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Abstract

The next generation of software systems includes systems composed of a large
number of distributed, decentralized, autonomous, interacting, cooperating, or-
ganically grown, heterogeneous, and continually evolving subsystems, which we
call IT Ecosystems. Clearly, we need novel models and approaches to design and
develop such systems which can tackle the long-term evolution and complexity
problems. In this paper, our framework to model IT-Ecosystms is a combination
of centralized control and decentralized (self-organizing) approaches. We use a
flexible formal model, HPobSAM, that supports both behavioral and structural
adaptation/evolution. We use a detailed, close to real-life, case study of a smart
airport to show how we can use HPobSAM in modeling, analyzing and devel-
oping an IT Ecosystem. We provide an executable formal specification of the
model in Maude, and use LTL model checking and bounded state space search
provided by Maude to analyze the model. We develop a prototype of our case
study designed by HPobSAM using Java and Ponder2. Due to the complexity
of the model, we can not check all properties at design time using Maude. We
propose a new approach for run-time verification of our case study, and check
different types of properties which we could not verify using model checking.
As our model uses dynamic policies to control the behavior of systems which
can be modified at runtime, it provides us a suitable capability to react to the
property violation by modification of policies.
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1. Introduction

The next generation of software systems includes complex systems of systems
where the individual systems and components are modeled, built, operated, and
controlled by different stakeholders, across organizations. Furthermore, software
systems and components are equipped with increasing autonomy, including ca-
pabilities for self-configuration and self-organization. We call such systems IT
Ecosystems. Such software-intensive IT systems can no longer be designed in
a purely centralized fashion. Novel approaches are required to design, develop
and analyze these systems.
Motivation IT Ecosystems must have the ability to continually evolve and
grow even in situations that are unknown during the development time. Due
to the fact that it is impossible to fully and properly predict adaptive needs
during the design time, adaptive behavior must be built in a way that is flexible
and modifiable at runtime, because hard-coded mechanisms make tuning and
adapting long-run systems complicated.

While each subsystem of a system evolves and changes autonomously to be
able to adapt to potentially changing environmental conditions and constraints,
they are also cooperating to fulfill a global goal. The centralized control ap-
proach to design, in which the behavior of the system is controlled in a top-down
way, has attained its limit. In contrast, the decentralized approach relying on
a self-organized bottom-up establishment of the desired behavior appears to be
infeasible, since we have to make sure that this decentralized approach does
not result in unanticipated and undesired behavior. As often, the design of
the system has to follow an approach in the middle, somewhere in-between a
centralized and a decentralized architecture.

Furthermore, since a complex software system often has a great degree of
autonomy, it is more difficult to ensure that it behaves as intended and avoids
undesirable behavior. Therefore, to guarantee the functionality of a complex
IT Ecosystem, we have to provide mechanisms to ensure that the system is
operating correctly, where model-driven approaches and formal methods can
play a key role. Therefore, we need novel models and approaches to design
and develop such systems which can tackle the long-term evolution, flexibility,
complexity and assurance problems.

Different frameworks and models have been introduced to design large-scale
software systems inspired by natural systems [1, 2, 3, 4]. Furthermore, [5]
proposed a flexible policy-based approach for designing ubiquitous systems.
Although most of the existing models are able to exhibit properties of self-
organization, self-adaptability, and of long-lasting evolvability, they are not pro-
vided with a formal foundation. Also, researchers have paid a lot of attention
to formal specification and analysis of dynamic adaptation [6, 7, 8, 9, 10]. Here,
most of the existing approaches deal with either behavioral adaptation or struc-
tural adaptation [11, 6]. Adaptation, self-* properties, and autonomous com-
puting are however restricted to responding short-term changes, while systems
must be additionally able to evolve and grow to cover the long-term evolution
of systems [12].
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Contribution In this paper we study HPobSAM as a framework for model-
ing, developing and verifying IT Ecosystem [9, 13, 14] illustrated through a
transportation service of a smart airport. Our contributions are as follows:

• We illustrate how HPobSAM can be used as a flexible model for designing
IT Ecosystems using a transportation service case study.

• We provide an executable formal specification of the model in Maude [15].
LTL model checking and bounded state space search are used to analyze
the model. We found a cross deadlock and the robot collision in our
transportation scenario.

• Due to the complexity of our models, we face state explosion problems
when we use model checking to verify some properties. Thus, we employ
run-time verification [16, 17] as a complement to model checking in which
the executions of the system are monitored and checked against a set
of formal specifications. We present a new flexible trace-based approach
to verify the system at runtime in which properties to be monitored are
specified using an algebra. Then, we transform the algebraic properties
into a set of policies which are assigned to an observer. A policy expresses
whether an event is expected to occur or not. An observer is modeled as a
PobSAM manager that uses the policies to check the conformance of the
system behavior to the properties.

• In run-time verification, reaction to the property violations is a main chal-
lenge. We address this problem by dynamically defining policies to react
to the violations.

• To evaluate the applicability of our approach in practice, we have devel-
oped a prototype of our scenario using Java and the Ponder2 tool set [18].
We use PonderTalk as the policy language to specify policies.

PobSAM (Policy-based Self-Adaptive Model) [9, 19] is a flexible formal
model for developing and modeling self-adaptive systems which uses policies
as the principal paradigm to govern and adapt the system behavior. Policies
are known as a powerful mechanism to achieve flexibility in adaptive and au-
tonomous systems which allow us to “dynamically” specify the requirements in
terms of high level goals. A PobSAM model is a collection of actors, views, and
autonomous managers. The autonomous managers govern the behavior of actors
by enforcing suitable policies using contextual information provided by views.
This model supports behavioral adaptation through modifying the policies used
to control the system behavior introduced in [9]. HPobSAM is an extension
of this model to support hierarchical modeling and structural adaptation in-
troduced in [14], in which a manager is aware of its substructure and adapts
its substructure to the changing environment according to policies. HPobSAM
has a formal foundation that employs an integration of algebraic formalisms
and actor-based models. The structural operational semantics of HPobSAM is
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described using graph transition systems and hierarchical hypergraph transfor-
mation. In this paper, we (i) study the applicability of HPobSAM in designing
IT Ecosystems, (ii) provide the mapping of HPobSAM to Maude, (iii) pro-
pose a new runtime verification approach for HPobSAM, and (iv) introduce
the detailed case study of the smart airport and its modeling, verification and
implementation using HPobSAM.

In this paper we explain HPobSAM and our analysis techniques through a
case study, smart airport. The smart airport case study is introduced in Section
2. After giving an overview of HPobSAM in Section 3, in Section 4 we explain
the modeling framework and discuss why HPobSAM is suitable for modeling
IT ecosystems in general. In Section 5 we show the HPobSAM model for the
smart airport. In Section 6, we present the Maude specification of our model
and analyze the model formally. An approach is proposed to verify our case
study at run time in Section 7. We compare our approach with related work in
Section 8, and Section 9 concludes the paper.

