ResearchGate

See discussions, stats, and author profiles for this publication at:

Formal Analysis of Smart Home Policies using
Compositional Verification.

Conference Paper - January 2009

DOI: 10.3233/978-1-60750-014-8-220 - Source: DBLP

CITATIONS READS
2 14
3 authors:
Linnaeus University e Malardalen University
14 PUBLICATIONS 89 CITATIONS 122 PUBLICATIONS 1,083 CITATIONS
SEE PROFILE SEE PROFILE

-
Q Tarbiat Modares University

87 PUBLICATIONS 375 CITATIONS

SEE PROFILE

All content following this page was uploaded by on 30 March 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220956095_Formal_Analysis_of_Smart_Home_Policies_using_Compositional_Verification?enrichId=rgreq-e7c0b9fd4af28fdcf5759e19401a510b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk1NjA5NTtBUzoyMTI2NTAwNzcyMzMxNTNAMTQyNzcxMTEzNzA1OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220956095_Formal_Analysis_of_Smart_Home_Policies_using_Compositional_Verification?enrichId=rgreq-e7c0b9fd4af28fdcf5759e19401a510b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk1NjA5NTtBUzoyMTI2NTAwNzcyMzMxNTNAMTQyNzcxMTEzNzA1OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e7c0b9fd4af28fdcf5759e19401a510b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk1NjA5NTtBUzoyMTI2NTAwNzcyMzMxNTNAMTQyNzcxMTEzNzA1OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Narges_Khakpour2?enrichId=rgreq-e7c0b9fd4af28fdcf5759e19401a510b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk1NjA5NTtBUzoyMTI2NTAwNzcyMzMxNTNAMTQyNzcxMTEzNzA1OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Narges_Khakpour2?enrichId=rgreq-e7c0b9fd4af28fdcf5759e19401a510b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk1NjA5NTtBUzoyMTI2NTAwNzcyMzMxNTNAMTQyNzcxMTEzNzA1OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Linnaeus_University?enrichId=rgreq-e7c0b9fd4af28fdcf5759e19401a510b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk1NjA5NTtBUzoyMTI2NTAwNzcyMzMxNTNAMTQyNzcxMTEzNzA1OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Narges_Khakpour2?enrichId=rgreq-e7c0b9fd4af28fdcf5759e19401a510b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk1NjA5NTtBUzoyMTI2NTAwNzcyMzMxNTNAMTQyNzcxMTEzNzA1OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marjan_Sirjani?enrichId=rgreq-e7c0b9fd4af28fdcf5759e19401a510b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk1NjA5NTtBUzoyMTI2NTAwNzcyMzMxNTNAMTQyNzcxMTEzNzA1OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marjan_Sirjani?enrichId=rgreq-e7c0b9fd4af28fdcf5759e19401a510b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk1NjA5NTtBUzoyMTI2NTAwNzcyMzMxNTNAMTQyNzcxMTEzNzA1OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Malardalen_University?enrichId=rgreq-e7c0b9fd4af28fdcf5759e19401a510b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk1NjA5NTtBUzoyMTI2NTAwNzcyMzMxNTNAMTQyNzcxMTEzNzA1OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marjan_Sirjani?enrichId=rgreq-e7c0b9fd4af28fdcf5759e19401a510b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk1NjA5NTtBUzoyMTI2NTAwNzcyMzMxNTNAMTQyNzcxMTEzNzA1OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Saeed_Jalili3?enrichId=rgreq-e7c0b9fd4af28fdcf5759e19401a510b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk1NjA5NTtBUzoyMTI2NTAwNzcyMzMxNTNAMTQyNzcxMTEzNzA1OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Saeed_Jalili3?enrichId=rgreq-e7c0b9fd4af28fdcf5759e19401a510b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk1NjA5NTtBUzoyMTI2NTAwNzcyMzMxNTNAMTQyNzcxMTEzNzA1OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tarbiat_Modares_University?enrichId=rgreq-e7c0b9fd4af28fdcf5759e19401a510b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk1NjA5NTtBUzoyMTI2NTAwNzcyMzMxNTNAMTQyNzcxMTEzNzA1OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Saeed_Jalili3?enrichId=rgreq-e7c0b9fd4af28fdcf5759e19401a510b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk1NjA5NTtBUzoyMTI2NTAwNzcyMzMxNTNAMTQyNzcxMTEzNzA1OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Narges_Khakpour2?enrichId=rgreq-e7c0b9fd4af28fdcf5759e19401a510b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk1NjA5NTtBUzoyMTI2NTAwNzcyMzMxNTNAMTQyNzcxMTEzNzA1OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

220 Feature Interactions in Software and Communication Systems X
M. Nakamura and S. Reiff-Marganiec (Eds.)

10S Press, 2009

© 2009 The authors and I10S Press. All rights reserved.

doi:10.3233/978-1-60750-014-8-220

Formal Analysis of Smart Home Policies
using Compositional Verification

Narges Khakpour™', Marjan Sirjani®, Saeed Jalili®
“Safety Critical Systems Lab., Department of Electrical and Computer Engineering,
Tarbiat Modares University
*Formal Methods Lab., Department of Electrical and Computer Engineering,
University of Tehran

Abstract Smart spaces contain a large number of computing devices
communicating with each other to perform various high-order tasks. They are
governed by predefined policies that users can put according to their preferences.
In this paper, we investigate the policy interaction problem beyond the smart
home domain. We use a formal method for detecting dynamic conflicts between
policies. First, we give an abstract model of the system described with an actor-
based language. Then, we identify different kinds of conflicts that may exist
among policies in smart home domain. To reduce the complexity of model
checking, we use compositional verification as well as data abstraction techniques.

