
Mälardalen University
School of Innovation Design and Engineering

Västerås, Sweden

Thesis for the Degree of Master of Science (60 credits) in Computer
Science with Specialization in Software Engineering - 15.0 credits -

DVA423

SOFTWARE FOR SAFE MOBILE
ROBOTS WITH ROS 2 AND REBECA

Kostiantyn Sharovarskyi
ksi19002@student.mdh.se

Examiner: Sasikumar Punnekkat
Mälardalen University, Västerås, Sweden

Supervisor(s): Marjan Sirjani, Ali Sedaghatbaf
Mälardalen University, Västerås, Sweden

May 20, 2020

Kostiantyn Sharovarskyi Safe Mobile Robots

Abstract

Robotic systems are involved in our daily lives and the amount of traction they have received is
non-negligible. In spite of their sizeable popularity, the quality of their software is often dismissed.
That may hinder an important property of robotic systems: safety.

The movement of mobile robots introduces an obvious safety concern. The collision of a robot
with various things can lead to disastrous results. By amplifying the development process with
formal verification techniques, one can decrease the probability of such failures. In order to facilitate
close integration of safety assurance and the development process, we propose a method to develop
safe software for ROS 2-powered mobile robots. We conduct a case study by going through all the
proposed steps and reporting the results.

The case study focuses on a scenario in which mobile robots move from a starting position to
the target position. Models of various ROS 2 components utilised in mobile robots are developed.
Extensibility is a core property of our model. We show that it allows to verify both single- and multi-
robot scenarios. Furthermore, that flexibility allowed us to model two path-finding approaches: one
naive approach without collision avoidance and one efficient approach based on the A* algorithm.

The proposed method is tightly coupled with modelling, hence, the abstraction will lead to some
mismatches between the model and reality. We report such mismatches by deploying the developed
software to a simulation environment (i.e. Gazebo) and examining the behavior of the robot(s).

i

Table of Contents
1. Introduction 1

1.1. Motivation . 1
1.2. Research questions . 2
1.3. Contributions . 3

2. Background 5
2.1. Rebeca . 5
2.2. ROS 2 . 6
2.3. Gazebo . 7

3. Related Work 9
3.1. RoboRebeca . 9
3.2. Verification of geometric properties . 9
3.3. Verification of mobile robots . 9

4. Method 11
4.1. Research method . 11
4.2. Robotic middleware . 13
4.3. Simulation environment . 13
4.4. Modelling and verification . 13

5. Ethical and Societal Considerations 14

6. From Model to Deployment: Proposed Method 15

7. Movement scenario 16

8. A Robot Model in ROS 2 17
8.1. Movement command . 17
8.2. Odometry topic . 17
8.3. Laser sensor . 17
8.4. Move topic . 18

9. Modeling Robots in Rebeca 19
9.1. Publish-subscribe mechanism . 19
9.2. Environment . 19
9.3. Robot Hardware . 21
9.4. Mobile robot behavior . 23
9.5. Multi-robot model . 26

10.Model Checking the Models or Verifying Properties 28

11.Mapping from Rebeca to ROS 2 and the Deployment 30
11.1. Mapping from Rebeca model to ROS 2 . 30
11.2. Differences with ROS 1 mapping . 30
11.3. Deployment of the mapped mobile robot . 31
11.4. Additional software . 31

12.Results and Discussion 34
12.1. Result w.r.t. research question . 34
12.2. Future work . 34

13.Conclusions 36

References 39

ii

Kostiantyn Sharovarskyi Safe Mobile Robots

Appendix A. Code of the final Rebeca model 40

iii

List of Figures
1 An example of Gazebo simulation from RobMoSys[33] 8
2 Case study process flowchart. 12
3 Activity diagram for the method to develop safe software for mobile robots. . . . 15
4 Movement scenario illustration . 16
5 Blue rays of the laser sensor in Gazebo simulator. 17
6 The components view of the mobile robot model. 20
7 Algorithm to represent laser ray sensor data in the model. 22
8 Laser ray with an obstacle. 24
9 Failed safety verification of naive model . 29
10 Successful verification of A* model . 29
11 Gazebo simulation configuration . 32
12 Robot command user interface. 32
13 RVIZ2 obstacle (black dots) and path (green dots) visualization. 33

iv

Kostiantyn Sharovarskyi Safe Mobile Robots

Listings

1 Recurrent message passing and behavior in Rebeca 5
2 ROS 2 subscriber example . 6
3 Publish-subscribe relationship in Rebeca . 19
4 The message server in the Rebeca code modelling the Movement actuator 21
5 Naive movement algorithm . 23
6 Obstacle detection in Rebeca . 24
7 SimpleFollower - solution to space explosion problem of Multi-robot model 26
8 Safety assertion in Map model . 28
9 Properties verified in Rebeca model . 28

v

Kostiantyn Sharovarskyi Safe Mobile Robots

1. Introduction

1.1. Motivation
Robotic applications are used across many different domains: space, manufacturing, aeronautics
etc. Although the behavior of robots can be sophisticated, researchers claim that the development
of such robots often does not incorporate system development processes and is based on the “ad-hoc
development processes” [1]. Robotic software has various challenges in software architecture [2],
cloud integration [3], software engineering processes [4] and other areas. In addition to traditional
software engineering challenges, robotic software introduces an increased emphasis on the issue of
safety.

These machines, robots, are relatively new, compared to cars and airplanes. And that is the
reason why the body of knowledge for developing software in this area has less information available.
Although the robotic technology is not that old, it can be used in complex sites, like manufacturing
areas [5] and open space [6]. Complex sites introduce complex behaviors, which also substantially
increases the complexity of the underlying software.

A lot of robotic applications have movement scenarios [7]–[9]. One of the first mobile robots
as we know them now, were designed by W. Grey Walter [10] in late 1940s. They were known
as ’robot tortoises’. They could move, recharge themselves, avoid obstacles, stroll around the
garden. Software systems with such complex behavior have higher risks regarding the probability
of functional faults. One of the safety-critical problems for the mobile robotic applications is the
collision avoidance problem. If it is not taken seriously, this problem can lead to a large variety of
hazards which may cause accidents that endanger human lives. One example of that is collision
between a robot and a human being in a factory setting. This hazard could lead to an accident,
and the consequences can vary based on the speed of movement and configuration of the robot.

Automotive domain, for example, is heavily regulated and has mechanisms to be proactive in
regards to the safety of software systems. One of the regulations is the standard ISO-26262 [11].
The main idea of the standard is to strive for better safety and document all of the efforts. It also
provides the process which is required in order to comply with the standard and which forces the
developers to achieve safety goals.

The robotics industry has its equivalent of ISO-26262 which is ISO-10218 [12]. The standard
for robots, in contrast to the automotive safety standard ISO-26262, does not have a dedicated
section for software development. The software parts are reviewed in the same sections as the
hardware parts. The standard is under review at the time of writing, so the software may receive
more attention in the next release.

Software engineering techniques can be used as instruments for improving a vast number of
software attributes: testability, cost of change, performance and more. However, for safety-critical
domains, safety has the utmost importance. Safety-oriented architecture [13], fault-tolerance [14],
verification [15], [16] and testing [17] can be used to improve the safety of robotic software. In this
thesis, We focus on the verification approach to safety assurance of the robotic software.

We decided to narrow our scope from all robotic software to software for mobile robots. The
main objectives for the above-mentioned kind of robots are various kinds of movement objectives.
Our goal is to investigate how formal modeling and verification can be used to build safe software
for mobile robots, therefore to make the movement safe, we must decrease the chance of collision.

Both formal verification and testing can decrease the probability of software failure. The
major benefit of formal verification to testing is the guarantee that it provides with respect to the
correctness of the program under analysis. Formal verification methods are already being applied
to robotic software, but without considering safety implications [18], [19]. Robots interact with
each other frequently, so the challenge is to formally verify that the interactions of the components
in several robots are safe.

Model checking is one of the formal verification techniques used to find faults in many different
applications [20], [21]. The basic idea of model checking involves building a model for the piece
of software under study and verifying correctness properties on the defined model. We can build
models for robotic systems and utilise formal methods to verify that these models conform to
various properties. In the case of mobile robots, this technique may be utilised to verify that the
system under study is safe.

1

Kostiantyn Sharovarskyi Safe Mobile Robots

Rebeca (Reactive Objects Language) is a modelling language based on the Hewitt actor model [22].
Rebeca is supported by a full-featured IDE called Afra [23], which embeds a powerful model checker
called Rebeca model checker (RMC) [24]. RMC facilitates verification of various correctness prop-
erties based on the state-space analysis [25]. Rebeca has been successfully used to formally verify
concurrent distributed systems [26].

Now, the robotic industry is much more developed than at the time W. Grey Walter built
his ’tortoises’ and there are various tools and approaches to build robots now. One approach is
to build robotic applications on top of a reusable ecosystem, or middleware. Robotic Operating
System (ROS) is a heavily utilized implementation of such middleware which strives to remove
some of the burden from the engineers who build robotic systems.

ROS 2, the latest version of ROS, gives engineers a set of tools and software packages that
allow rapid development of different types of robots. The central idea is decentralization by means
of message passing. Instead of synchronous calls between components, ROS 2 provides an asyn-
chronous development model. Noticeable differences from the previous ROS version include: new
performance-focused underlying message transportation layer, changed syntactic interfaces, re-
moval of centralized node and more.

In order to assure safety of mobile robots, we can utilise the model checking capabilities of
RMC to check that the model of the software for the mobile robot is safe. Specifically, we target
robotic software in mobile robots on top of ROS 2 middleware.

1.2. Research questions
This thesis aims to provide engineers with a method which would help to build safe software
for mobile robots. In order to do that, we would need to understand how these software are
developed, how to model the components of such software. And, finally, how to go from model to
actual implementation and deploy that implementation on a robot in a real or an equivalent of a
real environment. To satisfy those goals, we came up with the following research questions:

1. What ROS 2 elements are involved in robot movement scenarios and how can we model them
in Rebeca?
The ROS 2 framework has many types and abstractions. Some examples of ROS 2 elements
are nodes, services, interfaces, topics, messages etc. The first problem to solve is to find which
constructs are essential in mobile robots. The Rebeca model must be compatible with the
robotic framework, so it is important to determine how mobile robots are implemented with
ROS 2 and which key components these implementations use. Afterwards, we can model
these elements in Rebeca. This activity helps us to develop an approach to model movement
scenarios in Rebeca such that they can afterwards be implemented in ROS 2.

2. How do changes in ROS 2 affect the existing mapping rules from Rebeca to ROS?
After modelling and verifying the movement scenarios in Rebeca, we need to have a working
application in ROS 2. For that, we need to map Rebeca model to ROS 2 implementation.
Some mapping rules for transforming Rebeca to ROS have already been devised in [27].
However, ROS 2 has major changes compared to the first version of ROS. So, many of the
rules may not apply to the new framework. The goal is to investigate and devise updated
mapping rules.