2. Case Study Overview

The airport departure scenario is an example of a software-intensive system
of systems [12]. We use a transportation service at the departure area of an
airport as our case study. This transportation service is supposed to be realized
by a number of Autonomous Transport Vehicles (ATVs) which are responsible to
transport passengers between stopovers including passenger entrances, check-in
desks, departure gates, and plane parking positions. There are several two-lane
roads which connect the aforementioned stopovers. To avoid congestion and
blockages, there are some side roads which can be used instead of the main
roads (implying a reduced vehicle speed).

There are a variety of ATVs of different sizes to perform transportation in
a self-organizing manner. All ATVs know the airport map and stopovers. The
transportation service of the transport vehicles contains transporting passenger
(i) from an airport entrance to one of the five check-in desks, (ii) from a check-in
desk to one of the departure gates, and (iii) from a departure gate to the correct
parking position of the respective plane. ATVs consume energy while driving
on roads, and they have to recharge their batteries at a charging station.

The observation systems (e.g., smart cameras, sensors, RFID readers) placed
around the area gather and provide information (e.g. the current traffic informa-
tion). This information is used by ATVs in order to achieve a good performance
of transportation. Furthermore, passengers use a mobile device, called Smart-
Folk, to interact with the IT systems at the Smart Airport. A SmartFolk can
be seen as a device like a PDA. Within the IT Ecosystem they represent their
owners and act as interfaces to the airport IT Ecosystem.

ATVs are signed in a service named transport scheduler that collects pas-
senger orders and offers tickets (pickup/drop positions, times) to the ATVs.
Hence ATVs have to collaborate and negotiate in competition on tickets, roads
and charging stations. To prevent the occurrence of unsafe situations caused
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by a selfish acting ATV, we need to implement a mechanism to balance agent
autonomy and system controllability.

3. HPobSAM

A HPobSAM model consists of the following elements:

• Actors are computational entities dedicated to the functional behavior of
the system.

• Self-Adaptive Modules (SAM) are the building blocks of a model which are
able to automatically adapt their behavior in a complex dynamic environ-
ment. A self-adaptive module may be either a federation of self-adaptive
modules collaborating to achieve a particular goal, or a composition of
self-adaptive modules or actors governed by a manager.

• Views provide an abstraction of the state of actors and self-adaptive mod-
ules for the managers.

• Managers are responsible for managing the behavior of actors and lower-
level self-adaptive modules according to the predefined policies. A man-
ager may have different configurations. Each configuration consists of
three classes of policies: governing policies, behavioral adaptation policies
and structural adaptation policies. A manager uses the governing policies
for directing actors and controlling the behavior of lower-level self-adaptive
modules (SAMs) and actors by sending messages to them. The behavioral
adaptation policies are used for switching among the configurations. The
structural adaptation policies are used for changing the structure of SAMs
by adding or removing agents.

• Roles are notions to group agents with the same functionality where an
agent is a self-adaptive module or an actor. The managers’ policies are
specified in terms of roles, and agents are assigned to the roles dynamically
as a means to restructure the system.

The main elements of a HPobSAM model are managers. A manager is
defined as a tuple m = ⟨Cm, cinit, Vm,Hτm ,Hm⟩, where Cm is the set of m’s
configurations, cinit ∈ Cm is its initial configuration, and Vm is the set of observ-
able views of m. The typed hierarchical hypergraph [20] Hτm shows the roles,
agent types and their relationships (assignment of roles to the agents). The
hypergraph Hm is a Hτm-typed hierarchical hypergraph that describes how m
is connected to other agents, i.e. the agents which the manager has interaction
with. A configuration c ∈ Cm is defined as c = ⟨gp, bp, sp⟩, where gp, bp and sp
indicate the governing policy set, the behavioral adaptation policy set and the
structural adaptation policy set of c, respectively.
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Governing Policies. A simple governing policy gpi=⟨o, e, ψ⟩•a, gpi ∈ gp,
consists of priority o ∈ N, event e ∈ E where E is an assumed set of possible
events, condition ψ (a Boolean term) and an action a. An event is triggered
when a specific condition in the system becomes true, when the execution of a
message server is completed, when a message is sent, and when a new object is
created/removed. The actions in the governing policies are specified using an
algebra CAa defined as follows. We let a, a′ denote action terms, while an α is
a primitive action.

a
def
= a; a′ | a ∥ a′ | a∥ a′ | a+ a′ | ϕ :→ a | α | δg

Thus an action term can be a sequential composition (;), a parallel compo-
sition (∥, ∥ ), a non-deterministic choice (+), or a conditional choice (ϕ :→ a).
Moreover, we have the special constant δg as the deadlock action for governing
policies. A primitive action of a simple governing policy is of the forms r.msg
to send the message msg to the agents with role r.

Structural Adaptation Policies. A simple structural adaptation policy
spi=⟨o, e, ψ⟩•a, spi ∈ sp consists of priority o ∈ N, event e ∈ E, condition ψ
and an action a which is specified as a CAa term. A primitive action of a
structural adaptation policy is of the forms (i) join(r, ω) for assigning role r
to the agent ω, (ii) quit(r, ω) for releasing agent ω from role r, (iii) add(ω)
and remove(ω) for adding and removing an agent, and (iv) r.msg to send the
message msg to the agents with role r. In other words, each manager is aware of
its substructure and responsible for structural adaptation of its corresponding
module using structural adaptation policies. Execution of structural adapta-
tion actions leads to transforming Hm into H ′

m which contains the structural
modifications.

Whenever a manager receives an event e, it identifies all the (governing and
structural adaptation) policies that are triggered by that event, i.e. are of the
form ⟨o, e, ψ⟩•a for some o, ψ, and a. For each of these activated policies, if the
policy condition ψ evaluates to true and there is no other triggered policy with
priority higher than o, then action a is executed. Note that behavioral/struc-
tural adaptation policies have higher precedence than governing policies.

Behavioral Adaptation Policies. A simple behavioral adaptation policy
bpi = ⟨o, e, ψ, λ, ϕ⟩•c, bpi ∈ bp consists of priority o ∈ N, event e ∈ E, and a
condition ψ (a Boolean term) for triggering the adaptation. Moreover, condi-
tion ϕ is a Boolean term indicating the conditions for applying the adaptation,
λ is the adaptation type (loose, denoted ⊥, or strict, denoted ⊤), and c is the
new configuration. Informally, behavioral adaptation policy ⟨o, e, ψ, λ, ϕ⟩•c in-
dicates that when event e occurs and the triggering condition ψ holds, if there
is no other triggered adaptation policy with priority higher than o, then the
manager evolves to the strict or loose adaptation mode as given by λ. When
the condition ϕ is true, it will perform adaptation and switch to configuration
c. The behavioral adaptation policy of a manager is defined as composition(⊕)
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of the simple behavioral adaptation policies. Furthermore, δp indicates the null
behavioral adaptation policy.

