

Using UML to Develop Verifiable Reactive Systems

Fatemeh Alavizadeh1, Marjan Sirjani1,2

1ECE Dept., University of Tehran
North Kargar, Tehran, Iran

2School of Computer Science, IPM
Niavaran Sq., Tehran, Iran

f.alavi@ece.ut.ac.ir msirjani@ut.ac.ir

Abstract

Designing a correct model for distributed and reactive systems is the first goal of using Rebeca modeling
language as an actor-based language supported by a formal verification tool. This paper proposes a method to
perform formal verification of reactive systems at the early stages of the design cycle. We propose a UML profile for
modeling systems consisting of reactive objects which are communicating via asynchronous messages and also a
method for automatic code generation to Rebeca. In this way, developing verifiable models for this group of systems
is made possible. This can bridge the gap between software development methods and formal verification by adding
model checking step to software development life cycle.

1. Introduction

As traditional approaches to software engineering were no longer applicable to development of complicated and
critical systems, new methods were introduced. In almost all of these methods modeling is the key to analysis and
design. Visual modeling is helpful to keep the system more easily manageable. The Unified Modeling Language
(UML) [7] was developed to respond to this demand and inspired a new approach to design: Model Driven
Architecture (MDA) [25, 13, 14]. One of the most important aspects of MDA is code generation which is to
automatically generate as much as possible code from the input model, leaving only little for the error-prone manual
coding. The idea has many advantages such as reducing expenses spent on documentation, implementation and
maintenance. Especially, implementation can be less expensive if the models are verifiable and executable, since
errors are found early in the process [8].

To achieve these goals we introduce a UML profile for designing concurrent and distributed systems consisting
of asynchronously communicating reactive objects. By converting these UML models to Rebeca [1, 2, 3, 4],
verification can be done. Furthermore, there is a tool to convert Rebeca codes to Java, so Java code can also be
generated [24]. As a result, there would be a path from UML model to Java code which supports verification via
Rebeca and automatic code generation to Java. This can better be observed in Figure 1.

Rebeca is an actor-based [9, 10] language for modeling and verification of reactive systems. The key features of
Rebeca are: using actor-based concepts for the specification of reactive systems and their communications, providing
a formal semantics for the model, providing a tool for model checking Rebeca code and using abstraction techniques
to reduce the state space in model checking.

One of the advantages of UML is its possibility of customization [7], because of large amount of concepts and
complexity of UML, usually the usage of its concepts is restricted by defining UML profiles. A profile is a certain
subset of the syntax of UML that specifies well-formedness rules beyond those in this subset, adds standard elements
to the subset and specifies additional semantics in natural language. In other words, UML profile is a subset of UML
concepts which is adequate to define our domain.

To reach the mentioned goals, we introduce a new profile for UML by introducing new stereotypes. We use
class diagram, object diagram, and sequence diagram to represent models. We also introduce a natural mapping to

generate Rebeca Code from these diagrams. Thus, we can get advantages of simplicity and unification of UML, as
well as verification power of Rebeca.

Figure1. The Proposed Method

2. Related works

Related works cope both with the modeling of reactive systems using UML and the code generation process
from UML diagrams. In the similar works for modeling reactive systems, usually state charts are used [12, 11, 14,
18]. In [12], in order to bridge the gap between system model and program code, state charts and SWITCH-
technology are used to develop reactive object oriented programs. In [11], a way for graphical design of reactive
systems using state charts, is introduced which translates state charts into the Abstract Machine Notation (AMN) of
the B method. In [14], a UML profile for development of distributed reactive systems is introduced which is also
based on state charts. In [18], a new kind of formalized diagram is proposed to be used in design of reactive systems
which is based on UML state charts.

Many works have been done in order to generate code from UML diagrams. Tools like Rational Rose [27]
support code generation from static diagrams to many target languages. In Together ControlCenter [26], Code
generation is possible from static and dynamic diagrams [8]. On the other hand, some people have worked on
generating code from user defined UML profiles, for instance, in [14] Ada code has been generated from the profile,
and Mellor [17] defined a profile called xUML to generate executable code from state charts. Similarly, in this paper
we introduce a new profile and the code generation process form the profile to Rebeca language.