3. What problems can arise when deploying the ROS 2 code mapped from the Rebeca model?
Even though the model of the software is verified by a model checker, this does not necessarily
mean that the software will not fail. The model is a simplified version of some real-world
interaction, so various details may be omitted for the purpose of abstraction. In some cases,
such omitted details may cause the implemented model to be inoperable in the real world. In
other cases, they can decrease performance, accuracy or degrade some other critical metric
of the application. These issues will be visible after deployment. For instance, the model
does not account for floor friction. And the deployed environment contains different types
of floor surfaces. If two robots are approaching each other from different floor surfaces, the
same amount of force applied using the actuators leads to different speed changes. In some
cases, this could lead to a collision.

2

Kostiantyn Sharovarskyi Safe Mobile Robots

1.3. Contributions
The thesis work was focused on modelling components which are present in a mobile robot. It
provides sophisticated reusable models for mobile robots.

We proposed an approach to model robotic applications by dividing modelled components into
three groups: Environment, Robot Hardware and Robot Software. The Environment component(s)
hold all required information regarding the model of the real world that are important for other
components. Additionally, they provide functionality for the Robot Hardware to model interaction
with the real world. Robot Hardware uses the Environment in order to model the actual sensors
and actuators which are present inside the robot. Both Environment and Robot Hardware groups
of components can be reused for many scenarios which are not limited to the one discussed in this
thesis. They were designed with reusability in mind. The group of components representing the
actual software that the software engineer is responsible for is called Robot Software.

Also, we modelled a representation of Environment for robotic applications. The Environment
group was represented by Map reactiveclass. The Map holds the information about all the obstacles
and the robots which are present in the model. Also, the Map provides functionality to move a
robot from one position to the other. This move operation includes an assertion for no collisions.
This ensures that the Rebeca Model Checker verified safety of robot movement. Although the Map
is designed for the use-case of a mobile robot, it could be built upon for other use-cases.

The Robot Hardware model part included two robotic components: movement actuator and a
laser sensor.

We modelled a detailed reusable model of a Laser sensor hardware component. The laser sensor
uses the knowledge provided by the Map reactiveclass to get all of the obstacles. Then, it models
each individual laser ray and identifies how these rays would interact with the obstacles. The main
idea was to provide the same exact data structure as one would use in the actual ROS 2 code.
This data structure is an array of distances to the nearest obstacle that each individual laser ray
has encountered. Ultimately, this allows future code generation to create the code as close to ROS
2 as possible. However, the code generator was not implemented in the context of this work.

Additionally, we propose a model of robotic movement actuator. The movement command
model included such concepts as rotation and position. The model accepts the movement com-
mands and executes them periodically. Periodicity was introduced in order to model the delay
between the command and the actual movement. Regarding the timing specification, we observed
that the laser sensor fires multiple times before the robot movement is visible, hence we added that
to our model. This actuator can be reused for any model that involves generic robotic movement.

The approach with three groups enabled the flexibility of our model. We were able to provide
two different Robot Software models. Firstly, we produced the Naive implementation. That model
did not react to laser sensor data in any way. The behavior was to move to the target in any way.
We showed that the model verification fails. Then, we modelled the A* pathfinding algorithms.
The reaction to the laser sensor data was modelled, meaning the Robot Software inferred the
position of the obstacle by looking at the distances to the obstacles and positional information
(coordinates and rotation). Then, based on the internal map with the detected obstacles, the
model calculated the path by using the A* pathfinding algorithm. The algorithm relies heavily
on the list data structure and the tree data structure in order to produce a path. Therefore, we
had to overcome the absence of the data structures by modelling them based on operations with
arrays.

We were interested in the interaction between robots too. The Environment is shared for all
robots. Therefore, to model multiple robots we need to instantiate a separate Robot Hardware
and Robot Software group for each robot. We could not model interactions between two robots
implementing A* pathfinding algorithm due to the state explosion problem. We decided to model
interactions between one robot which implements A* and the second one which follows a predefined
path. This shows interactions between the A* implementation and moving obstacles.

Additionally to the models, we devised how to verify both safety and the correctness of the
model. This was achieved by verifying that each movement did not result in a collision and that
the target was reached.

After modelling, we manually mapped the model to ROS 2 code and proposed the mapping
rules for such transition. The major difference between our mapping rules and the ones presented

3

Kostiantyn Sharovarskyi Safe Mobile Robots

in RoboRebeca approach [27] is the absence of components that interact with a central server. The
robots modelled in our work communicate neither with each other nor with a central entity.

Lastly, we verified our approach by deploying the mapped ROS 2 artifacts to a simulation
environment. During deployment, we found that we have not modelled the robot dimensions.
That led to collisions as the pathfinding algorithm did not account for additional space required by
robots dimensions. Additionally, we had to manually add logic for handling real valued coordinates
opposed to integer values coordinates used in the model. Physical interaction which we were not
able to model in Rebeca was discovered: sharp speed changes led to the robot model rolling over.
We had to add stabilization mechanisms and mechanisms to smoothen out the speed changes.

The key property of our work is the details which we were able to model. Opposed to modelling
the pathfinding algorithm only (e.g. done by Germanos and Secco [28]), we also included the process
of locating the position of obstacles from laser sensor information.

Final Rebeca code is presented in Appendix A.

4

Kostiantyn Sharovarskyi Safe Mobile Robots

2. Background

2.1. Rebeca
Rebeca is a modelling language based on the actor concept. The syntax is similar to Java and C#,
so engineers who work using these languages will easily understand the code. The main components
are rebecs. Rebecs are the instances of reactive classes, and are the Rebeca equivalent for actors.
Rebecs can communicate with each other by asynchronous message passing.

Structurally, each Rebeca model consists of three parts: (1) a possibly-empty set of environment
variables, (2) reactive class definitions, and (3) a main block, in which the reactive classes are
instantiated i.e. rebecs are defined. Each reactive class consists of the following elements:

• knownrebecs

To be able to send messages to another rebec, a rebec needs to add the target rebec to its
list of known rebecs.

• statevars

The state variables represent the current state of the rebec at each moment of time. They
may be manipulated by message servers, constructors or methods. They are central to the
property verification performed by the RMC, as together with the message queues they are
representing the state of the model.

• constructor

Similar to object-oriented languages e.g. Java, a constructor in Rebeca is responsible for
initializing the state variables of a reactive class.

• message servers

Message servers model the message-passing behavior of a rebec. A rebec can send messages
to its own message servers and the message servers of its known rebecs. The messages will
be processed asynchronously. Message servers are the only way of interaction between rebecs
in Rebeca.

• methods

Methods can be used to perform mathematical computations. In contrast to message servers,
a method can return a value and is called synchronously by the message servers or methods
of the same reactive class.

• message queue

A queue to hold the incoming messages before being processed by message servers. The size
of this queue has an upper bound, which needs to be specified beside the name of the reactive
class.

An example of Rebeca model in Listing 1 shows a rebec send, as an instance of reactive class
Sender, sending a number to rebec rec, which is an instance of reactive class Receiver.

1 reactiveclass Receiver (10){
2 msgsrv receive(int i) { }
3 }
4
5 reactiveclass Sender (10){
6 knownrebecs {
7 Receiver receiver;
8 }
9

10 Sender () {
11 self.sendThings ();
12 }
13

5

Kostiantyn Sharovarskyi Safe Mobile Robots

14 msgsrv sendThings () {
15 receiver.receive (5);
16 self.sendThings () after (1);
17 }
18 }
19 main{
20 Receiver rec():();
21 Sender send(rec):();
22 }

Listing 1: Recurrent message passing and behavior in Rebeca

Rebeca model checker (RMC) [24] examines all possible states of the Rebeca model in order to
prove or disprove a claim about the correctness properties. Each state consists of the two following
entries:

• values of the state variables of each rebec

• content of the message queue of each rebec

Based on these entries, RMC verifies that each valid combination of them is supporting the cor-
rectness property which is being verified.

Timed Rebeca (or TRebeca) is a timed extension of Rebeca, which allows modeling of timing
constraints. To model the flow of time, it adds the following primitives to Rebeca: (1) delay(),
which models computation delays, (2) after() for modeling message transmission delays, and
(3) deadline() for specifying operation deadlines. Complimenting the language constructs, RMC
provides support for verifying the timing constraints specified through these primitives.

2.2. ROS 2
One way to develop mobile robotic applications is to use the Robot Operating System (ROS). ROS
is a software framework consisting of libraries and tools which focuses on robotic applications [29].
The central concepts of ROS are topics and messages.

Each topic can send and receive messages of a certain type. The receiving functionality is
supported by programmatically subscribing to the topic. The robot components subscribe to topics
which are populated by other components publishing messages. This model allows introducing
decoupled components as each of them does not need to have knowledge about the others.

The latest ROS version is ROS 2 which introduces large amount of changes to the framework.
The core difference between versions is the new Data Distribution Service (DDS) transport layer
[30]. The transport layer introduces performance improvements, reusability and has a DDSI-RTPS
(DDS-Interoperability Real Time Publish Subscribe) protocol which works well with the publish-
subscribe nature of ROS. The adoption of DDS helps the developers get rid of the “master node”.
In ROS 1, the role of master node was to allow discoverability and communication between other
components. The change improves the independence of different ROS components interacting in
the ecosystem.

Another feature based on the new transport layer is the QoS (Quality of Service) feature [31].
It allows subscribers and publishers to specify such settings as queue depth, message durability,
deadline duration, message lifespan duration and others.

Other notable changes include: new build tools (i.e. colcon and ament) introduced to replace
the previous catkin tool, migration from XML-based launch configurations to python-based launch
configurations for flexibility purposes, removal of central configuration node and a big amount of
syntax changes.

A simple ROS 2 subscriber which logs the message received is presented in Listing 2, assuming
the package package_name publishes a message Move with x and y coordinates on topic /move.

1 // ROS 2 library
2 #include <rclcpp/rclcpp.hpp >
3
4 // Include the Move message contract
5 #include "{package_name }/msg/move.hpp"

6

Kostiantyn Sharovarskyi Safe Mobile Robots

6
7 class Subscriber : public rclcpp ::Node
8 {
9 public:

10 Subscriber () : Node("subscriber")
11 {
12 _moveCmdSub = this ->create_subscription <Move >("move", rclcpp ::QoS (10),

std::bind(& Subscriber :: OnMoveCommand , this , std:: placeholders ::_1));
13 }
14 private:
15 rclcpp :: Subscription <Move >:: SharedPtr _moveCmdSub;
16
17 void OnMoveCommand(const Move:: SharedPtr moveInfo)
18 {
19 // Log the message
20 RCLCPP_INFO(this ->get_logger (), "Received Move: %.3f, %.3f", _target ->x,

_target ->y);
21 }
22 }
23
24 int main(int argc , char **argv)
25 {
26 rclcpp ::init(argc , argv);
27 auto node = std:: make_shared <Subscriber >();
28
29 while(rclcpp ::ok())
30 {
31 rclcpp ::spin(node);
32 }
33 rclcpp :: shutdown ();
34 return 0;
35 }

Listing 2: ROS 2 subscriber example

2.3. Gazebo
ROS 2 has a lot of value in its ecosystem. The middleware introduces a huge variety of devel-
oped components designed for reuse, robots that support ROS out of the box and simulation
environments. Simulation environments are useful for scenarios when it is problematic or resource-
intensive to deploy the software to actual robots. They provide an environment which is close to
real world in certain aspects.