The operational semantics of HPobSAM is defined in terms of prioritized
conditional graph transition systems [14]. Graph transition systems are essen-
tially classical transition systems augmented with a function mapping states
into graphs and transitions into partial hierarchical morphisms. Thus every
state is provided with a graph indicating the current system structure.

4. Suitability of HPobSAM for Modeling IT Ecosystems

While subsystems of an IT Ecosystem evolve and change autonomously to
adapt to changing environmental conditions and constraints, they are also co-
operating to fulfill a global goal. There are various architectural strategies to
design such systems [21]. The classical approach is based on a top-down central
control of the behavior of a system. This approach has reached its limits. In
contrast, the decentralized approach relies on a self-organized bottom-up estab-
lishing of the desired behavior. A full bottom-up design appears to be infeasible,
since we have to make sure that this decentralized approach does not result in
any unanticipated and undesired behavior. As often, the solution will follow an
approach in the middle, with the system’s design in-between a centralized and
a decentralized architecture.

Figure 1 gives a schematic view of an IT Ecosystem, which is decomposed
into a set of self-adaptive modules. A self-adaptive module, in turn, may contain
a number of self-adaptive modules structured hierarchically. A typical self-
adaptive module consists of a general manager and a federation of either self-
adaptive modules, or actors, collaborating to achieve a particular goal in a
self-organizing manner. In the sequel, we discuss how this model addresses the
explained requirements of an approach for designing IT Ecosystems.

Adaptation Support. Adaptation in a self-adaptive module is realized in two
ways:

• Behavioral adaptation The module’s manager is provided by a collection
of dynamic policies to control and adapt the behavior of its controlled
agents in a centralized manner. The manager controls the behavior of
actors through sending them messages. Moreover, it controls and adapts
the behavior of self-adaptive modules under its control by changing their
managers’ configurations.

• Structural adaptation The manager is aware of its substructure and per-
forms structural adaptation by adding, removing and replacing the con-
trolled agents and their interconnections.

Incorporating centralized and decentralized design. The managers of self-
adaptive modules interact with each other to achieve a specific goal of their
immediate higher-level self-adaptive module. Manager interactions are realized
by two mechanisms: message passing and shared memory. The view layer acts
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as the tuple space shared among the managers, where a module shares informa-
tion with other self-adaptive modules. The behavior of a self-adaptive module is
adapted locally by the manager in a centralized way through enforcing policies.
Furthermore, self-adaptive modules at the same level of hierarchy collaborate
and interact with each other in a self-organizing manner to achieve a higher-level
goal. In other words, the control of the system is distributed among the self-
adaptive modules. Therefore, the design of the system is somewhere in-between
a centralized and a decentralized architecture.

Controlled Autonomy. The ability to change configurations (policies) of a man-
ager by a higher-level manager enhances the controllability of the system, since
the self-adaptive modules are not fully autonomous anymore. In other words,
although each SAM behaves as autonomous as possible to achieve its goals,
this autonomy, however, is partially controlled by the upper-level managers to
accomplish the higher-level goals.

Flexibility and Long-term Evolution. Policies are high-level specifications which
can be defined and loaded dynamically. The managers interpret the policies and
control the system behavior according to them. We can change policies used to
control the system behavior at runtime which leads to changing the behavior of
system consequently. Thus, PobSAM allows us to adapt to unforeseen situations
without the need to modify the low-level system code by simply defining a new
set of policies. The messages add(c) and remove(c) sent to the manager, are
used to add and remove configuration c, respectively. Furthermore, when the
manager receives a message load(c, λ, ϕ), it performs an adaptation for switching
to configuration c where λ denotes the adaptation type and ϕ indicates the
condition of applying adaptation. Hence, we can simply define and load a
new configuration containing new policies in case the system requires to be
evolved. Moreover, the manager can be instructed to switch to an already
defined configuration to address the long-term evolution. The adaptation logic
is specified in terms of adaptation policies which can be modified at runtime.
Therefore, the adaptation mechanism is flexible, i.e. we can change policies
used for behavioral and structural adaptations dynamically. We can conclude
that the policy-based design of systems enhances the flexibility and supports
the long-term evolution of systems.

Scalability. Due to the large-scale of IT Ecosystem, scalability is a significant
feature of a model to design such systems. HPobSAM allows us to build the
system hierarchically from adaptive/evolvable components (i.e. self-adaptive
modules), therefore it enhances the scalability of models. Scalability in a cen-
tralized approach is limited, because a single control point is responsible for
collecting and processing the control information. Since HPobSAM is a de-
centralized model in terms of control points, control information is collected
and processed locally by the manager. Therefore, this model with local con-
trol points scales well in terms of size. Moreover, since a manager collects and
processes information locally, it improves the performance.
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Figure 1: The typical IT Ecosystem

5. Modeling the Transportation Service using HPobSAM

In our scenario, the main subsystems are ATVs with various capabilities,
smart folks, the transportation scheduler, charging stations, check-in desks and
departure gates. Each subsystem is modeled as a self-adaptive module. Due to
the lack of space, we restrict ourselves to introduce the modeling of ATVs.

Modeling Individual ATVs. The hierarchical hypergraph shown in Figure 2
gives the simplified architecture of an ATV self-adaptive module, designed us-
ing HPobSAM. This is done in a simplified way while abstracting from technical
issues. We draw managers as circles, actors as small square boxes, self-adaptive
modules as double-lined square boxes, and roles as rounded rectangles. An
ATV self-adaptive module includes a top-level manager called ATV Controller
and the self-adaptive modules Path Planner Module(PM), Energy Module(EM),
Motion Module(MM), Brake Module(BM), and Task Module. Figure 3 presents
the PobSAM model of an ATV partially. The manager ATV Controller has
a configuration named normalConf to control the ATV in normal conditions.
The set of governing policies in configuration normalConf is {ngpA,ngpB,ngpC}.
Moreover, the behavioral adaptation policy napA is used to switch to configura-
tion collisionConf when a collision occurs. No structural adaptation policy is
defined for this configuration. The configuration collisionConf is defined to
control the robot in case of collision.

