
Compositional Verification of an Object-Based

Model for Reactive Systems

M. Sirjani∗, A. Movaghar∗, M.R. Mousavi∗

Department of Computer Engineering
Sharif University of Technology

Tehran,Iran

1 Introduction

Reactive systems have an ongoing interaction with their environment, accepting
requests and producing responses. Correct and reliable construction of reactive
systems is particularly important and challenging. So, using a formal method
to establish mathematical proof of correctness of such systems is necessary.

A formal method consists of three major components: a model for describ-
ing the behavior of the system, a specification language to embody correctness
requirements, and an analysis method to verify the behavior against the cor-
rectness requirements [8]. We choose an object-based model as the modelling
language to describe the system, linear temporal logic as the specification lan-
guage, and compositional verification for verifying that the model meets its
specification.

In system verification, a main obstacle to the use of automatic methods is
the state-explosion problem, which is the exponential increase in the number of
system states caused by a linear increase in the number of system components
or variables [6]. Compositional verification attempts to overcome the state-
explosion problem by exploiting the modular structure that is naturally present
in many system designs.

Compositional verification can decrease the complexity of problem when the
model is naturally decomposable [10]. So, a model consisting of inherently
independent modules is suitable for compositional verification. Object-based
modelling is based on abstraction, encapsulation, and information hiding, using
modules with high independence. Therefore, we choose an object-based model.

∗emails: msirjani@mehr.sharif.ac.ir, { movaghar,mousavi}@sharif.ac.ir

1

2 Alecs Model

The model proposed here is similar to the actor model [2, 3, 4] in its independent
active objects, asynchronous message passing, dynamically changing topology,
and unlimited buffer for messages. This model does not support dynamic cre-
ation of active objects to decrease the complexity of the model and hence make
the verification process easier. We call our model Alecs1 and each active object
alec. In Alecs one has to first define the classes and then introduce alecs as
instances of that class. Often, we have several similar agents in a system that
act concurrently and interact with one another. This feature allows us to reuse
the class code in the model. Verification of a module specification and then
composing the specifications is the basis of compositional verification; thus, in
a model like ours, verification of a class property can be generalized to all of its
instances. Therefore, we have reusability in the verification approach as well.

Independence of the alecs is important in compositional verification as well
as in modelling. Alecs directly supports encapsulation and information hiding
by separating the interface and the body of each alec’s class definition. The
interface part includes all the information necessary for interacting with other
alecs and also for verification. Therefore, it is not just a modelling concern
but a verification concern as well. This partitioning improves the readability
too. Unlike other tasks in the verification of finite-state systems, which have
been largely automated, current modular verification techniques still rely on
user guidance [5]. As a result, readability is an important feature.

To overcome a common criticism on the actor model [4], an alec’s semantics
is defined such that the composition of two alecs is another alec.

The computation takes place by message passing and the execution of mes-
sage servers. For each alec, there is an unlimited FIFO buffer called mailbox
for arriving messages . There is a server (i.e. method) for each arrived message.
When a message reaches the head of the mailbox its server is invoked, and the
message is omitted from the mailbox and passed to the server. Each alec can
send messages to its known alecs which are in the known alecs list. This list
can be updated by sending alec’s names in the messages. The topology of the
model is based on this known alecs list.

The definition of the system includes the classes and the alecs in the run-
ning system. There is not a complete inheritance hierarchy, the classes act like
templates for definition of the alecs. Alecs are instantiated from the classes and
are composed in parallel to make the whole reactive system. The init server
is invoked to initialize the system. Alecs are executed in parallel; each, having
a single thread of execution, taking a message from the mailbox and invoking
the server. If there is no message waiting in the mailbox then the alec will wait
idle. Message passing is asynchronous and the sender alec continues its execu-
tion after sending the message. A part of computation and nondeterminism is
modelled by asynchrony in message passing.

1A
¯
l
¯
ive obje

¯
c
¯
ts
¯

2

3 Compositional Verification of Alecs

A necessary condition for compositional verification is that an alec’s variable
values shouldn’t change when it is composed with other alecs, i.e. concurrent
execution of alecs shouldn’t change their specifications [1].

Executing message servers is the only way to change alecs’ variable values.
So, first we verify an alec property considering all possible environment con-
ditions. It makes a state space presenting all the state transitions of the alec
that can take place in the running system. Then it is obvious that safety prop-
erty of an alec holds even if it is composed with another alec. So, because of
alecs independence and encapsulation there is no need for explicit conditions in
compositional verification of them.

We can suggest a strategy for compositional verification of safety properties.
In this strategy, if P and Q are two alecs, and ϕP ||Q is a safety property of
P ||Q, we can show that ϕP ||Q is a property of compound alec, if we find safety
properties for P and Q, such that

1. ϕP is a safety property of P ,

2. ϕQ is a safety property of Q, and

3. (ϕP ∧ ϕQ) ⇒ ϕP ||Q.

Also, we can use compositional minimization by finding the interface alec
Q′ corresponding to P . Then, we may model check a property on parallel
composition of P and Q′ (P ||Q′), and conclude that the property is valid for
P ||Q [9].