3. UML and Rebeca

The Unified Modeling Language, UML, is a general-purpose visual modeling language that is designed to
specify, visualize, construct and document the artifacts of a software system [7]. UML is simple, powerful, and
unified.

First of all, UML is expandable; the core concepts can be combined and extended so that expert object modelers
can define large and complex systems across a wide range of domains [7]. Moreover, UML is a standardized
notation for modeling and documenting object-oriented software and business processes. The adoption of one single
standard modeling language provides many benefits to software developers. Training is simplified since there is just
one language to learn. It also simplifies the communication between development teams that now can exchange
models using the common language.

By introducing a new profile in UML, a reactive, distributed and concurrent system can be modeled using UML
and formally verified using Rebeca Verifier [3], and also Rebeca developers can design their models with UML
which makes it graphical, simple, more comprehensible, unified, standard, and easy to change and understand.

Rebeca [4, 1], Reactive Objects Language, is an actor-based language for modeling and verifying concurrent and
distributed systems. Rebeca is designed in an effort to bridge the gap between formal verification approaches and
real applications. It is also a platform for developing object-based concurrent systems in practice. Rebeca is

Our path

Software Development

Model Checking

Model Design
Formal Verification

Code Generation Model

Proof of
Correctness

Executive
Model

Execution

Errors Found

supported by Rebeca Verifier tool, as a front-end, to translate the codes into existing model-checker languages and
thus, be able to verify their properties [2, 3]. In addition, Rebeca direct model checker is now under development [5,
6]. For a formal verification method, more than a model, there should be a specification language to embody
correctness requirements. Here, temporal logic is used to specify safety and progress properties which are based on
state variables of each rebec in the model [1].

Rebeca model is similar to the actor model in that it has independent active objects, and asynchronous message
passing. These objects are reactive and self-contained. We call each of them a rebec, for reactive object.
Computation takes place by message passing and execution of the corresponding methods of messages. Each
message specifies a unique method to be executed when the message is serviced. Each rebec has a buffer, called a
queue (or inbox), for arriving messages. When a message at the head of a queue of a rebec is serviced, its method is
invoked and the message is deleted from the queue. Each rebec is instantiated from a reactive class, ‘reactiveclass’,
and has a single thread of execution. We define a model, representing a set of rebecs, as a closed system. A Rebeca
code is consisted of definition of reactive classes and a ‘main’ part. In the main part rebecs are instantiated from
reactive classes. Each reactive class consists of known objects, state variables and a set of message servers. Known
objects of a rebec, ‘knownobjects’, are those rebecs that this rebec can send them messages. All message servers,
‘msgsrv’, of a reactive class can use its state variables, but they are not public to be used by other reactive classes.
The set of state variables identified by keyword ‘statevars’, are variables which represent the state of the rebec. It is
required that every reactive class definition has at least one message server named ‘initial’ which is put in the queue
when a rebec is instantiated. In declaring a rebec, the bindings to its known rebecs is specified in its parameter list.
Figure 2, shows the constructs of a Rebeca model.

Figure2. Constructs of a Rebeca Model

4. UML Profile for Modeling Reactive Systems

Since UML is customizable, we can introduce a new profile for modeling concurrent and distributed systems
consisted of reactive objects which are communicating via asynchronous messages. In the modeling process, UML
helps to represent our design with high level of abstraction. Since our development process is through Rebeca we
need to show real world objects and their correspondent in Rebeca. Since Rebeca is an object-based language the
mapping from UML diagrams to Rebeca models is natural. In the following we show how we can model reactive
systems with UML and the mapping used to convert UML diagrams to Rebeca.

Starting from the requirements the next step is to find the abstractions necessary to build the precise model of a
domain by capturing the behavior of the parts it is comprised of. This model consists of a class diagram, an object
diagram, and sequence diagrams. To describe the structure and behavior of the domain, it is necessary to search for
entities which are alike and model them as classes. Then we shall find the properties necessary to describe such
classes and the actions which can be done by these classes which will be modeled as the attributes and the methods
of the class. Finally, the relationships between classes have to be established. The result of this process is a class
diagram describing the structure of our system.

