformation, therefore reducing the effect of
the previous knowledge. However, we could argue that the general programming
knowledge in similar languages to Rebeca, could potentially influence the results. It
is important to note that this study, conducted with the help of external subjects,
is not empirically structured and this could affect negatively the replicability and
validity of the results. This is caused by the lack of resources (i.e. time, number of
involved subjects, etc.).
In addition to this example, we also provide another example that shows how com-
plex behavioral logic can be captured within the sequence diagram and used for
the complete transformation by applying the mapping procedure. This example,
however, is performed independently without the involvement of external subjects.
This section is organized into four subsections. In the first subsection, we provide the
validated source UML models as an example on which the transformation is done.
In the second, we document detailed transformation and reflect upon the acquired
target Rebeca models. In the third, we provide an additional example, focused on
complex behavioral logic. Finally, in the fourth, we discuss the applicability of the
mapping procedure and potential improvements.
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6.2.1 Practical Example - Validated Source Models

In this section, we provide validated source UML models, that are used for man-
ual transformation, handled independently by the subjects. As aforementioned,
these models are provided validated by the correctness rules of the pre-conversion
validation with reasons to establish the common ground for both independent trans-
formations. This enables us to perform precise inspections in the acquired target
models and better understand the source of any possible defects and variations.
The given train-controller example represents a two-way railroad with a single-track
bridge in between, upon which the access is controlled by traffic lights, managed by
a controller. For modeling, we used a Class diagram, Object diagram and Sequence
diagram considering that all three are required for detailed transformation, in order
to capture both structure and behavior in the models.
Structure is captured within Figures 6.1 and 6.2 whereas behavior is captured within
Figures 6.3, 6.4, 6.5, 6.6, 6.7 and 6.8. The structural semantics (from class and ob-
ject diagrams) are used for establishment of the skeleton application while behavioral
semantics (from sequence diagrams) introduce an additional layer of logic, resulting
in the meaningful target models or set of Rebeca semantics to be obtained.

Figure 6.1: Class diagram - structural source

Figure 6.2: Object diagram - structural source
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Figure 6.3: Sequence diagram - Train constructor - behavioral source

Figure 6.4: Sequence diagram - Train youMayPass method - behavioral source

Figure 6.5: Sequence diagram - Train passed method - behavioral source
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Figure 6.6: Sequence diagram - Train reachBridge method - behavioral source

Figure 6.7: Sequence diagram - BridgeController leave method - behavioral source
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Figure 6.8: Sequence diagram - BridgeController arrive method - behavioral source

6.2.2 Manual Transformation - Acquiring Target Models

The two subjects performed the transformation on the given example (Section 6.2.1),
based on the guidelines of the proposed detailed mapping procedure. The results
(obtained Rebeca models) by two subjects are deemed as significantly similar as the
only differences between them are minor syntactical mistakes caused by typing er-
rors in the names of the message servers, constructors, etc.. Additionally, one of the
subjects did not include the queue sizes as part of the reactive class declarations,
while the other misinterpreted the message calls, representing inline assignment,
as method invocations and performed initialization of a state variable inside the
statevars container instead of constructor, even though appropriate documentation
for all of these cases is included as part of the mapping procedure. Notably, these
variations are insignificant in terms of the validity of the proposed mapping pro-
cedure and can be easily eliminated by the automated model transformation. We
provide generated Rebeca models as two Listings 2 and 3, that portray the mod-
els transformed by two independent subjects (marked as Subject 1 and Subject 2).
The minor syntactic mistakes in both transformations are marked with orange color
while other, more serious, issues are marked with red. The last Listing 4 represents
the defect-free transformation. As follows:

r e a c t i v e c l a s s BridgeController {
knownrebecs {

Train t1 ;
Train t2 ;

}
statevrs {
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boolean isWait ing1 ;
boolean i sWait ing2 ;
boolean s i g n a l 1 ;
boolean s i g n a l 2 ;

}
Br idgeCont ro l l e r ( ) {

i sWait ing1 = f a l s e ;
i sWait ing2 = f a l s e ;
s i g n a l 1 = f a l s e ;
s i g n a l 2 = f a l s e ;