Keywords. Smart Spaces, Smart Home, Policy Analysis, Model Checking, Actor-
based Models, Compositional Verification

Introduction

Smart Space needs highly adaptive management systems that can adjust their behavior
at runtime based on user preferences. Policy is a key mechanism in providing
adaptation of the system behavior. Policy based management offers a means for
administrators, end-users and application developers to manage and dynamically
change the behavior of computing systems[1]. A policy is a rule describing under
which condition a specified action must (can or cannot) be performed.

However, policies usually interact with each other that can cause to undesirable
effects in the system. Especially, policy contlict has been identified as a potential threat
to the realization of effective and usable smart space systems[2]. Understanding and
controlling the overall effect of policies is particularly important in smart home domain,
where multiple residents may write policies for the same set of resources without
coordination. Furthermore, the nature of managing large sets of devices in a distributed
area emerges conflict among requirements, which subsequently leads to conflicts into
policy specification[3]. Furthermore, since there are a large number of devices at home
capable of performing interrelated tasks directed by different policies, thus they need to
be configured appropriately to avoid undesirable behavior. Therefore, the inhabitant
needs to be conscious of the effects of such interactions.

! Corresponding author.

N. Khakpour et al. / Formal Analysis of Smart Home Folicies Using Compositionat veryication 221

Although the research in the field of policy analysis has gained increasing
attention in the past few years, but most researchers investigated policies on its own
and abstracted from the systems enforcing these policies. Particularly, the complexity
of smart home systems makes capturing the system behavior in verification process
inevitable. To tackle this problem, we attempted to employ a model checking approach
for detecting policy conflicts in smart home domain. Our solution is based on our
research into verification of policy-based systems[4). Model checking is a well-known
technique to verify whether a system satisfies given properties. We model the system
using Extended Rebeca[5]. Rebeca[6] is an actor-based language for modeling
concurrent and distributed systems which provides a formal foundation. Due to the fact
that policy-based systems are usually large-scale and distributed, the model checking
complexity of these systems is extremely high. Compositionality is a desirable facility
to reduce the complexity of model checking by decomposing a large system into more
manageable pieces and proving the correctness of the whole system from that of its
immediate components. One of the major advantages of this language in comparison to
the other available analogous languages is its capability of compositional verification
provided in [5]. Desired properties to discover conflicts are expressed in LTL(Linear
Temporal Logic)[7, 8] patterns [4].

This paper has the following major contributions:

1.1t studies dynamic policy analysis in smart home domain.

2.1t introduces a new approach to verify a policy-based system in smart home domain
compositionally, which is a promising step toward making verification of policy-
based systems practical.

The remainder of this paper is structured as follows. In Section 1, we have a brief
review on Extended Rebeca, Linear Temporal Logic and Smart Homes. Section 2
introduces our modeling approach using a simple example. In Section 3 we deal with
verification of our model. We give a summary of related works in Section 4. Finally,
Section 5 presents our conclusion.

1. Preliminaries
1.1. Extended Rebeca

Rebeca is an actor-based language for modeling concurrent systems which allows us to
model the system as a set of reactive objects interacting by asynchronous message
passing. The main building blocks of a Rebeca model are rebecs instantiated from the
reactive classes. Reactive classes act as a template for states, behavior and interfaces of
active objects[6]. Each rebec provides methods called message servers which can be
invoked by other rebecs. Each rebec has an unbounded buffer for coming messages
named queue. Furthermore, the rebecs’ statevars are in responsible of capturing the
rebec state. The Knownrebecs of a rebec denotes the rebecs which it can send
messages to. A rebec serves a message by dequeueing it from the queue and executing
the corresponding message server. Rebeca is supported by model checker Modere
whereby we are able to model check properties expressed with CTL and LTL.

222 N. Khakpour et al. / Formal Analysis of Smart Home Policies Using Compositional Verification

One of the most important problems in model checking is the state-explosion
problem. Compositional verification has been introduced to tackle this problem which
decomposes a system into a set of components. In compositional verification the goal
is to check properties of the components of a system and deduce global properties from
those local properties. Extended Rebeca is an extension of Rebeca which supports
compositional verification. To verify a model in Extended Rebeca compositionally, the
mode} is decomposed into a set of components and the environment. Each component
includes a collection of rebecs while others make its environment. The behavior of
environment is modeled by sending messages to the components. Instead of putting the
external messages in the queue of rebecs, it is supposed that they are present in all
states and they are processed fairly interleaved with the internal messages. This makes
the model checking activity more efficient. In a Rebeca component model, we call
environment rebecs as external and all other rebecs as internal rebecs.