Gazebo - a simulation environment [32] supported by the organization that created and supports
ROS - OpenRobotics. The simulation environment adds ability to model robots, add sensors and
actuators and place the robots in the simulated physical world (see Figure 1). The physics engine
then handles all interactions and graphically shows what happens in real time.

The integration of the Gazebo simulation environment with ROS 2 is vital. The sensors and
actuators that the simulator provides have ROS 2 interfaces which allows robots to interact with
them as if they are deployed with actual hardware. For example, simulated movement actuator
provides the same topic as industrial robots. It can change the velocity and other properties of
a robot dynamically. This allows developers to test the ROS 2 software logic in the simulation
environment.

Without such a simulator, each change in robotic software may produce the need to deploy it
on a robot in the real world. This will introduce a noticable time lag between developing software
and seeing it work in practice.

7

Kostiantyn Sharovarskyi Safe Mobile Robots

Figure 1: An example of Gazebo simulation from RobMoSys[33]

8

Kostiantyn Sharovarskyi Safe Mobile Robots

3. Related Work

3.1. RoboRebeca
This thesis work is focused on the same problem addressed by the “RoboRebeca” framework in-
troduced by Saeid Dehnavi [27]. He released the first research publication showing how to model
generic ROS robots in Rebeca and verify their properties.

RoboRebeca considers a generic robotic application with a command center. This entity dis-
patches commands to robots and tracks their progress. For these types of applications, Dehnavi
proposed a way to model them in Rebeca and an automatic mechanism to map them to ROS 1
programs. The core principle of the automatic mapping is to utilise attributes for specifying meta-
data which is important for ROS, but is ignored in the Rebeca model. For example, the reactive
classes that indicate robot software are marked with specific attributes to convey that information
to the mapping software.

Current thesis contribution also concerns robotic software, but operates with mobile robots
and focuses on modelling more. Additionally, it is assumed that there is no command center and
multi-robot behavior is modelled as interactions between two independent robots.

Moreover, extra attention is brought to the modelling phase, which strives to replicate the
structure and behavior of a mobile robot. The results in the thesis are less generic, but have more
relevant details for mobile robots.

3.2. Verification of geometric properties
Banusić et. al [34] introduces PGCD - a way to program robotic applications with a proprietary
ROS-based runtime and a PGCD verifier. The structure of the programming model (P) allows
to verify the Geometric (G), Concurrency (C) and Dynamic (D) properties. That means, that
the platform allows checking communication issues (e.g. deadlocks) and collisions in concurrent
environment by design. Verification of geometric properties is powered by instructing the developer
to describe how the robot and the components use local geometric space (authors call it the
’footprint’). Then, the verifier has the ability to check overlaps between such footprints in different
components.

Comparing our work to PGCD, we separated the modelling and deployment phase by connecting
them with a mapping transition. Banusić et. al, on the other hand, proposed a framework which
does not need such mapping and forces the developer to adhere to a model that allows built-
in verifications of many properties. These different approaches have their own advantages and
disadvantages. The PGCD helps the developer by removing the necessity to switch between the
model and the codebase. However, it could be argued that this approach limits the developer to
PGCD only, increasing the cost of a possible switch of modelling technologies in the future.

Geometric properties verification is visible on both this contribution and the considered paper.
Our attention to modelling ROS 2 components interfaces requires modelling geometric properties
and interactions. In spite of the fact that we did not use the geometric properties in the verification
statements, they were used throughout the model in different modelled components. This way, the
model captures more details about the behavior of the robot, allowing more precise code generation
in the future. Additionally, PGCD supports integration with ROS 1, whereas our focus is on the
latest ROS 2 release.

3.3. Verification of mobile robots
Experimental verification. In 2015, Kowelczyk et. al [28] worked on a mobile robot with colli-
sion avoidance feature. Similarly to this work, they looked at a mobile robot with a laser sensor and
used that to build a map. Consequently, that map was used to implement the collision avoidance
feature. ROS 1 features were used to implement such behavior. To verify the robot, experimental
verification in form of a simulation was performed. Researchers put predefined circular obstacles
and observed the behavior of the robot.

In contrast to that, this thesis aims to apply modelling techniques and formal verification to the
same set of problems. The approach described in this contribution can be classified as ’model-first’,

9

Kostiantyn Sharovarskyi Safe Mobile Robots

meaning the model of the behavior is designed and developed first. Only when the iteration of the
model is completed, the deployment will be attempted.

Formal verification of navigation. Formal verification of robotics navigational algorithms
was also performed by a Germanos and Secco [35]. BUGs algorithms (inspired by ant movement)
were modelled and formally verified. Two different BUGs implementations were also compared by
the number of states and verification time in order to evaluate their performance.

While the paper does not model actual robots, the premise of mobility is pertained, so the
idea of verifying movement is the same. Comparing our approach, they assumed the knowledge
of the environment is provided and did neither model nor verify the obstacle detection, but the
navigational algorithm only. Additionally, the modelling did not contain sensors and actuators
which puts it on another level of abstraction. Our work attempts to include the structure of robot,
sensors and actuators in the model.

Verifying a firefighting robot. A more recent successful attempt to develop and verify
mobile robots was performed for a firefighting robot [36]. There, an autonomous robot was tasked
with putting out fires by utilising color sensors, sonar sensors and a magnetometer. A special arena
and a specific task sequence was designed in order to drive the formal verification and testing. The
authors translated the algorithm into an UPAAL model and verified a large number of properties:
safety properties, deadlock prevention properties and liveliness properties. Moreover, they built
the arena and tested it experimentally too.

Similarly to the firefighting robot, in this work we developed a scenario, created a model for
it, formally verified it and deployed to a real-world like environment. However, our additional
focus was on ROS 2 component modelling and integration. The UPAAL model of the reserachers
checked the overall behavior of the robot, omitting the details like sensors and actuators. The
UPAAL model is therefore very specific for a certain robot. Our work attempts to model sensors
and actuators independently of the robot, so that the models of such components can be reused.

10

Kostiantyn Sharovarskyi Safe Mobile Robots

4. Method

In order to conduct this research and provide proper answers to the research questions defined for
the thesis, we had to acquire knowledge and make appropriate decisions about the following items:

1. the type of research method

2. the robotic middleware

3. the simulation environment

4. the formal modelling and verification tool

4.1. Research method
The research area of mobile robots is complex. In order to capture and document the important
nuances, we need to see how the issues we are raising are evident throughout the development
process. In order to capture that information, we decided on a qualitative research method.

The goal of the thesis is to propose and evaluate a method for developing safer software for
mobile robots, so we decided to base our research methodology on the Action research methodology.
Håkansson describes Action research methodology [37] as one aimed to improve how people solve
some specific problems. Runeson et. al place action research method as a variation of a case
study [38]. They also define case study as a research method “aimed at investigating contemporary
phenomena in their context”. In our case, that phenomena is the development process of safe
mobile robots.

More specifically, the case study research method allows us to accumulate knowledge about
mobile robots, ROS 2 and verification software (Rebeca) throughout the whole period of thesis
work. We performed several case studies on robot movement scenarios, their formal modeling and
safety verification. These case studies are reported in Section 7.

The process for conducting the case study is presented in Figure 2. The following steps were
conducted:

1. Research on ROS 2

2. Build simple mobile robot in ROS 2

3. Document the ROS 2 components

4. Research on Rebeca

5. Build the model in Rebeca

6. Document the Rebeca structure

7. Research mapping for ROS 1

8. Map Rebeca model to ROS 2

9. Deploy the ROS 2 model

10. Document mapping differences for ROS 2

Firstly, we research the way mobile robots are built in ROS 2. In order to do that, we try to
build a simple mobile robot. Afterwards, we document which ROS 2 components were required
in such a robot. Based on these components, we create a Rebeca model. After documenting the
structure of this model, we check the existing mapping rules for ROS 1 and devise a way to map
our model to ROS 2. Afterwards, this mapped model is deployed to a simulation environment,
we document the mapping rules. There are multiple places where we go back in the process if
something goes wrong, as indicated in Figure 2.

11

Kostiantyn Sharovarskyi Safe Mobile Robots

Figure 2: Case study process flowchart.

12

Kostiantyn Sharovarskyi Safe Mobile Robots

4.2. Robotic middleware
The Robotic Operating System (ROS) family of middleware already has been under research for
purposes of modelling and verification [27]. In order to build on top of that knowledge, we decided
to proceed with this type of middleware.

The robotic middleware used in our method was ROS 2. The ROS 1 robotic middleware is
utilised in many projects, some of which are described in Section 3 “Related works”. The ROS 2,
however, is the next successor middleware to the applications which have ROS use-cases. The last
planned distribution for ROS 1 is ROS Noetic, but the ROS team at OpenRobotics claim that
OpenRobotics “can’t commit to continue investing resources into future ROS 1 releases past Noeti”
[39]. ROS Noetic planned end of line is 2025, so the companies using ROS have a strict deadline
for migrating to ROS 2. Therefore, more and more developers will start using the new version of
ROS.

4.3. Simulation environment
To answer research question 3, regarding the robot deployment, we need to select the deployment
target, i.e. a simulation environment. We decided to choose Gazebo due to its tight integration
with ROS 2. Another important benefit of Gazebo is that it does not require source code changes of
the robot software. In fact, we can model and implement the robot, independent of the simulation
environment. During deployment, we only need to run gazebo-managed ROS 2 resources at specific
addresses that robot software is expecting.

4.4. Modelling and verification
The modelling language used in this research is Rebeca and the verification tool is RMC (Rebeca
Model Checker). ROS 2 is based on asynchronous message passing, and Rebeca is well-suited
for modeling this kind of communication. Accordingly, Rebeca models can closely resemble the
programming model of the robotic applications. Rebeca is also based on actor model, which
can align well with the distributed architecture of ROS 2 programs in which there is no central
controlling entity.

13

Kostiantyn Sharovarskyi Safe Mobile Robots

5. Ethical and Societal Considerations

Current work is scoped to the modelling and verification software development practices. There
is no direct connection to people, communication, economic issues involved, therefore, current
contribution does not involve any ethical issues.

Regarding the societal considerations, mobile robots introduce many hazards that are related
to property or health damage. In the context of this thesis, a method to decrease the probability
of safety hazards was proposed, which may be beneficial in safety-critical scenarios.

14

Kostiantyn Sharovarskyi Safe Mobile Robots

6. From Model to Deployment: Proposed Method

As indicated in Figure 3, the method proposed in this thesis to develop safe software for mobile
robots includes the following steps:

1. Define the movement scenario. This step represents defining the core high level objective
of the robot, i.e. the movement tasks it is supposed to perform for the users.

2. Investigate the ROS 2 components of mobile robots. In order to adequately model
the problem space, one should be familiar with the typical architecture of the real world
mobile robot being modelled. To gain that knowledge, we have investigated the components
that are required for mobile robots to perform the tasks defined in the previous step.

3. Develop the Rebeca model for the scenario. Keeping the architecture of the system
in mind, we carefully model the behaviour and structure of a mobile robot in such a way
that new architecture elements can be introduced later and that multi-robot verification is
possible.

4. Verify properties on the model. To make sure that the modeled scenario is safe and
will not lead to a collision, in this step we define a set of safety properties for the model and
verify them using RMC. Additionally, we make sure to include the correctness properties in
order to be confident that our model performs the expected task.