}
msgsrv Arrive ( ) {

i f ( sender == t1 ) {
i f ( s i g n a l 2 == f a l s e ) {

s i g n a l 1 = true ;
t1 . youMayPass ( ) ;

}
e l s e {

i sWait ing1 = true ;
}

}
e l s e {

i f ( s i g n a l 1 == f a l s e ) {
s i g n a l 2 = true ;
t2 . youMayPass ( ) ;

}
e l s e {

i sWait ing2 = true ;
}

}
}
msgsrv Leave ( ) {

i f ( sender == t1 ) {
s i g n a l 1 = f a l s e ;
i f ( i sWait ing2 == true ) {

s i g n a l 2 = true ;
t2 . youMayPass ( ) ;
i sWait ing2 = f a l s e ;

}
} e l s e {

s i g n a l 2 = f a l s e ;
i f ( i sWait ing1 == true ) {

s i g n a l 1 = true ;
t1 . youMayPass ( ) ;
i sWait ing1 = f a l s e ;

}
}

}
}
r e a c t i v e c l a s s Train {

knownrebecs {
Br idgeCont ro l l e r c o n t r o l l e r ;

}
statevrs {

boolean onTheBridge ;
}
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Train ( ) {
onTheBridge = f a l s e ;
s e l f . passed ( ) ;

}
msgsrv youMayPass ( ) {

onTheBridge = true ;
s e l f . passed ( ) ;

}
msgsrv passed ( ) {

onTheBridge = f a l s e ;
c o n t r o l l e r . l e ave ( ) ;
s e l f . reachBridge ( ) ;

}
msgsrv reachBridge ( ) {

c o n t r o l l e r . Arrive ( ) ;
}

}
main {

Train t1 ( c o n t r o l l e r ) : ( ) ;
Br idgeCont ro l l e r c o n t r o l l e r ( t1 , t2 ) : ( ) ;
Train t2 ( c o n t r o l l e r ) : ( ) ;

}

Listing 2: Subject 1 - obtained Rebeca models

r e a c t i v e c l a s s Br idgeCont ro l l e r (5 ) {
knownrebecs {

Train t1 ;
Train t2 ;

}
s t a t e v a r s {

boolean isWait ing1 ;
boolean i sWait ing2 ;
boolean s i g n a l 1 ;
boolean s i g n a l 2 ;

}
Br idgeCont ro l l e r ( ) {

i sWait ing1 = f a l s e ;
i sWait ing2 = f a l s e ;
s i g n a l 1 = f a l s e ;
s i g n a l 2 = f a l s e ;

}
msgsrv a r r i v e ( ) {

i f ( sender == t1 ) {
i f ( s i g n a l 2 == f a l s e ) {

set(signal1, true);
t1 . youMayPass ( ) ;

}
e l s e {

set(isWaiting1, true);
}

}
e l s e {

i f ( s i g n a l 1 == f a l s e ) {
set(signal2, true);
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t2 . youMayPass ( ) ;
}
e l s e {

set(isWaiting2, true);
}

}
}
msgsrv l eave ( ) {

i f ( sender == t1 ) {
set(signal1, false);
i f ( i sWait ing2 == true ) {

set(signal2, true);
t2 . youMayPass ( ) ;
set(isWaiting2, false);

}
} e l s e {

set(signal2, false);
i f ( i sWait ing1 == true ) {

set(signal1, true);
t1 . youMayPass ( ) ;
set(isWaiting1, false);

}
}

}
}
r e a c t i v e c l a s s Train (3 ) {

knownrebecs {
Br idgeCont ro l l e r c o n t r o l l e r ;

}
s t a t e v a r s {

boolean onTheBridge = false;
}
Train ( ) {

s e l f . passed ( ) ;
}
msgsrv youMayPass ( ) {

set(onTheBridge, true);
s e l f . passed ( ) ;

}
msgsrv passed ( ) {

set(onTheBridge, false);
c o n t r o l l e r . l e ave ( ) ;
s e l f . reachBridge ( ) ;

