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Abstract

With the the popularity of web services and applications in wireless net-
works, distributed computing is becoming ubiquitous. e software can
be time critical and as such must respond to requests in a timely fashion.
Analyzing timing behaviour of distributed and asynchronous systems is a
particularly challenging task. We present an extension of the actor-based
Rebeca language that can be used to model distributed and asynchronous
systems with timing constraints. We provide an automated translation
from Timed Rebeca to Erlang. Translation schemes for both reëned pro-
grams and simulation are included. e translation tool is built upon
formal mapping from Timed Rebeca to Erlang and the Structural Op-
erational Semantics of Timed Rebeca. A few examples are studied and
experimental results are provided.
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Útdráttur

Vinsældir vefþjónusta og hugbúnaðar sem hefur þráðlaus samskipti gera
það að verkum að dreifð tölvukerë má ënna víða. Algengt er að slík kerë
setji skilyrði fyrir svartíma sín á milli og því getur tími getur skipt sköpum.
Greining á dreifðum ósamstilltum kerfum gagnvart tíma er einkar áskor-
andi verkefni. Við kynnum viðbót við gerendabundna málið Rebeca til
þess að hanna líkön af dreifðum og ósamstilltum kerfum með tímahömlum.
Við útbúum sjálfvirka þýðingu frá Timed Rebeca yër í Erlang. Þýðingar
fyrir bæði útfærslu og hermun eru innifaldar. Þýðingartólið er byggt á
formlegri skilgreiningu á Timed Rebeca yër í Erlang og formlegri merkingar-
fræði (SOS) Timed Rebeca. Nokkur dæmi eru skoðuð og niðurstöður
kynntar.
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Chapter 1

Introduction

Networked computer systems are everywhere and we use them every day. e systems
which largely go unnoticed are embedded systems such as mobile phones, televisions,
digital cameras and coffee machines. ese systems are also called reactive systems,
they progress by means of interacting with their environment which might include
inputs from humans or other devices. Reactive systems are also being increasingly
used in safety critical systems such as heart rate monitors, nuclear reactors and car
brakes. Failure in any of these embedded systems can lead to ënancial loss for the
manufacturer or worse, loss of lives.

With the rise of the Internet, distributed systems have become the norm perhaps with-
out much consideration to the fact. Asynchronous and distributed systems like web
services can make or break companies. For example, if an airline loses the ability to
sell tickets online due to a web service failure, the company will suffer great loss of
revenue. Probability of it going out of business increases as the problem persists.

Despite advances in software engineering, producing reliable software is a challenging
task. Surprisingly, it seems that consumers have come to terms with the fact that soft-
ware is unreliable; most people simply reboot in case of software failure and continue
their work and accept that updates will, up to a point, ëx the ìaws they experience.
Software can suffer from devastating quality issues as history has shown us. e Intel
Pentium ìoating point bug in 1994 cost the company $475 million and damage in
reputation (Pratt, 1995). Ariane 5’s integer overìow bug in 1996 resulted in a explo-
sion 40 seconds into mid air and cost European tax payers an estimated $370 million
(Dowson, 1997).

Formal methods are a mathematically precise way to specify, develop and verify soft-
ware and hardware systems. Proponents of formal methods like to compare software
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engineering to bridge construction. ey say that before the time of engineering prin-
ciples, bridges used to collapse and now they don’t. In reality, modern bridges collapse
due to errors in construction1 but in general they are more reliable than without en-
gineering principles during construction. One way to build software based on formal
methods is to create a formal model which represents the behaviour of the software.
e model can be veriëed by checking if the behaviour conforms to a speciëcation, it
can be simulated which offers some validation of the behaviour, and it can be reëned
to a runnable program, sometimes automatically.

Models can incorporate features such as time constraints and probability. Time con-
straints allow a modeller to specify that a computation takes time. Probabilistic models
allow a modeller to have random or probablistic behaviour in the model. Various reac-
tive systems are time critical, such as communication protocols, traffic lights as well as
the aforementioned radiation machines in which if timing constraints are not met lives
may be at stake. e need to be able to analyze timed, distributed and asynchronous
systems is clear and this thesis is a part of a larger project that attempts to address that
need.

1.1 Modelling with Actors and Time

e actor model is well suited for distributed and asynchronous systems. It is based
on asynchronous messages passing between agents in which actors can only respond
to messages by changing behaviour, creating more actors or sending more messages.
Actors are becoming ever more popular in industry as companies are building highly
concurrent software with the actor model. Example of this are the Facebook chat
system and Twitter message queue. Although actors are attracting more and more
attention both in academia and industry, little has been done on timed actors and
even less on analyzing timed actor-based models.

In this thesis we present an extension of the actor-based Rebeca language (Sirjani,
Movaghar, Shali, & Boer, 2004) that can be used to model distributed and asyn-
chronous systems with timing constraints. is extension of Rebeca is motivated by
the ubiquitous presence of real-time computing systems, whose behaviour depends on
timing as well as functional requirements.

1 Tuo River bridge in China 2007, Kota Chambal Bridge in India 2009.
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1.2 Contributions

e contribution of this thesis is to extend Rebeca with time constraints, introduce
Timed Rebeca as a language for designing and analyzing timed systems in distributed
and asynchronous settings and a tool to simulate Timed Rebeca models. is work is
a part of a larger project in which the entire life cycle of software development will be
supported by verifying and simulating the model, and reëning the model to a program.
Part of the motivation to focus on simulation is that a translation from Timed Rebeca
to UPPAAL exists (Izadi, 2010). However, even simple examples result in a state
explosion when model checked.

To summarize, the contributions are:

• Deëne Timed Rebeca language and its formal semantics (together with Aceto,
Cimini, Ingolfsdottir, Sigurdarson and Sirjani).

• A formal mapping to Erlang for reënement and simulation of Timed Rebeca
models using McErlang.

• A tool to translate Timed Rebeca models to Erlang, both reëned models and
simulation models.

1.3 Overview of the esis

In Chapter 2 we introduce the main concepts behind Rebeca. is includes the actor
model, model checking and additionally simulation which is crucial for this thesis.
Chapter 3 introduces Timed Rebeca, its language deënition and informal semantics
as well as the formal semantics by means of Structural Operational Semantics. Chapter
4 presents both informally and formally a translation to Erlang which is based on the
semantics of Timed Rebeca. ere we also give extended mapping in order to be able
to simulate Timed Rebeca models with McErlang. In Chapter 5 we look at three case
studies and analyze their behaviour using simulations. Related work is then discussed
in Chapter 6. We conclude with conclusions and future work in Chapter 7.

e work on deëning Timed Rebeca language is done as a team work within the ICE-
ROSE (ICEROSE, 2011) and ICE-TCS (ICETCS, 2011) groups at Reykjavik Univer-
sity. e work on mapping to Erlang and developing the tool is done by myself. e
technical report (Aceto et al., 2011) is a condensed version of this thesis report.
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Chapter 2

Background

In this chapter we introduce the model driven software methodology. We then intro-
duce the actor model and Rebeca which the work in this thesis extends. Finally, we
outline the simulation process.

2.1 Model Driven Development

Model driven development is a software development methodology. e methodology
focuses on creating models of some aspects of a system. e models have the beneët of
being more abstract than the actual implementation and as such can be used to reason
about the behaviour offered by the model even before it is built. However, too abstract
models might not capture the behaviour of the system faithfully.

Modelling offers various beneëts to the life cycle of software development. Making
a model in the ërst place, prior to implementing it, can lead to discoveries about
problems that were not immediately visible before. Models are typically built from a
speciëcation which can at a later phase in development be used to verify the behaviour
of the model. Different veriëcation techniques exist. We have theorem proving and
model checking which offer the most solid guarantees about the behaviour in question.
On the other hand we have simulation and testing which are more lightweight and can
be used complementary to heavier methods. Once a model has been veriëed it can
be reëned (implemented). Reënement is building the code based on the (veriëed)
model.
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2.2 Actor Model

A well-established paradigm for modelling distributed and asynchronous systems is
the actor model. is model was originally introduced by Hewitt as an agent-based
language (Hewitt, 1972), and later established as a mathematical model of concurrent
computation that treats actors as the universal primitives of concurrent computation
(Agha, 1985). In response to a message that it receives, an actor can make local deci-
sions:

• Create more actors,

• send more messages,

• and change their behaviour.

ere is no order assigned to the decisions above. ey can be carried out concurrently.
Actors have encapsulated states and behaviour, and are both capable of creating new
actors, as well as redirecting communication links through the exchange of actor iden-
tities.

A number of systems can be modelled naturally by the actor system. For instance
email, where an account is an actor and the email address is the actor identity. Another
example is a web service, whose URL can be modelled as an actor identity.

Different interpretations, dialects and extensions of actor models have been proposed
in several domains and are claimed to be the most suitable model of computation for
the most dominating applications, such as multi-core programming and web services
(Hewitt, 2007).

2.3 Rebeca

Reactive objects language, Rebeca (Sirjani et al., 2004), is an operational interpreta-
tion of the actor model with formal semantics and model checking tools. Rebeca is de-
signed to bridge the gap between formal methods and software engineers. e formal
semantics of Rebeca is a solid basis for its formal veriëcation. Compositional and mod-
ular veriëcation, abstraction, symmetry and partial order reduction have been investi-
gated for verifying Rebeca models. e theory underlying these veriëcation methods
is already established and embodied in veriëcation tools (Jaghoori, Sirjani, Mousavi,
Khamespanah, & Movaghar, 2010a; Sirjani, Movaghar, Shali, & Boer, 2005; Sirjani
et al., 2004). With its simple, message-driven and object-based computational model,
Java-like syntax, and set of veriëcation tools, Rebeca is an interesting and easy-to-learn
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model for practitioners. e Rebeca toolkit ships with an integrated development en-
vironment based on Eclipse. Part of the environment is the ability to model check
with Modere (Jaghoori, Sirjani, Mousavi, Khamespanah, & Movaghar, 2010b) which
does symmetry and partial order reduction on the models.

A Rebeca model consists of a set of reactive classes and the main program in which we
declare reactive objects, or rebecs, as instances of reactive classes. A reactive class has an
argument of type integer, which denotes the length of its message queue. e body
of the reactive class includes the declaration for its known rebecs, state variables and
methods (also called message servers). Each method body consists of the declaration of
local variables and a sequence of statements, which can be assignments, if statements,
rebec creation (using the keyword new) and method calls. Method calls are sending
asynchronous messages to other rebecs (or to self ) to invoke the corresponding message
server (method). Message passing is fair and messages addressed to a rebec are stored
in its message queue. e computation takes place by taking the message from the
front of the message queue and executing the corresponding message server atomically
(Sirjani et al., 2004).

2.4 Simulation

Simulation is a method to imitate the behaviour of a system. A model of the system is
created, which represents a set of assumptions made about the system. A simulation
is used to evaluate a model quantitatively and gather data about it in order to esti-
mate some characteristics about the model. e simulation method can complement
model checking since it does not require building the state space and can discover er-
rors before model checking begins, which is a much more computationally expensive
process. Moreover, simulation can be applied to models which are out of reach for
model checkers due to state space explosion, but gives no guarantees.
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Chapter 3

Timed Rebeca

e contents of this chapter is based on joint work with Luca Aceto, Matteo Cimini,
Anna Ingolfsdottir, Steinar Hugi Sigurdarson and Marjan Sirjani.

In this chapter we introduce an extension of Rebeca with real-time features. We present
the timing features we’re interested in modelling, changes made to Rebeca to realize
these features and the formal semantics of the extension.

3.1 Timing Features

Modelling real-time aspects is different than that of regular modelling. By real-time,
we want to describe when something takes place in the system, not only how. e
features we are interested in describing are the following:

1. computation time: the time that is taken by a computation

2. message delivery time: network delay, when messages are sent from one location
to another

3. messages expiration: a request for service can expire if a deadline is not met for
delivering a reply for a request

a. request: the request can expire after a certain amount of time

b. reply: when a reply is sent, i.e. a request has been served, there may be an expi-
ration time for the reply

4. periodic events: represents events that occur periodically

With this basic set of features we can build complex timing behaviour into models. It
is not hard to imagine a model of networked devices at different locations in the world
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which might require these features for modelling. Some processing might be done
in one device that normally takes longer in other devices. Sending messages between
the devices takes different amounts of time based on their geographical location. A
device might send out progressive information to other devices but that information is
only valid for a speciëc amount of time before it is renewed and resent, hence the old
information should be discarded after the timeout. A device might request information
from another device and expect a reply before some ëxed deadline. is requires the
ability to read local time before a request and checking the time of reply to see if the
reply is valid. A device might periodically read sensory input and act upon them.

3.2 Timing Constructs

We consider synchronized local clocks for rebecs in the timed Rebeca models. e time
domain is the set of natural numbers, yielding a discrete time domain. Methods are
still executed atomically, but we can model passing of time while executing a method.
Instead of a message queue for each rebec, we have a bag containing the messages that
are sent. Each rebec knows about its local time and can put deadlines on the service
requests (messages) that are sent declaring that the request will not be valid after the
deadline (modelling the timeout for a request). When a message is sent there can also
be a constraint on the earliest time at which it can be served (taken from the message
bag by the receiver rebec). e modeller may use these constraints for various purposes,
such as modelling the network delay or modelling a periodic event.

e timing primitives that are added to the syntax of Rebeca are delay, now, deadline
and after. See Figure 3.1.

Delay: 𝑑𝑒𝑙𝑎𝑦(𝑡), where 𝑡 is a positive natural number, will increase the value of the
local clock of the respective rebec by the amount 𝑡. Delays are used to model
computations that take time.

Now: 𝑛𝑜𝑤() returns the time of the local clock of the rebec from which it is called.

Deadline: 𝑟.𝑚() 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑡), where 𝑟 denotes a rebec name,𝑚 denotes a method name
of 𝑟 and 𝑡 is a positive natural number, means that the message 𝑚 is sent to the
rebec 𝑟 and is put in the message bag. After 𝑡 units of time the message is not
valid any more and is purged from the bag.