The self-adaptive module Path Planner Module consists of (i) a manager
whose governing policies determine the best path based on the state of the robot,
energy level, traffic info etc, and (ii) two actors for computing the shortest path
in terms of distance or time. Motion Module is a self-adaptive module whose
manager is responsible to control the movement of the robot to a target using
a set of policies. For instance, ngpAM states that when the motion controller
receives a signal for moving to target, it first asks PathPlanner to find the best
path to the target in the current context. Given the best path, Motion module
directs the robot by controlling velocity and direction of the robot through the
actor EnginControl. The ATV moves towards the target with the specified
speed until it receives a message to decrease or increase the speed, or needs to
brake for collision avoidance. Moreover, when a robot arrives at a cross, it may
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Figure 2: The Hierarchical Hypergraph of an ATV

recompute the best path, since it is likely that the current path is not the best
path anymore due to changing roads’ traffic load, accident etc (ngpBM).

The self-adaptive module Brake Module is in charge of adaptive braking of
the robot. As an instance, a policy asserts that when an obstacle is detected in
a short distance, the robot should brake to prevent collision. The EnergyModule
is a self-adaptive module responsible for energy management and charging the
robot. When the robot’s energy decreases to a specific level, a message is sent
to the motion controller for finding the nearest charging station to recharge
the battery. When an ATV arrives at the charging station, it receives a number
indicating its position in the charging queue. The actor of this module is battery
which is provided with a sensor indicating the energy level.

ATVs compete to transport passengers as their main task. We consider
the self-adaptive module TaskScheduler with a manager to negotiate with other
robots and schedule tasks effectively. The actor Taskinfo of this module main-
tains information about the tasks transported by the robot. The view layer of
an ATV contains its current position, intermediary target, final target, status
(normal, urgent, emergency), energy level, map with traffic info, last map used
to compute path, number of transported tasks, current task etc.

MANAGERS{
MANAGER ATVController
{
statevars {

byte ATVId;
}

managedElements{
PathPlannerModule PP; MotionModule MM;
EnergyModule EM; BrakeModule BM;
TaskScheduler TS;

}
roles {
//definition of roles

}
configurations{

normalConf=[nbpA] [ngpA,ngpB,ngpC] [];
collisionConf=[cbpA] [cgpA,cgpB] [cspA];
}
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policies{
nbpA : on collision if true switchto collisionConf when true priority 1;
//definition of policies

}
views {

byte ATVspeedT = MM.ATVspeed;
//definition of other views
}

}
MANAGER MotionController
{
statevars {
}

managedElements{
EngineControl engineControl;
PathPlanner pathplanner;

}
roles {

//definition of roles
}
configurations{

normalConfM=[nbpAM,nbpBM] [ngpAM,ngpBM,ngpCM][];
idleConfM=[ibpAM,ibpBM] [igpAM,igpBM] [];
collisionConfM = [cbpAM,cbpBM] [cgpAM,cgpBM] [cspA];

}
policies{

ngpAM : on start(target,status) if true do
pathplanner.findpath(target,status);
<status==normal:->engineControl.setspeed(normal)> +
<status==emergency:->engineControl.setspeed(high)> +
<status==urgent:->engineControl.setspeed(high)> +
engineControl.start() priority 1;

ngpBM : on oncross() if newtrafficload =/= oldtrafficload do
pathplanner.findpath(target,status);
engineControl.start() priority 1;

//definition of policies
}

views {
byte ATVspeed = engineControl.speed;
//definition of other views

} }
//definition of the rest of managers
}
ACTORS {

reactiveclass EngineControl() {
knownrebecs {}
statevars{public byte Speed; }
msgsrv moveforward() {
...
}

msgsrv incSpeed() {
...
}

//definition of the rest of message servers
}

//definition of the rest of actors
}
SAMS{
SAM PathPlannerModule {

PathPlanner PP(TPC,DPC);
TimePathComp TPC();
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DisPathComp DPC(); }
SAM MotionModule {

EngineControl EC;
MotionController MC(EC,PP); }

//definition of the rest of SAMs
}

Figure 3: The PobSAM specification of an ATV

Modeling Collaborations. Thus far we have presented a centralized approach
to design an ATV architecture. Now we concentrate on interactions and col-
laborations between ATVs and other subsystems. ATVs need to interact and
collaborate with each other, the transportation scheduler, charging stations,
check-in desks and departure gates. They require to have direct access to infor-
mation provided by their vicinity. As an example, consider the simple governing
policy of an individual ATV defined for passing a junction: “Move forward when
the robot is on a junction and has a higher priority than the other ATVs at the
crossing”. Here, the ATV needs to know the priority of other ATVs at the junc-
tion defined in terms of their energy level, job priority, distance to the target
etc. The view layer acts as the tuple space shared among ATVs to coordinate
their interactions, and an ATV can have controlled access to the view layer
of other ATVs in its locality. Thus, an ATV can obtain neighbourhood infor-
mation through a common view layer shared among ATVs in a locality. The
idea of a common view layer between ATVs is similar to the notion of virtual
environment introduced in [22].

Moreover, ATVs require to perceive properties of the global system state,
specially in situations such as congestion condition when ATVs’ information
is insufficient for vehicles to determine the best path. Hence we partition the
smart airport area into smaller regions called cells, where a cell contains an
autonomous device, called cell controller, deployed within the cell physically. A
cell controller is specified as a manager which is aware of the ATVs and other
subsystems located in its defined physical area. Figure 4 shows a simplified spec-
ification of a cell controller. A cell controller with its governed agents, including
ATVs, smart cameras, check-in desks, departure gates, and charging stations
form a self-adaptive module. The main responsibilities of a cell controller are:
(i) providing ATVs with necessary global state information (ii) changing ATVs’
configurations dynamically to control their full autonomy, and (iii) notifying
other cell controllers of changes which influence their cells (e.g. congestion con-
dition). Thus ATVs are adaptive in the sense that they can change their config-
urations dynamically to adapt to different contexts, however the cell controller
can also define new configurations for ATVs to balance between controllability
and autonomy of agents (e.g. see governing policy ngp1 of the cell controller).

MANAGER CellController
{
statevars {
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byte CellId;
}

managedElements {
ATV atvA; ATV atvB;
//definition of the rest ATVs
smartCamera cameraA;
chargingStation cs1;
CellController adjacentA; CellController adjacentB;

}
roles {

LATVs = {atvA,atvB} ;
smartCamera = {camera1} ;
adjacentCells = {adjacentA,adjacentB};
//definition of the rest roles and role assignments
allATV = {atvA,atvB,...};

}
configurations{

//the cell controller only has one configuration
normalConf=[apnone] [ngp1] [nsp1,nsp2,nsp3];

}
policies {

//governing policies
ngp1: on congestion(x,y) if true do

forall atv in allATV,cell in adjacentCells
atv.loadconfig(newconf) ||
cell.inform(congestion(x,y))

priority 1 ;
// structural adaptation policies
nsp1: on LATVReq(cl) if handleable(reqNo,[0,0,1]) do

forall atv in LATVs
(atv.isfree and atv.isnearest(cl)) :->

(atv.moveto(loc);atv.joinReq(cl))
priority 1;

nsp2: on onLeave(atv) if true do remove(atv) priority 1;
nsp3: on onJoin(atv) if atv.hasEnergy and H do

add(atv);join(LATVs,atv)
priority 1;