}
msgsrv reachBridge ( ) {

c o n t r o l l e r . a r r i v e ( ) ;
}

}
main {

Train t1 ( c o n t r o l l e r ) : ( ) ;
Train t2 ( c o n t r o l l e r ) : ( ) ;
Br idgeCont ro l l e r c o n t r o l l e r ( t1 , t2 ) : ( ) ;

}

Listing 3: Subject 2 - obtained Rebeca models
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r e a c t i v e c l a s s Br idgeCont ro l l e r (5 ) {
knownrebecs {

Train t1 ;
Train t2 ;

}
s t a t e v a r s {

boolean isWait ing1 ;
boolean i sWait ing2 ;
boolean s i g n a l 1 ;
boolean s i g n a l 2 ;

}
Br idgeCont ro l l e r ( ) {

s i g n a l 1 = f a l s e ;
s i g n a l 2 = f a l s e ;
i sWait ing1 = f a l s e ;
i sWait ing2 = f a l s e ;

}
msgsrv a r r i v e ( ) {

i f ( sender == t1 ) {
i f ( s i g n a l 2 == f a l s e ) {

s i g n a l 1 = true ;
t1 . youMayPass ( ) ;

}
e l s e { i sWait ing1 = true ; }

}
e l s e {

i f ( s i g n a l 1 == f a l s e ) {
s i g n a l 2 = true ;
t2 . youMayPass ( ) ;

}
e l s e { i sWait ing2 = true ; }

}
}
msgsrv l eave ( ) {

i f ( sender == t1 ) {
s i g n a l 1 = f a l s e ;
i f ( i sWait ing2 == true ) {

s i g n a l 2 = true ;
t2 . youMayPass ( ) ;
i sWait ing2 = f a l s e ;

}
} e l s e {

s i g n a l 2 = f a l s e ;
i f ( i sWait ing1 == true ) {

s i g n a l 1 = true ;
t1 . youMayPass ( ) ;
i sWait ing1 = f a l s e ;

}
}

}
}

r e a c t i v e c l a s s Train (3 ) {
knownrebecs {

Br idgeCont ro l l e r c o n t r o l l e r ;
}
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s t a t e v a r s {
boolean onTheBridge ;

}
Train ( ) {

onTheBridge = f a l s e ;
s e l f . passed ( ) ; }

msgsrv youMayPass ( ) {
onTheBridge = true ;
s e l f . passed ( ) ; }

msgsrv passed ( ) {
onTheBridge = f a l s e ;
c o n t r o l l e r . l e ave ( ) ;
s e l f . reachBridge ( ) ; }

msgsrv reachBridge ( ) {
c o n t r o l l e r . a r r i v e ( ) ; }

}

main {
Train t1 ( c o n t r o l l e r ) : ( ) ;
Train t2 ( c o n t r o l l e r ) : ( ) ;
Br idgeCont ro l l e r c o n t r o l l e r ( t1 , t2 ) : ( ) ;

}

Listing 4: Defect-free transformation Rebeca models

6.2.3 Capturing Rich Behavioral Concepts - Example

Besides the presented example, we also provide an additional example, to further
substantiate the mapping procedure. The example represents a commit problem
where entities (marked as nodes) are expected to commit upon performing an action.
Moreover, if any of the nodes disagrees then the action is aborted which implies
AND logical operator between the commits. This problem is solved in a way that
one of the nodes is a listener and others are emitters. The listener collects all the
messages (commits and aborts) from other nodes as well as its own message. In
case if any abort message is received, then the final message that is sent to all nodes
is an abort message. Otherwise, the final message to be sent is a commit message.
This example is more complex than the previous and is therefore used to show how
complex behavioral logic can be modeled using the proposed mapping procedure.
However, external subjects were not involved as part of the transformation, applied
on the provided UML models. Hence, we only provide the manual transformation
that is done independently. Additionally, as in the previous example, we provide
pre-validated source UML models. As follows:
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Figure 6.9: Class diagram - Node class - structure