After: 𝑟.𝑚() 𝑎𝑓𝑡𝑒𝑟(𝑡), where 𝑟 denotes a rebec name, 𝑚 denotes a method name of 𝑟
and 𝑡 is a positive natural number, means that the message𝑚 is sent to the rebec 𝑟
and is put in the message bag. e message cannot be taken from the bag before 𝑡
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𝑚𝑜𝑑 ::= 𝑒𝑣 𝑟𝑐 𝑚𝑎𝑖𝑛 Rebeca model
𝑒𝑣 ::= 𝐞𝐧𝐯 𝑡 𝑣; environment variables
𝑟𝑐 ::= 𝐫𝐞𝐚𝐜𝐭𝐢𝐯𝐞𝐜𝐥𝐚𝐬𝐬 𝑐 {𝑘𝑟 𝑠𝑣 𝑚𝑠𝑔 } reactive class deënition
𝑘𝑟 ::= 𝐤𝐧𝐨𝐰𝐧𝐫𝐞𝐛𝐞𝐜𝐬 { 𝑡 𝑣 } known rebecs
𝑠𝑣 ::= 𝐬𝐭𝐚𝐭𝐞𝐯𝐚𝐫𝐬 { 𝑡 𝑣 } state variables
𝑚𝑠𝑔 ::= 𝐦𝐬𝐠𝐬𝐫𝐯 𝑚(𝑡 𝑣) { 𝑠𝑡𝑚𝑡 } message servers
𝑠𝑡𝑚𝑡 ::= 𝑣 = 𝑒; assignment

| 𝑟 = 𝐧𝐞𝐰 𝑐(𝑒); new rebec
| 𝑟.𝑚(𝑒) [𝐚𝐟𝐭𝐞𝐫(𝑒௔)] [𝐝𝐞𝐚𝐝𝐥𝐢𝐧𝐞(𝑒ௗ)]; message send
| 𝐢𝐟 (𝑒) 𝑠𝑡𝑚𝑡 [𝐞𝐥𝐬𝐞 𝑠𝑡𝑚𝑡] branching
| 𝐝𝐞𝐥𝐚𝐲(𝑒) delay;
| { 𝑠𝑡𝑚𝑡 } block

𝑒 ::= 𝐧𝐨𝐰() now
𝑚𝑎𝑖𝑛 ::= 𝐦𝐚𝐢𝐧 { 𝑖𝑑 } main block
𝑖𝑑 ::= 𝑐 𝑟(𝑟) ∶ (𝑘); instance declaration

Figure 3.1: Abstract syntax of Timed Rebeca. Words with line over it are shorthand
for sequences, like 𝑒𝑣 is for 𝑒𝑣ଵ…𝑒𝑣௡. Pairs of sequences are abbreviated s.t. 𝑡 𝑣 denotes
𝑡ଵ𝑣ଵ… 𝑡௡𝑣௡. Identiëers 𝑐, 𝑡, 𝑚, 𝑣, and 𝑟 denote class, type, method, variable, and rebec
names, respectively; 𝑘 denotes constants, and 𝑒 denotes an (arithmetic, boolean or
nondetermistic choice) expression.

time units have passed. After statements can be used to model network delays in
delivering a message to the destination, and also a periodic event. e difference
between after and delay is not immediately obvious but will be explained later
in this chapter.

e delay statement models the passing of time for a rebec during execution of a
method. e now expression returns the local time of the rebec. e keywords af-
ter and deadline can only be used in conjunction with a method call. e messages
that are sent are put in the message bag together with their time tag and deadline tag.
e scheduler decides which message is to be executed next, based on the time tags of
the messages. e time tag of a message is the value of now when the message was sent,
with the value of the argument of the after added to it when the message is augmented
with an after. e intuition is that a message cannot be taken (served) before the time
that the time tag determines and it shall be discarded after the deadline.

Should After be Modelled with Delay?

At ërst, intuition suggests that after can be modelled with delay. is turns out not to
be the case. If 𝑟.𝑚() 𝑎𝑓𝑡𝑒𝑟(𝑡) were modelled as 𝑑𝑒𝑙𝑎𝑦(𝑡); 𝑟.𝑚(), the local clock of the
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sender would be incremented by 𝑡 before sending the message, while the message send
with after would not.

3.3 Modelling Timing Features

We will now show how we can model the timing features described in Section 3.1 by
using the timing primitives from Section 3.2 in Timed Rebeca.

• Computation time is modelled by means of the delay construct.

• Message delivery time is modelled with the after construct (in conjunction with
message sends).

• Message expiration is modelled in two different ways:

– Request expiration is modelled with the deadline construct.

– Response deadline is modelled by sending the deadline as parameter with
the request such that the responding agent sets that as a deadline when the
reply is sent.

• Periodic events are modelled by repeatedly sending the same message to a rebec
in a loop with the after construct.

3.4 Progress of Time

e progress of time is modelled locally by the delay statement. Each delay statement
within a method body increases the value of the local time (which the expression now
yields) of the respective rebec by the amount of its argument. When we reach a message
send statement, we put that message in the message bag augmented with a time tag.
e local time of a rebec can also be increased when we take a message from the bag
to execute the corresponding method.

A scheduler takes a message from the message bag, executes the corresponding message
server atomically, and then takes another message. Every time the scheduler takes a
message for execution, it chooses a message with the least time tag. Before the exe-
cution of the corresponding method starts, the local time (now) of the receiver rebec
is set to the maximum value between its current time and the time tag of the mes-
sage. e current local time of each rebec is the value of now. is value is frozen
when the method execution ends until the next method of the same rebec is taken for
execution.
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e arguments of after and delay are relative to the local time, but when the corre-
sponding messages are put in the message bag their tags are absolute values, which are
computed by adding the relative values of the arguments to the value of the expression
now of the sender rebec (where the messages are sent).

3.5 Formal Semantics for Timed Rebeca

In this section we provide an SOS (Plotkin, 1981) semantics for Timed Rebeca in the
style of Plotkin. e behaviour of Timed Rebeca programs is described by means of
the transition relation → that describes the evolution of the system.

e states of the system are pairs (𝐸𝑛𝑣, 𝐵), where 𝐸𝑛𝑣 is a ënite set of environments
and 𝐵 is a bag of messages. For each rebec 𝐴 of the program there is an environment 𝜎஺
contained in 𝐸𝑛𝑣, that is a function that maps variables to their values. e environ-
ment 𝜎஺ represents the private store of the rebec 𝐴. Besides the user-deëned variables,
environments also contain the value for the special variables 𝑛𝑜𝑤, the current time,
and 𝑠𝑒𝑛𝑑𝑒𝑟, which keeps track of the rebec that invoked the method that is currently
being executed. e environment 𝜎஺ also maps every method name to its body.

e bag contains an unordered collection of messages. Each message is a tuple of the
form (𝐴௜ , 𝑚(𝑣), 𝐴௝ , 𝑇𝑇, 𝐷𝐿). Intuitively, such a tuple says that at time 𝑇𝑇 the sender
𝐴௝ sent the message to the rebec 𝐴௜ asking it to execute its method 𝑚 with actual
parameters 𝑣. Moreover this message expires at time 𝐷𝐿.

Scheduler

e system transition relation → is deëned by the rule scheduler Figure in 3.2. e
scheduler rule allows the system to progress by picking up messages from the bag and
executing the corresponding methods. e ërst side condition of the rule, namely
𝜎஺೔(𝑛𝑜𝑤) ≤ 𝐷𝐿, checks whether the selected message carries an expired deadline, in
which case the condition is not satisëed and the message cannot be picked. e second
side condition is the predicate 𝑇𝑇 = 𝑚𝑖𝑛(𝐵), which is satisëed whenever the time tag
𝑇𝑇 is the smallest time tag for the messages of all the rebecs 𝐴௜ in the bag 𝐵. e
premise executes the method 𝑚, as described by the transition relation

ఛ→ , which will
be deëned below. e method body is looked up in the environment of 𝐴௜ and is
executed in the environment of 𝐴௜ modiëed as follows.

• e variable 𝑠𝑒𝑛𝑑𝑒𝑟 is set to the sender of the message.



14 Timed Rebeca: Reënement and Simulation

• In executing the method 𝑚, the formal parameters 𝑎𝑟𝑔 are set to the values
of the actual parameters 𝑣. Methods of arity 𝑛 are indeed supposed to have
𝑎𝑟𝑔ଵ, 𝑎𝑟𝑔ଶ, … , 𝑎𝑟𝑔௡ as formal parameters. is is not a lack of generality since
such a change of variable names can be performed in a pre-processing step for
any program.

• e variable 𝑛𝑜𝑤 is set to the maximum between the current time of the rebec
and the time tag of the selected message.

Method Execution

e execution of the methods of rebec 𝐴௜ may change the private store of the rebec 𝐴௜,
the bag 𝐵 by adding messages to it and the list of environments by creating new rebecs
through new statements. Once a method is executed to completion, the resulting bag
and list of environments are used to continue the progress of the whole system.

e transition relation
ఛ→ describes the execution of methods in the style of natural

semantics (Kahn, 1987). See Figure 3.2 for the set of rules. Since in this kind of seman-
tics the whole computation of a method is performed in a single step, this choice per-
fectly reìects the atomic execution of methods underlying the semantics of the Rebeca
language. e general form of this type of transition is (𝑆, 𝜎, 𝐸𝑛𝑣, 𝐵) ఛ→(𝜎ᇱ, 𝐸𝑛𝑣ᇱ, 𝐵ᇱ).
A single step of

ఛ→ consumes all the code 𝑆 and provides the value resulting from its
execution. Carrying the bag 𝐵 is important because new messages may be added to it
during the execution of a statement 𝑆. Also 𝐸𝑛𝑣 is required because 𝑛𝑒𝑤 statements
create new rebecs and may therefore add new environments to it. In the semantics, the
local environment 𝜎 is separated from the environment list 𝐸𝑛𝑣 for the sake of clarity.
e result of the execution of the method thus amounts to the modiëed private store
𝜎ᇱ, the new list of environments 𝐸𝑛𝑣ᇱ and the new bag 𝐵ᇱ.

Rules for assignment, conditional statement and sequential composition are standard.
Rules for the timing primitives deserve some explanation.

• Rule msg describes the effect of method invocation statements. For the sake of
brevity, we limit ourselves to presenting the rule for method invocation state-
ments that involve both the after and deadline keywords. e semantics of in-
stances of that statement without those keywords can be handled as special cases
of that rule by setting the argument of after to zero and that of deadline to +∞,
meaning that this message never expires. Method invocation statements put a
new message in the bag, taking care of properly setting its ëelds. In particular
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the time tag for the message is the current local time, which is the value of the
variable 𝑛𝑜𝑤, plus the number 𝑑 that is the parameter of the after keyword.

• Delay statements change the private variable 𝑛𝑜𝑤 for the considered rebec.

Finally, the creation of new rebecs is handled by the rule create. A fresh name 𝐴 is used
to identify the newly created rebec and is assigned to 𝑣𝑎𝑟𝑛𝑎𝑚𝑒. A new environment
𝜎஺ is added to the list of environments. At creation time, 𝜎஺ is set to have its method
names associated with their code. A message is put in the bag in order to execute the
initial method of the newly created rebec.
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
(ఙಲ೔(௠), ఙಲ೔ [now ୀ ୫ୟ୶(்், ఙಲ೔(௡௢௪)), [௔௥௚ ୀ ௩], ௦௘௡ௗ௘௥ ୀ ஺ೕ], ா௡௩, ஻)

ഓ→(ఙᇲ
ಲ೔ , ா௡௩

ᇲ, ஻ᇲ)

({ఙಲ೔ } ∪ ா௡௩, {(஺೔, ௠(௩), ஺ೕ, ்், ஽௅)} ∪ ஻) → ({ఙᇲ
ಲ೔ } ∪ ா௡௩ᇲ, ஻ᇲ)

if ఙಲ೔(௡௢௪) ஸ ஽௅ and ்் ୀ ௠௜௡(஻)

 (௩௔௥௡௔௠௘.௠(௩) ௔௙௧௘௥(ௗ) ௗ௘௔ௗ௟௜௡௘(஽௅), ఙ, ா௡௩, ஻)
ഓ→(ఙ, ா௡௩, {(ఙ(௩௔௥௡௔௠௘),௠(௘௩௔௟(௩, ఙ)), ఙ(௦௘௟௙), ఙ(௡௢௪) ା ௗ, ఙ(௡௢௪) ା ஽௅)} ∪ ஻)

 (ௗ௘௟௔௬(ௗ), ఙ, ா௡௩, ஻) ഓ→(ఙ[௡௢௪ ୀ ఙ(௡௢௪) ା ௗ], ா௡௩, ஻)

 (௫ ୀ ௘, ఙ, ா௡௩, ஻) ഓ→(ఙ[௫ ୀ ௘௩௔௟(௘, ఙ)], ா௡௩, ஻)

 (௩௔௥௡௔௠௘ ୀ ௡௘௪ ை(௩), ఙ, ா௡௩, ஻)
ഓ→(ఙ[௩௔௥௡௔௠௘ ୀ ஺], {ఙಲ[௡௢௪ ୀ ఙ(௡௢௪), ௦௘௟௙ ୀ ஺]} ∪ ா௡௩,

{(஺, ௜௡௜௧௜௔௟(௘௩௔௟(௩, ఙ)), ఙ(௦௘௟௙)), ఙ(௡௢௪), ାஶ)} ∪ ஻)

భ
௘௩௔௟(௘, ఙ) ୀ ௧௥௨௘ (ௌభ, ఙ, ா௡௩, ஻)

ഓ→(ఙᇲ, ா௡௩ᇲ, ஻ᇲ)

(௜௙ (௘) ௧௛௘௡ ௌభ ௘௟௦௘ ௌమ, ఙ, ா௡௩, ஻)
ഓ→(ఙᇲ, ா௡௩ᇲ, ஻ᇲ)

మ
௘௩௔௟(௘, ఙ) ୀ ௙௔௟௦௘ (ௌమ, ఙ, ா௡௩, ஻)

ഓ→(ఙᇲ, ா௡௩ᇲ, ஻ᇲ)

(௜௙ (௘) ௧௛௘௡ ௌభ ௘௟௦௘ ௌమ, ఙ, ா௡௩, ஻)
ഓ→(ఙᇲ, ா௡௩ᇲ, ஻ᇲ)


(ௌభ, ఙ, ா௡௩, ஻)

ഓ→(ఙᇲ, ா௡௩ᇲ, ஻ᇲ), (ௌమ, ఙᇲ, ா௡௩ᇲ, ஻ᇲ) ഓ→(ఙᇴ, ா௡௩ᇴ, ஻ᇴ)

(ௌభ; ௌమ, ఙ, ா௡௩, ஻)
ഓ→(ఙᇴ, ா௡௩ᇴ, ஻ᇴ)

Figure 3.2: SOS Rules for Timed Rebeca. e ërst side condition of the scheduler
rule, 𝜎஺೔(𝑛𝑜𝑤) ≤ 𝐷𝐿, checks whether the selected message carries an expired deadline,
in which case the condition is not satisëed and the message cannot be picked. e
second side condition is the predicate 𝑇𝑇 = 𝑚𝑖𝑛(𝐵), which is satisëed whenever the
time tag 𝑇𝑇 is the smallest time tag for the messages of all the rebecs 𝐴௜ in the bag 𝐵.
In rule create, the rebec name 𝐴 should not appear in the range of the environment 𝜎.
e function 𝑒𝑣𝑎𝑙 evaluates expressions in a given environment in the expected way.
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Chapter 4

Reínement and Simulation of Timed
Rebeca using Erlang

In this chapter, we present a translation from the fragment of Timed Rebeca without
rebec creation to Erlang. e motivation for translating Timed Rebeca models to
Erlang code is to have an executable code for Timed Rebeca (reënement) and to be
able to simulate Timed Rebeca models.

4.1 Erlang Language

Erlang is a dynamically-typed general-purpose programming language, which was de-
signed for the implementation of distributed, real-time and fault-tolerant applications
(Armstrong, 1997). Originally, Erlang was mostly used for telephony applications
such as switches. Its concurrency model is based on the actor model.