5. Map the Rebeca model to ROS 2 implementation. Having the Rebeca model devel-
oped and verified, we transform the model to its ROS 2 equivalent using a mapping algorithm.

6. Deploy ROS 2 implementation to a robot. The ROS 2 software generated in the
previous step is then deployed on the Gazebo simulation environment and the issues not
found during the modelling and verification phase are documented.

Figure 3: Activity diagram for the method to develop safe software for mobile robots.

In the following, we elaborate each of these steps by illustrative examples.

15

Kostiantyn Sharovarskyi Safe Mobile Robots

7. Movement scenario

In this section, we introduce the movement scenario we decided to base our case study upon. There
are two points: A and B. The point A is the starting position of the robot. The task of the robot
is to move to point B (see Figure 4a. The simple scenario is straightforward and poses no safety
risks. However, as soon as we add one obstacle (see Figure 4b), the possibility of a collision starts
to pose a safety risk.

(a) Simple scenario (b) Obstacle scenario

Figure 4: Movement scenario illustration

The scenario contains static obstacles only. The dynamic obstacles can be represented by
adding more robots to the scenario which are all moving from one point to another. The high
level goal of the thesis is to develop robotic software that accomplishes the task to reach the target
without accidents.

16

Kostiantyn Sharovarskyi Safe Mobile Robots

8. A Robot Model in ROS 2

As discussed earlier, the main building blocks of ROS 2 applications are nodes, topics, services
and the messages passed between these blocks. In the next sections, we are going to introduce the
main components built on top of these blocks which are necessary in the movement scenarios we
are considering.

8.1. Movement command
The ROS 2 component which is essential in movement scenarios, is a ROS 2 topic which accepts
movement commands. Usually, it is called /cmd_vel, which can be interpreted as ’command
velocity’. That topic accepts a message of type Twist which consists of two 3D vectors: a linear
and angular speed [40] the robot is expected to maintain. A ROS 2 node should listen for messages
in the /cmd_vel topic. It translates the expected angular and linear speed into rotational speed
of the wheels by applying appropriate amount of force using specific actuators. However, the node
responsible for handling /cmd_vel messages is usually provided by the manufacturer of the robot.
In fact, the robot programmer should not be concerned with implementing the actual mechanical
movement.

8.2. Odometry topic
Any path-finding algorithm requires knowledge about the current state of the robot. In order to
support that requirement, we assume that the robot has a way to determine its position and angle
relative to the predefined points A and B. In other words, the robot should support odometry.
Odometry [41] is a way to use several sensors to estimate positional and rotational changes of
robot’s position over time.

In ROS 2, this can be achieved by subscribing to the /odom topic. This will allow the robot
to receive periodic updates about current position. These messages should be produced by a node
which knows the exact structure of the hardware and utilizes it to produce the estimation. Similarly
to the movement command topic, that functionality is often provided by the manufacturer.

8.3. Laser sensor
Safe movement means that any obstacle should be avoided in order to prevent collisions that could
result in accidents. The robot has to have an ability to detect obstacles in time to prevent possible
collisions. We have implemented obstacle detection by using laser sensors.

The laser sensor works by spraying rays of light from the front side of the robot in different
directions (see Figure 5). The laser sensor can be identified by the starting angle, the amount of
rays it is producing and the distance between rays. Knowing the positional number of the ray, we
can easily identify the angle. The output of each ray is either the distance to the nearest obstacle,
or infinity if no obstacle is observed until the limit of laser’s reach.

ROS 2 provides laser outputs in a topic, we decided to call that topic /laser_scan. The
manufacturer’s ROS 2 node uses the hardware and produces messages of type LaserScan. These
messages contain all the information needed to identify each ray and its output described earlier.

Figure 5: Blue rays of the laser sensor in Gazebo simulator.

17

Kostiantyn Sharovarskyi Safe Mobile Robots

8.4. Move topic
By providing means to control a robot in real time, we can make the robot flexible. Since the
robots are tasked with some high level objectives, they need to receive those objectives in some
way to change their behavior without recompiling source code.

To achieve this goal, one can introduce a separate topic for robot commands. We are studying
mobile robots, therefore the main high level objective is to reach a specific position in the real
world. That can be implemented in ROS 2 by introducing a /move topic. The robot listens to the
messages published there and changes its path-finding strategy to accommodate for the new goal.

The difference with the Movement Command topic described in Section 8.1 is that the Move
topic handles high-level goals. It registers the final target of movement, in contrast to the Movement
Command which handles low-level velocity changes.

18

Kostiantyn Sharovarskyi Safe Mobile Robots

9. Modeling Robots in Rebeca

The view of our Rebeca model is presented in Figure 6. To separate the hardware model from
the code which is under control of the software developer, we decided to build the model based on
three parts: Environment, Robot Hardware and the Robot Software. The respective model parts
have one or more reactive classes implementing desired behavior. In the following subsections, we
present how we modelled the specific components and interactions in Rebeca.

9.1. Publish-subscribe mechanism
ROS 2 utilizes not only direct message passing (between a service and a consumer), but also
the publish-subscribe mechanism (using ROS 2 topics). For example, Robot Software subscribes
to sensor information which is generated in Robot Hardware. However, Rebeca supports direct
message passing only.

In order to provide support for modeling the publish-subscribe mechanism in Rebeca, we have
defined two reactive classes Publisher and Subscriber (see Listing 3). Subscribe can be modelled
as a single message pass to a message server messagesTopic representing a topic. Then, that
message server will be responsible for publishing messages to the caller.

ROS 2 publishers often publish messages periodically with a certain rate. In order to model
that, the Publisher starts a recursive message server which periodically (utilizing features of Timed
Rebeca) sends messages to the consumer of the topic and then queues itself with a delay, using
function after().

1 reactiveclass Subscriber (2) {
2 knownrebecs {
3 Publisher p;
4 }
5 Subscriber () {
6 subscribe ();
7 }
8
9 void subscribe () {

10 p.subscribe ();
11 }
12
13 msgsrv messagesTopic(int message) { }
14 }
15
16 reactiveclass Publisher (2) {
17 msgsrv subscribe () {
18 self.periodicSend ((Subscriber) sender);
19 }
20
21 msgsrv periodicSend(Subscriber s) {
22 s.messagesTopic (1);
23 periodicSend(s) after (5);
24 }
25 }

Listing 3: Publish-subscribe relationship in Rebeca

9.2. Environment
The Environment part of the model in Figure 6 represents everything not under direct control of
the robot. It includes any entity that the robot can interact with via sensors and actuators. Then,
Robot Hardware part models the interfaces of the sensors and actuators based on the information
available in the Environment part and provides the functionality to the Robot Software part. The
Robot Hardware and Robot Software reactive classes are logically grouped into Robot Internals
to showcase that a single robot is represented by two reactive classes. To model multiple robots

19

Kostiantyn Sharovarskyi Safe Mobile Robots

Figure 6: The components view of the mobile robot model.

20

Kostiantyn Sharovarskyi Safe Mobile Robots

interacting with the same environment, the engineer would only need to create copies of reactive
classes in Robot Internals group which would interact with the same Environment.

To be more specific, in case of mobile robots, the Environment can be represented by a Map
reactive class. The Map contains the information about all obstacles that the robot can collide
with and all other robots present. From the Map’s perspective, all the robots and obstacles are
the same, so we will call both of them “obstacles”. The main responsibility of the map is to store
the obstacle information, present that obstacle information to Robot Hardware and give the Robot
Hardware the ability to indicate movement (which means changing the obstacle information).

9.3. Robot Hardware
As soon as we modelled the Environment as a Map, we have all required information and func-
tionality to model the sensors and actuators.

Movement. Starting with the movement actuator, we identified the following required oper-
ations:

• turnRight

• turnLeft

• startMoving

• stop

Identified operations are the public interface of the Robot Hardware reactive class. The robot
will use the mentioned operations to move around.

To model the delay between the actual movement and the command execution, the movement
is modelled as a periodic event which is triggered on a timer. Upon each ’tick’, the message server
checks the current state (the rotation, whether the rotation needs to change, the position, whether
the robot is stopped or moving) and decides on the next action (see Listing 4). And then, if the
position changes, it sends that information to the Map reactive class.

1 msgsrv moveActuator () {
2 if(nextRot != rot) {
3 prevRot = rot;
4 rot = nextRot;
5 }
6 else if(moving) {
7 int dx, dy;
8 if(rot == NORTH) {
9 dx = 0;

10 dy = 1;
11 }
12 else if(rot == EAST) {
13 dx = 1;
14 dy = 0;
15 }
16 else if(rot == SOUTH) {
17 dx = 0;
18 dy = -1;
19 }
20 else if (rot == WEST) {
21 dx = -1;
22 dy = 0;
23 }
24
25 self.prevPosX = posX;
26 self.posX += dx;
27 self.prevPosY = posY;
28 self.posY += dy;
29

21

Kostiantyn Sharovarskyi Safe Mobile Robots

30 mapRebec.move(prevPosX , prevPosY , posX , posY);
31 }
32 ...

Listing 4: The message server in the Rebeca code modelling the Movement actuator

Laser sensor. To function properly, the robot needs the ability to interact with its sensors.
Under our assumptions, the robot requires the laser (or ray) sensor only. The next modelling task
is to represent the distance to the nearest obstacles by using the information available in the Map
reactive class.

Mathematically, a ray is a straight line. In the mobile robot’s case, the ray is identified by the
starting point and angle relative to the robot’s rotation. The straight line can be represented by
a linear equation, as indicated in equation 1.

y = kx+ b (1)

where:

k = representation of angle
y = y coordinate
x = x coordinate
b = vertical bias

From mathematics we know that the k variable is the tangent of the angle between the straight
line and the positive direction of abscissa axis (X-axis). So, by changing that parameter from
tan(startingAngle) to tan(startingAngle+ delta ∗ rayCount), we can represent the whole range
of rays expected in a laser sensor. Of course, under the assumption that the robot is at the starting
point (0, 0) and it is facing north.

Rotational component of robot’s position should influence the rays too. By applying a rotation
with the angle corresponding to the robot’s rotation, we can rotate the laser rays. From linear alge-
bra, see the rotational matrix in equation 2 where the θ parameter is the angle of counterclockwise
rotation. Then, we can use θ = −π2 ..π to represent rotations from east to south.(

cos(θ) −sin(θ)
sin(θ) cos(θ)

)
(2)

Application of the robot’s map position is then straightforward: we add the coordinates of the
ray with the position of the robot. This operation displaces the ray from (0, 0) to the current
position of the robot.

And finally, we need to find the first collision alongside the ray we received from the above-
mentioned mathematical operations. The solution is to probe different cells along the straight line
representing the laser ray. And, at the moment we find the first cell which is occupied, we report
that distance as the nearest obstacle.

Summarizing the algorithm to produce rays, the Robot Hardware reactive class generates a
sequence of distances to the nearest obstacles in the direction of different angles relative to the
robot by following the steps illustrated in Figure 7.

Figure 7: Algorithm to represent laser ray sensor data in the model.