Figure 6.10: Object diagram - Node instances - structure

Figure 6.11: Sequence diagram - Node constructor - behavior
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Figure 6.12: Sequence diagram - Start global transaction method - behavior
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Figure 6.13: Sequence diagram - Cooperator response method - behavior

70



Mälardalen University Master Thesis

Figure 6.14: Sequence diagram - Create transaction method - behavior

We provide generated Rebeca models as part of the Listing 5. As follows:

r e a c t i v e c l a s s Node (10) {

knownrebecs {
Node node1 ;
Node node2 ;

}

s t a t e v a r s {
boolean r e c e i v e d R e s u l t s ;
boolean c r e a t i o n A b i l i t y ;
i n t rece ivedResu l t sCounter ;
i n t expectedResultsCounter ;
boolean [ 2 ] cooperatorKnownRebecs ;
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}

Node ( boolean nodeCreat ionAbi l i tyArg ) {
c r e a t i o n A b i l i t y = nodeCreat ionAbi l i tyArg ;
s e l f . c r ea t eTransac t i on ( ) ;

}

msgsrv c rea t eTransac t i on ( ) {
boolean star tTrans ;
s tar tTrans = ?( true , f a l s e ) ;
i f ( s ta r tTrans == true && c r e a t i o n A b i l i t y == true ) {

i n t i t e r a t o r ;
f o r ( i t e r a t o r = 0 ; i t e r a t o r < 2 ; i t e r a t o r = i t e r a t o r + 1){

cooperatorKnownRebecs [ i t e r a t o r ] = f a l s e ;
}

r ece ivedResu l t sCounter = 0 ;
expectedResultsCounter = 0 ;
r e c e i v e d R e s u l t s = true ;
boolean d i spa t che r = ?( true , f a l s e ) ;

i f ( d i spa t che r == true ) {
cooperatorKnownRebecs [ 0 ] = true ;
expectedResultsCounter += 1 ;
node1 . s ta r tG loba lTransac t i on ( ) ;

}

d i spa t che r = ?( true , f a l s e ) ;
i f ( d i spa t che r == true ) {

cooperatorKnownRebecs [ 1 ] = true ;
expectedResultsCounter += 1 ;
node2 . s ta r tG loba lTransac t i on ( ) ;

}

boolean r e s u l t ;
expectedResultsCounter += 1 ;
r e s u l t = ?( true , f a l s e ) ;
s e l f . cooperatorResponse ( r e s u l t ) ;

}
e l s e {

s e l f . c r ea t eTransac t i on ( ) ;
}

}

msgsrv s ta r tGloba lTransac t i on ( ) {
boolean r e s u l t ;
r e s u l t = ?( true , f a l s e ) ;

i f ( sender == node1 ) {
node1 . cooperatorResponse ( r e s u l t ) ;

}
i f ( sender == node2 ) {

node2 . cooperatorResponse ( r e s u l t ) ;
}

}
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msgsrv cooperatorResponse ( boolean r e s u l t ) {
r ece ivedResu l t sCounter += 1 ;
i f ( ! r e s u l t ){

r e c e i v e d R e s u l t s = f a l s e ;
}

i f ( r ece ivedResu l t sCounter == expectedResultsCounter ) {
i f ( cooperatorKnownRebecs [ 0 ] == true ) {

node1 . applyResult ( r e c e i v e d R e s u l t s ) ;
}
i f ( cooperatorKnownRebecs [ 1 ] == true ) {

node2 . applyResult ( r e c e i v e d R e s u l t s ) ;
}

s e l f . c r ea t eTransac t i on ( ) ;
}

}

msgsrv applyResult ( boolean r e s u l t ) {

}

}

main {
Node node1 ( node2 , node3 ) : ( t rue ) ;
Node node2 ( node3 , node1 ) : ( f a l s e ) ;
Node node3 ( node1 , node2 ) : ( t rue ) ;