Concurrency Primitives of Erlang

Erlang is an actor-based concurrent language. It is intended for real-time systems
where response time in order of milliseconds is required. Erlang runtime has a real-
time garbage collector in which heap spaces between processes are not shared. Hence,
garbage collection in a process does not affect another process. Erlang has no shared
memory and all interaction between processes takes place as asynchronous message
passing. All values in a message are copied before sending them, which makes it easy
for Erlang to distribute processes onto a network instead of a single machine. e
primitives Erlang offers to do concurrent computations are spawn, ! and receive.

• Pid = spawn(Fun) creates a new process that evaluates the given function Fun in
parallel with the process that invoked spawn. A process corresponds to an actor.
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1 receive
2 Pattern1 when Guard1 → Expr1;
3 Pattern2 when Guard2 → Expr2;
4 ...
5 after
6 Time → Expr
7 end

Listing 4.1: Syntax of a receive with timeout

• Pid ! Msg sends the given message Msg to the process with the identiëer Pid.

• receive ... end receives a message that has been sent to a process; message dis-
crimination is based on pattern matching.

Timing Primitives of Erlang

Erlang comes with a set of features for real-time computations. ey are after and
now.

• after is used in conjunction with a receive in which the receive has a timeout
block as shown in Listing 4.1

• erlang:now() returns the current time of the process

Execution of Erlang Code

When a process reaches a receive expression it looks in the queue and takes the message
that matches the pattern if the corresponding guard is true. A guard is a boolean
expression, which can include the variables of the same process. e process looks in
the queue each time a message arrives until timeout occurs.

4.2 Informal Mapping of Timed Rebeca to Erlang

e abstract syntax for a fragment of Erlang, that is required to present the translation,
is shown in Figure 4.1. Table 4.1 offers an overview of how a construct in one language
relates to one in the other. We discuss the general principles behind our translation in
more detail below.
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𝑃𝑟𝑜𝑔𝑟𝑎𝑚 ::= 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛∗

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ::= 𝑣(𝑃𝑎𝑡𝑡𝑒𝑟𝑛∗) → 𝑒
𝐸𝑥𝑝𝑟 ::= 𝑒ଵ 𝑜𝑝௘ 𝑒ଶ | 𝑒(⟨𝑒⟩

∗) | 𝑒ଵ ! 𝑒ଶ | 𝑒ଵ , 𝑒ଶ
| 𝐜𝐚𝐬𝐞 𝑒 𝐨𝐟 ⟨𝑀𝑎𝑡𝑐ℎ⟩∗ 𝐞𝐧𝐝
| 𝐫𝐞𝐜𝐞𝐢𝐯𝐞 ⟨𝑀𝑎𝑡𝑐ℎ⟩∗ [𝐚𝐟𝐭𝐞𝐫 𝑇𝑖𝑚𝑒 → 𝑒] 𝐞𝐧𝐝
| 𝐢𝐟 ⟨𝑀𝑎𝑡𝑐ℎ⟩∗𝐞𝐧𝐝
| 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 = 𝑒
| 𝐵𝑎𝑠𝑖𝑐𝑉𝑎𝑙𝑢𝑒 | 𝑣 | {⟨𝑒⟩∗} | [⟨𝑒⟩∗]

𝑀𝑎𝑡𝑐ℎ ::= 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 [𝐰𝐡𝐞𝐧 𝐺𝑢𝑎𝑟𝑑] → 𝑒
𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ::= 𝑣 | 𝐵𝑎𝑠𝑖𝑐𝑉𝑎𝑙𝑢𝑒 | {⟨𝑃𝑎𝑡𝑡𝑒𝑟𝑛⟩∗} | [⟨𝑃𝑎𝑡𝑡𝑒𝑟𝑛⟩∗]

𝑇𝑖𝑚𝑒 ::= int
𝑉𝑎𝑙𝑢𝑒 ::= 𝐵𝑎𝑠𝑖𝑐𝑉𝑎𝑙𝑢𝑒 | {⟨𝑉𝑎𝑙𝑢𝑒⟩∗} | [⟨𝑉𝑎𝑙𝑢𝑒⟩∗]

𝐵𝑎𝑠𝑖𝑐𝑉𝑎𝑙𝑢𝑒 ::= atom | number | pid | fid
𝐺𝑢𝑎𝑟𝑑 ::= 𝑔ଵ 𝑜𝑝௚ 𝑔ଶ | 𝐵𝑎𝑠𝑖𝑐𝑉𝑎𝑙𝑢𝑒 | 𝑣 | 𝑔(⟨𝑔⟩

∗) | {⟨𝑔⟩∗} | [⟨𝑔⟩∗]

Figure 4.1: Abstract syntax of a relevant subset of Erlang. Angle brackets ⟨...⟩ are
used as meta parenthesis, superscript + for repetition more than once, superscript *
for repetition zero or more times, whereas using ⟨...⟩ with repetition denotes a comma
separated list. Identiëers 𝑣, 𝑝 and 𝑔 denote variable names, patterns and guards, re-
spectively, and 𝑒 denotes an expression.

Timed Rebeca Erlang
Rebeca model → A set of functions
Reactive class → ree functions
Known rebecs → Dictionary of variables
State variables → Dictionary of variables

Message server deënition → A match in a receive expression
Local variables → Dictionary of variables

Message send statement → Message send expression
Message send w/after → Message send expression inside a receive with a timeout

Message send w/deadline → Message send expression with the deadline as parameter
Delay statement → Empty receive with a timeout
Now expression → System time

Assignment → Dictionary update
If statement → Case expression

Nondeterministic selection → Random selection in the simulation tool

Table 4.1: Structure of the mapping from Timed Rebeca to Erlang. Notice that dic-
tionaries is also known as associative array or map.
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1 ticketService() →
2 receive
3 % wait for a message with a set of known rebecs
4 {Agent} →
5 % proceed to the next behaviour
6 ticketService(dict:from_list([agent, Agent]))
7 end.
8 ticketService(KnownRebecs) →
9 LocalVars = dict:new(),

10 receive
11 % wait for the ’initial’ message
12 initial →
13 % process message ’initial’ and proceed to the next behaviour
14 ticketService(KnownRebecs, dict:from_list([]))
15 end.
16 ticketService(KnownRebecs, StateVars) →
17 LocalVars = dict:new(),
18 receive
19 % wait for each message servers
20 requestTicket →
21 % process message ’requestTicket’ and make a recursive call (loop)
22 ticketService(KnownRebecs, StateVars)
23 end.

Listing 4.2: Pseudo Erlang code capturing the behaviour of the ticketService process

Mapping a Reactive Class

Reactive classes are translated into three functions, each representing a possible be-
haviour of an Erlang process:

1. the process waits to get references to known rebecs,

2. the process reads the initial message from the queue and executes it,

3. the process reads messages from the queue and executes them.

Once processes reach the last function they enter a loop. Erlang pseudo code for
the reactive class TicketService in the Rebeca model in Listing 5.2 is shown in Listing
4.2.

Mapping a Message Server

A message server is translated into a match expression (see Figure 4.1), which is used
inside receive ... end. On line 18 in Listing 4.2, requestTicket is the pattern that
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1 Sender = self(),
2 spawn(fun() →
3 receive after 15 →
4 TicketService ! {{Sender, now(), inf}, requestTicket}
5 end
6 end)

Listing 4.3: Example of a message send after 15 time units in Erlang. e value of
inf shows the deadline for the message, and now() is used to tag the message with the
current time. e sender is captured outside the scope of the thread that waits for 15
time units. e last item, requestTicket, is the name of the message that is being sent.

is matched on, and the body of the message server is mapped to the corresponding
expression.

Mapping a Message Send

Message send is implemented depending on whether after is used. If there is no after,
the message is sent like a regular message using the send operator of Erlang, denoted
as !, as shown on line 4 in Listing 4.3. However, if the keyword after is present a
new process is spawned which sleeps for a speciëed amount of time before sending the
message as described before. Setting a deadline for the delivery of a message is possible
by changing the value inf, which denotes no deadline (as shown on line 3 in Listing
4.3), to an absolute point in time. Messages are tagged with the time at which they
were sent. For the simulation we use the system clock to ënd out the current time by
calling the Erlang function now().

Moreover, since message servers can reply to the sender of the message, we need to
take care of setting the sender as part of the message as seen on lines 1 and 4 in Listing
4.3.

As there is no pattern to match with, the delay statement is implemented as a receive

consisting only of timeout that makes the process wait for a certain amount of time.
For example, delay(10) is translated to the code in Listing 4.4.

e deadline of each message is checked right before the body of the message server is
executed. e current time is compared with the deadline of the message to see if the
deadline has expired and, if so, the message is purged.
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1 receive
2 after 10 →
3 ok
4 end

Listing 4.4: Example of delay of 10 time units in Erlang

1 ticketService(KnownRebecs, StateVars) →
2 LocalVars = dict:new(),
3 receive
4 requestTicket →
5 {NewStateVars, _} = fn({StateVars, LocalVars})
6 ticketService(KnownRebecs, NewStateVars)
7 end.

Listing 4.5: Pseudo Erlang code showing statement execution

Mapping of Sequential Statements

Erlang is a functional language and does not allow assignments like imperative lan-
guages do. Once a value is bound to a variable, the variable cannot be reassigned.
Rebeca on the other hand follows an imperative paradigm which creates a problem for
the mapping of assignments. We solved this problem by modelling each statement of
Timed Rebeca as an anonymous function. e functions take a single parameter, a
tuple, {StateVars, LocalVars}. Assignment statements will make the function return
a new tuple with the updated value. Otherwise, the same tuple is returned, for ex-
ample for message sends. Each translated statement is then composed by means of
function composition. Erlang pseudo code for execution of statements is shown in
Listing 4.5. e function fn on line 5 is a single function, the result of composing the
translated statements. See Appendix C for discussions on design decisions regarding
this mapping.

Modelling Timing Features

In this section we show how we can model the timing features presented in Section
3.1 in Erlang.

• Computation time is modelled by doing an empty receive with an empty after

block, thus blocking the process for the amount of time speciëed in the after
block
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• Message delivery time is modelled by spawning a new process. In the newly
spawned process, we delay the execution by using the same method as described
in computation time, above, except that the after block contains the message
send.

• Message expiration is modelled by sending an expiration time as parameter with
the message. Upon receiving the message, the process checks if the parameter
is greater than his current time. If so, he must not process the message. Notice
that Erlang has no construct for a message send with deadline as Timed Rebeca
does. For reply, we use the same method as described in Section 3.3.

• Periodic events are modelled by repeatedly sending the same message to a process
in a loop, and using the same method as described in message delivery time
above, to make it happen at a speciëc interval.

4.3 Formal Mapping

Mapping Outline

We provide the encoding by means of several functions, one for each relevant syntactic
category of Timed Rebeca from Figure 3.1 in Chapter 3. For instance encoding of if
statements and almost all expressions are not shown since their implementation is
trivial or subsumed by the encoding. Some of the functions are parametrized by the
information contained in a structure we call conf, which stands for conëguration. e
structure conf contains three ëelds: knownrebecs, statevar and localvars. Intuitively, the
ëeld knownrebecs contains the set of known rebecs, and statevar and localvars contain
the pairs variable-value for both state and local variables. e structure conf is created
in a preprocessing step and then passed to the encoding mappings. Our functions
use the standard dot notation in order to access the structure conf, e.g. conf.statevar to
access the ëeld statevar of the structure conf. Below we give a brief description of the
relevant parts of the mappings.

ℳ𝒪(𝑒𝑣ଵ…𝑒𝑣௡ 𝑟𝑐ଵ…𝑟𝑐௡ 𝑚𝑎𝑖𝑛) Encoding of a Rebeca model. Where 𝑒𝑣ଵ…𝑒𝑣௡ are en-
vironmental variables, 𝑟𝑐ଵ…𝑟𝑐௡ are reactive classes and 𝑚𝑎𝑖𝑛 is the code in the
main block. is function, computes the structure 𝑐𝑜𝑛𝑓 for each rebec and en-
codes each rebec passing this structure as parameter. Next, it encodes the code
in 𝑚𝑎𝑖𝑛.

ℛ(reactiveclass 𝑐 {𝑘𝑟 𝑠𝑣 𝑚଴ 𝑚ଵ 𝑚ଶ…𝑚௡}) Encoding of reactive classes. Where 𝑐 is
the name of the reactive class, 𝑘𝑟 is a set of knownrebecs, 𝑠𝑣 is a set of state
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variables, 𝑚଴ is the 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 method and 𝑚ଵ…𝑚௡ are methods. is function, en-
codes the reactive class in three Erlang functions with same name, but accepting
different formal parameters, so with different signatures.

1. e ërst Erlang function accepts the known rebecs and call the second func-
tion.

2. e second function accepts the initial message, and once arrived, it runs
the corresponding code, obtained with the mapping ℬ which is explained
below. is mapping returns a new set of state variables, since variables
might have been changed during the execution of the inital message. Be-
cause structures are immutable in Erlang, they cannot be modiëed directly.
In our encoding, following standard solutions, we create a new structure
and return it as value. After the execution of the code for 𝑖𝑛𝑖𝑡𝑖𝑎𝑙, this func-
tion calls the third function, passing this new set of state variables as well
as the set of known rebecs.

3. e third function waits for incoming messages, which correspond to method
calls. Once arrived, it runs the corresponding code, obtained again with ℬ.
After that, it becomes ready to reaccept messages by calling itself with the
modiëed set of state variables. Indeed variables might have been changed
during the execution of a method.

ℬ(msgsrv 𝑚(𝑡ଵ𝑣ଵ… 𝑡௡𝑣௡){𝑠𝑡𝑚𝑡ଵ…𝑠𝑡𝑚𝑡௡}) Encoding of methods. Where𝑚 is the name
of the method, 𝑡ଵ… 𝑡௡ are type names, 𝑣ଵ …𝑣௡ are identiëers, and 𝑠𝑡𝑚𝑡ଵ…𝑠𝑡𝑚𝑡௡
are the statements of the body of the method. is function, using pattern
matching, makes the reactive class wait for a message

{{𝑆𝑒𝑛𝑑𝑒𝑟, 𝑇𝑇, 𝐷𝐿}, 𝑚, {𝑣ଵ …𝑣௡}}

which is basically the messages exchanged in the actual Timed Rebeca. When
such a message has arrived, we check if the deadline of the message is not ex-
pired. If not, we execute the statements of the method, otherwise a null action
is executed. A few peculiarities of this encoding deserve a word.

• Performing a null action corresponds to that which in Timed Rebeca is the
discarding of the message. Indeed, in the Erlang system the message has
been delivered and it will be not processed again.

• e execution of statements is complex procedure. Indeed, structures are
immutable in Erlang, but in Timed Rebeca the execution of some state-
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ments might change variable values. Successive statements then should be
executed knowing the new values for variables. Our solution is to execute
every statement as a function that receive the set of variables as an argu-
ment, and return a new set of variable. e auxiliary function AP composes
these functions.