//definition of policies
}

views {
byte atvAspeed = atvA.ATVspeed;
byte atvAPosX = atvA.ATVPosX;
//definition of other views

}
} Figure 4: The PobSAM specification of a cell controller

Structural Adaptation. We illustrate self-organization and structural adap-
tations in our scenario using an example. Suppose there are two types of ATVs
with different capacities to transport passengers. Several large groups of trav-
elers arrive at the airport’s entrance. When the growing crowd of travelers is
noticed by the corresponding cell controller, it notifies its adjacent cells about
the need for more ATVs. A decentralized adaptation is carried out by the cell
controllers to adapt the system to the current context. The policies nsp1,nsp2
and nsp3 are defined for the cell controllers to handle this situation. Policy
nsp1 states that on request of a large ATV from cell controller cl, if the ex-
isting requests of the cell can be handled by sending a large ATV to cl, a free
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large ATV which is nearest to cl is sent to this cell. The sent robot requests
the cl’s cell controller to join its cell. After joining cl, it is removed from the
list of provider’s large ATVs (policy nsp2). When a new ATV requests to join a
cell, the corresponding cell controller checks the required capabilities of the re-
quester for acting as an equipped ATV, i.e. having large capacity, video camera,
powerful motor and enough battery using policy nsp3, in which H defines the
constraints on the ATV structure. Then role LATV will be assigned to the new
ATV by the cell controller. Notice that policies nsp1 and nsp2 are executed
by the provider cell controller, and the requester’s cell controller enforces policy
nsp3.

Summary of the Section. A centralized approach is used to design
an ATV where the managers (i.e. ATV controllers, MotionContollers,
EnergyController etc) control the behavior of different parts of the ATV (i.e.
EngineControl, Brake, Battery etc) using dynamic policies autonomously.
ATVs collaborate with each other in form of self-organization to achieve the
high-level goals, i.e. by performing distributed structural and behavioral adap-
tations. The cell controllers control this self-organization in a centralized man-
ner using policies by changing the ATVs’ configurations.

6. Model Checking

In this section, we present an executable specification of our model in Maude.
We use Maude analysis tools including its LTL model checker and search com-
mands to analyze the model of our case study formally.

6.1. Maude Overview

Maude is a formal language and tool set based on rewriting logic used for
developing, prototyping, and analyzing formal specifications. Intuitively, states
of a system are represented as elements of an algebraic data type in rewriting
logic, and computation is given by local transitions between states described by
rewrite rules. A rewrite rule is of the form “t => t’ if c” where t and t’ are
terms representing a substate of the system, and c is a condition on the variables
of t. This rule says that when the system has a subcomponent matching t, and
the rule condition evaluates to true, that subcomponent can evolve to t’ through
replacing by the rule right-hand side. The application of a rule is possibly done
concurrently with changes described by rules matching other parts of the system
state. The process of application of rewrite rules generates computations. A

computation is a possibly infinite sequence of rewrites S0
l1−→ ....

ln−→ Sn where li
is a label determined by the rewrite rule applied and Si for 0 ≤ i ≤ n indicates
the system state.

Maude is provided with an LTL model checker which allows us to check
whether every possible behavior starting from a given initial model satisfies a
given LTL property. LTL is a temporal logic that extends propositional logic
by introducing four basic temporal operators: the existential operator <>, the
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global operator [], the until operator U , and the next operator O. An LTL
formula is evaluated over a sequence of states. Given formulas ϕ and ψ, []ϕ
(read as always ϕ) states that ϕ is true in all states. <>ϕ (read as eventually ϕ)
means ϕ is eventually true. ϕ U ψ (read as ϕ until ψ) denotes ϕ is true until ψ
becomes true. Oϕ (read as next ϕ) asserts ϕ is true in the next state.

6.2. Specification and Analysis of the Model
The time and feasibility of our analysis depends on the size and complexity

of the system model. Our system model is not directly amenable to analysis due
to its complexity. We use a number of techniques to manage the complexity of
our model:

• Data Abstraction Data abstraction is a technique to reduce the state space
which focuses on finding a mapping between the concrete values of the
system variables and an abstract set of variables representing the original
data values using a homomorphic abstraction function.

• Behavior Symmetry We can take advantage of the symmetric behavior
of self-adaptive modules and prove the property for a minimum number
of self adaptive modules. The required number of self-adaptive modules
depends on the property to be checked. The modeler must be careful
about using this technique to reduce verification complexity.

• Bounded Reachability Analysis The Maude search command allows us to
explore the reachable state space following a breadth-first strategy. This
can be used to find reachable states satisfying a user-defined property. The
idea of bounded search is that we check a property, not for all reachable
states, but only for those states reachable within a certain depth bound.

Given the executable specification of a model in Maude, it can be used to
simulate and analyze the system. We will focus on three kinds of analysis:
(i) simulation, to execute the system specification; (ii) reachability analysis, to
look for deadlocks and policy conflict detection, and to prove system invariants;
and (iii) LTL model checking, to analyze those safety and liveness properties
which can not be specified using reachability analysis (search command). Fur-
thermore, we have built a tool to generate Maude specification from a PobSAM
model automatically. Although we can produce the Maude specification of man-
agers and self-adaptive modules completely automatically, the actors specifica-
tion is produced only partially and the user has to complete the specification of
message servers manually.

Simulation. Maude specifications can be executed using the rewrite and
frewrite commands, which implement two different execution strategies: a
top-down rule-fair strategy, and a depth-first position-fair strategy, respectively.
Thus, we can execute the model by simply typing rewrite initModel where
initModel is a term representing the initial state of the model. We can also
specify upper bounds for the number of rule applications in the rewrite and
frewrite commands. This can be very useful to perform step-by-step execu-
tions.
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Conflict/
Anomaly Type

Description

Action Conflict Two policies with conflicting actions are triggered simultaneously

Effect Inference
Conflict

Enforcement of a policy overrides the effect of another policy

Inexecutable
Action Conflict

Enforcement of a policy makes performing the action of another
policy inexecutable by violating its prerequisites

Unenforceable Pol-
icy

A policy will never become activated because its triggering condi-
tions never become true

Table 1: Policy Conflicts Types

Formal Analysis. In general, properties to be checked about an adaptive system
can be categorized as adaptation properties, functional properties or composi-
tion of both. We discuss common properties which can be checked for all appli-
cations. It is clear we also need to verify application-specific properties as well.
As policies direct the system behavior in our model, it is required to understand
and control the overall effect of governing policies on the system behavior. A
policy may not be enforced properly due to conflict with other policies, i.e. a
triggered policy can only be enforced correctly provided that it has no conflict
with other policies. Two policies ρi and ρj are in conflict if (i) simultaneous
activation of policies ρi and ρj leads to a state wherein the system cannot choose
a policy to enforce, (ii) applying ρi leads to a situation which makes executing
the action of ρj impossible, (iii) enforcing ρi and ρj (that not necessarily be-
come enabled simultaneously) results in executing two conflicting actions. We
say two actions are in conflict if either execution of an action violates the effect
of the other action or satisfying the post-conditions of both actions is infeasible
due to the constraints of the system.