}

Listing 5: Complex example with rich behavioral logic

6.2.4 Results, Applicability and Potential Improvements of Mapping
Procedure

From the given results, in the form of transformed models, we can derive conclu-
sions regarding the applicability of the mapping procedure. Moreover, as part of the
applicability analysis, we also strive to identify and propose potential improvements
that can be done to further elevate the mapping procedure.
To make conclusions about applicability, we need to investigate the level of detail
of transformation on the given examples as well as the Rebeca semantics that were
not included in the mapping procedure and the supplying reasons for such decision.
Starting by analyzing the given examples, it is obvious that we have a low-level
of detail that goes all the way to the most rudimentary behavioral blocks of the
Rebeca and provides corresponding semantics in the UML. Some semantics that
we specifically introduced in the sequence diagram (as for example inline assign-
ment and declaration of variables) could arguably be denoted as too detailed for the
function of the sequence diagram. On the other side, we strongly believe that the
sequence diagram should encompass this information within, for multiple reasons
that we will mention shortly. Notably, an idealistic solution to this problem would
be that UML specification provides adequate modeling elements for these semantics
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in the sequence diagram. We also investigated other types of behavioral diagrams
(i.e. activity diagram, state-machine diagram) that could potentially be used to
model these semantics, although this endeavor ended unsuccessfully. Accurately
speaking, we didn’t find any behavioral diagrams that provided adequate semantics
to be used for such purpose, at least not in the fashion that would grant us the abil-
ity to reasonably justify the use of additional types of diagrams. Conclusively, the
introduction of additional semantics in the sequence diagram seemed to be the most
elegant and adequate solution to this problem. The reasons for such decision are
various from increased readability and understandability to avoidance of additional
types of diagrams, that coherently increase complexity as well as development and
maintenance time. These new semantics did not significantly affect the readability
and quality of the sequence diagram while complementing it with important low-
level semantics for obtaining meaningful and complete information in the Rebeca.
We can also notice that the provided mapping is able to capture most of the seman-
tics of a Core Rebeca resulting in a complete transformation without a necessity
to add any information subsequently. That being said, there are certain semantics
available in Rebeca, that were not covered by the mapping procedure. We list them
and for each of them we provide reasons for excluding them as well as a possible
solution, that is in the scope of the proposed mapping procedure and can be used
to fully or partially replace them. As follows:

1. Switch condition

(a) Justification: Switch conditions are not commonly used. Moreover, many
good practices discourage the usage of switches as they can significantly
reduce readability. On the other side, if we were to provide mapping for
switch condition it would only be possible to capture this information,
up to some extent, with the usage of ALT Combined fragment, used for
mapping of regular if condition. Having one UML semantic that is used
for multiple semantics in the Rebeca can become confusing and messy,
as we would need to establish different use cases that would be mapped
with each of them.

(b) Possible solution: We can use regular if condition to fully replace the
switch condition.

2. Increment / Decrement (++, –)

(a) Justification: Increment and decrement cannot be simply modeled within
the sequence diagram as it lacks necessary semantics. Moreover, the
simplicity of increment and decrement is the main reason for its usage
across different languages including Rebeca. However, we don’t include
this in the mapping to avoid introducing too many low-level semantics.

(b) Possible solution: We can use inline assignment to fully replace the in-
crement and decrement.

3. Bit-wise operators
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(a) Justification: Bit-wise operators are rarely used and most often replaced
by logical operators as these are much more efficient and cut the execution
time for evaluating the value of conditions (true or false) due to ’short-
circuit’ logic. These are some of the reasons why they are not included
in the mapping.

(b) Possible solution: We can use logical operators to almost fully replace
bit-wise operators.

4. Ternary conditions

(a) Justification: The ternary condition is not used generally and it is highly
advised against their use, as they can significantly lower readability of
conditional statements and therefore code. This is especially true if
ternary conditions are longer then the specified number of characters.

(b) Possible solution: We can use regular if condition to fully replace the
ternary condition.

5. Break and Continue clauses

(a) Justification: Continue clause is not included due to the lack of adequate
modeling semantics to be used for mapping. Hence, UML needs to pro-
vide additional semantics for mapping to be viable. On the other side,
there is a possibility to specify a break combined fragment that can be
used similarly as the break in Rebeca. In this case, the break fragment
consists of the specification of condition which, if satisfied, leads to the
break of the enclosing statement. However, the introduction of break fur-
ther reduces the readability of the sequence diagram. Considering that
the same end results can be achieved by the usage of regular conditions,
the break seems to be unnecessary.