• e function tr_now() recovers the current time from the Erlang primitive
erlang:now().

𝒮 Encoding of statements. is function encodes statements from Timed Rebeca into
anonymous functions in Erlang. Functions receive as input the set of variables
and return a new set of variables. e two relevant cases to discuss are the method
invocation when it involves after and deadline constructs, and the delay state-
ment.

• 𝒮(𝑟.𝑚(𝑒ଵ…𝑒௡) after(𝑒௔) deadline(𝑒ௗ);): It creates a new process using
the primitive spawn. is new process, uses a receive with an empty body
and the Erlang after to send the message. As stated above, differently from
Timed Rebeca where messages are sent immediately but carrying the time
tag from when they become retrievable, here the Erlang system takes care of
this aspect for us, by waiting the expected amount of time before sending
the message. anks to the primitive spawn the sender process does not stop
its execution by the effect of receive. Instead the new process waits. Also,
notice that the message sent by this new process contains the parent process
as sender, not itself, which would be the expected behaviour.

• 𝒮(delay(𝑒);): It simply performs a receive with an empty body and after,
in order to let the time pass, performing a null action, afterwards.

other mappings ℐ and 𝒯 translate name of the identiëers and types from Timed Re-
beca to Erlang. ℰ encodes expression and it is implemented in the conventional
way. 𝒦 translates constants from Timed Rebeca to Erlang. ℳ encodes the main
block. 𝒫𝒞 encodes rebec instance declarations and ℒ encodes rebec setup by
passing their known rebecs and initial message.

auxiliary functions we deëne the functionality of the following as a function of a
reactive class to identiëers such that we can refer to these names at a later stage
in the translation:

• 𝑘𝑛𝑜𝑤𝑛𝑟𝑒𝑏𝑒𝑐𝑛𝑎𝑚𝑒𝑠 ∶ 𝐑𝐞𝐚𝐜𝐭𝐢𝐯𝐞𝐂𝐥𝐚𝐬𝐬 → 𝐈𝐝𝐞𝐧𝐭 × 𝐈𝐝𝐞𝐧𝐭

• 𝑠𝑡𝑎𝑡𝑒𝑣𝑎𝑟𝑛𝑎𝑚𝑒𝑠 ∶ 𝐑𝐞𝐚𝐜𝐭𝐢𝐯𝐞𝐂𝐥𝐚𝐬𝐬 → 𝐈𝐝𝐞𝐧𝐭 × 𝐈𝐝𝐞𝐧𝐭
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• 𝑙𝑜𝑐𝑎𝑙𝑣𝑎𝑟𝑛𝑎𝑚𝑒𝑠 ∶ 𝐑𝐞𝐚𝐜𝐭𝐢𝐯𝐞𝐂𝐥𝐚𝐬𝐬 → 𝐈𝐝𝐞𝐧𝐭 × 𝐈𝐝𝐞𝐧𝐭

Additionally, we need two functions to manipulate identiëers. An identiëer in
Erlang is a variable if it starts with an uppercase character. Otherwise, it is an
atomic value.

• 𝑣𝑎𝑟ா ∶ 𝐈𝐝𝐞𝐧𝐭 → 𝐈𝐝𝐞𝐧𝐭

• 𝑎𝑡𝑜𝑚ா ∶ 𝐈𝐝𝐞𝐧𝐭 → 𝐈𝐝𝐞𝐧𝐭

Finally, we need a function which gives initial values for a given type name such
as 0 for integers and 𝑓𝑎𝑙𝑠𝑒 for booleans

• 𝑖𝑛𝑖𝑡𝑣𝑎𝑙 ∶ 𝐓𝐲𝐩𝐞𝐍𝐚𝐦𝐞 → 𝐕𝐚𝐥𝐮𝐞

Code Translation

Listing 4.6 shows the translation functions described in this chapter.

1 ℳ𝒪(𝑒𝑣ଵ …𝑒𝑣௡ 𝑟ଵ …𝑟௡ 𝑚𝑎𝑖𝑛) = ℛ(𝑟ଵ) 𝑐𝑜𝑛𝑓ଵ
2 ⋮
3 ℛ(𝑟௡) 𝑐𝑜𝑛𝑓௡
4 ℳ(𝑚𝑎𝑖𝑛) 𝑒𝑛𝑣
5 𝐰𝐡𝐞𝐫𝐞 𝑐𝑜𝑛𝑓௡ .𝑘𝑛𝑜𝑤𝑛𝑟𝑒𝑏𝑒𝑐𝑠 = 𝑘𝑛𝑜𝑤𝑛𝑟𝑒𝑏𝑒𝑐𝑛𝑎𝑚𝑒𝑠(𝑟௡)
6 𝑐𝑜𝑛𝑓௡ .𝑒𝑛𝑣𝑣𝑎𝑟𝑠 = 𝑒𝑣ଵ × 𝑒𝑣௡
7 𝑐𝑜𝑛𝑓௡ .𝑠𝑡𝑎𝑡𝑒𝑣𝑎𝑟𝑠 = 𝑠𝑡𝑎𝑡𝑒𝑣𝑎𝑟𝑛𝑎𝑚𝑒𝑠(𝑟௡)
8 𝑐𝑜𝑛𝑓௡ .𝑙𝑜𝑐𝑎𝑙𝑣𝑎𝑟𝑠 = 𝑙𝑜𝑐𝑎𝑙𝑣𝑎𝑟𝑛𝑎𝑚𝑒𝑠(𝑟௡)
9 𝑒𝑛𝑣 = {𝑒𝑣ଵ …𝑒𝑣௡}

10

11 ℛ(reactiveclass 𝑐 {𝑘𝑟 𝑠𝑣 𝑚଴ 𝑚ଵ …𝑚௡}) conf =
12 𝑐(Env, InstanceName) →
13 receive
14 {ℬ௩௔௥(𝑘𝑟) conf} →
15 c(Env, InstanceName, dict:from_list([ℬ(𝑘𝑟) conf]))
16 end.
17 𝑐(Env, InstanceName, KnownRebecs) →
18 StateVars = dict:from_list([ℬ(𝑠𝑣) conf]),
19 LocalVars = dict:from_list([]),
20 {NewStateVars, _} = receive
21 ℬ(𝑚଴) conf
22 end,
23 c(Env, InstanceName, KnownRebecs, NewStateVars).
24 𝑐(Env, InstanceName, KnownRebecs, StateVars) →
25 LocalVars = dict:from_list([]),
26 {NewStateVars, _} = receive
27 ℬ(𝑚ଵ) conf
28 ⋮
29 ℬ(𝑚௡) conf
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30 end,
31 c(Env, InstanceName, KnownRebecs, NewStateVars).
32 𝐰𝐡𝐞𝐫𝐞 ℬ௩௔௥ = ℬ without atomic names
33

34 ℬ(knownrebecs{𝑡ଵ𝑣ଵ … 𝑡௡𝑣௡}) conf = 𝐚𝐭𝐨𝐦𝐄(𝑣ଵ), 𝐯𝐚𝐫𝐄(𝑣ଵ) … 𝐚𝐭𝐨𝐦𝐄(𝑣௡), 𝐯𝐚𝐫𝐄(𝑣௡)
35

36 ℬ(statevars{𝑡ଵ𝑣ଵ … 𝑡௡𝑣௡}) conf = 𝐚𝐭𝐨𝐦𝐄(𝑣ଵ), 𝐢𝐧𝐢𝐭𝐯𝐚𝐥(𝑡ଵ) … 𝐚𝐭𝐨𝐦𝐄(𝑣௡), 𝐢𝐧𝐢𝐭𝐯𝐚𝐥(𝑡௡)
37

38 ℬ(msgsrv 𝑚(𝑡ଵ𝑣ଵ … 𝑡௡𝑣௡){𝑠𝑡𝑚𝑡ଵ …𝑠𝑡𝑚𝑡௡}) conf =
39 {{Sender, TT, DL}, 𝑚, {𝑤ଵ …𝑤௡}} →
40 case DL == inf orelse tr_now() =< DL of
41 true →
42 AP(𝒮(𝑠𝑡𝑚𝑡ଵ) conf…𝒮(𝑠𝑡𝑚𝑡௡) conf);
43 false →
44 % dropping message
45 {StateVars, LocalVars}
46 end
47

48 𝒮(𝑣=𝑒;) conf = fun({StateVars, LocalVars}) →
49 𝑣 ∈ 𝑐𝑜𝑛𝑓.𝑠𝑡𝑎𝑡𝑒𝑣𝑎𝑟𝑠 ⟶ {dict:store(v, ℰ(𝑒) conf, StateVars), LocalVars}
50 𝑣 ∈ 𝑐𝑜𝑛𝑓.𝑙𝑜𝑐𝑎𝑙𝑣𝑎𝑟𝑠 ⟶ {StateVars, dict:store(v, ℰ(𝑒) conf, LocalVars)}
51 otherwise ⟶ error
52 end
53

54 𝒮(𝑟.𝑚(𝑒ଵ …𝑒௡);) conf = fun({StateVars, LocalVars}) →
55 tr_send(ℐ(𝑟), ℐ(𝑚), {ℰ(𝑒ଵ) conf…ℰ(𝑒௡) conf}),
56 {StateVars, LocalVars}
57 end
58

59 𝒮(𝑟.𝑚(𝑒ଵ …𝑒௡) after(𝑒௔) deadline(𝑒ௗ);) conf = fun({StateVars, LocalVars}) →
60 tr_sendafter(ℰ(𝑒௔), ℐ(𝑟), ℐ(𝑚), {ℰ(𝑒ଵ) conf…ℰ(𝑒௡) conf}, ℰ(𝑒ௗ) conf),
61 {StateVars, LocalVars}
62 end
63

64 𝒮(delay(𝑒);) conf = fun({StateVars, LocalVars}) →
65 tr_delay(ℰ(𝑒) conf),
66 {StateVars, LocalVars}
67 end
68

69 ℳ(main{𝑖𝑑ଵ … 𝑖𝑑௡}) env = main(𝒳௩௔௥(𝑒𝑛𝑣)) →
70 Env = dict:from_list([𝒳(𝑒𝑛𝑣)]),
71 𝒫𝒞(𝑖𝑑ଵ),
72 ⋮
73 𝒫𝒞(𝑖𝑑௡),
74 ℒ(𝑖𝑑௡),
75 ⋮
76 ℒ(𝑖𝑑௡).
77 𝐰𝐡𝐞𝐫𝐞 𝒳(𝑡ଵ𝑣ଵ … 𝑡௡𝑣௡) = 𝐚𝐭𝐨𝐦𝐄(𝑣ଵ), 𝐯𝐚𝐫𝐄(𝑣ଵ) … 𝐚𝐭𝐨𝐦𝐄(𝑣௡), 𝐯𝐚𝐫𝐄(𝑣௡)
78 𝒳௩௔௥ = ℬ without atomic names
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79

80 𝒫𝒞(𝑡௥𝑣௥ (𝑡ଵ𝑣ଵ … 𝑡௡𝑣௡):(𝑘ଵ …𝑘௡)) =
81 ℐ(𝑣௥) = spawn(fun() → ℐ(𝑡௥)(Env, list_to_atom(”ℐ(𝑣௥)”)) end)
82

83 ℒ(𝑡௥𝑣௥ (𝑡ଵ𝑣ଵ … 𝑡௡𝑣௡):(𝑘ଵ …𝑘௡)) =
84 ℐ(𝑣௥) ! {𝑣ଵ …𝑣௡},
85 tr_send(ℐ(𝑣௥), initial, {𝒦(𝑘ଵ) …𝒦(𝑘௡)})

Listing 4.6: Translation functions from Timed Rebeca to Erlang

4.4 Simulating Timed Rebeca with McErlang

In this section we extend the mapping given in Section 4.3. e extended mapping
allows us to simulate Timed Rebeca models with McErlang. Doing so, we can perform
time based analysis on models. e analysis will give us some satisfaction of whether
a model is correct given the time constraints.

McErlang

McErlang is a model checking tool to verify distributed programs written in Erlang.
e tool itself is also written in Erlang and supports Erlang data types, process commu-
nication, fault detection and fault tolerance and the Open Telecom Platform (OTP)
library, which is used by most Erlang programs. e veriëcation methods range from
complete state-based exploration to simulation, with speciëcations written as LTL for-
mulae or hand-coded runtime monitors. is thesis focuses on simulation since model
checking with real-time semantics is not yet supported by McErlang.

Runtime Monitoring

One of the reasons for using McErlang is to be able to write code that monitors the
state of the simulation and either let the simulation continue running or stop the
simulation due to an erroneous state or unexpected behaviour in the program.

McErlang only supports LTL expressions as properties in model checking, while hand-
coded runtime monitors can be used in both model checking and simulation. Moni-
tors are Erlang modules which export three functions; init, stateChange and monitorType

of arity 1, 3 and 0, respectively.

• init is called when the monitor is started, at the beginning of the veriëcation
process.
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• stateChange is called by McErlang at runtime whenever the program moves from
one state to another. e arguments are ProgramState, MonitorState and VerificationStack.
e program state contains information about the program which is running
such as state of all processes and if any process is deadlocked. e monitor state
gives us the action that lead to that state. e veriëcation stack is a list of all the
actions up to the current state. Actions can be receiving a message, executing
the message and custom actions which the Erlang program can be instrumented
with. We use that feature for dropped messages.

• monitorType speciëes what kind of monitor is running. We use the safety mon-
itor which is the only monitor that works for simulation.

4.5 Extended Formal Mapping

We extend the mapping given in Section 4.3 so that we can utilize McErlang to sim-
ulate Timed Rebeca models. e extension needs only a few changes for McErlang to
monitor the simulation.

• First, McErlang has to be used as a library.

• Second, at the end of execution in each method McErlang needs to be notiëed
of the state of the process. We want to be able to write monitors using McEr-
lang API, hence we need to extend the mapping for it. e API call to notify
McErlang of the state is called mce:probe_state(Key, Value).

• Last, whenever a message is dropped due to deadline not being met, we need to
notify McErlang of it. We might want to write a monitor that treats dropped
messages as an error. e API call to notify McErlang of these kind of actions is
mce:probe_action(Key, Value).

