
Introduction

The family of Rebeca languages includes Rebeca, Timed Rebeca, Probabilisitic Rebeca, and Probabilistic

Timed Rebeca. The user can model a system in one of the mentioned languages depending on the system

under study and the user‘s needs. The model-checking tool RMC is used to analyze a Rebeca (or its

extensions) model.

RMC is used to convert the input Rebeca model to a set of C++ files. Then, generated C++ files are compiled

to an executable file. Running the executable file applies the model checking algorithm and generates the

verification result. The generated state space may be saved in an XML file named “statespace.xml“.

In the following parts, we explain how RMC can be used for the analysis of a Rebeca model.

How to generate C++ files

All the required libraries for generating C++ files are included in a Java executable Jar file

“org.rebecalang.rmc-2.6.0-SNAPSHOT.jar”. You can run this file with JRE 1.7 or upper using the following

parameters.

Parameter Example Description

-s, --source -s /home/test/model.rebeca
-s myModel.rebeca

Location of Rebeca source file

-p, --property -p /home/test/model.property
-p myModel.property

Location of Rebeca model property file
Not applicable for Probabilistic Timed
Rebeca model

-o, --output -o /home/test/modelFolder
-o myModelFolder

Target of generated C++ file

-v, --version -v 2.0
-v 2.1

Compiler version which could be Rebeca
2.0 or Rebeca 2.1.
Features of Timed Rebeca, Probabilistic
Rebeca, and Probabilistic Timed Rebeca
are enabled in version 2.1.

-x,
--exporttransitionsystem

-x

Exporting the state space in XML format
in “statespace.xml” file. The exported
state space can be visualized using
“state space analysis” library.

-e, --extension -e CoreRebeca
-e TimedRebeca
-e ProbabilisticRebeca
-e ProbabilisticTimedRebeca

Specifying the type of Rebeca model

-h -h Print the parameters description

Finally two examples of typical commands for model checking Rebeca and Timed Rebeca models are

depicted in the following. Note that the only mandatory parameter in calling rmc is the location of the

Rebeca file and the other parameters are automatically filled with default values.

 java -jar org.rebecalang.rmc-2.6.0-SNAPSHOT.jar –s model.rebeca -p

model.property -o rmc -x

 java -jar org.rebecalang.rmc-2.6.0-SNAPSHOT.jar -s timed-model.rebeca -o

rmc -v 2.1 -e TimedRebeca -x

How to execute the generated C++ files

The result C++ files can be compiled using any distribution of C++ compilers. In the following example we

use g++ to compile the generated C++ files and set the compilation output file to “executable”.

g++ *.cpp -w -o executable

Running “executable” file results in model checking of the model. The model checking result is reported

on the console. The result includes the number of states and transitions in the generated state space, and

the status of default properties. Default properties includes deadlock-freedom, no assertion failing, no

queue-overflow, and no deadline-missed. If the given model does not satisfy the default properties, a

counter example will be printed on the console.

The model checking result can be saved into a file instead of printing out on console by the following

command:

executable -o outputName.xml

Note that the name of output file, i.e. “outputName”, shouldn’t be “statespace” as it is the default name

for the generated state space.

Some notes

 Deadlock-freedom, no assertion failing, and no queue-overflow are three types of default properties

which are checked automatically. In case of Timed Rebeca and Probabilistic Timed Rebeca, no

deadline-missed is also checked automatically. The model checking result are shown between open

and close "result" tag. For example, "<result>deadline missed</result>" shows that “deadline missed”

happened, or "<result>satisfied</result>" means that all default properties were satisfied.

 In case of Probabilistic Timed Rebeca, running RMC checks the default properties and generates the

state space. But, to model check PCTL properties, the generated state space can be verified by a back-

end model checker like PRISM or IMCA. The option “-p myModel.property“ in RMC is not applicable

in this case.

 In case of using arrays or actor-types variables, you can enable safety mode to avoid access to null

valued variables and the elements outside of the arrays using “-safemode” parameter. Note that this

reduces the performance of the tool.

 Using “-x” parameter, the model checker exports the state space of its given model in

“statespace.xml” file. This file can be visualized using state-space-transformer library. You can

download it from http://rebeca.cs.ru.is/files/statespacetransformer-1.0.0-SNAPSHOT.jar. The

parameters of this library should be set as the following. The result file can be transformed to a jpg or

png file using graphviz toolset (http://www.graphviz.org).

Parameter Example Description

-s, --source -s /home/test/statespace.xml
-s statespace.xml

Location of the xml file of the state space

-o, --output -o /home/test/modelFolder
-o myModelFolder

Target of the transformation

-e, --extension -e CoreRebeca
-e TimedRebeca

Specifying the type of the Rebeca model which the
state space is corresponding to

-t -t GRAPH_VIZ Transforming the state space into graph-viz like
format.

-h -h Print the parameters description

http://rebeca.cs.ru.is/files/statespacetransformer-1.0.0-SNAPSHOT.jar
http://www.graphviz.org)/