(b) Possible solution: Modeling and structuring conditional statements in an
appropriate way can be used to partially replace the function of continue
and break clauses. In this case, however, the loops will not be interrupted
(as in the case of break) and will continue to iterate through the specified
range, although the end result will be the same.

Along with these semantics, it is important to note that Timed Rebeca is not
included as part of the mapping procedure. Although we will shortly provide some
information regarding the Timed Rebeca concepts and how they can be modeled
with certain UML semantics, available in the sequence diagram. Timed Rebeca
introduces temporal logic as an extension of Core Rebeca for modeling and verifi-
cation of time-critical systems. Timed Rebeca specifies several semantics, used to
represent temporal logic. As follows:

1. Delay

This semantic is used as a standalone concept and it represents a passing of
time during the execution of a message server. Basically, it specifies temporal
constraint preceding the next object of execution. It can be used for different
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use cases and one would be to compensate for irregular or unexpected events
that might occur under some circumstances.

2. After

This semantic is not used as a standalone concept but in conjunction with a
message server call. It is used to represent the time that elapses before delivery
of message server to its receiver.

3. Deadline

This semantic is not used as a standalone concept but in conjunction with
a message server call. It is used to represent timeout or maximum time for
which the message remains valid. Basically, it is a time to serve the message
server call after which it is no longer valid.

For the provided temporal concepts in the Rebeca, we attempt to identify closely
related UML concepts that could be used for the mapping. With that in mind, we
discovered that in the UML, constraints are commonly used for specifying timing
requirements upon the messages. They can denote the timing of one message or
the duration between multiple messages. We identified the following semantics as
part of the sequence diagram with respect to the timing constraints and we provide
possible mappings with the aforementioned temporal Rebeca concepts.

1. State invariant

A state invariant is a run-time constraint or an explicit requirement assigned
to the specific element, typically placed on the lifeline with a temporal logic
specified in the curly braces. It can be used for specifying a timeout constraint
for the specific message calls. Besides, it can also be used for establishing other
types of requirements in addition to timing, although that is not of interest
for this work.

(a) Mapping: Often defined in the form {t==time}. Can be used for map-

ping with the deadline specification in the Rebeca ({t==time} mapped−−−−→
deadline(time)).

2. Duration constraint

A duration constraint is used between two objects, called start and end object,
and represents a constraint on the duration between them. Besides, it can also
be placed on a single message call and represents a communication delay con-
straint on the message. It is commonly used for delaying the execution of the
consecutive objects or the single object by specifying a duration requirement
between two message calls or on the single message call, respectively.

(a) Mapping: Defined between two consecutive message calls in the form
{minValue..maxValue}, where minValue and maxValue represent min-
inum and maximum duration. Can potentially be used for mapping with

the after specification in the Rebeca ({minTime..maxTime} mapped−−−−→ af-
ter(maxTime)), or with the delay specification ({minTime..maxTime}
mapped−−−−→ delay(maxTime).
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3. Time Constraint

A time constraint identifies a constraint that applies to a single object on the
sequence diagram. It is not entirely compatible for mapping with the temporal
Rebeca concepts. However, it has certain properties which makes it a potential
candidate for mapping.

(a) Mapping: Defined in the form {t..t+n}.Can potentially be used for map-

ping with the deadline specification ({time..time+n} mapped−−−−→ deadline(time+n))

or less possibly with the delay specification ({time..time+n} mapped−−−−→ de-
lay(time+n)).