Probing State Variables

We need to change the translation function ℛ from Section 4.3 to incorporate the
mce:probe_state calls before we make a recursive call. Two lines need to be added to
the original translation in Listing 4.6 (see lines 11—32). Listing 4.7 shows the updated
mapping.
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1 ℛ(reactiveclass 𝑐 {𝑘𝑟 𝑠𝑣 𝑚଴ 𝑚ଵ …𝑚௡}) conf =
2 𝑐(Env, InstanceName) →
3 receive
4 {ℬ௩௔௥(𝑘) conf} →
5 c(Env, InstanceName, dict:from_list([ℬ(𝑘𝑟) conf]))
6 end.
7 𝑐(Env, InstanceName, KnownRebecs) →
8 StateVars = dict:from_list([ℬ(𝑠𝑣) conf]),
9 LocalVars = dict:from_list([]),

10 {NewStateVars, _} = receive
11 ℬ(𝑚଴) conf
12 end,
13 mce:probe_state(InstanceName, NewStateVars),
14 c(KnownRebecs, NewStateVars).
15 𝑐(Env, InstanceName, KnownRebecs, StateVars) →
16 LocalVars = dict:from_list([]),
17 {NewStateVars, _} = receive
18 ℬ(𝑚ଵ) conf
19 ⋮
20 ℬ(𝑚௡) conf
21 end,
22 mce:probe_state(InstanceName, NewStateVars),
23 c(Env, InstanceName, KnownRebecs, NewStateVars).
24 𝐰𝐡𝐞𝐫𝐞 ℬ௩௔௥ = ℬ without atomic names

Listing 4.7: Mapping for a reactive class

1 ℬ(msgsrv 𝑚(𝑡ଵ𝑣ଵ … 𝑡௡𝑣௡){𝑠𝑡𝑚𝑡ଵ …𝑠𝑡𝑚𝑡௡}) conf =
2 {{Sender, TT, DL}, 𝑚, 𝑤ଵ …𝑤௡} →
3 case DL == inf orelse tr_now() =< DL of
4 true →
5 AP(𝒮(𝑠𝑡𝑚𝑡ଵ) conf…𝒮(𝑠𝑡𝑚𝑡௡) conf);
6 false →
7 % dropping message
8 mce:probe(drop, {ℐ(𝑚), tr_now()}),
9 {StateVars, LocalVars}

10 end

Listing 4.8: Mapping for a message server
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Probing Actions

We need to change the translation function ℬ from Section 4.3 to notify McErlang of
dropped messages due to message that deadline has been exceeded. We add a line to
Listing 4.6 (see lines 38—47) in which we call mce:probe with the name of the message
server whose message was dropped and the time of the dropping of the message. at
will give us the ìexibility we need to monitor speciëcally for dropped messages using
McErlang runtime monitors. Listing 4.8 shows the updated mapping.

4.6 Discussion

In this chapter we presented Erlang and its concurrency and timing features. We
associated syntactical elements from Timed Rebeca to corresponding ones in Erlang.
e translation is given informally to convey the basic idea behind the methods used.
Additionally, we give a formal translation which helps when creating a tool to automate
the translation, as well as for reasoning about it. e formal translation also helps in
ënding possible inconsistencies or ambiguities.

Moreover, we have presented an extension to the formal mapping for simulating Timed
Rebeca. It is as little as updating two translation functions. e extension as presented
here turns out to map nicely to implementation as we will see in the next chapter.

In Appendix B we describe the tool which automates the translation presented in this
chapter.
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Chapter 5

Experimental Results

In this chapter we present three case studies. For each study we construct a model and
use Timed Rebeca to analyze their timing behaviour. We describe each model, give a
graph representation based on event graphs and then give results from simulating the
models with the technique described in Chapter 4.

Before we present the models used in the experimental results we need to explain the
notation we use, event graphs. Event graphs have a single type of node and two types
of edges. e nodes represent events in a system. Edges correspond to the scheduling
of other events (Buss, 1996). Jagged incoming edges denote an initial event. Edges
can optionally be associated with a boolean condition for scheduling an event and/or
a time delay which means that an event will be scheduled after the delay. Figure 5.1
shows an example of an event graph where event B is scheduled by A after t amount
of time has been delayed and if condition (i) is true.

Event graphs are widely used in simulation and analysis of complex systems within
the engineering community. More speciëcally, they’re used to graphically represent
discrete-event simulation models. We use event graphs in this thesis only to give a
highly abstracted view of how events are scheduled in our case studies. We adopt an
alternative notation where conditional edges are thicker, even if the conditions are not
speciëed (Law, 2007). Additionally, we add a label below each node that shows in

A B
t

(i)

Figure 5.1: Example of an event graph
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Figure 5.2: Event graph of the simple communication protocol model

which reactive class the event occurs. We decided to draw the graph based on reactive
classes, and not rebecs, to have a simpler view.

5.1 Simple Communication Protocol

e simple communication protocol is an example from (Satoh & Tokoro, 1995) that
consists of a sender agent and a receiver agent. e sender agent sends a message
to the receiver and waits for acknowledgement. If acknowledgement is not received
within 8 time units it resends the message. e receiver agent receives the message and
replies with acknowledgement. A successful outcome is that the sender agent receives
an ack message before 8 time units have passed. Communications from sender agent
to receiver agent takes 3 ± 1 time units and may fail, while a message from receiver
agent to sender agent takes 2 ± 1 time units and may also fail. is is a simple model
where the execution terminates after the sender agent receives the ack.

Figure 5.2 shows the event graph of the simple protocol. e graph shows how the
system is initialized from the sender agent. Moreover, there is a loop in the graph (start
→ check ack → start) which tells us if we select certain time constraints in the model it
might result in an imbalance situation and an inënite computation. Listing 5.1 shows
the Timed Rebeca code for the model.

Repeated simulations of the model show us that the model behaves as expected. ey
reveal that the system sometimes drops messages due to the nondeterministic choice of
the network delay and this will execute the loop (start → check ack → start). e loop
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was not repeated indeënitely which is not surprising since nondeterministic choices
are implemented as random selections in the Erlang mapping.

1
2 reactiveclass SenderAgent(3) {
3 knownrebecs { ReceiverAgent receiverAgent; }
4
5 statevars { boolean receivedAck; }
6
7 msgsrv initial() { self.start(); }
8
9 msgsrv start() {

10 time sendDelay = ?(-1,2,3,4); // -1=fail -- 2,3,4=delays
11 if (sendDelay != -1) {
12 receiverAgent.send() after(sendDelay);
13 }
14 self.checkAck() after(8);
15 }
16
17 msgsrv ack() { receivedAck = true; }
18
19 msgsrv checkAck() {
20 if (!receivedAck) self.start();
21 }
22 }
23
24 reactiveclass ReceiverAgent(3) {
25 knownrebecs { SenderAgent senderAgent; }
26
27 statevars {}
28
29 msgsrv initial() {}
30
31 msgsrv send() {
32 time sendDelay = ?(-1,1,2,3); // -1=fail -- 1,2,3=delays
33 if (sendDelay != -1) {
34 senderAgent.ack() after(sendDelay);
35 }
36 }
37 }
38
39 main {
40 ReceiverAgent receiverAgent(senderAgent):();
41 SenderAgent senderAgent(receiverAgent):();
42 }

Listing 5.1: A Timed Rebeca model of the simple communication protocol example

5.2 Ticket Service

e ticket service model consists of two reactive classes: Agent and TicketService.
Listing 5.2 shows this example written in Timed Rebeca. Two rebecs, ts1 and ts2, are
instantiated from the reactive class TicketService, and one rebec a is instantiated from
the reactive class Agent. e agent a is initialized by sending a message índTicket to
itself in which a message requestTicket is sent to the ticket service ts1 or ts2 based on
the parameter passed to índTicket. e deadline for the message requestTicket to be
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Figure 5.3: Event graph of the ticket service model

served is requestDeadline time units. en, after checkIssuedPeriod time units the agent
will check if it has received a reply to its request by sending a checkTicket message to
itself, modelling a periodic event. ere is no receive statement in Rebeca, and all the
computation is modelled via asynchronous message passing, so, we need a periodic
check. e attemptCount variable helps the agent to keep track of the ticket service
rebec that the request is sent to. e token variable allows the agent to keep track
of which incoming ticketIssued message is a reply to a valid request. When any of
the ticket service rebecs receives the requestTicket message, it will issue the ticket after
serviceTime1 or serviceTime2 time units which is modelled by sending ticketIssued to the
agent with the token as parameter. e expression ?(serviceTime1,serviceTime2) denotes
a nondeterministic choice between serviceTime1 and serviceTime2 in the assignment
statement. Depending on the chosen value, the ticket service may or may not be on
time for its reply.

Figure 5.3 shows the event graph of the ticket service model. e graph shows how
the system is initialized in the Agent class by scheduling a ënd ticket event.

e ënd ticket event will always schedule two simultaneous events, request ticket and
check ticket. Request ticket event will schedule a ticket issued event after a delay.
However, there is a network delay on the scheduling of check ticket, which means that
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Request
deadline

Check issued
period

Retry request
period

New request
period

Service
time 1

Service
time 2 Result

2 1 1 1 3,4 7 No ticket issued
2 2 1 1 4 7 No ticket issued
2 2 1 1 3 7 Ticket issued

Table 5.1: Experimental simulation results for ticket service.

it may be scheduled later than ticket issued event is. In that case, either a ënd ticket
event or retry event may be scheduled. Notice that the model is reactive, and will
continue to schedule ënd ticket event to start the cycle all over again.

For each simulation, we change one of the following parameters: the amount of time
that is allowed to pass before a request is processed, the amount of time that passes
before agent checks if he has been issued a ticket, the amount of time that passes
before agent tries the next ticket service if he did not receive a ticket, the amount of
time that passes before agent restarts the ticket requests in case neither ticket service
issued a ticket and two different service times, which are nondeterministically chosen
as delay time in a ticket service and model the processing time for a request. Table 5.2
shows different settings of those parameters for which the ticket services never issue a
ticket to the agent because of tight deadlines, as well as settings for which a ticket is
issued during a simulation of the model.

1 env int requestDeadline, checkIssuedPeriod, retryRequestPeriod, newRequestPeriod, serviceTime1,
serviceTime2;

2
3 reactiveclass Agent {
4 knownrebecs { TicketService ts1; TicketService ts2; }
5
6 statevars { int attemptCount; boolean ticketIssued; int token; }
7
8 msgsrv initial() {
9 self.findTicket(ts1); // initialize system, check 1st ticket service

10 }
11
12 msgsrv findTicket(TicketService ts) {
13 attemptCount += 1;
14 token += 1;
15 ts.requestTicket(token) deadline(requestDeadline); // send request to the TicketService
16 self.checkTicket() after(checkIssuedPeriod); // check if the request is replied
17 }
18
19 msgsrv ticketIssued(int tok) {
20 if (token == tok) ticketIssued = true;
21 }
22
23 msgsrv checkTicket() {
24 if (!ticketIssued && attemptCount == 1) { // no ticket from 1st service,
25 self.findTicket(ts2); // try the second TicketService
26 } else if (!ticketIssued && attemptCount == 2) { // no ticket from 2nd service,
27 self.retry() after(retryRequestPeriod); // restart from the first TicketService
28 } else { // the second TicketService replied,
29 self.retry() after(newRequestPeriod); // new request by a customer
30 }
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31 }
32
33 msgsrv retry() {
34 attemptCount = 0;
35 self.findTicket(ts1); // restart from the first TicketService
36 }
37 }
38
39 reactiveclass TicketService {
40 knownrebecs { Agent a; }
41
42 msgsrv initial() { }
43
44 msgsrv requestTicket(int token) {
45 int wait = ?(serviceTime1,serviceTime2); // the ticket service sends the reply
46 delay(wait); // after a non-determinstic delay of
47 a.ticketIssued(token); // either serviceTime1 or serviceTime2
48 }
49 }
50
51 main {
52 Agent a(ts1, ts2):(); // instantiate agent, with two known rebecs
53 TicketService ts1(a):(); // instantiate 1st ticket service, with
54 // the agent as its known rebecs
55 TicketService ts2(a):(); // instantiate 2nd ticket service, with
56 }

Listing 5.2: A Timed Rebeca model of the ticket service example

5.3 Sensor Network

We model a simple sensor network using Timed Rebeca. See Listing 5.3 for the com-
plete description of the model. A distributed sensor network is set up to monitor levels
of toxic gasses. e sensor rebecs (sensor0 and sensor1), announce the measured value
to the admin node (admin rebec) in the network. If the admin node receives reports of
dangerous gas levels, it immediately notiëes the scientist (scientist rebec) on the scene
about it. If the scientist does not acknowledge the notiëcation within a given time
frame, the admin node sends a request to the rescue team (rescue rebec) to look for the
scientist. e rescue team has a limited amount of time units to reach the scientist and
save him.

Figure 5.4 shows the event graph of the sensor network model. e graph shows how
the system is initialized in the Sensor and Admin classes. e sensor class schedules
do report events and continues to do so through out the life cycle of the system. e
admin class schedules an event that checks the sensor values repeatedly. ese events
make the model reactive. e check sensors event may set off a routine that checks if a
scientist has acknowledged about dangerous gas levels. Additionally, it may schedule
the scientist to abort whatever is being perfomed. If scientist is instructed to abort,
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Figure 5.4: Event graph of the sensor network model. Notice there are two events that
start the system.

he will send an acknowledgement. However, the ack event may be scheduled after
the check ack event. In that case, go is scheduled which will schedule a rescue reach
event. Alas, the rescue reach event may be scheduled after check rescue in which case,
the scientist would be dead.

e rebecs sensor0 and sensor1 will periodically read the gas-level measurement, mod-
elled as a nondeterministic selection between GAS_LOW and GAS_HIGH, and send
their values to admin. e admin continually checks, and acts upon, the sensor values
it has received. When the admin node receives a report of a reading that is life threat-
ening for the scientist (GAS_HIGH ), it notiëes him and waits for a limited amount of
time units for acknowledgement.
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Network
delay

Admin
period

Sensor 0
period

Sensor 1
period

Scientist
deadline

Rescue
deadline Result

1 4 2 3 2 3 Mission failed
1 4 2 3 2 4 Mission success
2 1 1 1 4 5,6,7 Mission failed
2 4 1 1 4 7 Mission success

Table 5.2: Experimental simulation results for sensor network.

e rescue rebec represents a rescue team that is sent off, should the scientist not ac-
knowledge the message from the admin in time. We model the response speed of the
rescue team with a nondeterministic delay of 0 or 1 time units.

e admin keeps track of the deadlines for the scientist and the rescue team as fol-
lows:

• the scientist must acknowledge that he is aware of a dangerous gas-level reading
before scientistDeadline time units have passed;

• the rescue team must have reached the scientist within rescueDeadline time units.

Otherwise we consider the mission failed.

e model can be parametrized over the values of network delay, admin sensor-read
period, sensor0 read period, sensor1 read period, scientist reply deadline and rescue team
reply deadline, as shown in Table 5.3.

In that table, we can see two different cases in which we go from mission failure to
mission success between simulations. In the ërst scenario, we go from mission failure
to success as we increase the rescue deadline, as expected.

In the second scenario, we changed the parameters to model a faster sensor update
and we observed mission failure. In this scenario, increasing the rescue deadline further
(from 5 to 7) is insufficient. Upon closer inspection, we observe that our model fails to
cope with the rapid sensor updates and admin responses because it enters an unstable
state.

e admin node initiates a new rescue mission while another is still ongoing, eventu-
ally resulting in mission failure. is reìects a design ìaw in the model for frequent
updates that can be solved by keeping track of an ongoing rescue mission in the model.
Alternatively, increasing the value of admin sensor-read period above half the rescue
deadline eliminates the ìaw and the simulation is again successful.