1.2. Linear Temporal Logic (LT, 7)

Due to the lack of space, we only introduce LTL in brief. LTL is a temporal logic that
extends propositional logic by introducing four basic temporal operators: the
existential operator F, the global operator G, the until operator , and the next operator
X. In this paper, we will restrict ourselves to an informal definition of the temporal
operators. An LTL formula is evaluated over a sequence of states. Given formulas ¥
and @, G (read as always 1)) states that Y is true in all states. Fi (read as finally y)
means 1 is eventually true. YUg (read as Y until ¢) denotes y is true until ¢ becomes
true. Xi (read as next) asserts 1 is true in the next state.

1.3. Smart Homes

At homes, you will find a wide range of electrical and electronic devices such as lights,
thermostats, electric blinds, fire and smoke detection sensors, white goods such as
washing machines, as well as entertainment equipment. Smart Home connects those
devices and enables inhabitants to monitor and control them from a common UL The
home network also allows the devices to coordinate their behavior in order to fulfill
complex tasks without human intervention [9].

In a home automation system, sensors are devices that provide smart home with
physical properties of the environment by sensing the environment. In addition,
actuators are physical devices that can change the state of the world respondent to
sensed data by sensors. Every actuator in the smart house has a certain intentional
effect on a domain, which a sensor that senses that particular domain can observe[10].
The system processes the data gathered by the sensors, then it activates the actuators to
alter the user environment according to the predefined set of policies. Policies allow
the system to act autonomously in case of certain event. Therefore, residents must be
able to control all devices through defining different policies according to their needs
and preferences.

N. Khakpour et al. / Formal Analysis of Smart Home Policies Using Compositional Verification 223

2. Modeling Smart Home System

2.1. Running Example

It simplified example to illustrate our approach. Smart homes can
l\zsep:;?is’;;ter?t :'gztlulress; \fv)e will focuspon only the features that are likely to have most
interaction. We take into account the following features: .

e Light Management This feature allows ligl.\ts to §witch on a‘nd off aL'uomatxlcally
depending on several factors. In addition, the lntensny.o_f the different lights placed
in a room can be adjusted regarded to the predefined policies.

e Doors/Windows Management Inhabitants have to able to manage windows and
doors automatically. In addition, if windows have blinds, these should be ro_lled up
and down automatically too. By means of this feature, the state of doors and windows

is monitored.

e Heating Management Inhabitants must be able to adjust the heat‘ing of the house
to their preferred value. The heating control will adjust itself automatically in order to

save energy.
e Presence Simulation In order to avoid burglary, when inl}abitants' lea.ve the hpuse
for a long time, the house occupation must be simulated by exthgr switching the lights
on/off or rolling the blinds up/down automatically according to a predefined
schedule.
e Emergency/Security Management In critical situations, e.g. fire, burglary, water
intrusion etc, system should query the resident if it suspects a prob!em, and if so, it
does the revisory actions, prevents from spreading the incident, issues a call for
outside help when necessary, etc.

For the sake of brevity, here we only point to four policies defined for emergency

management module:

P 1. On detection of fire, system must run the following scenario:
- Shut all windows and doors without locking
- Trigger the alarm

- Call the fire station ‘
P 2. Whenever the Gas/Smoke sensor is triggered, system should

- Unlocked all the windows
- Close the gas valve . o '
P3. Once a PIR sensor indicates movement in area X1 while inhabitants are on
vacation, system should
- At first, call the police ‘
- Then lock the doors and windows and trigger t_he alarm .
P 4. On opening window/door if the alarm is active, system must carry out the
following actions: .
- Lock all doors and windows provisionally
- Trigger the alarm

224 N. Khakpour et al. / Formal Analysis of Smart Home Policies Using Compositional Verification

2.2. Policy Definition for Smart Home Systems

The policy language for smart home was built on our work for verification of policy-
based systems[4]. We categorize policies as obligation and authorization policies;
however, here we restrict ourselves only to the obligation policies. Obligation policies
build up the core part of a policy-based system and define which actions a subject must
perform on an object when an event occurs, given some conditions hold. An obligation
policy consists of an event, an optional condition, and an acfion. An event is a named
event that triggers execution of a policy and can be either an external or a system event.
A condition is a binary expression evaluated to determine the validity of a policy.
Conditions can make the validity of policy dependent on the system-dependent
conditions like the time or its current state. An action describes a task to be executed
and may need additional parameters. Actions can be composite or simple. Composite
actions are created by composing simple action using sequential and parallel operators,
with sequential operator having higher precedence than parallel. Composite actions are
useful in situations where triggering an event causes the execution of a chain of actions
which their order of execution is too important. As an example consider a policy that
states “whenever a burglary is detected, the system must call for help and locks all the
windows/doors firstly, then it must trigger the alarm”. The actions “calling for help”
and “closing the doors and windows” must be performed in parallel before execution
of “triggering the alarm” action.