Positional information. The last piece of data the mobile robot requires is the positional
information. The odometry information is the position and the rotation of the robot. Additionally
to the laser information, the Robot Hardware sends the odometry information as simple pieces of
data.

22

Kostiantyn Sharovarskyi Safe Mobile Robots

9.4. Mobile robot behavior
By building the foundation of the model, we continue with implementing the actual logic of the
robot, the section which the software engineer is responsible for. Recalling our high level objectives,
the robot is required to move from point A to point B without colliding with anything.

The target position of the movement can be modelled by constructor arguments, because in
the model we do not need to change the target. For flexibility purposes, we can also add a message
server that changes the target position and resets the state of the robot

We believe that these are unnecessary details which add little value. That is because the
change of the target can be easily performed in the main Rebeca section. Changing the target
in the runtime is equivalent to changing the initial and target positions during model verification.
Less complexity means less state space, so we decided to omit that feature in the model.

To illustrate the ability to change the software model without the need to change the hardware
model, we have implemented several solutions to the problem: a naive solution, and an A*-based
solution with support for obstacle detection and avoidance.

Naive approach
At first, we ignore the data from the laser sensor and move to the target disregarding any

obstacles. The algorithm in that case is simple: with each iteration, the robot gets closer to the
target position. Assuming the target position, or position B, is (targetX, targetY), the algorithm
is illustrated in Listing 5.

1 reactiveclass Robot (10) {
2 knownrebecs { RobotHardware rh; }
3 ...
4 // Straightforward algorithm - just follow target , no collision avoidance
5 msgsrv onLaserScan(int posX , int posY , int rot , boolean moving , double [10]

laserDistances) {
6 if(posX == targetX && posY == targetY) {
7 if(! finish) {
8 rh.stop();
9 finish = true;

10 }
11 } else {
12 boolean stop = false;
13 if(targetY > posY) {
14 if(rot != NORTH) {
15 rh.turnRight ();
16 stop = true;
17 }
18 }
19 else if(targetY < posY) {
20 if(rot != SOUTH) {
21 rh.turnRight ();
22 stop = true;
23 }
24 }
25 else if(targetX > posX) {
26 if(rot != EAST) {
27 rh.turnRight ();
28 stop = true;
29 }
30 }
31 else if(targetX < posX) {
32 if(rot != WEST) {
33 rh.turnRight ();
34 stop = true;
35 }
36 }
37
38 if(stop) {

23

Kostiantyn Sharovarskyi Safe Mobile Robots

39 rh.stop();
40 }
41 else if(! moving) {
42 rh.move();
43 }
44 }
45 }
46 }

Listing 5: Naive movement algorithm

Summarizing the algorithm, it detects the direction of the target point and rotates toward
there. If the rotation is not required, it moves in that direction.

A*-based approach
Next, we are going to introduce some complex logic into the model. The algorithm can be

described in two steps. Save all obstacles detected by lasers into the internal map of the robot and
then build a path using the A* path-finding algorithm [42].

Following the principle of segregating components by design decisions [43], we introduce a
Pathfinder reactive class that encapsulates our path-finding implementation.

To find obstacles, we need to perform the opposite operation described in Figure 7 regarding
modelling laser rays. In the Pathfinder’s case, the information about the distance to the closest
obstacle and the direction is known, but the reactive class needs to infer the exact coordinates of
that obstacle.

Let’s consider the triangle in Figure 8. Here, the ray of the laser is illustrated as the line AC.
We know the exact length of that line from the laser sensor data. Additionally, we know the exact
coordinate of dot C from odometry information as it is the position of the robot. To calculate the
position of dot A, we need to know its offset of X and offset of Y from robot’s position C.

Figure 8: Laser ray with an obstacle.

Laser ray is indicated with a red line. Robot’s position is C.

By constructing a right triangle with hypotenuse on AC, we can define the X coordinate offset
as length of the side BC and the Y coordinate offset as length of the side AB. Also, we can get
the angle of α by combining our knowledge of ray’s angle and the rotation of the robot.

The next step is a matter of simple trigonometry (see equation 3). Now, as we know the offset
from the dot C to dot A, the last step is to add the the position of dot C to the offset and we have
the position of the sensed obstacle (see equation 4).

xOffset = |AC| ∗ cos(α)
yOffset = |AC| ∗ sin(α)

(3)

(Ax, Ay) = (Cx, Cy) + (xOffset, yOffset) (4)

The Rebeca implementation of the above algorithm is presented in Listing 6.

1 void addObstacle(double distance , double dYaw , int posX , int posY , int rot)
{

2 // calculate yaw from rotation rot and the laser ray angle dYaw

24

Kostiantyn Sharovarskyi Safe Mobile Robots

3 ...
4 double obsTargetX = posX + distance * cos(yaw);
5 double obsTargetY = posY + distance * sin(yaw);
6
7 int targetXIndex = round(obsTargetX);
8 int targetYIndex = round(obsTargetY);
9

10 if(targetXIndex < 0 || targetXIndex >= MAPSIZE ||
11 targetYIndex < 0 || targetYIndex >= MAPSIZE)
12 {
13 // out of bounds
14 } else {
15 if(!map[targetXIndex][targetYIndex]) {
16 self.changed = true;
17 map[targetXIndex][targetYIndex] = true;
18 }
19 }
20 }

Listing 6: Obstacle detection in Rebeca

Now, with the exact coordinates of the obstacle, we can put it into the robot’s internal map
and indicate that the Pathfinder needs to generate a new path based on the latest information.

There are three inputs to the stage of path generation: the map with detected obstacles, the
robot position and the target position.

A* (or AStar) is a path-finding algorithm based on Dijkstra’s algorithm, but improved for
real-time use-cases. Broadly speaking, it changes the Dijkstra’s algorithm from finding the ’best’
path, to finding a ’good enough’ path by prioritising path nodes closer to the target. By utilising
this strategy, it greatly improves the runtime performance.

The implementation of A* heavily relies on tree structures and lists to represent path nodes.
Unfortunately, Rebeca does not support neither of them, although, one can model them using
arrays.

For lists, the following operations were implemented in order to realise A* in Rebeca:

• clear

• add

• remove

• find

• size

In the modelling scenario, there is no need for lists with ability to grow dynamically, so arrays
with fixed sizes were used. The sizes of such arrays were chosen empirically in such a way, that
they can hold data for most of the scenarios. The unused space in such arrays is marked with a
special value of −1.

Additional issue was the absence of trigonometric functions in Rebeca. To overcome that, we
introduced Taylor series approximations [44] of such values. Regarding the tree structures, they
are modelled as a 2D array, where v = arr[i][j] value corresponds to child-parent relationship
of element at position (i, j) and element at position (v%MAP_SIZE, v/MAP_SIZE). The
workaround was to represent a hierarchical structure.

Then, with all required tools at the disposal, the A* path-finding algorithm was implemented.
After successful generation of the path, the Pathfinder reactive class sends a message with the
new path to the Robot Software reactive class.

Modelling in Rebeca enhances the debugging experience. Rebeca assertion mechanism allowed
us to make sure that the model behaves appropriately. What the modelling engineer can do, is to
insert assert(false, “Amessagetodescribethedebugpoint”) to trigger a synthetic verification error
in order to produce a counterexample. This counterexample shows all state transformations that
led to a certain state. In case of the mobile robot scenario, one can insert such debugging assertion

25

Kostiantyn Sharovarskyi Safe Mobile Robots

to fire when moving to a specific position. Then, the developer may inspect the path that the
robot took to get there. If some state transitions look erroneous, the developer will be able to
adjust the model.

Similarly to the debugging experience, during verification, the developer will see all the state
transitions that led to an error. However, in this case, the developer does not choose the possible
wrong state and/or transition, but such state is automatically detected by the RMC. Then, one
can deduce the incorrect transition and fix the bug in the model.

Verification of safety properties and utilisation of debugging assertions allowed us to find and
fix the following bugs and issues in our Rebeca model in different iterations:

• saving redundant data to state variables (running time of model verification grew)

• incorrect comparison signs in loop statements

• the path was followed in reverse (the robot tries to get to the endpoint first, instead of moving
around obstacles)

This concludes the modelling phase for Robot Software, as all required functionality (moving,
detecting obstacles, reaching target position) was modelled. The sensors and actuators were mod-
elled with great precision in order to capture the behavior of these components. This allowed our
Robot Software part to be modelled in a way that is very close to the target ROS 2 implementation,
but with the advantages of model checking.

9.5. Multi-robot model
The structure of the model allows increasing the number of robots by instantiating more Robot
Software and Robot Hardware reactive classes in the main method of Rebeca model. To model a
multi-robot movement scenario, we instantiated the second robot in the model.

However, our attempt to do so resulted in failure. After investigation, state space explosion
problem was identified as the reason. This means that the interaction of two rebecs with complex
behaviors creates a huge state space which can not be verified in a reasonable period of time. To
avoid that issue, instead of duplicating the same complex robot, we simplified the second robot’s
behaviour. Instead of finding path in real time, it moves along a predefined path, ignoring obstacle
information (see Listing 7). We call the reactive class with that behavior SimpleFollower.

The introduction of SimpleFollower solved the problem of state space explosion by abstracting
away some unnecessary properties of the path-finding robot. However, this introduced an issue
to the validity of the model. The idea behind multi-robot verification is to see whether the A*
algorithm responds well to moving obstacles. Since the first robot is implementing A*, we argue
that the main idea behind multi-robot model is preserved.

1 msgsrv move() {
2 if(pathPosition < maxPathPosition) {
3 if(!stop) {
4 int nextPos = path[pathPosition];
5 int nextX = nextPos % MAPSIZE;
6 int nextY = nextPos / MAPSIZE;
7
8 map.move(posX , posY , nextX , nextY);
9 pathPosition ++;

10 }
11 ...
12 }
13 }

Listing 7: SimpleFollower - solution to space explosion problem of Multi-robot model

One of the reasons for the state space explosion is that we extract the pathfinding functionality
into a separate reactive class (See Pathfinder reactive class in Figure 6). This introduces many ad-
ditional states because the Robot reactiveclass needs to communicate with the Pathfinder reactive
class by the means of passing messages.

26

Kostiantyn Sharovarskyi Safe Mobile Robots

There are several possible solutions which were not implemented in the scope of this work. The
issue could be fixed from the side of Rebeca modelling language by introducing functionality to
extract behavior into classes which communicate by calling methods of each other, without making
them fully-fledged Actors. In this case, Robot reactiveclass will access Pathfinder state and methods
without the requirement of passing messages, which will reduce the state connected to the message
queue. Another solution is to utilise the Rebeca @priority construction. In general, when RMC
encounters multiple messages arriving simultaneously, it explores all the possible message order
permutations in order to correctly verify the model. The @priority construction states the exact
order of received messages by sorting the message servers and the rebecs by priority. This will
prune some of the state-space and may allow running the multi-robot model without other model
changes.

27

Kostiantyn Sharovarskyi Safe Mobile Robots

10. Model Checking the Models or Verifying Properties

In order to verify the modelled robotic software, we extract the safety properties for the developed
models.

We added the assertions for the safety properties to the Map reactive class. The Listing 8
shows that each movement performed on the map asserts that the target position does not have
an obstacle, therefore, preventing collision.