1 env int netDelay, adminCheckDelay, sensor0period, sensor1period, scientistDeadline, rescueDeadline;
2
3 reactiveclass Sensor(3) {
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4 knownrebecs { Admin admin; }
5
6 statevars { int period; }
7
8 msgsrv initial(int myPeriod) {
9 period = myPeriod;

10 self.doReport();
11 }
12
13 msgsrv doReport() {
14 int value;
15 value = ?(2, 4); // 2=safe gas levels, 4=danger gas levels
16 admin.report(value) after(netDelay);
17 self.doReport() after(period);
18 }
19 }
20
21 reactiveclass Scientist(3) {
22 knownrebecs { Admin admin; }
23
24 msgsrv initial() {}
25
26 msgsrv abortPlan() {
27 admin.ack() after(netDelay);
28 }
29 }
30
31 reactiveclass Rescue(3) {
32 knownrebecs { Admin admin; }
33
34 msgsrv initial() {}
35
36 msgsrv go() {
37 int msgDeadline = now() + (rescueDeadline-netDelay);
38 int excessiveDelay = ?(0, 1); // unexpected obstacle might occur during rescue
39 delay(excessiveDelay);
40 admin.rescueReach() after(netDelay) deadline(msgDeadline);
41 }
42 }
43
44 reactiveclass Admin(3) {
45 knownrebecs { Sensor sensor0; Sensor sensor1; Scientist scientist; Rescue rescue; }
46
47 statevars {
48 boolean reported0;
49 boolean reported1;
50 int sensorValue0;
51 int sensorValue1;
52 boolean sensorFailure;
53 boolean scientistAck;
54 boolean scientistReached;
55 boolean scientistDead;
56 }
57
58 msgsrv initial() { self.checkSensors(); }
59
60 msgsrv report(int value) {
61 if (sender == sensor0) {
62 reported0 = true;
63 sensorValue0 = value;
64 } else {
65 reported1 = true;
66 sensorValue1 = value;
67 }
68 }
69
70 msgsrv rescueReach() { scientistReached = true; }
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71
72 msgsrv checkSensors() {
73 if (reported0) reported0 = false;
74 else sensorFailure = true;
75
76 if (reported1) reported1 = false;
77 else sensorFailure = true;
78
79 boolean danger = false;
80 if (sensorValue0 > 3) danger = true;
81 if (sensorValue1 > 3) danger = true;
82
83 if (danger) {
84 scientist.abortPlan() after(netDelay);
85 self.checkScientistAck() after(scientistDeadline); // deadline for the scientist to answer
86 }
87
88 self.checkSensors() after(adminCheckDelay);
89 }
90
91 msgsrv checkRescue() {
92 if (!scientistReached) scientistDead = true; // scientist is dead
93 else scientistReached = false;
94 }
95
96 msgsrv ack() { scientistAck = true; }
97
98 msgsrv checkScientistAck() {
99 if (!scientistAck) {

100 rescue.go() after(netDelay);
101 self.checkRescue() after(rescueDeadline);
102 }
103 scientistAck = false;
104 }
105 }
106
107 main {
108 Sensor sensor0(admin):(sensor0period);
109 Sensor sensor1(admin):(sensor1period);
110 Scientist scientist(admin):();
111 Rescue rescue(admin):();
112 Admin admin(sensor0, sensor1, scientist, rescue):();
113 }

Listing 5.3: A Timed Rebeca model of the sensor network example

5.4 Discussion

is chapter presented three case studies. It is natural to model distributed and asyn-
chronous systems with Timed Rebeca. e language offers easy to use primitives for
modelling timed scenarios that is demonstrated by the case studies. As with most
formal analysis, we could see that the models show more complex behaviour than ex-
pected at ërst. e complexity stems from the asynchrony, which does not assume
order of events in the system. Time constraints recuded the complexity by ordering
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some of the events. On the other hand other, complexities are introduced by having
real-time limitations.
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Chapter 6

Related Work

Different approaches are used in designing formal modelling languages for real-time
systems. In this chapter we brieìy survey related work on real-time actor-based mod-
elling languages. We also compare our work with UPPAAL, a well established tool for
analyzing real-time systems.

6.1 RT-synchronizer

Ren and Agha proposed a real-time actor model, RT-synchronizer, where a centralized
synchronizer is responsible for enforcing real-time relations between events (Ren &
Agha, 1995). Actors are extended with timing assumptions, and the functional be-
haviours of actors and the timing constraints on patterns of actor invocation are sep-
arated. Nielsen and Agha gave semantics for the timed actor-based language (Nielsen
& Agha, 1996). Two positive real-valued constants, called release time and deadline,
are added to the send statement and are considered as the earliest and latest time when
the message can be invoked.

In Timed Rebeca, we have the constructs after and deadline, which are representing
the same concepts, respectively. In our language, it is also possible to consider a time
delay in the execution of a computation. While RT-synchronizer is an abstraction
mechanism for the declarative speciëcation of timing constraints over groups of actors,
our model allows us to work at a lower level of abstraction. Using Timed Rebeca, a
modeller can easily capture the functional features of a system, together with the timing
constraints for both computation and network latencies, and analyze the model from
various points of view.
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6.2 Real-Time Maude

Maude is a high level declarative programming language. It supports executable spec-
iëcation and programming in rewriting logic. Moreover, it supports equational logic
and algebraic speciëcation. It can deal with nondeterministic concurrent computa-
tions and has support for concurrent object oriented computation models (Clavel et
al., 2005). SOS semantics can be easily mapped to rewrite rules in Maude, making it
an efficient tool for prototyping systems that are described in SOS.

Real-Time Maude is an extension to Maude. It supports both discrete and dense time
domains. As with Maude, 0-time transtitions are deëned with rewrite rules while time
elapse is deëned by tick rewrite rules. e Real-Time Maude offers timed rewriting
for simulations, timed search for reachability analysis and time bounded LTL model
checking (Ölveczky & Meseguer, 2007).

Timed Rebeca and Real-Time Maude are different in the computational paradigms
that they naturally support. Real-Time Maude is a lower level language than Timed
Rebeca. It allows modellers to control what computational model they base their
model on, as long as it can be expressed in rewriting logic. Timed Rebeca is based
on actor based model of computation. Timed Rebeca beneëts from its similarity with
other commonly used programming languages and is more suspectible to get used by
modellers without intimate knowledge of the theory behind modelling. Translating
Timed Rebeca to Real-Time Maude is an interesting avenue to explore the Real-Time
Maude tool has various ways to analyze timed systems.

6.3 Creol

Creol is a concurrent object-oriented language with operational semantics written in an
actor-based style, and supported by a language interpreter in the Maude system. Boer,
Chothia, and Jaghoori extended Creol by adding best-case and worst-case execution
time for each statement, and a deadline for each method call (Boer et al., 2010). In
addition, an object is assigned a scheduling strategy to resolve the nondeterminism in
selecting from the enabled processes.

Bjørk, Johnsen, Owe, and Schlatte presented a timed version of Creol in which the
only additional syntax is read-only access to the global clock, plus adding a data-type
Time together with its accompanying operators to the language (Bjørk et al., 2010).
Timed behaviour is modelled by manipulating the Time variables and via the await
statement in the language.
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6.4 UPPAAL

e model of timed automata, introduced by Alur and Dill (Alur, 1994), has estab-
lished itself as classic a formalism for modelling real-time systems. e theory of Timed
Automata is a timed extension of automata theory, using clock constraints on both lo-
cations and transitions.

UPPAAL is a toolbox which consists of three components: a modelling language, sim-
ulator and model checking tool. e language describes systems as networks of timed
automata with extension of data variables (Larsen, Pettersson, & Yi, 1997). e simu-
lator allows the modeller to examine the state space during the early stages of develop-
ment. e model checking tool provides veriëcation by means of exhaustive checking
of the state space generated by the model. e model checking tool is supported by a
speciëcation language to check for reachability properties.

Timed Rebeca and UPPAAL differ greatly in what is accomplished by the model in
each tool. UPPAAL allows us to model synchronous time varying behaviours while
Timed Rebeca focuses on distributed and asynchronous agents. ere has been some
work to do veriëcation on Timed Rebeca models by means of translation to UPPAAL
but simple models run into state explosion problem (Izadi, 2010).

6.5 Schedulability for Rebeca Models

Recently, there have been some studies on schedulability analysis for Rebeca models
(Jaghoori, Boer, Chothia, & Sirjani, 2009). is work is based on mapping Rebeca
models to Timed Automata and using UPPAAL to check the schedulability of the
resulting models. Deadlines are deëned for accomplishing a service and each task
spends a certain amount of time for execution. In these works, modelling of time is
not incorporated in the Rebeca language.

ere is also some work on schedulability analysis of actors (Nigro & Pupo, 2001),
but this is not applied on a real-time actor language. Time constraints are considered
separately.
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Chapter 7

Conclusion

7.1 Summary

is thesis presents a number of results. First, we have developed a real-time extension
to the modelling language Rebeca. e extension includes formal representation of
syntax and semantics.

Next, we presented a formal mapping of reënement from Timed Rebeca to Erlang.
e mapping is presented in a mathematical way which is helpful when reasoning
about the translation and for creating the tool which automates the translation. e
formal mapping is then extended to include code that makes it possible to simulate
Timed Rebeca models with McErlang.

ird, we give a tool to automatically translate Timed Rebeca models to Erlang. e
tool is based on the formal mapping, it operates directly on the syntax of Timed Re-
beca. Moreover, it is written in a modular way to support extensions and other lan-
guages which future work might wish to target.

Last, we give results on using the simulation tool on three case studies. e case studies
show that it is possible to use Timed Rebeca to describe real-time, distributed and
asynchronous systems and using the tool to do analysis on the models. Even relatively
simple models can become complex with different time constraints and difficult to
analyze.
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7.2 Future Work

As a part of a larger project which will address the issue of the entire modelling life
cycle with veriëcation, simulation and reënement, the work in this thesis lays the
foundation for future work.

Branching out, we can translate to Maude which is a tool to prototype languages and
perform analysis and veriëcation. A translation to Real-Time Maude would allow de-
signers to use the analysis tools supported by Maude in the veriëcation and validation
of Timed Rebeca models. It would also be interesting to see how Maude copes with
the large state space that Timed Rebeca will generate when model checking Timed
Rebeca models, since UPPAAL is known to suffer from state explosion.

Going deep, an interesting avenue to explore is to store the local time of each process
and write a custom-made scheduler in McErlang that simulates the way the Timed
Rebeca scheduler operates. In fact, this work was already under way few months ago
but did not advance to a usable state.

e experiments in this thesis are not executed in a distributed environment. Experi-
menting with the generated Erlang code in a distributed setting would be interesting.
No changes to the mapping are required, other than a new main function. It would
need to establish connections to a number of Erlang shells (equal to the number of
rebecs in the model). e shells would have to be running before this new main func-
tion is run. Running the experiments would require an infrastructure to do so and
some way to measure the impact of the timing constraints.

Another interesting way, is to verify that the mapping is semantics preserving or to
construct a bisimulation between Timed Rebeca and Erlang. is would give the
mapping more credibility.

And last, we see the need to investigate a speciëcation language to write Timed Re-
beca properties with time constraints. Ideally, it should support specifying functional
behaviour as well as time constraints, such that veriëcation with time need not be
separated from functional veriëcation.

7.3 Discussion on Rebeca

Rebeca has been a part of our tool tool set for the last two years. We feel that it is a good
language to model distributed and asynchronous systems and would like to propose a
few extensions that might make it an even better language for modelling.
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• Make actor identities to be ërst class citizens. Actor identities, according to the
original actor model, are ërst class values and can be sent as a part of the messages.
Rebeca as presented in (Sirjani et al., 2004) does not support this behaviour while
the work in this thesis does. Doing so, we can remove the implicit variable sender
from the context of message servers. e ticket service case study makes use of
this to reduce boilerplate in the model.

• Remove the syntactical distinctions between state variables and known rebecs.
e distinction in Rebeca code between state variables and known rebecs is not
necessary at the syntax level. It is important to differentiate between state vari-
ables and known rebecs when simulating or model checking Timed Rebeca but
the distinction does not have to be made by the modeller, it can be made auto-
matically by a tool.

• Allow richer data structures such as ënite polymorphic lists and iteration over
them. Data structures like the classic cons list, which can destruct lists into head
and tail, and create new lists by prepending an element in front of another list
would make the modelling capabilities of Rebeca much richer. en modelling
structured data would be easier. It is possible to make sure that all computations
that involve these structure are terminating by restricting the operations over
them, which might otherwise be an issue for a language used for formal mod-
elling. Allowing structures like this in model checking can increase the likelihood
of state explosion. However, the modeller must already be aware of the state ex-
plosion problem and we reason that this structure should be allowed when it can
be used. Otherwise, more abstraction is needed and the modeller should refrain
from using it.

• Allow enumeration types. When modelling a variable which is a set of ënite size
and ëxed domain the modeller often turns to using int type to store possible
values of the variable. Example of this could be the days of the week, where the
variable 𝑖𝑛𝑡 𝑑𝑎𝑦𝑠 should hold values from 0 − 6. Working with an enumeration
type where a modeller can specify a new type

𝑡𝑦𝑝𝑒 𝐷𝑎𝑦𝑠 = 𝑆𝑢𝑛|𝑀𝑜𝑛|𝑇𝑢𝑒|𝑊𝑒𝑑|𝑇ℎ𝑢|𝐹𝑟𝑖|𝑆𝑎𝑡

would make the models clearer and less prone to error.
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Appendix A

Timed Rebeca Language
Description

A.1 Lexical Structure of Timed Rebeca

Identiíers

Identiëers ⟨Ident⟩ are unquoted strings beginning with a letter, followed by any com-
bination of letters, digits, and the characters _ ’, reserved words excluded.

Literals

Integer literals ⟨Int⟩ are nonempty sequences of digits.

Reserved words and symbols

e set of reserved words is the set of terminals appearing in the grammar. ose
reserved words that consist of non-letter characters are called symbols, and they are
treated in a different way from those that are similar to identiëers. e lexer follows
rules familiar from languages like Haskell, C, and Java, including longest match and
spacing conventions.

e reserved words used in Timed Rebeca are the following:
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after boolean deadline

delay else env

false if initial

int knownrebecs main

msgsrv now reactiveclass

statevars time true

e symbols used in Timed Rebeca are the following:

; ( )

{ } =
, . else if

|| && |
̂ & ==
!= < >
<= >= <<
>> + −
* / %

? ˜ !

*= /= %=
+= −= :

Comments

Single-line comments begin with //.

Multiple-line comments are enclosed with /* and */.

A.2 Syntactic Structure of Timed Rebeca

Non-terminals are enclosed between ⟨ and ⟩. e symbols ::= (production), | (union)
and 𝜖 (empty rule) belong to the BNF notation. All other symbols are terminals.