2.3. The Model of a Smart Home

In this section, first we present the Rebeca model of smart home, and then we deal with
compositional modeling of smart home using Extended Rebeca.

2.3.1. The Rebeca Model of Smart Home

In the proposed approach, at first we provide the core model of the system to be
modeled. The core model denotes the internal computation of objects without
considering policies that govern the behavior of system. Then, we merge policies with
the core model using a simple procedure which can be done automatically[4].

We model a smart home as a collection of interacting objects including smart
devices, sensors and actuators. Thus, we identify three kinds of rebecs that may exist in
a smart home model. Sensors embedded in different locations at home detect events.
While at first sight, it seems to consider each sensor as a rebec, however it leads to the
increase in the complexity of the model. Thus for the sake of simplicity, we make an
abstraction and consider a rebec named environment to abstract the behavior of all
sensors receiving external events. This rebec is in charge of notifying smart devices of
the occurred events. In a smart home application, smart devices are in charge of
enforcing policies while actuators are controlled by smart devices through policies.
Hence, smart devices handle received events from the environment and other rebecs by
evaluating and enforcing suitable policies. Actuators are thereof whose behavior is
governed by smart devices and receive messages from smart devices to act properly.
Hereafter, we may use smart devices and managers as well as actuators and managed
rebecs interchangeably.

N. Khakpour et al. / Formal Analysis of Smart Home Policies Using Compositional Verification 225

reactiveclass swart devicel{)
knownrebecs { actuatorl _al;}
statevars{bhoolean[5] events:
/Zdefinition of state variables
}
msgsry initial() {self.wonitor(}: }
msygsry ronitor() {
boolean[10] policy_ activity:
Jlevaluating and enforcing obligation policisgs
policy activity[D] = events[0] &< contextO;
policy activity[1] = events[2] &< contextl;
/¢ serting the activiey state of other policies
if (policy_activity[0] &&
'{policy_activity[1l] || policy activity[5]){
A4 policvl and policyS bhave precedsnee over policyd
_al.msgsrvl {0)
/4 enforcing policy
}
/7 enforcing other policies
}
/édefinition of cther meassage sRrvers
msysry trigger event (byte i) (
events[i] = true;
self .monitor(y: }
}
reactiveclass environment() {
knownrehecs { swart_devicel _sd:)
statevars{ }
msgsry initial{) (self.idle(): }
msygsry idle() {
//ganerate events
_sd.trigger_event {i};
self, idle();}
}
reactiveclass actuatorll) {
knownrebecs{ swart_devicel sd:)
statevars{
//definicion of state variahles
}
msgsrv initial(){ }
meYsrv msgsrvliiint argl}{
//pody of msgervl
}
’i

Jidefinition of other weassage FLUVeErs
}
main {

swart_devicel _sdi{_al):i():

environment _e{_sdi)t():
actuatorl _gl(sdi):():
/7oetinition of pther rebecs
3 :
Figure 1. The typical Rebeca model of a Smart Home

An abstract Rebeca model of a smart home application has been illustrated in
Figure 1. In this model, we represent events by event variables (e.g. event[i]). An event
variable is set when its corresponding event triggers and becomes reset after handling.

2206 N. Khakpour et al. / Formal Analysis of Smart Home Folicies Using Compositional Verification

As shown, environment generates external events non-deterministically and informs
smart devices about the changes by invoking frigger event message server. In this
model, a message server named monifor has been considered per each smart device to
monitor the system state, which handles events by enforcing the predefined policies.
Policies are expressed as a set of rules in the body of monitor where their conditional
part is defined as a guarded expression. The policy context is defined based on the
rebecs’ state variables and the global variables. Whenever an event is received by a
smart device, it identifies all the obligation policies that are triggered by that event. For
each of these policies, the policy condition is evaluated, if one exists. If the condition is
evaluated to true, the action part of the triggered policy is appealed to execute by
instructing relevant actuator rebecs to perform actions through sending asynchronous
messages. In certain situations, multiple non-conflicting policies may need to be
enforced and the enforcement order of those policies affects the system state. We
assume there is a total order defined over obligations that represents the order of
enforcing policies in our model.

The Rebeca model of our running example contains 6 fundamental reactive classes
corresponding to actuators includes door, window, light, thermostat, alarm and blind
shutter. In cases, identical object types may have different functionality, e.g. interior
doors certainly function differently from outer doors. Subsequently, the modeler is
supposed to model them as different reactive classes. In addition to actuators, the
model contains smart devices including LightCnirly, TempCntrir, EmergencyManager,
DWCntrir and PSimulator.