In Rebeca, rebecs are the only entities constructing our systems, and reactive classes are used to make a template
for the behavior of these rebecs. Naturally, objects are mapped to rebecs, and classes are mapped to reactive classes.
To make this mapping standard we need to define a stereotype which in UML definition is a way to extend the
vocabulary of UML, allowing us to create new kinds of building blocks that are derived from existing ones but that
are specific to our problem [7, 8]. So a class, which has ‘reactiveclass’ stereotype, is a template for all reactive
objects in our model. Attributes of a reactive object are state variables in Rebeca. There is a variation of UML in this
step: in Rebeca visibility of all state variables is private, so we do not need to show visibilities in our model. As
discussed above, we need to define a new stereotype which shows this mapping: ‘statevars’. Methods of a reactive

object are mapped to message servers in Rebeca. By defining a new stereotype, ‘msgsrv’ we can show the service of
a reactive object which is invoked by sending an asynchronous message to that rebec.

After identifying our entities we need to define relationships between these entities. In our context, we should
specify the set of reactive objects that a specific rebec can send message to them as the set of known objects. We can
represent message sending with an association between reactive class and its known objects. The mapping of Rebeca
and UML to show the static structure of a reactive system by a class diagram is shown in Table 1.

In the class diagram we can show other information such as the initial value of state variables. In Rebeca, initial
message server is the first message server a rebec executes, so all initiations can be placed there. By assigning the
initial value of state variables in our class diagram, we can show a part of the behavior of initial message server and
consequently we can make the code of initial message server. An object diagram shows the instantiation and
mapping of reactive classes to their known objects.

Table1. Mapping between Rebeca and UML Constructs

UML Element Rebeca Element Stereotype
Class Reactive class reactiveclass
Attribute State variable statevar
Method Message server msgsrv
Association Known object -

After describing the static structure, we should define dynamic behavior of our system. Using an interaction

diagram you can model the behavior of a society of objects that work together. Both sequence diagrams and
collaboration diagrams are kinds of interaction diagrams. They show an interaction, consisting of a set of objects and
their relationships, including the messages that may be dispatched among them [7]. Interaction diagrams are known
as “one story for all objects”. State machines describe the life-cycle of an object. A state machine is a behavior that
specifies the sequences of states an object goes through during its lifetime in response to events, together with its
responses to those events [7]. Sequence diagram is known as “all stories for one object”.

Generally state machines are used to model reactive systems [12, 11, 14, 18]. Mellor [17] defined a profile called
xUML to generate executable code from state charts which is a subset of UML on the one hand, and a superset with
the additions of an action specification language on the other hand. The interesting part of xUML is that models
created in this language can be compiled into any programming language and afterwards executed on any chosen
platform [8].

On the other hand, some people have worked on generating code from interaction diagrams. An example is [19],
the author introduces a way to map sequence diagrams to interaction graphs which deal with defining the scope of
the variables included in the graph. This paper is a kind of aspect oriented programming supporting both forward
engineering and reverse engineering. In [20], a way to enhance the semantics of collaboration diagrams beyond the
standard of UML is presented. We also have chosen sequence diagrams in this profile. In the following some of the
arguments leading to this decision are explained.

State machines are used to show the behavior of objects which have a lifecycle that is of interest to be modeled,
and it should be about lifecycles common to all instances of a class. However, in an abstract view, our reactive
objects have fixed number of states and actions. The only observable action of a rebec is sending a message, and the
only action affecting a rebec is taking a message from the top of the queue. Consequently, each rebec starts in ‘idle’
state and after receiving a message goes to ‘waiting’ state waiting for its turn, and then goes to ‘running’ state.
Figure 3 shows this state chart. Although we can broke running state to sub states. Larman, in [15] encourages using
state chart diagrams only for the purpose of illustrating external and temporal events and the reaction of an object to
them. However, In Rebeca a message is unknown to a rebec till the rebec takes it out of the queue, and after that the
rebec runs an atomic message server related to that message in which it can send messages to its known objects or
change its state variables. So, dequeueing a message and executing an atomic message server cannot be considered
as an external event. So, it is not a good idea to break the running state to sub states. Even if we try to show the state
charts based on message servers and state variables, we cannot show as mush information about the design as we do
now by use of sequence diagrams. Also code generation form sequence diagrams, in our case, is more viable. In
addition, Harel argues that sequence diagrams are a medium for conveying requirements and state charts are part of
the system model [16]. Since we want to perform formal verification in early stages of modeling, we prefer to use
sequence diagrams as they can be extracted in a straight forward way from the domain. Therefore we chose
interaction diagrams in our case, and among sequence diagram and collaboration diagram, sequence diagram is
chosen, because it can better show the sequence of execution. Each sequence diagram shows a sequence of actions in
a system. We can consider a system, a rebec, or each message server as an action unit and show it with one sequence