⟨Model⟩ ::= ⟨ListEnvVar⟩ ⟨ListReactiveClass⟩ ⟨Main⟩

⟨EnvVar⟩ ::= env ⟨TypedParameter⟩ ;

⟨ListEnvVar⟩ ::= 𝜖
| ⟨EnvVar⟩ ⟨ListEnvVar⟩

⟨ReactiveClass⟩ ::= reactiveclass ⟨Ident⟩ ( ⟨Integer⟩ )
{ ⟨KnownRebecs⟩ ⟨StateVars⟩ ⟨MsgSrvInit⟩ ⟨ListMsgSrv⟩ }
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⟨ListReactiveClass⟩ ::= 𝜖
| ⟨ReactiveClass⟩ ⟨ListReactiveClass⟩

⟨KnownRebecs⟩ ::= 𝜖
| knownrebecs { ⟨ListTypedVarDecl⟩ }

⟨StateVars⟩ ::= 𝜖
| statevars { ⟨ListTypedVarDecl⟩ }

⟨MsgSrvInit⟩ ::= msgsrv initial ( ⟨ListTypedParameter⟩ ) { ⟨ListStm⟩ }

⟨MsgSrv⟩ ::= msgsrv ⟨Ident⟩ ( ⟨ListTypedParameter⟩ ) { ⟨ListStm⟩ }

⟨ListMsgSrv⟩ ::= 𝜖
| ⟨MsgSrv⟩ ⟨ListMsgSrv⟩

⟨VarDecl⟩ ::= ⟨Ident⟩ = ⟨Exp⟩
| ⟨Ident⟩

⟨ListVarDecl⟩ ::= ⟨VarDecl⟩
| ⟨VarDecl⟩ , ⟨ListVarDecl⟩

⟨TypedVarDecl⟩ ::= ⟨TypeName⟩ ⟨Ident⟩
| ⟨TypeName⟩ ⟨Ident⟩ = ⟨Exp⟩

⟨ListTypedVarDecl⟩ ::= 𝜖
| ⟨TypedVarDecl⟩
| ⟨TypedVarDecl⟩ ; ⟨ListTypedVarDecl⟩

⟨TypedParameter⟩ ::= ⟨TypeName⟩ ⟨Ident⟩

⟨ListTypedParameter⟩ ::= 𝜖
| ⟨TypedParameter⟩
| ⟨TypedParameter⟩ , ⟨ListTypedParameter⟩

⟨BasicType⟩ ::= int

| time

| boolean

⟨TypeName⟩ ::= ⟨BasicType⟩
| ⟨Ident⟩
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⟨Stm⟩ ::= ⟨Stm⟩ ;
| ⟨Ident⟩ ⟨AssignmentOp⟩ ⟨Exp⟩ ;
| ⟨TypedVarDecl⟩ ;
| ⟨Ident⟩ . ⟨Ident⟩ ( ⟨ListExp⟩ ) ⟨After⟩ ⟨Deadline⟩ ;
| delay ( ⟨Exp⟩ ) ;

| if ( ⟨Exp⟩ ) ⟨CompStm⟩ ⟨ListElseifStm⟩ ⟨ElseStm⟩

⟨ListStm⟩ ::= 𝜖
| ⟨Stm⟩ ⟨ListStm⟩

⟨CompStm⟩ ::= ⟨Stm⟩
| { ⟨ListStm⟩ }

⟨After⟩ ::= 𝜖
| after ( ⟨Exp⟩ )

⟨Deadline⟩ ::= 𝜖
| deadline ( ⟨Exp⟩ )

⟨ElseifStm⟩ ::= else if ( ⟨Exp⟩ ) ⟨CompStm⟩

⟨ListElseifStm⟩ ::= 𝜖
| ⟨ElseifStm⟩ ⟨ListElseifStm⟩

⟨ElseStm⟩ ::= 𝜖
| else ⟨CompStm⟩

⟨ListIdent⟩ ::= ⟨Ident⟩
| ⟨Ident⟩ . ⟨ListIdent⟩

⟨Exp⟩ ::= ⟨Exp⟩ || ⟨Exp2⟩
| ⟨Exp1⟩

⟨Exp2⟩ ::= ⟨Exp2⟩ && ⟨Exp3⟩
| ⟨Exp3⟩

⟨Exp3⟩ ::= ⟨Exp3⟩ | ⟨Exp4⟩
| ⟨Exp4⟩

⟨Exp4⟩ ::= ⟨Exp4⟩ ̂ ⟨Exp5⟩
| ⟨Exp5⟩

⟨Exp5⟩ ::= ⟨Exp5⟩ & ⟨Exp6⟩
| ⟨Exp6⟩
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⟨Exp6⟩ ::= ⟨Exp6⟩ == ⟨Exp7⟩
| ⟨Exp6⟩ != ⟨Exp7⟩
| ⟨Exp7⟩

⟨Exp7⟩ ::= ⟨Exp7⟩ < ⟨Exp8⟩
| ⟨Exp7⟩ > ⟨Exp8⟩
| ⟨Exp7⟩ <= ⟨Exp8⟩
| ⟨Exp7⟩ >= ⟨Exp8⟩
| ⟨Exp8⟩

⟨Exp8⟩ ::= ⟨Exp8⟩ << ⟨Exp9⟩
| ⟨Exp8⟩ >> ⟨Exp9⟩
| ⟨Exp9⟩

⟨Exp9⟩ ::= ⟨Exp9⟩ + ⟨Exp10⟩
| ⟨Exp9⟩ − ⟨Exp10⟩
| ⟨Exp10⟩

⟨Exp10⟩ ::= ⟨Exp10⟩ * ⟨Exp11⟩
| ⟨Exp10⟩ / ⟨Exp11⟩
| ⟨Exp10⟩ % ⟨Exp11⟩
| ⟨Exp11⟩

⟨Exp11⟩ ::= ( ⟨Exp⟩ )
| ? ( ⟨ListExp⟩ )
| ⟨Exp12⟩

⟨Exp12⟩ ::= ⟨UnaryOperator⟩ ⟨Exp11⟩
| ⟨Exp13⟩

⟨Exp13⟩ ::= now ( )

| ⟨Constant⟩
| ⟨Exp14⟩

⟨Exp14⟩ ::= ⟨ListIdent⟩
| ( ⟨Exp⟩ )

⟨ListExp⟩ ::= 𝜖
| ⟨Exp⟩
| ⟨Exp⟩ , ⟨ListExp⟩

⟨Exp1⟩ ::= ⟨Exp2⟩
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⟨Constant⟩ ::= ⟨Integer⟩
| true

| false

⟨ListConstant⟩ ::= 𝜖
| ⟨Constant⟩
| ⟨Constant⟩ , ⟨ListConstant⟩

⟨UnaryOperator⟩ ::= +
| −
| ˜

| !

⟨AssignmentOp⟩ ::= =
| *=
| /=
| %=
| +=
| −=

⟨Main⟩ ::= main { ⟨ListInstanceDecl⟩ }

⟨InstanceDecl⟩ ::= ⟨TypedVarDecl⟩ ( ⟨ListVarDecl⟩ ) : ( ⟨ListExp⟩ )

⟨ListInstanceDecl⟩ ::= 𝜖
| ⟨InstanceDecl⟩
| ⟨InstanceDecl⟩ ; ⟨ListInstanceDecl⟩
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Appendix B

Implementation of the Translation
Tool

In this section we present the tool timedreb2erl which translates Timed Rebeca models
to Erlang. is tool can output code both based on reënement and simulation map-
pings. Additionally, if simulation is chosen as the output target it will output template
for monitor code. e tool is built with Haskell and BNFC.

Haskell

Haskell is a purely functional programming language with non-strict evaluation se-
mantics by default. Functional programming languages are widely used in compiler
construction (Appel, 1987; Jones, Hall, Hammond, Partain, & Wadler, 1992) as they
generally support algebraic data types and compositional reasoning very well. is
applies particularly well to Haskell whose expressions are referentially transparent and
make equational reasoning safe and useful for the programmer.

BNF Converter

BNF Converter (BNFC) (Pellauer, Forsberg, & Ranta, n.d.) is a multi-lingual compiler
tool. It takes as input a grammar written in Labelled BNF notation (LBNF) and
generates a compiler front end (lexer, parser, data types), a case skeleton for the back
end compiler code which is useful as a starting point for code generation, and LATEX
document which contains the language speciëcation. BNFC is able to generate code
for Java, C, C++, C#, OCaml, F# and Haskell.

is allows for rapid prototyping of language constructs. Having only to deal with the
syntax of the source language and get a whole front end generated, one can focus on,
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1 transModel ∷ Model → Result
2 transModel x = case x of
3 Model envvars reactiveclasss main → failure x
4

5 transEnvVar ∷ EnvVar → Result
6 transEnvVar x = case x of
7 EnvVar typedparameter → failure x
8

9 transReactiveClass ∷ ReactiveClass → Result
10 transReactiveClass x = case x of
11 ReactiveClass id n knownrebecs statevars msgsrvinit msgsrvs → failure x
12

13 transKnownRebecs ∷ KnownRebecs → Result
14 transKnownRebecs x = case x of
15 NoKnownRebecs → failure x
16 KnownRebecs typedvardecls → failure x
17

18 transStateVars ∷ StateVars → Result
19 transStateVars x = case x of
20 NoStateVars → failure x
21 StateVars typedvardecls → failure x

Listing B.1: Example of generated template for code generation

arguably, the more time consuming work of the back end instead of boilerplate work
at the front end.

B.1 First Implementation

e ërst implementation used BNFC for rapid prototyping of the source language,
Timed Rebeca. Example output of the case skeleton for Timed Rebeca can be seen
in Listing B.1. e data types of Timed Rebeca constructs are directly derived from
the syntax of the language as seen in Appendix A. Notice that failure x is a function
representing unimplemented functionality.

In this setting the result of the translation was Stringwhich means that each translation
function built up the translated code as concatenated strings. is is not considered
to be very good software engineering practice, and we can summarize the reasons in
the following:

1. e output language is untyped,
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1 data BasicValue = Atom String
2 data Expr = Var String

Listing B.2: Example of how to type the translation to Erlang

2. we cannot reuse the traversal functions since they’re intertwined with the code gen-
eration,

3. we cannot, in a clean way, swap one translation function out for another as we did
in Chapter 4 when extending the mapping to include McErlang API calls.

Untyped Target Language

e problem with collecting the code of the generated Erlang program as strings is that
it is error prone. For example, there is a semantic different between strings in Erlang
programs that start with lower case character and upper case character. e difference
is that upper case means that the string is a variable. If it is lower case it could be a
value. is means that much care must be taken whenever working with strings to
preserve the meaning of the string.

However, if we type the target language we can at least contain the problem although it
does not solve it completely. Listing B.2 shows an example of how we can implement
data types for the language of Erlang as given in Figure 4.1.

If we only ever construct atomic values with the Atom data constructor and variables in
expressions with the Var data constructor we can make sure when we print the syntax
tree of the constructed Erlang programs that atomic values will start with a lower case
character and variable with upper case characters. is is possible due to the fact that
no strings are generated for the target language until the entire syntax tree has been
built. erefore, when we do output the tree as Erlang code, the function that prints
values of type BasicValue transforms the string to be lower case.

Program Analysis and Transformation

Let’s give a motivating example for item 2: We need to ënd all variable names of state
variables before we generate code for each reactive class. Let’s capture this functionality
in a function with the following declaration:

1 statevars ∷ ReactiveClass → [String]
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1 transModel ∷ Model → (ReactiveClass → Result) → Result
2 transModel x r = case x of
3 Model envvars reactiveclasss main → failure x

Listing B.3: Suggestion to the extended mapping problem

e statevars function returns a list of variable names for a given reactive class. We
need to take care of traversing the same amount of syntax tree as in Listing B.1 but we
cannot use the same traversal code and must duplicate the traversal for the simple task
of collecting variable names instead of generating code.

Another example is a program transformation that must be performed before we trans-
late a Timed Rebeca model to Erlang. Timed Rebeca supports assignments operators
such as 𝑥+ = 𝑒 which adds the value of 𝑒 to the variable x. ese kind of com-
posite assignment operators are not supported in Erlang which only supports sim-
ple assignments. We must therefore translate all instances of 𝑥 ⊕ 𝑒 where ⊕ ∈
{+=, -=, *=, /=,%=}.

Extended Mapping

e generated traversal code from BNFC is not equipped for reusing parts of the trans-
lation functions. One solution would be to make the top level translation parametric
for the functions from the extended mapping. One possible implementation of that is
shown in Listing B.3 where the function r would be passed down the tree and called
whenever we need to translate a reactive class.

is would require adding these hooks and changing the code in unpredictable manner
as the mapping is extended.

Another solution is to devise a fold algebra which is a combination of generic folds for
tree traversal and algebras for instantiations of the data types in question (Lämmel,
Visser, & Kort, 2000). is provides a nice balance of modularity for the problems we
deëned earlier and is the subject of next section along with the deënitions of Erlang
syntax as Haskell data types.
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1 type Name = String
2

3 data Program = Program Attribute [Attribute] [Attribute] [Function] -- module,
export, import

4

5 data Attribute = Module Name | Export Name | Import Name
6

7 data Function = Function Name [Pattern] Exp
8

9 data BasicValue = AtomicLiteral String | StringLiteral String | NumberLiteral
Integer | ProcessLiteral String

10

11 data InfixOp = OpLT | OpLEq | OpGT | OpGEq | OpEq | OpNEq | OpLAnd | OpLOr |
OpMul | OpDiv | OpMod | OpSub | OpBAnd | OpBXor | OpBOr | OpAdd

12

13 data Exp = InfixExp InfixOp Exp Exp | Apply Name [Exp] | Call Exp Exp | Case Exp
[Match] | FunAnon [Pattern] Exp | Receive [Match] | If [Match] | Send Exp Exp
| Seq Exp Exp | Assign Pattern Exp | ExpT [Exp] | ExpL [Exp] | ExpVal
BasicValue | ExpVar Name

14

15 data Match = Match Pattern (Maybe Guard) Exp
16

17 data Pattern = PatVar Name | PatT [Pattern] | PatL [Pattern] | PatVal BasicValue
| PatE Exp

18

19 data Guard = InfixGuard Guard Guard | GuardVal BasicValue | GuardVar Name |
GuardCall Guard [Guard] | GuardT [Guard] | GuardL [Guard]

Listing B.4: Haskell data types for Erlang syntax

B.2 Revised Implementation

Data Types for Erlang

To make the code generation safer we created data types based on the subset of Erlang
presented in Section 4.2. e data types are shown in Listing B.4 and are used as a
foundation in the fold algebra. ey are expressive enough for our translation scheme
although they don’t capture entire Erlang syntax.

Fold Algebra

e fold algebra will consist of two components, a generic fold algebra and behaviours
for particular constructors. is allows us to separate two concerns, walking the syntax
tree and speciëc behaviour by an algebra. Examples of processing can be ënding state
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1 data RebecaAlgebra id mod env rc kr sv msi ms vd tvd tp bt tn stm cs aft dea eli
el exp con uop aop mai ins

2 = RebecaAlgebra {
3 identF ∷ String → id
4 , modelF ∷ [env] → [rc] → mai → mod
5 , envVarF ∷ tp → env
6 , reactiveClassF ∷ id → Integer → kr → sv → msi → [ms] → rc
7 , noKnownRebecsF ∷ kr
8 , knownRebecsF ∷ [tvd] → kr
9 , ⋮

10 }

Listing B.5: Algebra interface (partial listing)

variables, transforming assignment operators or generating corresponding syntax tree
in Erlang.