Table 1 gives a taxonomy of conflicts which may exist among governing
policies (presented in [19]). We use the search command to detect action con-
flicts, inexecutable actions and unenforceable policies, and LTL model checking
is employed to detect the effect inference conflicts. The search command for
detecting action conflicts searches for a state where two triggered policies with
conflicting actions are in the triggered policy list of the manager.

Regarding adaptation properties, when a manager is in the adaptation mode,
we should verify that it would eventually switch to the next configuration. The
LTL formula ~<>[] C is used to verify this property where C is a term denoting
that the manager is in the adaptation mode. Moreover, we can check whether all
configurations of a manager can be reached finally or not. If searching the state
space leads to finding a state wherein the current configuration of the manager
(curconfig) is c, we say c is reachable. Furthermore, deadlock-freedom is a
generic property of a system that must be checked.

6.3. Analysis of Transportation Service

We use an abstract model of our case study for verification purpose. Ab-
stract values are considered for attributes such as energy which ranges over real
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domain, e.g. we reduce the energy values to the abstract domain {low, normal,
high}. We also take into account an abstract layout of the airport map with
one entrance, one check-in desk, one junction, and one charging station. It is
assumed that all ATVs are identical with the same configuration sets. To make
the model checking procedure more efficient, we take advantage of the symmet-
ric behavior of ATVs. Regarding the properties that we are interested to verify
in our case study, two ATVs are considered in our model. As the number of
properties to be checked is high, we do not try to produce a complete list of
properties. We restrict ourselves to give a number of properties checked in the
sequel.

Action Conflict. One of the reasons of action conflicts is presence of inconsis-
tency in determining the next direction of ATV, i.e. there are different govern-
ing policies instructing the ATV to move to different directions. The follow-
ing command searches for a state such as confState from initState within
depth 1000, where tp? denotes the triggered policies of the motion controller
of ATVA in state confState. Furthermore, the governing policies ngpA(ATVA)

and ngpE(ATVA) have conflicting actions moveForward and moveRight, and the
function memberof checks whether a policy is in the list tp? or not.

search [1,1000] initState =>* confState such that

(memberof(tp?,ngpA(ATVA)) and memberof(tp?,ngpE(ATVA))).

Inexecutable Action. An ATV requires a minimum level of energy to transport
passengers to a target, otherwise it will become out of energy which causes
traffic jam. We search for reachable states such as trgState where the action
setTarget is the head of input queue of the ATV and the robot does not have
enough energy.

search [10 , 2000] initState =>* trgState

such that (energyval = low ) .

Unenforceable Policy. The governing policy gp is enforced eventually, if we can
find a state wherein this policy belongs to the set of triggered governing policies:

search [1,1000] initState =>* trgState

such that (memberof(tp?,gp)).

Collision Detection. Collision avoidance is an important property to be checked.
In our model, a collision happens when two or more ATVs are located in the
same block. We check this property using search command which looks for
a state with two robots in the same location as follows. The location (3,16)

denotes the coordinates of the parking station.

search [1,1000] initState =>* collisionState such that

((locxA == locxB) and (locyA == locyB)) and

((locxA =/= 3) and (locyA =/= 16)).
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Cross Deadlock. Deadlock-freedom is a generic property of a system that must
be checked. Specially, we are interested to assure if the defined policies to pass a
junction cause no deadlock. The following command checks whether the ATVs
ATVA and ATVB are in deadlock on cross crossA or not.

red modelCheck(initialmodel,(~<>[]

oncross(ATVA,crossA)/\oncross(ATVB,crossA))).

This property is violated, because when two ATVs with the same priority
are at the cross, each ATV waits for the other one to pass. We define a new
policy to handle this case: ”if the ATVs at a cross have identical priorities, the
ATV with the highest ID must pass first“.

The statistics of checking the aforementioned properties are shown in Table
2 in which we list the number of checked states, the number of rewrites, CPU
time, maximum reached depth and result (i.e. violated or satisfied). For the
verification, we used a PC equipped with an Intel Core 2-Due 2.6 GHz and 6
GByte of memory with Windows 7.

property states
no.

rewrites
no.

time(sec) depth result

action conflict 3.9× 106 1.5× 1010 3179 500 S
inexecutable action 4.8× 105 2× 109 426 2× 103 S
collision checking 3.2× 105 1.3× 109 2608 2× 103 V
cross deadlock 1.4× 106 6× 109 2976 - V

Table 2: Verification Results

7. Run-time Verification

Due to the high complexity of an IT Ecosystem model, our model check-
ing analysis encounters the state explosion problem; the size of the state space
is far too large to be effectively analyzed. Furthermore, bounded reachability
analysis is incomplete. When the configurations of a manager are updated at
runtime, we must reverify the new model with the updated managers’ configura-
tions. Run-time verification [16, 17] is an attractive complement to design-time
verification and a useful technique for verification of HPobSAM models with
dynamic configurations. An observer, monitors executions of a software system
and verifies that the behavior of the software system adheres to a set of formal
specifications. Since only one execution path is examined at a time, the state
explosion problem is effectively avoided. Moreover, we can verify the system
with dynamic configurations.

7.1. The Approach

Runtime verification can be applied to automatically evaluate the current
execution path, either on-line, or off-line by analyzing stored execution traces.
We propose an online monitoring approach which incorporates governing policies
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to monitor the system, in addition to react properly in case of property violation.
In our model, an execution trace is a sequence of events emitted by the program.
The user provides a specification in the subalgebra CAa (described in Section
3, presented in [9]) describing how the observed system is expected to behave.
This subalgebra is used to specify the actions of governing policies. The models
of this specification are all the execution traces that satisfy it. Therefore, we
should check finite execution traces generated by the running program against
the specification for model conformance, and error messages should be issued in
case of failure.

We use a policy-based approach to implement our runtime verification ap-
proach and consider an observer to monitor each property. An observer is a
manager in our model, who is responsible to (i) monitor the behavior of sys-
tem through listening to a specific set of events defined as the alphabet of the
property, and (ii) check if a received event is expected to occur according to
a formal specification of the property formulated as the observer’s governing
policies. Two classes of simple governing policies are defined for the observer:
positive policies which are triggered by expected events and negative policies
which are activated by unexpected events. An emitted event by the program
is expected if it is the head of a trace of the property’s models, otherwise this
event is unexpected.