2.3.2. The Compositional Model of Smart Home

The huge state space of the Rebeca model makes it inadequate to verify formally by
model checking. Our formal framework allows us to perform compositional
verification to address the state space explosion problem. In order to verify our model
compositionally, first we should decompose the model into a set of components. We
should choose the highly coupled rebecs together as a component. In smart home
model, a smart device usually controls multiple actuators. Therefore, we consider a
smart device and its governed actuators as a component and the other rebecs as its
environment. As mentioned above, an event can be either an external event or a system
event. Relating to a component, the system events occurring in other components are
considered as external to that component. Therefore, we model the environment as an
external class sending messages to the components.

Figure 2 shows the simplified model of the EmergencyManagment component and
its environment in our example. It is worth noting that an actuator rebec may be used in
model checking of different components, since it can be controlled by multiple smart
devices. As an example, the doors and windows are controlled by several smart devices
including LightCntrlr, HeatCntrlr, EmergencyManager and DWCnurlr. Therefore, a
door rebec may receive messages from those smart device rebecs. As a result, when
itis included in the component model of a smart device, it must receive the
messages from other smart devices. As an example, alarm receives messages
“trigger_alarm”, “activate alarm” and “deactivate alarm” messages from environment
shown in Figure 2.

N. Khakpour et al. / Formal Analysis of Smart Home Policies Using Compositional Verification 227

externalclass XEnvironment of Environment{
envars{
}
inicial () {
}
sends{
trigger_event (?{0 .. 3));
trigger_alatm(alarm_ID) H
act ivate_alarm(alarm__ID) :
deactivate alarm{alarm_ ID):
//sending other messages o DeergencyNanagement component
}
H
main {
emergencylanager _em{ _a, wl, d, v): {):
window _wl(_em):(1};
door _dl(em):();
alarm _a():();
valve _vi1(_em): ()

//definition of other instances
XEnvironment xEnv {_em,_a) H
Components:

{_em, wl, dil, a,_vi}:

{XEnv};

Figure 2. The simplified mode} of EmergencyManagment Component

Data Abstraction Another technique to reduce the state space is employing data
abstraction methods. To deal with unbounded data domains or large constants, we
apply the concept of data domain abstraction[11]. Data values from a large or infinite
domain are thereby mapped to a smaller finite domain using a homomorphic
abstraction function, provided that the domain abstraction is compatible with the
operations of the system [12]. As an example, consider temperature attribute which
ranges over integer domain which can be reduced to the abstract domain {freezing,
cold, temperate, warm, hot}. Moreover, to make the model checking procedure more
efficient, we take advantage of the symmetric behavior of rebecs instantiated from a
reactive class and consider one rebec per those reactive classes. The modeler must be
careful about using this technique to reduce verification complexity.

3. Verification
3.1. Conflict Detection

Given the model of system, we are able to do vast kinds of analysis, but in this paper
we limit our analysis to only detection of the undesirable behavior of the system rooted
in conflicting policies. First, we are supposed to give an informal definition of the term
"policy conflict”. Two policies p, and p; are in conflict whenever one of the following

conditions holds[4]:

228 N. Khakpour et al. / Formal Analysis of Smart Home Policies Using Compositional Verification

 Simultancous activation of policies p; and p ; leads to a state wherein the system
cannot decide on the policy to be enforced.

¢ Applying p; leads to a situation where makes executing the action of p;
impossible. As a typical example we can point to two policies that turn off a
device and start an application on the same device respectively.

* Enforcing p; and p; (that not necessarily become enabled simultancously) result
in executing two contlicting actions. We say two actions are in conflict if either
execution of an action violates the effect of the other or satisfying the post-
condition of both actions is unfeasible due to the constraints of the system. As an
example in the smart home application, assume two policies: “CD player can play
music for three hours starting 7:00 pm” and “Shuts down all audio/video devices
after 9:00 pm”[13]. Obviously, the second policy will make the action of the first
policy ineffective before it can finish.

Policies provide a means of specifying the desired behavior of the system at a high
level. However, a policy may not be enforced properly due to conflict with other
policies, i.e. a triggered policy can be enforced correctly provided that it has no conflict
with other policies. We established a taxonomy of various undesirable behaviors and
formalized definition of those conflicts based on the formal semantics of a policy-
based system in[4]. Table 1 gives the taxonomy of conflicts and their informal
definition that we use in smatt home domain.

Table 1. Informal definition of policy conflicts

Conflict/Anomaly Type Informal Definition

N. Khakpour et al. / Formal Analysis of Smart Home Policies Using Compositional Verification 229

Definition 1. The obligation policy p_ is defined as the ordered quintuplet p, =<
e,cond, 15,1, @ > where its entries denote the event, condition, subject, target and the
action of policy respectively.

In the formula (1), 7, denotes the activation condition of policy p, in a state.
Informally it asserts that the p;'s event and condition become true and none of its prior
policies get triggered at that state. Also, its corresponding event will be served in the
next state after enforcing policy.