4 An Example

To show the power of Alecs model, we used it to specify a railroad control sys-
tem, which has been used as a typical verification example [5, 7]. The system is
made up of a bridge controller class(BridgeController) and a train class(Train).
The bridge controller class prevents collisions between the two trains by ensur-
ing the train safety requirement and the train class is a template for defining
trains moving toward the bridge in different directions. Running system of
this model consists of two train alecs(Train1 and Train2) and one controller
alec(theController) which run concurrently as depicted in figure 1.

The system safety requirement, is that at any given time at most only one
train is on the bridge. It is specified in temporal logic as follows:

ϕsys = [](¬(Train1.OnTheBridge ∧ Train2.OnTheBridge))

We proved the correctness of above statement using minimization rule on safety
properties of BridgeController and (BridgeController||Train). The state
space of the system, with traditional verification methods, consists of 288 states.
However, applying compositional verification results in just 56 states.

3

ActiveClass BridgeController { ActiveClass Train{
Interface : Interface :

KnownObjects : KnownObjects :
T[1..2] : Train; Controller: BrigdeController;

MsgServers : MsgServers :
Arrive(sender), YouMayPass(),
Leave(sender); ReachBridge(),Passed() ;

Observational : Observational :
Signal[1..2]: (green, red) ; OnTheBridge : Boolean;

Body : Body :
isWaiting[1..2]: Boolean; ReachBridge()
Arrive(sender) {
{ send(Controller, Arrive(self));
theOtherOne: Integer; }
theOtherOne := (sender mod 2) + 1;
if Signal[theOtherOne] := red then YouMayPass()
{ {
Signal[sender]:= green; OnTheBridge:= true;
send (sender, YouMayPass); send(self,Passed);
} }
else

isWaiting[sender] := true; Passed()
} {

OnTheBridge:=false;
Leave(sender) send(Controller,Leave(self));
{ send(self,ReachBridge);
theOtherOne: Integer; }
theOtherOne := (sender mod 2) + 1;
Signal[sender] := red; Init()
if isWaiting[theOtherOne] then {
{ send(self,Passed);

send (T[theOtherOne], OnTheBridge:= false;
YouMayPass); }

} }
isWaiting[sender] := false; ActiveObjects:
} Train1, Train2: Train;
Init() TheController: BridgeController;
{ Composition:
Signal[1] := red; Signal[2] := red; Train1 || TheController || Train2
isWaiting[1] := false; Init()
isWaiting[2] := false; {
} Train1.Controller := theController;

} Train2.Controller := theController;
theController.T[1] := Train1;
theController.T[2] := Train2;
}

Figure 1: A railroad control system in Alecs

4

5 Concluding Remarks

In the future, we plan to add real-time constraints to the model, increase the
reusability of the model, and add the possibility of dynamic creation of alecs.
Since decomposing the system into modules, and specifying the properties are
currently the designer’s responsibility, we shall make them as automatic as pos-
sible. The first step is to present some guidelines and algorithms in this area. In
this paper, we focus on safety properties only, verification of progress properties
may also be considered. Induction methods and special optimization algorithms
for model checking of the Alecs will also be needed in the future.

References

[1] Abadi L. and Lamport L., Composing Specifications, in ACM Transac-
tions on Programming Languages and Systems, vol. 15, No. 1, pp. 73-133,
January 1993.

[2] Agha G. and Hewitt C., Concurrent Programming Using Actors, in
Yonezawa A., Tokoro M. Eds.,Object-Oriented Programming, MIT Press,
pp. 37-53, 1988.

[3] Agha G., The Structure and Semantics of Actor Languages, Foundations of
Object-Oriented Languages: REX School Workshop, LNCS 489, pp. 1-59,
1991.

[4] Agha G., Mason I., Smith S. and Talcott C., A Foundation for Actor Com-
putation, Journal of Functional Programming, No. 7, pp. 1-72, 1997.

[5] Alur R. and Henzinger T.A., Computer Aided Verification, Draft, 1999.

[6] Alur R., de Alfaro L., Henzinger T.A. and Mang F.Y.C., Automating Mod-
ular Verification, in Proceedings of the Tenth International Conference on
Concurrency Theory, LNCS 1664, Springer-Verlag, pp. 83-97, 1999.

[7] Bjorner N.S., Manna Z., Sipma H.B. and Uribe T.E., Deductive Verification
of Real-time Systems Using Step, in Proceedings of ARTS-97, LNCS 1231,
Springer-Verlag, pp. 22-43, 1997.

[8] Manna Z. and Pnueli A., The Temporal Logic of Reactive and Concurrent
Systems, Springer-Verlag, 1992.

[9] Peng H. and Tahar S., A Survey on Compositional Verification, Technical
Report Dept of ECE, Concordia University, 1998.

[10] Roever W.P., The need for Compositional Proof Systems: A Survey, in
Roever W.P., Langmaack H. and Pnueli A., Eds., Compositionality: The
Significant Difference, LNCS 1536, Springer-Verlag, pp. 1-22, 1998.

5