As we can see, some of the mappings are shared between the concepts. Hence,
each timing constraint in the sequence diagram can be used to represent at least
one timing concept in the Rebeca. However, we noticed a possible shortcoming with
respect to the available semantics for the mapping with delay concept in the Re-
beca, although, it seems that after and delay share some similarities, which leaves a
possibility of using a duration constraint, in the UML, to represent both depending
on the use case. For example, if a target message call in the specified duration
constraint is a representation of the message server invocation, we could map it as
an after clause and, for other scenarios, we could use a delay clause. Notably, this
is just one possible suggestion and alternatives are not excluded.
Along with Timed Rebeca, it is also important to mention Probabilistic Timed Re-
beca. Probabilistic Timed Rebeca is nothing more than a Core and Timed Rebeca
from a modeling perspective, with a slight difference in the way non-deterministic
expressions are specified. Notably, with the current specification of the mapping
procedure, there is no limitation regarding probabilistic semantics used in Rebeca,
which essentially means that you can also define non-deterministic expressions with
probabilities instead of regular values. Concluding with Timed Rebeca and Proba-
bilistic Timed Rebeca, it becomes clear that we strive to include all aspects of the
Rebeca in an attempt to provide a comprehensive mapping procedure that should
ultimately enable us to model various Rebeca concepts in the UML. Moreover, the
results obtained by transformation, show that the mapping procedure is substan-
tial enough to capture all the semantics of most Rebeca models, leaving few to none
manually added concepts. This consequentially portrays its wide applicability scope.
This section gives an answer to the last research question with respect to applica-
bility:

1. RQ3: What is the applicability of the proposed mapping procedure and its
proper substantiation?

(a) Answer: This cannot be simply answered in a few words, as the answer
is actually conveyed by complete transformation on the given examples
and profound discussion conducted in Section 6.
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7 Discussion and Limitations

In this section, we discuss the research questions and designated answers as well as
the emerged solutions and their limitations.
To the best of our knowledge, the research conducted in this thesis is the first at-
tempt to comprehensive conceptual mapping between a sub-portion of UML and Re-
beca, with the goal of enabling formal verification early in the design process. The
identification of Rebeca concepts, which preceded the iterative process, has been
achieved by studying literature and available examples. This was then followed by
the iterative mapping between the identified Rebeca and UML concepts. The main
outcome is a comprehensive mapping procedure presented in Tables 5.2 5.3, that
directly answers the first two research questions RQ1 and RQ2 (1.1). Hence, the
comprehensive mapping procedure has a dual nature of accomplished results. Not
only that it provides adequate mappings between a sub-portion of UML and Rebeca
but it accomplishes this while preserving minimality of the included UML diagrams.
After the mapping is created, in order to establish compatibility of the source UML
models with the mapping procedure and therefore ensure that we are in respective
domain, we provide an extensive list of correctness attributes, for each mapping in
Table 5.2. This is accomplished as part of the pre-conversion validation, and the
list of correctness attributes is presented in Table 6.1. Moreover, the assessment of
the applicability of the proposed mapping procedure was the next big step that was
completed, showing that the mapping procedure is indeed comprehensive and able
to cope with different use cases focusing on Core Rebeca. This provides an answer
to the last research question RQ3 (1.1).
Nonetheless, the identification of limitations regarding the researched subject is
crucial to establish scenarios that could threaten the validity of the findings. The
identified limitations range from low to moderate. Minor limitations, denoted as
low, are limitations with respect to not included concepts. These include switch
condition, increment/decrement, bit-wise operators, ternary condition and break/-
continue clauses. They are designated as low considering they can be fully replaced
by concepts that are in the scope of the mapping procedure, therefore limiting their
negative impact to the minimum. More serious limitations, denoted as moderate,
include possible issues related to the minimalist approach regarding the subset of
UML modeling concepts as well as the assessment of the mapping procedure (in
post-conversion validation). Minimality-driven approach to reduction of types of
UML diagrams and their consisting information, indeed shows a decrease in the
time and cost for building and maintaining the modeled system. However, reducing
the number of behavioral UML diagrams might cause too many low-level details in
a single sequence diagram leading to low readability and therefore opposite result
from the intended. To deal with this issue, we suggest reducing the complexity of
message servers and local methods, that these sequence diagrams essentially repre-
sent, by breaking down the functionality into multiple smaller cohesive units. This,
in turn, increases readability, traceability and therefore maintainability of the mod-
eled system. Regarding the assessment of the mapping procedure that is done in
the post-conversion validation, we identified two major limitations:
The first limitation is due to the lack of implementation for the proposed mapping
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procedure, in a form of automated model transformation tool. In that case, the
automated tool would be running the transformation and afterward validation on
different applicability scenarios with the purpose to establish the correctness of the
target models (runnable in Rebeca and reflecting the source UML models). Al-
though we can estimate the applicability scope, based on the mapping procedure
and performed manual transformations, the automation of both the mapping proce-
dure and pre-conversion validation of source UML models could potentially lead to
other significant findings through more precise and extensive analyses. Regarding
the justification for the lack of implementation, we state that this decision is made
mainly on the basis of available resources for conducting the research. We analyzed
both alternatives (automated and manual transformation), and came to realization
if such implementation of a model transformation tool was done in this thesis, it
would negatively affect the quality and extensiveness of the mapping procedure by
decreasing. These conclusions are made by listing time constraints that would be
consumed by the implementation of a model transformation tool and attempting to
integrate them in the existing time plan for the duration of the thesis. The new
time plan constrained by approximately half, the available time for the creation of
the mapping procedure. In this new time plan, we were lacking approximately 2
months, for the detailed mapping procedure and implementation to be complete.
This lead us to prioritize and focus mainly on the quality and extensiveness of the
mapping procedure as well as the validation phases, leaving the implementation part
for future improvement.
The second limitation is with respect to how the evaluation of the mapping proce-
dure is done in post-conversion validation. While the two subjects are involved as
part of the first applicability scenario in doing the manual transformations and cer-
tain results are obtained, the work is not organized as a structured empirical study
(i.e. experiment). On the other side, certain aspects of an experiment are present
(i.e. controlled variables as experience of the subjects and provision of the same
pre-validated source models, etc.). However, it lacks proper design and execution
phases as well as the quantitative analysis of the obtained results. This is therefore
identified as the limitation regarding the evaluation of the mapping procedure.
Notably, with respect to the UML concepts that are Papyrus-centric and not pro-
vided in the original specification of the UML by OMG, we did not identify any of
such concepts in the provided mapping procedure.
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8 Conclusion and Future Work