T, i Acond; A T,)} AX(—ep) (1)
O (eun conds (—‘\/ prepre(py) pk)) e
Table 2 gives the LTL patterns to detect policy conflicts defined in Table 1 where o,

denotes the activation condition of policy P, and r. queue, denotes the message placed
in the index v of r's queue. In addition, \|!p'and @, represent the post-condition of
t 4

enforcing p, and the required condition of preserving the effect of p,'s action
respectively. @ is an invariant that should be hold throughout the system execution

applied by high-level policies or system constraints and 19l. denotes the prerequisite of
executing a;.

Table 2. LTL pattems to detect policy conflicts

Conflict/Anomaly Type Formal Definition

Action Conflict SF(T,, AT,)

Effect Inference Conflict G(T,, — F((cp“ - wpl)U—‘(p m)

Inexecutable Action Conflict G(T,, = G((r¢,;-queue[0] = a; -» 9) AX(ry;. queue[0] # a;)))

Action Conflict Two policies with conflicting actions are triggered simultaneously
Effect Inference Conflict Enforcement of a policy overrides the effect of another policy
Inexecutable Action Enforcement of a policy make performing the action of another policy
Conflict inexecutable by violating its prerequisites

Goal Contlict User goals cannot be satisfied simultaneously due to the existence of

conflicting policies

System Invariant Violation

Conflict Go

Action Redundancy Anomaly | —F(7p AT,)

Policy Redundancy Anomaly G(?;,, -7, 1)

System Invariant Violation | Enforcing a policy will violate the system invariants or user goals
Conflict

Unenforceable Policy
-F7,
Anomaly

Action Redundancy Two policies with non-idempotent action are triggered simultancously
Anomaly
Policy Redundancy A policy subsumes another one such that the second policy never can

Anomaly enforce in the system while it has been triggered

Unenforceable Policy A policy will never become activated because its triggering conditions

Anomaly never become true

We believe that an adequate way of detecting conflicts is by a collection of
temporal formulas that specifies the desired behavior of the system and are defined
over the set of predicates that denotes states or raised events of the system. We found
LTL as an adequate formalism to describe the desired behavior of the system. Based on
the formal definition of conflicts, we provide temporal specification patterns to
discover conflicts. In the proposed approach, we investigate the existence of possible
conflicts by pairwise comparison of policies. Detection of possible conflicts between
each pair policies is performed separately by verifying a temporal property.

The main difficulty with compositional verification is that local properties are
often not preserved at the global level[14]. However, as we detect the conflicts which
may exist among the policies of a smart device, therefore the local properties of each
component will make the global properties that we must check on the system model.

3.2. Verification Results

As the number of properties to be checked is high, we do not try to produce a complete
list of conflicts which may exist between policies. We restrict ourselves to give a
number of conflicts detected in verification of EmergencyManagment component. For
verification, we used a PC equipped with an Intel Core 2 2.6 GHz and 3 GByte of
memory with Windows XP.

23U . Khakpour et at. / Formal Analysis of Smart Home Policies Using Compositional Verification

Conflict I. Action Conflict
To detect action contlicts, first we should identify the conflicting actions manually.
Table 3 shows conflicting actions in EmergencyManagment component partially.

As shown in Table 3, the lock and unlock door/window actions are conflicting.
Therefore, P1 and P3 are potentially in action conflict. Checking Property 1 confirmed
that those policies are in action conflict, i.e. they are triggered simultaneously.

Property 1. —F (T, ATp,)

Conflict II. Effect Inference Conflict

In order to detect Effect Inference conflicts, we should state that the consequence
of applying a policy must hold explicitly while the preserving conditions being
satisfied. As an example, while fire has not been put out, the windows/doors must be
kept closed and unlocked. Also, the alarm should not become deactivated. Checking
Property 1 shows that the effect of this policy will be overridden. Investigating
counterexamples shows that this policy has effect inference conflict with P3. If
meanwhile a burglary happens, system will lock all the doors and windows while fire
has not been put out yet.

Property 2. G (7;,1 -F ((—firePutOut — (doorl.closed A —doorl.locked) A
(window1. closed A —window1.lock) A alarm. goneoff)) v firePutOut)

Table 3, Conflicting actions

Action Contflicting Actions

Open window/door Close window/door, Lock window/door

Close window/door Open window/door

Lock window/door Open windaw/door, Unlock window/door

Unlock window/door Lock window/door

Activate alarm Deactivate alarm

Deactivate alarm Activate alarm, Trigger alarm

Trigger alarm Deactivate alarm
Open valve Close valve
Close valve Open valve

Conflict III. Inexecutable Action Conflict

The required condition for alarm to become triggered is being active. However,
f:hecking Property 3 reveals that in some cases triggering alarm is inexecutable. By
investigating the counterexamples, we found that this happened when the inhabitant
makes the alarm inactive manually which is modeled by sending messages from
XEnvironment.

Property 3. G(Jp3 = G((alarm.queue[0] = trigger — alarm. isactive) A
X(alarm. queue[0] # trigger)))

1

N. Khakpour et al. / Formal Analysis of Smart Home Policies Using Compositional Verification ~ 231

Anomaly L. Action Redundancy Anomaly
Since there is no non-idempotent action in our example, therefore policies do not
have action redundancy anomaly.

