Introduction

Rebeca model-checking tool consists of two components: a translator and a model-checking engine. The
Rebeca translator converts the input Rebeca model to some C++ files. The model-checking files are
added to the converted files. Package of these C++ files contains all the required files for model checking
called model-checking engine.

Model checking engine is compiled to an executable file. Running the executable file result in applying
model checking algorithm on the given Rebeca model and reporting the verification result.

How to generate C++ files
All the required libraries for generating C++ files are included in a Java executable Jar file
“org.rebecalang.rmc-2.3.0-SNAPSHOT.jar”. You can run this file with JRE 1.6 or upper using the following

parameters.
Parameter Example Description
-s, --source -s /home/test/model.rebeca Location of Rebeca source file
-s myModel.rebeca
-p, --property -p Location of Rebeca model property file
/home/test/model.property
-p myModel.property
-0, --output -0 /home/test/modelFolder Target of generated C++ file
-0 myModelFolder
-v, --version -v2.0 Compiler version which could be Rebeca
-v2.1 2.0 or Rebeca 2.1.
Features of Timed Rebeca, Probabilistic
Rebeca, and Timed Probabilistic Rebeca are
enabled in version 2.1.
-X, -- -X Exporting the state space in XML format in
exporttransitionsystem “statespace.xml” file. The exported state

space can be visualized using “state space
analysis” library.

-e, --extension -e CoreRebeca Specifying the type of Rebeca model
-e TimedRebeca
-e ProbabilisticRebeca
-e TimedProbabilistiRebeca

-h -h Print the parameters description

Finally two examples of typical commands for model checking Rebeca and Timed Rebeca models are
depicted at the following.

e java -jar org.rebecalang.rmc-2.3.0-SNAPSHOT.jar -s model.rebeca -p model.property -o rmc
e java -jar org.rebecalang.rmc-2.3.0-SNAPSHQT.jar -s timed-model.rebeca -p timed-
model.property -o rmc -v 2.1 -e TimedRebeca -x



How to execute the generated C++ files
The result C++ files can be compiled using any distribution of C++ compilers. In the following example
we use g++ to compile the generated C++ files and set the compilation output file to “executable”.

g++ *.cpp -w -0 executable

Running “executable” file results in model checking of the model.