An algebra has the interface outlined in Listing B.5. We can see that it is a record,
parametric in number of data types in the language. Each data constructor is then
given a ëeld in the record.

e fold operation encodes the tree walk over the types in the language. It is parametrized
by the fold algebra. Listing B.6 shows how fold operation is represented by a multi
parameter typeclass Fold and how fold is implemented by making a recursive call
into the sub terms of a type and combining the intermediate results by calling a spe-
ciëc component in the algebra. Notice how f is passed along the entire computation
which is an instance of an algebra.

Program Analysis with Fold Algebra

In this section we present a fold algebraic solution to the problem of ënding state
variable names from Section B.1. We start by deëning a monoidal algebra which
collects all identiëers in a tree. Listing B.7 shows an outline of the algebra. Notice
how we do not traverse further into the structure of known rebecs. is is because the
monoid algebra is a template for collecting identiëers and we need to instantiate it for
a speciëc set of variables.

To collect the names of all known rebecs of reactive class is now easy. We update
the monoid algebra such that the ëeld knownRebecsF no longer returns the identity
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1 class Fold f t r | f t → r where
2 fold ∷ f → t → r
3

4 instance Fold (RebecaAlgebra id mod env rc kr sv msi ms vd tvd tp bt tn stm cs
aft dea eli el exp con uop aop mai ins) Ident id where

5 fold f (Ident s) = identF f s
6

7 instance Fold (RebecaAlgebra id mod env rc kr sv msi ms vd tvd tp bt tn stm cs
aft dea eli el exp con uop aop mai ins) Model mod where

8 fold f (Model vars classes mainbody) = modelF f (map (fold f) vars) (map
(fold f) classes) (fold f mainbody)

9

10 instance Fold (RebecaAlgebra id mod env rc kr sv msi ms vd tvd tp bt tn stm cs
aft dea eli el exp con uop aop mai ins) EnvVar env where

11 fold f (EnvVar tp) = envVarF f (fold f tp)
12

13 instance Fold (RebecaAlgebra id mod env rc kr sv msi ms vd tvd tp bt tn stm cs
aft dea eli el exp con uop aop mai ins) ReactiveClass rc where

14 fold f (ReactiveClass name qs kr sv msi ms) = reactiveClassF f (fold f name)
qs (fold f kr) (fold f sv) (fold f msi) (map (fold f) ms)

15

16 instance Fold (RebecaAlgebra id mod env rc kr sv msi ms vd tvd tp bt tn stm cs
aft dea eli el exp con uop aop mai ins) KnownRebecs kr where

17 fold f NoKnownRebecs = noKnownRebecsF f
18 fold f (KnownRebecs tvds) = knownRebecsF f (map (fold f) tvds)
19 ⋮

Listing B.6: Fold algebra (partial listing)

1 monoidAlgebra = RebecaAlgebra {
2 identF = 𝜆s → [s]
3 , modelF = 𝜆envs rcs mai → (mconcat envs) ‘mappend‘ (mconcat rcs)
4 , envVarF = 𝜆_ → mempty
5 , reactiveClassF = 𝜆id _ kr sv msi ms → kr ‘mappend‘ sv ‘mappend‘ msi ‘mappend‘

(mconcat ms)
6 , noKnownRebecsF = mempty
7 , knownRebecsF = 𝜆_ → mempty
8 , ⋮

Listing B.7: Monoidal algebra for collecting identiëer names (partial listing)
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1 knownRebecsAlgebra = monoidAlgebra {
2 knownRebecsF = 𝜆tvds → mconcat tvds
3 }

Listing B.8: Updated monoidal algebra for collecting known rebec names

1 identityAlgebra = RebecaAlgebra {
2 identF = Ident
3 , modelF = Model
4 , envVarF = EnvVar
5 , reactiveClassF = ReactiveClass
6 , noKnownRebecsF = NoKnownRebecs
7 , knownRebecsF = KnownRebecs
8 , ⋮
9 }

Listing B.9: Instance of an identity algebra (partial listing)

element of the monoid but the concatenated result of its sub terms. Listing B.8 shows
the updated algebra.

Program Transformation with Fold Algebra

We give the outline of the simpliëcation of assignment operators such that only = is
used in assignments. First, we devise an instance of an algebra called identity algebra
that returns the same that it is given back. Outline of the algebra is given in B.9.

e identity algebra takes care of simple tree walk that does not change anything in the
tree. We can then update the identity algebra to obtain a new instance of an algebra
with speciëc behaviour for simplifying the assignment operators. Listing B.10 shows
how easy it is to create a new algebra based on existing ones.

Translation to Erlang with a Monadic Fold Algebra

e translation from Timed Rebeca to Erlang is done with a fold algebra. e transla-
tion is based on the formal mapping from Section 4.3. In the formal mapping there is
a conëguration passed down to some translation functions, which contains informa-
tion on the names of variables of a reactive class. Notice how the interface for the fold
algebra does not have this conëguration as a parameter anywhere. Instead of changing
the algebra to be suitable for this translation we use monads to implicitly thread the
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1 simplifyAssignmentAlgebra = identityAlgebra {
2 assF = 𝜆id aop exp → case aop of
3 Assign → Ass id aop exp
4 AssignMul → Ass id Assign (Etimes (Evar [id]) exp)
5 AssignDiv → Ass id Assign (Ediv (Evar [id]) exp)
6 AssignMod → Ass id Assign (Emod (Evar [id]) exp)
7 AssignAdd → Ass id Assign (Eplus (Evar [id]) exp)
8 AssignSub → Ass id Assign (Eminus (Evar [id]) exp)
9 }

Listing B.10: Assignment simpliëcation algebra instance

conëguration around the translation functions. More speciëcally, we use the State
monad in Haskell to implement the monadic fold algebra. Listing B.11 shows when
state variables block is translated, we put the collected variable names into the state
monad via setStateVars function and when assignments are translated, we retrieve
the names of state variables and local variables and return different values based on
which set the identiëer is found in.

An algebra which translates Timed Rebeca models to the extended mapping from
Chapter 4 is now easy to implement. It requires updating refinementAlgebra and
overriding the behaviour that generates Erlang code for reactive classes and message
servers.

B.3 Discussion

We have presented a tool which is capable to translating Timed Rebeca models into Er-
lang. Moreover, the tool allows for good reuse and composition by using fold algebras
for manipulating data types of Timed Rebeca language. is makes the foundations
for the tool a good option for translating Timed Rebeca to other languages. e tool
can be found at http://github.com/arnihermann/timedreb2erl.
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1 refinementAlgebra = RebecaAlgebra {
2 identF = 𝜆id → return id
3 , ⋮
4 , noKnownRebecsF = return []
5 , knownRebecsF = 𝜆tvds → do
6 tvds’ ← sequence tvds
7 setKnownRebecs (map snd tvds’)
8 return (map snd tvds’)
9 , noStateVarsF = return []

10 , stateVarsF = 𝜆tvds → do
11 tvds’ ← sequence tvds
12 setStateVars (map snd tvds’)
13 return tvds’
14 , ⋮
15 , assF = 𝜆id aop exp → do
16 id’ ← id
17 aop’ ← aop
18 exp’ ← exp
19 sv ← getStateVars
20 lv ← getLocalVars
21 let assignment
22 | id’ ‘elem‘ sv = ExpT [Apply ”dict:store” [ExpVal $

AtomicLiteral id’, exp’, ExpVar ”StateVars”], ExpVar
”LocalVars”]

23 | id’ ‘elem‘ lv = ExpT [ExpVar ”StateVars”, Apply ”dict:store”
[ExpVal $ AtomicLiteral id’, exp’, ExpVar ”LocalVars”]]

24 | otherwise = error $ ”unknown variable name ” ++ id’
25 return (stm assignment)
26 , ⋮

Listing B.11: Instance of an algebra that translates Timed Rebeca to reëned Erlang
code (partial listing)
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Appendix C

Design Decisions: Imperative to
Functional

Certain care needs to be taken when translating imperative code, like Rebeca, to a
language like Erlang. Erlang does not allow multiple assignments to a variable. In
fact, Erlang does not do assignments at all. What looks like an assignment operator
(=) is really a pattern matching operator. Let’s discuss each executed expression in an
Erlang Emulator from Figure C.1. Expressions are preëxed with a number and the
result is in the next line.

1. Foo = true., shows that the pattern matching is successful because no value was
previously bound to the variable Foo and therefore Erlang assigns the value true to
it.

2. Erlang is unable to match the value false to the value that is currently bound to
Foo, therefore resulting in runtime exception.

3. e pattern matching is successful if we try to match it with a value that is currently
bound to the variable Foo.

1> Foo = true.
true
2> Foo = false.
** exception error: no match of right hand side value false
3> Foo = true.
true

Figure C.1: Erlang Emulator session showing how pattern matching in Erlang works
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1 msgsrv foo() {
2 c = false;
3 if (a || b) {
4 c = true;
5 d = !c;
6 } else {
7 d = true;
8 }
9 e = c || d;

10 }

Listing C.1: Example message server for translation attempts

Additionally, since state in Erlang processes is kept as parameters in functions and
updated by making a recursive call, we cannot translate imperative code with multiple
assignment statements (see Listing C.1) that executes conditionally, into one function
in Erlang. We can see how a direct translation does not work out if we try to capture
the imperative code in an Erlang function called foo that is deëned as foo(A,B,C,D,E).
In the ërst statement, we try to assign X to be 1 and would need to make a recursive
call to update the value of X for the following computation. In the following sections
we discuss the options we looked at and which we ended up using.

C.1 Approach 1: Derive Functions from Control Flow
Graph

First solution that we came up with was to create a control ìow graph of statements
in a given Rebeca code. A branch (if statement) in the code would generate a new
function for the rest of the graph which the current statement would call. Figure C.2
shows the control ìow graph of Listing C.1. To derive functional behaviour in Erlang
equivalent to the one in Timed Rebeca we translate each node to a function which
recursively calls the next the function that represents the next node in the graph. e
functions are all mutually recursive. Listing C.2 shows the Erlang code for the control
ìow graph in Figure C.2 with nodes 2–3 and 2–4 compacted such that the transition
of the ërst statement after entering the branch is executed immediately. e resulting
translation is 5 functions but could be reduced to fewer functions by compressing the
graph based on data ìow analysis.

Formalizing a translation for Timed Rebeca to Erlang in this way appears to be com-
plicated and hence we looked at different options.
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2

4 5

9

a || b !(a || b)

3

7

Figure C.2: Control Flow Graph of Listing C.1. Node numbers correspond to line
numbers.

1 foo(A,B,C,D,E) → foo_1(A,B,C,D,E).
2 foo_1(A,B,C,D,E) → foo_2(A,B,false,D,E).
3 foo_2(A,B,C,D,E) →
4 if
5 A orelse B → foo_3(A,B,true,D,E);
6 true → foo_4(A,B,C,true,E)
7 end.
8 foo_3(A,B,C,D,E) → foo_4(A,B,C,not C,E).
9 foo_4(A,B,C,D,E) → foo(A,B,C,D,C orelse D)

Listing C.2: Erlang code derived from the CFG in Figure C.2

C.2 Approach 2: Static Single Assignment Form and
Records for State Variables

Before we present a translation using SSA, note that we use Erlang records for keeping
state variables of a reactive class in a single Erlang variable. Erlang records are a com-
piler trick which stores the values of the record in a tuple but gives access to the tuple
by name (instead of positional pattern matching).

With that in place, we thought about using SSA to thread the state through the com-
putation of a message server. In SSA, variables are only assigned once, which ëts well
with Erlang. When translating statements that modify state variables, the Erlang code
would create a new state variable record with an updated value for the respective ëeld
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1 -record(statevars, {a=false, b=false, c=false, d=false, e=false}).
2

3 foo(SV) →
4 SV1 = SV#statevars{c=false},
5 SV2 = if
6 a orelse b →
7 SV3 = SV2#statevars{c=true},
8 SV4 = SV3#statevars{d=not SV3#statevars.c};
9 true →

10 SV3 = SV2#statevars{d=true}
11 end,
12 SV3 = SV2#statevars{e=SV2#statevars.c orelse SV2#statevars.d}
13 foo(SV3).

Listing C.3: Erlang code derived from Listing C.1 using SSA

in the record. Listing C.3 shows how a record is deëned for the message server in
Listing C.1 and SSA is used to thread the state around in the function foo.

Formalism for this translation requires quite a bit of bookkeeping of the variable name
and make the translation more complex.

C.3 Approach 3: State Transformer Functions and
Records for State Variables

Previous approaches both required much work in the translation of Timed Rebeca to
Erlang. e biggest drawback is the amount of context which is needed for which
function to call or which variable name to use. Hence came the idea about using
state transformer functions where each statement in Timed Rebeca is translated to an
anonymous function in Erlang. e functions have the type State → State. us the
ërst function is called with the current state of the process and returns a possibly up-
dated state for the next function to use. e anonymous functions can be composed
via ordinary function composition, such as given two functions f and g the composi-
tion 𝚏∘𝚐 is a new function h = fun(S)→f(g(S))end. A minor issue is that the innermost
function in an if-branch must be applied with the currently scoped SV variable, oth-
erwise the branch would return a function instead of the result of the function inside
the branch. Listing C.4 shows how this works in practice, albeit without intermediate
functions for the composition.

is approach has a certain simplicity to it that the previous ones lack.
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1 foo(SV) →
2 fun(SV) → SV#statevars{c=SV#statevars.c orelse SV#statevars.d} end (
3 fun(SV) →
4 if
5 a orelse b →
6 fun(SV) → SV#statevars{d=not c} end (
7 fun(SV) → SV#statevars{c=true} end (SV));
8 true →
9 fun(SV) → SV#statevars{d=true} end (SV)

10 end (
11 fun(SV) → SV#statevars{c=false} end (StateVars))
12 end)

Listing C.4: Erlang code derived from Listing C.1 using state transformers

C.4 Approach 4: State Transformer Functions and
Dictionaries for State Variables

ere is a slight annoyance with the last approach. A record declaration had to be
generated and put in a header ële (outside the generated code) and the unique name
of the record had to be passed around in a conëguration throughout the translation
phase.

is is easily remedied by not storing state variables in records, but instead simply
store them as dictionaries. Little work is required to change the mapping. One un-
fortunate exception is that if statements no longer translate directly since reading the
value of variable with the dict:fetch function is considered a side-effecting operation
in Erlang, and side-effecting operations are not allowed in guards. is is a minor
annoyance which we solve by translating if statements into nested case expressions in
Erlang.

We expect dictionaries take up more memory than tuples and accessing elements from
them might not be as fast as from a tuple. at is a sacriëce we are willing to make
in order to keep the mapping and the implementation of the translation simpler. We
suspect that if this foundation gets used in model checking with Erlang, this could
become a real issue.

Record accessors and updates are therefore swapped for a dict:fetch(Key, Dict) and
dict:store(Key, Value, Dict) function applications, respectively.
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