In addition to safety, we are interested to address the starvation problem. In order to do that,
we want to make sure that at each point, except the initialization phase of all of the rebecs (which
is represented by isF irstState variable definition), the robot is not stopped at one place. We
introduce a isRotatingOrMovingWhenNotF inished assertion to make sure that the progress is
being made (see Listing 9).

Finally, to verify that the high level objective is achieved, we check that the latest robot position
is the target position specified in robot’s objectives. For that, isOnTargetPositionWhenFinished
assertion is introduced (see Listing 9).

1 msgsrv move(int xFrom , int yFrom , int xTo , int yTo) {
2 int prev = map[xFrom][yFrom];
3
4 if(prev != OBSTACLE) {
5 assertion(false , "Expected the FROM coordinate to be an obstacle");
6 }
7
8 int to = map[xTo][yTo];
9

10 if(to == OBSTACLE) {
11 assertion(false , "COLLISION: Expected the TO coordinate not to be an

obstacle");
12 }
13
14 map[xFrom][yFrom] = 0;
15 map[xTo][yTo] = OBSTACLE;
16 }

Listing 8: Safety assertion in Map model

1 property{
2 define {
3 isOnTargetPosition = rh.posX == r.targetX && rh.posY == r.targetY;
4 finish = r.finish;
5 hasMoved = rh.rot != rh.prevRot || rh.posX != rh.prevPosX || rh.posY != rh.

prevPosY;
6 isFirstState = rh.isFirstState;
7 }
8
9 Assertion {

10 isRotatingOrMovingWhenNotFinished: finish || isFirstState || (! finish &&
hasMoved);

11 isOnTargetPositionWhenFinished: !finish || (finish && isOnTargetPosition);
12 }
13 }

Listing 9: Properties verified in Rebeca model

Now, we can run the RMC with the assertions in place. There are two target models: the naive
implementation and the A* pathfinding implementation.

Starting with the naive model, the algorithm works well while there are no obstacles. However,
if we put an obstacle on the path of the robot, Rebeca Model Checker will show us that the safety
assertion fails (see Figure 9 for the output of RMC and the counterexample).

Continuing with the A* model, the RMC reports no failures, as indicated in Figure 10. The
amount of states examined is considerably higher due to increased complexity of the model.

28

Kostiantyn Sharovarskyi Safe Mobile Robots

(a) RMC error

(b) Safety counterexample

Figure 9: Failed safety verification of naive model

Figure 10: Successful verification of A* model

29

Kostiantyn Sharovarskyi Safe Mobile Robots

11. Mapping from Rebeca to ROS 2 and the Deployment

11.1. Mapping from Rebeca model to ROS 2
Overall, the mapping algorithm consists of the following steps:

1. For every reactiveclass in the Robot Software part of Rebeca model create a ROS 2 node

(a) For each statevar create a private field

(b) For every method create a corresponding private method in the class

(c) Transform Rebeca constructor to class constructor

(d) For each message server create a topic subscription to the topic with the name of the
message server

(e) For message server parameters create a ROS 2 message type

(f) For each send message operation to the specific message server publish a message to the
corresponding topic

2. Ignore Rebeca code in Robot Hardware and Environment parts of the model

3. Create a class with all Rebeca environment variables as static data

11.2. Differences with ROS 1 mapping
Next, we compare generic Rebeca to ROS 1 mappings defined in RoboRebeca [27] and Rebeca to
ROS 2 mappings within the context of mobile robots.

Robot reactive classes. Robot reactive classes (in this work we call them Robot Software)
can be mapped in the same way as in ROS 1, disregarding minor syntax differences. These reactive
classes will become ROS 2 nodes which have the same semantic value, as in ROS 1.

Environment variables. ROS 2 does not provide a "parameter server", therefore, one needs
to create such an entity manually if needed. Since the scenarios defined in 7 did not require dynamic
reconfiguration, all variables can be translated to compiler define directives. This will allow
different ROS 2 nodes to access the same variables, however, as in Rebeca, no global modification
will be possible.

State variables. The statevars mapping rule did not require changes. ROS 2 supports node
parameters which can be used to initialize the values representing the state. That will allow to
support different configuration of the node mapped from a reactive class. Then, these values will
be saved to the state of the node - private variables of the corresponding C++ class.

Controller. ROS 2 has no reason to contain the central piece called controller. ROS 2 nodes
are decentralized and require no central control entity, so this concept becomes redundant.

Port. The port entities were used to communicate with the central server. With its deprecation,
the same could be said about port message servers.

Unannotated reactive classes, methods and message servers. These reactive classes can
be mapped to ROS 2 nodes in the same was as annotated ones. Message servers will transform into
one subscriber and a number of publishers. Each publisher will be mapped from each individual
reactive class that sends a message to the particular message server. This mapping did not change
from the previous research.

Rebeca deadlines. Although, after() and delay() statements still have no direct transforma-
tions to ROS, the introduction of QoS (Quality of Service) in ROS 2 allowed to map the deadline()
statement. QoS configuration of a topic includes a message lifetime property, which purges the
message from the queue if the message is older than specified. Therefore, the statement will map
to a subscription with an appropriate QoS message lifespan configured.

@Class reactive classes. For performance reasons, some reactive classes conversion to ROS
2 nodes may hinder real-time performance. For this reason, this additional mapping rule was
introduced. These reactive classes should be mapped not to ROS 2 nodes, but to C++ classes
with a synchronous interface. For this class, all state variables are mapped to private fields and all
message servers are mapped to methods.

30

Kostiantyn Sharovarskyi Safe Mobile Robots

However, since we are considering a specific movement scenario with specific required ROS 2
capabilities, we can define more concrete mapping for those capabilities.

@LaserSensor message server and odom data. We carefully designed the interface of this
method to represent the actual data structures used in ROS 2 components. This message server
is mapped to a subscriber to a hardware ROS 2 topic providing laser sensor data (see Section
8.3). The method body in this case will be run for each reading of sensor data. Additionally, this
message server will create a subscription to odometry data, described in Section 8.2.

Robot Hardware move and rotate commands. These commands can be mapped to
a publisher of an hardware ROS 2 topic /cmd_vel responsible for movement data, introduced
in Section 8.1. The model did not take into account the complexities of the linear and angular
velocities, so the software developer will need to add that manually to the generated message body.

11.3. Deployment of the mapped mobile robot
The target simulator platform for deployment is the Gazebo simulator. However, after the mapping
process, we had to perform multiple manual adjustments to the code. The issues that we had to fix
became evident during deployment process. The Gazebo simulation with the robot, laser sensor
and an obstacle illustrated is depicted in Figure 11.

Real coordinates.
Our model dealt with integer x and y coordinates which allowed us to map them to internal

map coordinates straight away. However, the simulator and real world often use real coordinates.
For that, we implemented a conversion between a map coordinate and real coordinate. In our
case, we decided that each 1 x 1 meter square of real world will contain exactly 10 x 10 map cells.
Effectively, we divided each meter into 10 map cells.

Robot dimensions.
In the modelling phase, we assumed that the robot is an entity with an infinitely small length

and width. However, in real world, the robot has a width and length which should also be calculated
in the algorithm responsible for collision avoidance. This issue was easily determined using the
output of the visualization described in the Section 11.4.

To fix this issue, we decided to assume that an area equal to the dimensions of the robot around
each obstacle is non-reachable for the robot. For each obstacle determined by the laser sensor, we
additionally mark the area of that size around that point as an area with obstacles.

Discovered safety issue: rolling over
An additional safety issue was discovered after fixing previous problems. A sharp rotation

angle, given the appropriate composition of the robot, may result in unstable footing. This will
introduce shakiness that can result in robot rolling over itself. In order to fix that, we added a
monitoring variable which makes the robot stabilize when it starts shaking.

This issue is hard to catch in modelling environment, as it is introduced by physical composition
of the robot and properties may vary.

11.4. Additional software
In pursuit of better observability of the robot in the simulation environment, we produced some
additional pieces of software.

Robot command. Additionally to the software of the robot, we had to build a simple graphical
user interface (GUI) in order to give the robot an objective: the target coordinates (see Figure
12). This GUI provides the ability to send (x, y) coordinates to the Move topic of the robot. The
robot interprets a message on this topic as the target position of its movement. The program can
work with multiple robots deployed in the simulation environment by providing the user with an
ability to choose any robot currently deployed.

Visualization. For quicker feedback loop, we introduced visualization of ROS 2 Robot be-
haviour by utilising RVIZ 2 - a visualization tool in ROS 2 environment. Visualization is often
provided with components, so it became a de-facto standard in ROS 2 environment. We graphi-
cally put all perceived obstacles and the path on a map (see Figure 13 which corresponds to the
Gazebo configuration showed in Figure 11 with input command specified in Figure 12). This was
implemented by continuously sending obstacle and path information from the robot ROS 2 software

31

Kostiantyn Sharovarskyi Safe Mobile Robots

to the RVIZ 2 tool. The green dots on Figure 13 represent the path that the robot is currently
taking. The black dots represent the cells which the robot marked as obstacles. Additionally,
robots odometry information is presented as a red arrow.

Figure 11: Gazebo simulation configuration

Figure 12: Robot command user interface.

32

Kostiantyn Sharovarskyi Safe Mobile Robots

Figure 13: RVIZ2 obstacle (black dots) and path (green dots) visualization.

33

Kostiantyn Sharovarskyi Safe Mobile Robots

12. Results and Discussion

12.1. Result w.r.t. research question
We have assessed our results by enumerating the research questions and mapping them to contri-
butions in the work.

RQ 1: What ROS 2 elements are involved in robot movement scenarios and how
can we model them in Rebeca?

We have identified the following ROS 2 elements: movement command, odometry, laser sensor,
a command receiver and the software which uses the above to realise the high level goals - robot
software.

In order to model these, we divided the components of the model into Environment, Robot
Hardware and Robot Software parts and modelled them in Rebeca (see the components view in
Figure 6 in Section 9). This components division can be generalized to any robotic software and
used as a basis of modelling.

Then, we presented how to model the ROS 2 components in Rebeca in Sections 9 and 9.4.
The movement command, odometry and the laser sensor are not specific to the kinds of robots
we are looking at in this work Therefore, the models can be reused for other robots in order to
verify properties specific to their domain. Additionally, we proved that by separating hardware and
software components, we made our model flexible by showing how to model different algorithms
based on the same sensors and actuators.

There are two downsides of modelling with such an amount of detail: the state-space explosion
problem and the absence of a standard library of functions in modelling languages. The model
should be monitored carefully and checked often in order to keep the number of states and transi-
tions to a practical amount. For example, if the RMC runs for an unreasonable amount of time, this
is a symptom of the state space being too big. Either the Rebeca model contains some bugs, or the
model is too detailed. The standard library problem can be worked around by introducing approx-
imate and/or limited implementations of such functions. In our model, we implemented limited
operations of a list, implemented some approximations of trigonometric functions and modelled
tree structures with the array data structure. Although this issue makes the model less similar to
the final ROS 2 code, the mapping from such structures to the actual constructions in the target
programming language proved to be simple and straightforward.

RQ 2:How do changes in ROS 2 affect the existing mapping rules from Rebeca to
ROS?