Anomaly II. Policy Redundancy Anomaly »
As mentioned above, policy p; is redundant respect to policy p; if the property
G(J;,i = T3,) holds. In our example, there is no redundant policy.

Anomaly III. Unenforceable Policy Anomaly
In our example, all the policies are enforceable. We checked — ¢ T, for each

policy which is violated for all cases.

4. Related Works

There is a significant amount of work done in the area of policy analysis. However,
there has been very little research done to tackle the problem of policy analysis by
capturing the system behavior, as we have done in [4]. [15] proposed use of event
calculus (EC) to express both policy and system behavior formally. Then, they use
abductive reasoning provided by EC to detect situations in which an inconsistency
occurs, However, in this approach all domain-specific inference rules to detect
inconsistencies needed to be identified beforehand. In our approach, we propose
general domain-independent patterns to discover conflicts. Moreover, works done by
Kuninobu et al [16] and [17] have taken a model checking approach to verify policy-
based systems, but they did not deal with policy conflicts. Layouni et al [18] proposed
an approach to detect action conflicts among policies through analyzing the pre/post-
conditions of policy actions. They identified the situations that an action conflict may
arise as concurrency conflicts, disabling conflicts and results conflicts. The conflicts
that they can detect are corresponded to our action conflict and inexecutable action
conflict.

In the area of policy analysis in smart spaces, authors in [13] have proposed a
semi-formal approach, called IRIS (Identifying Requirements Interactions using Semi-
formal methods) to detect interactions between policies in smart home domain. They
categorized policies as System Axioms and Dynamic Behavior policies. A Dynamic
Behavior policy specifies the reaction of the system when a certain event occurs.
Different types of conflicts can be detected which are correspondent to action conflict,
effect inference conflict and goal conflict introduced by our approach. The most
drawback of this approach is that it needs an expert to express policies which is an
error-prone process. Moreover, the behavior of system is modeled partially by just
expressing policies.

Wang et al[19] investigate policy conflict detection and resolution in home care
systems. They classify different types of conflicts in policy-based home care systems
as: contflicts that result from apparently separate triggers, conflicts among policies of
multiple stakeholders, and conflicts resulting from apparently unrelated actions.
However, they did not deal with detection of those conflicts specially by capturing
system behavior. Authors in [20] proposed a framework to describe and verify
integrated services of a home network system(HNS). They described the HNS and the
integrated services using an object-oriented language which is transformed into SMV

232 N. Khakpour et al. / Formal Analysis of Smart Home Policies Using Compositional Verification

(SymbolicModel Verifier) language. SMV model checker is used for formal
verification. However, they have provided no classification of the feature interactions.

Run-time conflict detection [3, 21-25] is another arca of research closed to us
which detects policy conflicts during policy execution, i.c. it discovers conflicts online.
In this approach, a detection module monitors system at run time to identify
unpredicted conflicts. Actually, this class of techniques considers the behavior of
system. Whether Run-time conflict detection is useful in policy analysis of large-scale
systems but the detection process is usually time consuming and it may has undesirable
influence on the system performance.

5. Conclusion and Future Works

In this paper, we dealt with dynamic policy conflict detection in smart home domain
using a model checking approach. We used an actor-based language named Extended
Rebeca to model the system. Then, we identified different kinds of conflicts which
may exist between policies in smart home. To detect each conflict, we checked the
satisfiability of the temporal patterns expressed in LTL. To tackle the problem of state
explosion, we used compositional verification as well as data abstraction techniques.
Our experience confirmed the ease and simplicity of Extended Rebeca as a modeling
language for modeling smart homes. Moreover, we believe this research is a promising
step toward verification of policy-based systems using compositional verification.

References

[1] M. Beigi, S. Calo, and D. Verma, "Policy Transformation Techniques in Policy-based Systems
Management," in Proceedings of the Fifth IEEE International Workshop on Policies for Distributed
Systems and Networks: IEEE Computer Society, 2004.

[2] M. R. McGee-Lennon and P. D. Gray, "Addressing Challenges of Stakeholder Conflict in the
Development of Homecare Systems,” in Workshop on Software Engineering Challenges for Ubiquitous
Computing, Lancaster, 2006.

3] D. Nicole, I. Jadwiga, and R. Kerry, "Dynamic Conflict Detection in Policy-Based Management
Systems,” in Proceedings of the Sixth International ENTERPRISE DISTRIBUTED OBJECT
COMPUTING Conference (EDOC'02): IEEE Computer Society, 2002.

[4] N. Khakpour, M. Sirjani, and S. Jalili, "Model Checking Policy-based Systems,” 2008.

(5] M. Sirjani, F. d. Boer, A. Movaghar, and A. Shali, "Extended Rebeca: A Component-Based Actor
Language with Synchronous Message Passing," in Proceedings of the Fifth International Conference on
Application of Concurrency to System Design: IEEE Computer Society, 2005.