diagram. Considering a system as an action unit is very complicated. Considering a rebec as an action unit is also
impractical, since we are trying to show the interaction between different objects rather than showing an object
behavior. Also, we still can decrease complexity in defining dynamic behavior by considering a message server as an
action unit. This is similar to what we usually do in software engineering: drawing a sequence diagram for each
method.

In our model, we draw a sequence diagram for each message server, and we show the sequence of actions
invoked by receiving a message. In each sequence diagram we have one main rebec and its known objects (because
they are the only possible message receivers); we also have a rebec known as “sender” which sends us the message.
In each diagram the sequence of actions initiates by receiving a message from the sender, the rest of the diagram
shows what would happen if the receiver rebec gets such a message, i.e., the code of the relevant message server. In
our sequence diagrams, we can show messages which are sent by receiving a message. The UML standard has
defined ways to notate conditional logic on sequence diagrams, using if-then-else structure we can show the dynamic
structure more precisely. Also we can use “nondeterministic” condition for a call in a sequence diagram to make the
model more comprehensible, although not many tools support these features. In the following example these
explanations are illustrated.

5. Code generation

The above discussions show how we can design concurrent and distributed systems consisting of reactive
objects, in UML. If we model such systems with proposed profile, Rebeca code can be generated from the UML
model. After that we can add other specifications of the system such as assignments or comments in generated code
and make it a complete model, We can use Rebeca Verifier to model check the system either directly or indirectly
(using Rebeca front-end model checker). We also can convert our model to Java for execution.

To implement a tool to generate Rebeca code from UML models, we need to develop our diagrams in a case tool
which supports the main features of UML that we need. Moreover, the tool must support XMI [21] as an
intermediate representation. XMI is a widely used as interchange format for sharing objects using XML. Sharing
objects in XML is a comprehensive solution that builds on sharing data with XML. XMI is applicable to a wide
variety of objects including objects of UML diagrams. This representation contains all the information about the
model that we need for code generation. XMI can convert graphical diagrams to XML. After that we can use XMI
parser to gather information from the XMI document and build an abstract tree from XML. Rebeca code can be
generated from this tree like the other Rebeca tools using a template engine that generates code from predefined
templates. Using a template engine [22], we decouple the parsing of XMI document from the code generation step so
that changes in the XMI parser do not affect code generation process [23].

6. Case study: Train-Controller

We use the train-controller example to show our work. In a part of a two-way railroad is a bridge on which one
train can pass at a time. There is a controller to control traffic signals. In our model we have a train and a controller
reactive class. In the main part we instantiate two trains and a controller. Figures 4 and 5 show the static structure of
the model in class and object diagrams. The main structure of the code can be generated from these diagrams.
Dynamic behavior of the rebecs is shown in Figures 6, 7, 8, and 9. The Rebeca code generated from these diagrams
is shown in Figure 10. The extra code that is added after code generation to complete the model is in bold.

Figure4. Class diagram for the Train-Controller Example

Figure5. Object diagram for the Train-Controller Example

Figure6. Behavior of Initial Msgsrv and Passed Msgsrv

Figure7. Behavior of YouMayPass Msgsrv and ReachBridge Msgsrv

Figure8. Behavior of Arrive Msgsrv

Figure9. Behavior of Leave Msgsrv

Figure10. The code generated from the model

7. Conclusion
In this paper, we introduce a UML profile to represent distributed systems consisting of reactive objects

communicating via asynchronous messages, and a method to generate Rebeca code from these models which can
enable us to model check our systems in early stages of design process.