The changes in the mapping were described in Section 11.2. Overall, we found changes to be
specific to the redundancy of the central server. Additionally, we introduced an additional mapping
rule to accommodate to real-time systems performance requirements.

The mapping changes are relevant to all types of robotic software built on top of ROS 2. But,
the limitation of this work is that it presents no automatic solution for the mapping process.

RQ 3: What problems can arise when deploying the ROS 2 code mapped from the
Rebeca model?

We discovered the following issues in Section 11.3: real and integer coordinates mismatch, lack
of robot size representation in the model and the effect of unstableness while attempting to perform
some movements.

Mostly, these issues are related to the level of abstraction we chose to develop our model which
resulted in omission of certain physical properties. The lack of robot size representation may be
added to the future models, but other issues are too complex to handle in modelling environments.
Formal verification of the model works best when the model assumptions are tested and verified
on the real world environment. These assumptions are limitations of our developed model.

12.2. Future work
Based on this contribution, future work may include overcoming the limitations. For example, the
model of the robot may be enhanced with the concept of robot size or dimensions. A practical
continuation would include implementing the automatic mapping based on the mapping changes
proposed in this work. Also, future work can explore modelling non-deterministic interactions.

34

Kostiantyn Sharovarskyi Safe Mobile Robots

Moreover, the contribution can be put into another context. For example, instead of focusing
on mobile robots, another interesting problem is to verify manipulator robots, which are used
in manufacturing settings. Those kinds of robots also have safety issues which may be useful to
formally verify.

35

Kostiantyn Sharovarskyi Safe Mobile Robots

13. Conclusions

In this work, we propose a method to develop safe software for mobile robots. This method
includes a modelling approach for ROS 2 components and mobile robots. Based on the developed
model, safety properties of a mobile robot are extracted and verified. After verifying the model, an
appropriate deployment artifact of the robot is prepared and put into a simulation environment.
Discrepancies between the model and the real world which may harm robot’s performance are
reported.

Based on that method, we perform a case study on a specific movement scenario. In the case
study, by following the proposed method, we are able to mitigate some safety issues by addressing
them early: in the verification phase of the method. By applying formal verification techniques
early in the development process, we remove faults from the software and make the robot safer.

36

Kostiantyn Sharovarskyi Safe Mobile Robots

References

[1] F. Ciccozzi, D. Di Ruscio, I. Malavolta, P. Pelliccione, and J. Tumova, “Engineering the
software of robotic systems”, in 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), 2017, pp. 507–508.

[2] L. Capucha and B. Rohal-Ilkiv, “Software architecture of mobile robotic systems: A case
study”, in 2016 Cybernetics Informatics (K I), 2016, pp. 1–5.

[3] H. Zhang and L. Zhang, “Cloud robotics architecture: Trends and challenges”, in 2019 IEEE
International Conference on Service-Oriented System Engineering (SOSE), 2019, pp. 362–
3625.

[4] S. García, “Effective engineering of multi-robot software applications”, in 2018 IEEE/ACM
40th International Conference on Software Engineering: Companion (ICSE-Companion),
2018, pp. 454–455.

[5] S. Sakakibara, “The latest robot systems which reinforce manufacturing sector”, in 2003 IEEE
International Conference on Robotics and Automation (Cat. No.03CH37422), vol. 2, 2003,
2878–2883 vol.2.

[6] M. A. Diftler, C. J. Culbert, R. O. Ambrose, R. Platt, and W. J. Bluethmann, “Evolution of
the NASA/DARPA Robonaut control system”, in 2003 IEEE International Conference on
Robotics and Automation (Cat. No.03CH37422), vol. 2, 2003, 2543–2548 vol.2.

[7] Yu-Cheol Lee, Christiand, Seung-Hwan Park, Wonpil Yu, and Sung-Hoon Kim, “Topological
map building for mobile robots based on GIS in urban environments”, in 2011 8th Interna-
tional Conference on Ubiquitous Robots and Ambient Intelligence (URAI), November 2011,
pp. 790–791. doi: 10.1109/URAI.2011.6146018.

[8] R. Barber, J. Crespo, C. Gómez, A. C. Hernámdez, and M. Galli, “Mobile Robot Navigation
in Indoor Environments: Geometric, Topological, and Semantic Navigation”, in Applications
of Mobile Robots, E. G. Hurtado, Ed., Rijeka: IntechOpen, 2019, ch. 5. doi: 10.5772/
intechopen.79842. [Online]. Available: https://doi.org/10.5772/intechopen.79842.

[9] J. Kim, Y. Choi, J. Lee, and S. Hong, “Floor-to-floor navigation for a mobile robot”, in
2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI),
October 2013, pp. 362–363. doi: 10.1109/URAI.2013.6677387.

[10] O. Holland, “The first biologically inspired robots”, Robotica, vol. 21, no. 4, pp. 351–363, Au-
gust 2003, issn: 0263-5747. doi: 10.1017/S0263574703004971. [Online]. Available: https:
//doi.org/10.1017/S0263574703004971.

[11] ISO Central Secretary, “Road vehicles — Functional safety — Part 6: Product development at
the software level”, en, International Organization for Standardization, Geneva, CH, Standard
ISO 26262-6:2018, 2018. [Online]. Available: https://www.iso.org/standard/68388.html.

[12] ——, “Robots and robotic devices — Safety requirements for industrial robots — Part 1:
Robots”, en, International Organization for Standardization, Geneva, CH, Standard ISO
10218-1:2011, 2011. [Online]. Available: https://www.iso.org/standard/51330.html.

[13] M. Y. Jung and P. Kazanzides, “An architectural approach to safety of component-based
robotic systems”, in 2016 IEEE International Conference on Robotics and Automation (ICRA),
2016, pp. 3360–3366.

[14] Masayuki Murakami, “A safety failover subsystem for intelligent mobile robots”, in 2007
International Conference on Control, Automation and Systems, 2007, pp. 2493–2498.

[15] G. Beltrame, E. Merlo, J. Panerati, and C. Pinciroli, “Engineering safety in swarm robotics”,
in 2018 IEEE/ACM 1st International Workshop on Robotics Software Engineering (RoSE),
2018, pp. 36–39.

[16] C. Cheng, M. Rickert, C. Buckl, E. A. Lee, and A. Knoll, “Toward the design of robotic
software with verifiable safety”, in 2009 33rd Annual IEEE International Computer Software
and Applications Conference, vol. 1, 2009, pp. 622–623.

37

https://doi.org/10.1109/URAI.2011.6146018
https://doi.org/10.5772/intechopen.79842
https://doi.org/10.5772/intechopen.79842
https://doi.org/10.5772/intechopen.79842
https://doi.org/10.1109/URAI.2013.6677387
https://doi.org/10.1017/S0263574703004971
https://doi.org/10.1017/S0263574703004971
https://doi.org/10.1017/S0263574703004971
https://www.iso.org/standard/68388.html
https://www.iso.org/standard/51330.html

Kostiantyn Sharovarskyi Safe Mobile Robots

[17] P. Trojanek and K. Eder, “Verification and testing of mobile robot navigation algorithms: A
case study in spark”, in 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Sep. 2014, pp. 1489–1494. doi: 10.1109/IROS.2014.6942753.

[18] E. Gjondrekaj, M. Loreti, R. Pugliese, F. Tiezzi, C. Pinciroli, M. Brambilla, M. Birattari, and
M. Dorigo, “Towards a formal verification methodology for collective robotic systems”, in In
Proceedings of the 14th International Conference on Formal Engineering Methods, November
2012, pp. 54–70. doi: 10.1007/978-3-642-34281-3_7.

[19] A. Miyazawa, P. Ribeiro, W. Li, A. Cavalcanti, J. Timmis, and J. Woodcock, “Robochart:
Modelling and verification of the functional behaviour of robotic applications”, Software and
Systems Modeling, January 2019.

[20] W. Visser, K. Havelund, G. Brat, and Seungjoon Park, “Model checking programs”, in Pro-
ceedings ASE 2000. Fifteenth IEEE International Conference on Automated Software Engi-
neering, Sep. 2000, pp. 3–11. doi: 10.1109/ASE.2000.873645.

[21] J. M. Atlee and J. Gannon, “State-based model checking of event-driven system require-
ments”, IEEE Transactions on Software Engineering, vol. 19, no. 1, pp. 24–40, January 1993,
issn: 2326-3881. doi: 10.1109/32.210305.

[22] (2020). Rebeca modeling language, [Online]. Available: https://rebeca-lang.org (Ac-
cessed on January 10, 2020).

[23] (2020). Afra, [Online]. Available: https://rebeca-lang.org/alltools/Afra (Accessed on
January 11, 2020).

[24] (2020). RMC: Rebeca model checking engine, [Online]. Available: https://rebeca-lang.
org/alltools/RMC (Accessed on January 21, 2020).

[25] M. M. Jaghoori, A. Movaghar, and M. Sirjani, “Modere: The model-checking engine of re-
beca”, in Proceedings of the 2006 ACM Symposium on Applied Computing, ser. SAC ’06, Di-
jon, France: Association for Computing Machinery, 2006, pp. 1810–1815, isbn: 1595931082.
doi: 10.1145/1141277.1141704.

[26] A. Jafari, J. J. S. Nair, S. Baumgart, and M. Sirjani, “Safe and efficient fleet operation for
autonomous machines: An actor-based approach”, in Proceedings of the 33rd Annual ACM
Symposium on Applied Computing, ser. SAC ’18, Pau, France: Association for Computing
Machinery, 2018, pp. 423–426, isbn: 9781450351911. doi: 10.1145/3167132.3167382.

[27] S. Dehnavi, RoboRebeca: a New Framework to Design Verified ROS-based Robotic Programs,
Thesis, DiVA, 2019. [Online]. Available: http://urn.kb.se/resolve?urn=urn:nbn:se:
mdh:diva-44702.

[28] W. Kowalczyk, M. Przybyła, and K. Kozłowski, “Control of a mobile robot and collision
avoidance using navigation function - experimental verification”, in 2015 10th International
Workshop on Robot Motion and Control (RoMoCo), 2015, pp. 148–152.

[29] (2020). ROS 2 Overview, [Online]. Available: https://index.ros.org/doc/ros2/ (Accessed
on January 10, 2020).

[30] Open Source Robotics Foundation. (). ROS on DDS, [Online]. Available: https://design.
ros2.org/articles/ros_on_dds.html (Accessed on May 10, 2020).

[31] O. S. R. Foundation. (2020). About Quality of Service settings, [Online]. Available: https://
index.ros.org/doc/ros2/Concepts/About-Quality-of-Service-Settings/ (Accessed
on May 10, 2020).

[32] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-
robot simulator”, in IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sendai, Japan, Sep. 2004, pp. 2149–2154.

[33] (2019). Gazebo/TIAGo/SmartSoft Scenario [RobMoSys Wiki], [Online]. Available: https:
//robmosys.eu/wiki/baseline:scenarios:tiago_smartsoft (Accessed on May 10,
2020).