[6] M. Sirjani, A. Movaghar, A. Shali, and F. S. d. Boer, "Modeling and Verification of Reactive Systems
using Rebeca,” Fundamenta Informaticae, vol. 63, pp. 385-410, 2004.

[71 A. Pnueli, "The temporal logic of programs,’ in Proceedings of the 18th IEEE Symposium on
Foundations of Computer Science, 1977, pp. 46-57.

[8] E. M. Clarke and E. A. Emerson, "Design and Synthesis of Synchronization Skeletons Using Branching-
Time Temporal Logic," in Logic of Programs, Workshop: Springer-Verlag, 1982.

[9] K. Pohl, G. Bickle, and F. v. d. Linden, Software Product Line Engineering Foundations, Principles and
Technigues: Springer, 2005,

[10]H. Sumi, M. William, E.-Z. Hicham, K. Jeffrey, K. Youssef, and J. Erwin, "The Gator Tech Smart
House: A Programmable Pervasive Space.” vol. 38: IEEE Computer Society Press, 2005, pp. 50-60.

[111M. C. Edmund, G. Oma, and E. L. David, "Model checking and abstraction.” vol. 16: ACM, 1994, pp.
1512-1542.

[12]R. Adler, 1, Schagfer, T. Schuele, and E. Vecchié, "From Model-Based Design to Formal Verification of
Adaptive Embedded Systems," in Formal Methods and Software Engineering, 2007, pp. 76-95.

N. Khakpour et al. / Formal Analysis of Smart Home Policies Using Compositional Verification ~ 233

[13]M. Shehata, A. Eberlein, and A. Fapojuwo, "Using semi-formal methods for detecting interactions
among smart homes policies,” in Science of Computer Programming. vol. 67: Elsevier North-Holland,
Inc., 2007, pp. 125-161.

[14]E. Clarke, D. Long, and K. McMillan, "Compositional model checking," in Proceedings of the Fourth
Annual Symposium on Logic in computer science Pacific Grove, California, United States: IEEE Press,
1989.

[15]A. K. Bandara, E. C. Lupu, and A. Russo, "Using Event Calculus to Formalise Policy Specification and
Analysis," in Proceedings of the 4th IEEE International Workshop on Policies for Distributed Systems
and Networks, 1.ake Como, Italy, 2003, pp. 26-39. .

[16]S. Kuninobu, Y. Takata, N. Nitta, and H. Seki, "Policy Controlled System and Its Model Checking,"
IEICE Transactions on Information and Systems, vol. E88-D, pp. 1685-1696, 2005,

[17]S. Kikuchi, S. Tsuchiya, M. Adachi, and T. Katsuyama, "Policy Verification and Validation Framework
Based on Model Checking Approach,” in Proceedings of the Fourth International Conference on
Autonomic Computing: IJEEE Computer Society, 2007,

[18]A. F. Layouni, L. Logrippo, and K. J. Turner., "Conflict Detection in Call Control Using First-Order
Logic Model Checking," in Proceedings of 9th International Conference on Feature Interactions in
Software and Communications Systems, Amsterdam, May 2008, pp. 66-82.

[19]F. Wang and K. J. Turner, "Policy Conflicts in Home Care Systems," in Proceedings of International
Conference on Feature Interactions in Sofiware and Communication Systems, Grenoble, France, 2007,
pp. 54-65.

[20]L. Pattara, T. Tatsuhiro, K. Tohru, N. Masahide, and M. Ken-ichi, "Describing and Verifying Integrated
Services of Home Network Systems," in Proceedings of the 12th Asia-Pacific Software Engineering
Conference: IEEE Computer Society, 2005.

[21]A. C. Gemma and J. T. Kenneth, "Ontologies to Support Call Control Policies,” in Proceedings of the
The Third Advanced International Conference on Telecommunications: IEEE Computer Society, 2007.

[22]J. T. Kenneth and B. Lynne, "Policies and conflicts in call control." vol. 51: Elsevier North-Holland, Inc.,
2007, pp. 496-514.

[23]H. Lee, J. Park, P. Park, M. Jung, and D. Shin, "Dynamic Conflict Detection and Resolution in a
Human-Centered Ubiquitous Environment," in Universal Access in Human-Computer Interaction.
Ambient Interaction, 2007, pp. 132-140.

[24]E. Syukur, S. W. Loke, and P. Stanski, "Methods for Policy Conflict Detection and Resolution in
Pervasive Computing Environments," in Proceedings of Policy Management for Web workshop in
conjunction with WWW 2005 Conference, Chiba, Japan., 2005, pp. 13-20.

[25]1. Armac, M. Kirchhof, and L. Manolescu, "Modeling and Analysis of Functionality in eHome Systems:
Dynamic Rule-based Conflict Detection," in Proceedings of 13th IEEE International Conference on the
Engineering of Computer Based Systems, Potsdam, Germany, 2006.

https://www.researchgate.net/publication/220956095