References
[1]. M. Sirjani, A. Movaghar, A. Shali, F. de Boer “Modeling and Verification of Reactive Systems using

Rebeca”, Fundam. Inform. 63(4): 385-410 (2004)
[2]. M. Sirjani, A. Shali, M. Jaghoori, H. Iravanchi, A. Movaghar “A Front-End Tool for Automated Abstraction

and Modular Verification of Actor-Based Models”, ACSD 2004: 145-150
[3]. M. Sirjani, A. Movaghar, A. Shali, F. de Boer “Model Checking, Automated Abstraction, and Compositional

Verification of Rebeca Models”, J. UCS 11(6): 1054-1082 (2005)
[4]. M. Sirjani, A. Movaghar, H. Iravanchi, M. Jaghoori, A. Shali “Model Checking in Rebeca”, PDPTA 2003:

1819-1822
[5]. M. Jaghoori, M. Sirjani, M. R. Mousavi, A. Movaghar “Efficient Symmetry Reduction for an Actor-Based

Model”, ICDCIT 2005: 494-507
[6]. M. Jaghoori, A. Movaghar, M. Sirjani “The Model Checking Engine of Rebeca”, to appear in ACM SAC’06
[7]. G. Booch, J. Rumbaugh, I. Jacobson “The Unified Modeling Language User Guide”, Addison Wesley,

October 1998, ISBN: 0-201-57168-4
[8]. M. Marinschek “Towards Executable UML - Code Generation From Interaction And State Chart Diagrams”,

Master thesis, Technischen Universit¨at Wien, 2003
[9]. G. Agha, C. Hewitt “Concurrent Programming Using Actors”, in Yonezawa A., Tokoro M. Eds., Object-

Oriented Programming, MIT Press, pp. 37-53, 1988
[10]. G. Agha “The Structure and Semantics of Actor Language”, in Proceedings of foundations of Object-Oriented

Languages: REX School Workshop, Springer-Verlag, LNCS 489, pp. 1-59, 1991
[11]. E. Sekerinski “Graphical Design of Reactive Systems”, In D. Bert, editor, 2nd International B Conference,

Lecture Notes in Computer Science Vol. 1393, Montpellier, France, 1998, Springer-Verlag
[12]. V. S. Gurov, M. A. Mazin, A. S. Narvsky, A. A. Shalyto “UniMod: Method and Tool for Development of

Reactive Object-Oriented Programs with Explicit States Emphasis”, IEEE BT02/C16/CE08/COM19/CAS04/
EM14 Societies Chapters’ SECTION Proceedings of St. Petersburg IEEE Chapters. 2005. V. 2, pp. 106-110

[13]. R. Soley, The OMG Staff Strategy Group “Model Driven Architecture”, Object Management Group, White
Paper, Draft 3.2 – November 27, 2000

[14]. M. Kersten, J. Matthes, C. Fouda Manga, S. Zipser, H. Keller “Customizing UML for the development of
distributed reactive systems and code generation to Ada 95”, Ada User Journal, Volume 23, Number 3,
September 2002

[15]. C. Larman “Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the
Unified Process”, Prentice Hall, 2002.

[16]. D. Harel “From Play-In Scenarios to Code: An Achievable Dream”, 0018-9162/01/ 2001 IEEE
[17]. S. J.Mellor, M. J. Balcar “Executable UML: A Foundation for Model-Driven Architecture”, Addison-Wesley,

first edition, 2002.
[18]. H. Feng “DCHARTS, A Formalism For Modeling And Simulation Based Design Of Reactive Software

Systems”, Master thesis, McGill University, Canada, Feb 2004
[19]. N. Sangal, E. Farrell, K. Lieberherr “Interaction graphs: A system for specifying and generating object

interactions”, Technical report, Tendril Software, Inc., 1998
[20]. G. Engels, R. ucking, St. Sauer, A.Wagner “UML collaboration diagrams and their transformation to Java”,

In R. France and B. Rumpe, editors, UML ’99 - The UML - Beyond the Standard., pages 473–488. Springer,
Berlin, October 28-30 1999. Second Intern. Conference. Fort Collins, CO. LNCS 1723

[21]. Object Management Group “XML Metadata Interchange Specification”, May 2005, Version 2.0
[22]. Velocity website. http://jakarta.apache.org/velocity/
[23]. K. Nguyen, Z. Sun, P. Thiagarajan, W. Wong “Model-driven SoC Design Via Executable UML to SystemC”,

RTSS 2004: 459-468
[24]. http://khorshid.ece.ut.ac.ir/~rebeca
[25]. http://www.omg.org/
[26]. www.borland.com/together/
[27]. www.ibm.com/software/rational