38

https://doi.org/10.1109/IROS.2014.6942753
https://doi.org/10.1007/978-3-642-34281-3_7
https://doi.org/10.1109/ASE.2000.873645
https://doi.org/10.1109/32.210305
https://rebeca-lang.org
https://rebeca-lang.org/alltools/Afra
https://rebeca-lang.org/alltools/RMC
https://rebeca-lang.org/alltools/RMC
https://doi.org/10.1145/1141277.1141704
https://doi.org/10.1145/3167132.3167382
http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-44702
http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-44702
https://index.ros.org/doc/ros2/
https://design.ros2.org/articles/ros_on_dds.html
https://design.ros2.org/articles/ros_on_dds.html
https://index.ros.org/doc/ros2/Concepts/About-Quality-of-Service-Settings/
https://index.ros.org/doc/ros2/Concepts/About-Quality-of-Service-Settings/
https://robmosys.eu/wiki/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki/baseline:scenarios:tiago_smartsoft

Kostiantyn Sharovarskyi Safe Mobile Robots

[34] G. B. Banusić, R. Majumdar, M. Pirron, A.-K. Schmuck, and D. Zufferey, “Pgcd: Robot
programming and verification with geometry, concurrency, and dynamics”, in Proceedings
of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, ser. ICCPS
’19, Montreal, Quebec, Canada: Association for Computing Machinery, 2019, pp. 57–66,
isbn: 9781450362856. doi: 10.1145/3302509.3311052. [Online]. Available: https://doi-
org.ep.bib.mdh.se/10.1145/3302509.3311052.

[35] V. Germanos and E. L. Secco, “Formal verification of robotics navigation algorithms”, in
2016 IEEE Intl Conference on Computational Science and Engineering (CSE) and IEEE
Intl Conference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium on
Distributed Computing and Applications for Business Engineering (DCABES), 2016, pp. 177–
180.

[36] A. Tahir, K. Saghar, H. B. Khalid, U. Shadab Butt, U. S. Khan, and U. Asad, “Formal verifi-
cation and development of an autonomous firefighting robotic model”, in 2019 International
Conference on Robotics and Automation in Industry (ICRAI), 2019, pp. 1–6.

[37] A. Håkansson, “Portal of research methods and methodologies for research projects and
degree projects”, in Proceedings of the International Conference on Frontiers in Education :
Computer Science and Computer Engineering FECS’13, QC 20131210, CSREA Press U.S.A,
2013, pp. 67–73, isbn: 1-60132-243-7. [Online]. Available: http://www.world-academy-of-
science.org/worldcomp13/ws.

[38] P. Runeson, Ed., Case study research in software engineering: guidelines and examples. Hobo-
ken, N.J: Wiley, 2012, isbn: 9781118104354.

[39] D. T. @. OpenRobotics. (2018). Planning future ROS 1 distribution(s) - General - ROS
Discourse, [Online]. Available: https://discourse.ros.org/t/planning-future-ros-1-
distribution-s/6538 (Accessed on May 10, 2020).

[40] (2020). ros2/common_interfaces: A set of packages which contain common interface files
(.msg and .srv)., [Online]. Available: https://github.com/ros2/common_interfaces
(Accessed on April 15, 2020).

[41] M. Ben-Ari and F. Mondada, “Robotic motion and odometry”, in Elements of Robotics.
Cham: Springer International Publishing, 2018, pp. 63–93, isbn: 978-3-319-62533-1. doi:
10.1007/978-3-319-62533-1_5. [Online]. Available: https://doi.org/10.1007/978-3-
319-62533-1_5.

[42] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of
minimum cost paths”, IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2,
pp. 100–107, 1968.

[43] D. L. Parnas, “On the criteria to be used in decomposing systems into modules”, Commun.
ACM, vol. 15, no. 12, pp. 1053–1058, December 1972, issn: 0001-0782. doi: 10.1145/361598.
361623. [Online]. Available: https://doi-org.ep.bib.mdh.se/10.1145/361598.361623.

[44] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs,
and mathematical tables. US Government printing office, 1948, vol. 55.

39

https://doi.org/10.1145/3302509.3311052
https://doi-org.ep.bib.mdh.se/10.1145/3302509.3311052
https://doi-org.ep.bib.mdh.se/10.1145/3302509.3311052
http://www.world-academy-of-science.org/worldcomp13/ws
http://www.world-academy-of-science.org/worldcomp13/ws
https://discourse.ros.org/t/planning-future-ros-1-distribution-s/6538
https://discourse.ros.org/t/planning-future-ros-1-distribution-s/6538
https://github.com/ros2/common_interfaces
https://doi.org/10.1007/978-3-319-62533-1_5
https://doi.org/10.1007/978-3-319-62533-1_5
https://doi.org/10.1007/978-3-319-62533-1_5
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/361598.361623
https://doi-org.ep.bib.mdh.se/10.1145/361598.361623

Kostiantyn Sharovarskyi Safe Mobile Robots

Appendices
A. Code of the final Rebeca model

1 // Environment variables
2 ...
3
4 reactiveclass Map (15) {
5 statevars {
6 int [10][10] map;
7 }
8
9 Map() {

10 setObstacles ();
11 }
12
13 msgsrv move(int xFrom , int yFrom , int xTo , int yTo) {
14 ... // Moves the robot from one position to the other on the map
15 }
16
17 msgsrv subscribeToMapInfo () {
18 infiniteMapInfoSend ((RobotHardware)sender) after(msgDelay);
19 }
20
21 msgsrv infiniteMapInfoSend(RobotHardware h) {
22 h.laserScanSend(map);
23
24 infiniteMapInfoSend(h) after(msgDelay);
25 }
26
27 msgsrv subscribeToMapInfoFromFollower () {
28 infiniteMapInfoSendToFollower ((SimpleFollower)sender) after(moveDelay);
29 }
30
31 msgsrv infiniteMapInfoSendToFollower(SimpleFollower f) {
32 f.onMap(map);
33
34 infiniteMapInfoSendToFollower(f) after(moveDelay);
35 }
36
37 msgsrv setInitialPosition(int x, int y) {
38 ... // Sets initial position of the robot
39 }
40
41 void setObstacles () {
42 ... // Sets obstacles on the map
43 }
44 }
45
46 reactiveclass RobotHardware (10) {
47 knownrebecs {
48 Robot robot; Map mapRebec;
49 }
50
51 statevars {
52 int posX; int posY; int rot; boolean moving; int nextRot;
53
54 // variables for assertion
55 int prevPosX; int prevPosY; int prevRot; boolean isFirstState;

40

Kostiantyn Sharovarskyi Safe Mobile Robots

56 }
57
58 RobotHardware(int x, int y, int r)
59 {
60 posX = x; posY = y; rot = r;
61 initMap ();
62
63 moving = true; isFirstState = true; nextRot = rot;
64
65 moveActuator () after(moveDelay);
66 }
67
68 void initMap () {
69 mapRebec.setInitialPosition(posX , posY);
70 mapRebec.subscribeToMapInfo ();
71 }
72
73 // Send laser data to robot software
74 msgsrv laserScanSend(int [10][10] map) {
75 double [10] dists;
76 ... // Calculates the distances of rays 0..9 to the nearest obstacles
77
78 robot.onLaserScan(posX , posY , rot , moving , dists);
79 }
80
81 // Move the actual robot (change pos)
82 msgsrv moveActuator () {
83 if(nextRot != rot) {
84 ... // Handles rotation changes
85 }
86 else if(moving)
87 {
88 ... // calculates nextPos
89 mapRebec.move(prevPosX , prevPosY , posX , posY);
90 }
91
92 self.isFirstState = false;
93 moveActuator () after(moveDelay);
94 }
95
96 msgsrv move() {
97 moving = true;
98 }
99

100 msgsrv stop() {
101 moving = false;
102 }
103
104 msgsrv turnLeft () {
105 ... // Handles rotating to the left
106 }
107
108 msgsrv turnRight () {
109 ... // Handles rotating to the right
110 }
111 }
112
113 reactiveclass Pathfinder (50)
114 {
115 statevars {
116 int targetX; int targetY;

41

Kostiantyn Sharovarskyi Safe Mobile Robots

117
118 boolean [10][10] map; boolean changed;
119 }
120
121 msgsrv setTargetPosition(int x, int y) {
122 ... // Changes the target position
123 }
124
125 msgsrv calcPath(int xPos , int yPos , int rot) {
126 if(changed) {
127 ... // Calculates the new path via A*
128 ((Robot)sender).onNewPath(path); // Sends the path to the robot
129 }
130 }
131
132 msgsrv addObstacles(double [10] obstacles , double [10] angles , int

obstacleCount , int posX , int posY , int rot) {
133 ... // Adds obstacles to the internal map
134 }
135 }
136
137 reactiveclass Robot (10) {
138 knownrebecs {
139 RobotHardware rh; Pathfinder pf;
140 }
141
142 statevars {
143 int curX; int curY; int curRot;
144 int targetX; int targetY;
145 boolean finish;
146 int [30] path; int curPathIdx;
147 }
148
149 Robot(int x, int y) {
150 ... // Set target position
151 self.setTargetPos (); // Set the target position of the Pathfinder
152 self.rebuildPath () after(pathfinderDelay); // Rebuild path periodically
153 }
154
155 msgsrv setTargetPos () {
156 pf.setTargetPosition(self.targetX , self.targetY);
157 }
158
159 msgsrv rebuildPath () {
160 pf.calcPath(curX , curY , curRot);
161 self.rebuildPath () after(pathfinderDelay);
162 }
163
164 msgsrv onLaserScan(int posX , int posY , int rot , boolean moving , double [10]

laserDistances) {
165 if(! finish) {
166 ... // Updates the positional information
167 ... // Extracts the obstacle information from laserDistances
168
169
170 // Sends the obstacle information to the Pathfinder
171 if(obstacleCount > 0) {
172 pf.addObstacles(obstacles , angles , obstacleCount , posX , posY , rot);
173 }
174
175 ... // Move according to the path generated by Pathfinder

42

Kostiantyn Sharovarskyi Safe Mobile Robots

176 }
177 }
178
179 msgsrv onNewPath(int [30] newPath) {
180 // Save the new path from the Pathfinder
181 }
182 }
183
184 reactiveclass SimpleFollower (20) {
185 knownrebecs {
186 Map map;
187 }
188
189 statevars {
190 int [4] path; int pathPosition; int maxPathPosition;
191 int posX; int posY;
192 boolean stop;
193 }
194
195 SimpleFollower () {
196 ... // Define path and position for the SimpleFollower
197 startMoving ();
198 }
199
200 void startMoving () {
201 map.setInitialPosition(posX , posY);
202 map.subscribeToMapInfoFromFollower ();
203 move() after(2 * moveDelay);
204 }
205
206 msgsrv onMap(int [10][10] mapInfo) {
207 ... // Check if next position will not contain an obstacle , stop otherwise
208 }
209
210 msgsrv move() {
211 if(pathPosition < maxPathPosition) {
212 if(!stop) {
213 ... // Update position and move to the next predefined path checkpoint
214 }
215 self.move() after(2 * moveDelay);
216 }
217 }
218 }
219
220 main {
221 Map map():();
222
223 Pathfinder pf():();
224 Robot r(rh, pf):(5, 0); // Set target path to (5, 0)
225 // Initialize robot at position (0, 0) facing EAST
226 RobotHardware rh(r, map):(0, 0, EAST);
227
228 SimpleFollower sf(map):();
229 }

43