A positive governing policy of the observer is used to observe a set of desirable
traces expected to happen. The event of such a policy denotes the head of the
observing traces, the policy condition indicates the event perquisite which has
to be held, and the policy action represents the following traces.

A negative governing policy of the observer is used to detect undesired traces.
When an event is received by the observer, it checks if this event is expected
to happen; an event is expected to occur if it leads to triggering a positive
governing policy, otherwise a violation happens.

An observer is provided with two methods check and violated which are
invoked when respectively, a positive and a negative policy is triggered. The
method check (See Figure 5) calls a policy synthesis algorithm that translates a
property, formulated as a CAa term, into a set of policies to monitor adherence
of the execution path with that property (See Figure 6).

Let ρ indicate a property to be monitored and L ⊆ E denote its alphabet.
We represent ρ in its normal form as follows,

ρ ≡ (e1; ρ1) + ...+ (em; ρm) (1)

where ei is a conditional term, i.e. ei = ϕi :→ εi and εi ∈ L. A sub-term (ei; ρi),
1 ≤ i ≤ m, models a bunch of conditional event traces starting with εi when
condition ϕi is true, and followed by ρi. We define a (positive) governing policy
gi = ⟨2 , εi , ϕi ⟩ • check(ρi, L, ρ, gi) to monitor the sub-term (ei; ρi). Informally,
this governing policy states that the observer should first listen to event εi under
condition ϕi, and afterwards the property ρi must be monitored. When event εi
occurs and policy gi is triggered, action check(ρi, L, ρ, gi) is executed which leads
to replacing policy gi with a collection of new governing policies to monitor ρi.

19



void check(string prop, Arraylist alphabet, string oldProp,string PolicyID)
{
// create negative policy set
if(firstcall)

policies.add(negPolicySynthesis(alphabet, prop));

//remove the triggered positive policy
policies.remove(policyID);

//retreive the old positive policy set
oldPosPolicyset = getpolicySet(oldProp);
if(oldPosPolicyset != null)

{
policies.remove(oldPosPolicyset);
setoldPosPolicyset(oldProp,null);
}

//add new positive policies to monitor the following traces
policies.add(posPolicySynthesis(prop));
}

Figure 5: The method check of an observer

Clearly if a positive policy is not activated, it means that the current execution
path matches to none of the conditional event traces monitored by that policy.
Therefore, all non-triggered policies are removed from the list of the observer’s
governing policies. In case that none of the positive policies is triggered, it
implies that the occurred event matches with no desirable conditional event
trace and is unexpected. Consequently, it shows that the property has been
violated.

We define a negative governing policy g′j = ⟨1 , εj ,⊤ ⟩•violated(ρ), for each
event εj ∈ L. Since the priority of negative policies is lower than the priority of
positive policies, a negative policy is triggered if no positive policy is activated.
In other words, when an event matches with no desirable traces monitored by
the positive policies, it causes the triggering of a negative policy which means
that the event is unexpected.

We illustrate our approach using an example in our scenario. ATVs are not
allowed to go to the charging station as long as they are transporting passengers.
Hence, we should design the policies of ATVs such that they prohibit robots to
go to the charging station while they are transporting passengers. The follow-
ing property is defined to monitor an ATV behavior where the ATV is in an
entrance:
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\\ prop is the property to be monitored
Arraylist posPolicySynthesis(string prop)
{
if p is empty return null;

formulate prop as ((c1:->e1); p1) + .... + ((cn:->en); pn);
for(i=1; i<=n; i++)
{
create posPolicy(i)=<2, ei, ci, check(pi)>;
newpolicies.add(posPolicy(i));
}

return newpolicies;
}

Arraylist negPolicySynthesis(Arraylist alphabet, string prop)
{
for(i=1; i<=alphabet.size; i++)
{
create negpolicy(i)=<1, ei, true, violate(prop)>;
negPolicyset.addpolicy(negpolicy(i));
}

return negPolicyset;
}

Figure 6: The Policy Synthesis Algorithms

A ≡ (energy < CT :→ (
∑

x∈{1,2}

goCStation(x); charge();
∑

z∈{1,2,3}

goEntr(z))

+ energy ≥ CT :→ (takePass();
∑

y∈{1,2}

goCheckin(y); (dropPass() +

(dropPass();
∑

x∈{1,2}

goCStation(x); charge()));
∑

z∈{1,2,3}

goEntr(z)));A

L = {goCStation(x), charge(), takePass(), dropPass(), goCheckin(x),

goEntr(x), goCStation(x)}

Informally, this property describes two possible sequences of events for the
behavior of the ATV. In the first trace, the ATV has limited charge and moves
to a charging station. Then, it is charged in the charging station and returns
to an entrance. In second case, the ATV has enough energy to take passengers
and go to check-in desks 1 and 2. Afterwards, either it moves to the entrances
directly or goes to the charging station. The result of the first step of our
runtime verification algorithm is as follows:

A ≡ energy < CT :→ goCStation(1);A1 + energy < CT :→ goCStation(2);A1

+ energy ≥ CT :→ takePass();A2

Thus, the initial positive policy set is g = {g1, g2, g3} where

g1 = ⟨1, goCStation(1), energy < CT ⟩ •monitor(A1) (2)

g2 = ⟨1, goCStation(2), energy < CT ⟩ •monitor(A1) (3)

g3 = ⟨1, takePass(), energy ≥ CT ⟩ •monitor(A2) (4)
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Assume the event takePass() occurs and the energy level is greater than CT ,
then the policy g3 is triggered. The new positive policy set is g′ = {g31, g32},
obtained by removing g1 and g2, and replacing g3 with the following policies:

g31 = ⟨1, goCheckin(1),⊤⟩ •monitor(A21) (5)

g32 = ⟨1, goCheckin(2),⊤⟩ •monitor(A21) (6)

It is likely that the ATV energy consumption is underestimated due to un-
foreseen situation such as longtime waiting in traffic. Hence it may happen that
the ATV has to make a plan to go for charging according to its policies, even
if it is transporting passengers. In this situation the event goCStation occurs,
which leads to activation of none of positive policies. Subsequently, a negative
policy is triggered and a violation is reported.

An important and non-trivial issue is how to correct the behavior of a system
on-the-fly when properties are violated. The system can be halted to handle
this situation, for the runtime verification applied during system simulation.
However, for real-time on-line systems, fault diagnosis and system recovery
is required, which in general will mean modification of the running system.
When such additional capabilities are provided to handle violations, the overall
dynamically-monitored system becomes an evolvable system [23]. Thanks to
the flexibility of PobSAM, we can modify and/or define policies to react to the
violation of properties, without the need to halt the system. Furthermore, as
the system evolves by time, the response to a property violation may change.
We can simply modify policies used to handle the property violations at run-
time. To handle violation in our example, a policy is defined for the ATV to
prevent it from going to the charging station, and send a help message to the
mobile maintenance vehicle for recharging the ATV.