In this section, we present a conclusion of our work as a summary and potential
directions for future research related to this topic.
The work in this thesis explores the syntax of the Rebeca language and attempts to
provide mapping, for each identified Rebeca concept, with a corresponding concept
in the UML. Considering the semantic richness of the Rebeca, it is not unusual that
certain concepts do not have a compatible mapping pair in the UML. These con-
cepts and all other cases, for which we do not provide a mapping, are disregarded
as the limitations of the mapping procedure. The proposed mapping procedure,
to the best of our knowledge, is the first attempt to comprehensive conceptual
mapping between a sub-portion of UML and Rebeca including both structural and
behavioral concepts. In the end, we proposed correctness attributes, as part of the
pre-conversion validation, with reasons to establish the common ground for model-
ing of the included UML diagrams. These correctness attributes are accountable for
making the source UML models compatible for application of the mapping proce-
dure. The mapping procedure is validated by transformation on the defined UML
models by two selected subjects. The results of this transformation show the wide
range applicability of the mapping procedure and serve as evidence that asserts its
comprehensiveness.
The work that is done as part of this thesis can be extended in the following ways.
The main extension of this work would be the implementation of the proposed
mapping procedure that inherently enables automated model transformation based
on the provided UML models. Additionally, considering the importance of the pre-
conversion validation, it would be wise to implement the automated validation of the
source UML models based on the proposed list of correctness attributes. Notably,
this would significantly optimize the success of model transformation and obtaining
correct Rebeca models by prevention towards using incompatible UML models in
the transformation. Besides, other extensions could potentially include more com-
prehensive mapping procedure that covers the concepts that are not included in
this thesis and/or optimizes the already included mappings as well as correctness
attributes in the pre-conversion validation. Finally, Rebeca is a fast evolving lan-
guage which opens a door for potential future extensions in the mapping procedure
to reflect the latest and greatest Rebeca concepts whether it means updating the
existing or introducing the new ones.
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