7.2. Implementation

We use the Java based Ponder2 policy toolkit to develop our transporta-
tion scenario. Ponder2 is a self-contained, stand-alone, general-purpose object
management system developed at Imperial College [18]. It implements a policy
execution framework to develop various applications, and uses message passing
between objects. Policies are defined using a high-level language called Pon-
derTalk. Java is used for programming user-extensible managed objects. All
elements of a Ponder2 system including domains (groups of managed objects),
policies, events and user defined objects, are implemented as managed objects.
A publish/subscribe event bus is used for interaction between components and
disseminating events which trigger policies [5].

We implement actors as user defined Ponder2 managed objects to which
messages are sent for performing an action. Managers of a PobSAM model
are implemented using the Ponder2 policy interpreter, and governing and struc-
tural adaptation policies are implemented by PonderTalk obligation policies. An
obligation policy is specified in the form of an event-condition-action rule, but
governing/structural adaptation policies are prioritized event-condition-action
rules. Therefore, we convert a governing/structural adaptation policy set into
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a set of non-prioritized rules [19] to be able to specify them using PonderTalk.
We can model sequential composition, non-deterministic choice and conditional
choice of policy actions, but it is infeasible to model parallel composition gener-
ally. It is worth mentioning that the parallel composition operator is not used
to specify the governing and structural adaptation policies in our case study.

Moreover, a behavioral adaptation policy is specified by two obligation poli-
cies. An obligation policy, say gp1, is used for evolving to the adaptation mode
and another obligation policy, say gp2, is defined for switching from adaptation
mode to the new configuration. In case that the adaptation mode of a policy is
loose adaptation mode, gp1 is triggered which leads to evolving to loose adapta-
tion mode. When the switching conditions become true, gp2 is triggered. Then
gp2 deactivates the policies of the old configuration, activates the obligation
policies of the new configuration and changes the manager mode to normal.
An adaptation policy with strict adaptation mode is modeled similarly with the
difference that the policies of the old configuration are deactivated by gp1 rather
than by gp2. All policies are specified in text files which can be modified at run-
time without the need to stop the system. Moreover, we can use an interactive
shell provided by Ponder2 to interact with the system, e.g. to add, remove and
update policies and agents.

We use an aspect-oriented approach to instrument the code. Aspects are
responsible to (i) monitor the behavior of actors, and (ii) send the triggered
events to the relevant managers. The managers enforce suitable policies to
handle raised events. As an example, an aspect is responsible to check the
value of energylevel after execution relevant methods. When the energylevel
becomes lower than a predefined value, event needcharge is triggered and sent
to the EnergyManager.

Flexibility of the Approach. As mentioned before, we are able to modify
policies at runtime. Ponder2 provides a shell to communicate with the system,
e.g. to modify policies. It is feasible to activate, deactivate and define new
policies dynamically. We can deactivate the policy policy1 using the following
command where root/policy is the path to access policy1:

root/policy/policy1 active: false.

In the above example, we first define the following policy which prevents the
ATV to go to the charging station and calls the maintenance ATV for help:

policy := root/factory/ecapolicy create.
root/policy at:"EnergyManager" put: policy.
root/policy/EnergyManager event:root/event/urgentCase.
root/policy/EnergyManager condition:[true].
root/policy/EnergyManager action:

[ :id :mid| root/Airport/TMid stop:id.
root/Airport/TMid callforhelp:mid.].

root/policy/EnergyManager active:true.

Then, we create the event urgentCase using the following command to trig-
ger this policy where idX denotes the ATV’s identifier and midX denotes the
identifier of maintenance ATV:
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root/event/urgentCase create: #(idX midX).

Finally, we deactivate the policy which instructs the ATV to go to the charg-
ing station and define new policies for the ATV.

7.3. Evaluation

Analysis. Although, we can verify an abstract model of the system using static
analysis, this does not guarantee the correctness of the implementation, because
not all informations about an adaptive system are available at design time.
For instance, consider to check the property that the ATV should have enough
energy to transport the passengers to target X. We have considered the abstract
values for the energy level of ATVs in static analysis which makes our analysis
inaccurate. For runtime verification, we consider the real values of the energy
level and use a more accurate energy consumption function. Hence, we have a
more correct and realistic analysis at runtime. It is clear that the problem of
state space explosion is avoided at runtime, therefore, we are able to carry out
complex analysis.

One of the main analysis which we can perform at runtime is policy analysis.
Detection of some policy conflicts could be difficult or even infeasible using
static analysis. Thus we can detect these policy conflicts at run-time. Let
gi = ⟨o, e, ϕi⟩ • ai and gj = ⟨o, e, ϕj⟩ • aj denote two arbitrary governing policies.
The condition of triggering the policy gi(gj) is indicated by Tgi (Tgj ). Let χρi

represent the post-condition of enforcing ρi and e¬φgi
stand for the event where

the condition of preserving the effect of gi’s action is falsified. Furthermore,
ψi represents the prerequisite of executing αi. Table 3 gives the patterns to
detect policy conflicts at runtime. After detecting a policy conflict at runtime,
we can use various conflict resolution methods to resolve the policy conflict [24].
In addition, we can check application-specific safety properties such as collision
avoidance.

It is worth mentioning that we are only able to check safety properties at
runtime, i.e. the properties specifying that something bad should not happen.
We can not check liveness properties, i.e. the properties specifying that finally
something good will happen. For instance we can not check if a policy is un-
enforceable, i.e. that policy will never become triggered. This is because of
the fact that runtime verification does not consider each possible execution of a
system, but just a single or a finite subset. Therefore, it shares similarities with
testing: both are usually incomplete.

Performance evaluation. We performed a number of experiments to mea-
sure the performance of our approach. We have run the algorithm with different
number of ATVs. Figure 7(a) shows the CPU overhead of the algorithm for dif-
ferent number of agents, when we ran the system for 300, 450, 600, 750, 900,
1050 and 1200 seconds. The CPU time overhead of our algorithm varies between
0.5% and 0.75%. Figure 7(b) shows the total number of properties checked for
different number of ATVs. Our experiments have been performed on an Intel
workstation running Windows 7 with Core 2 Duo 2.2GHz CPU and 4 Gbyte
memory.
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Conflict Type Property Alphabet

Action Conflict ρac = Tgi ∧ Tgj :→ ei; violated(ρac), ei = ej Lρac = {ei}
Effect Inference
Conflict

ρeic = Tgi :→ ei; ¬χgi :→ e¬φgi
Lρeic = {ei, e¬ϕgi

}

Inexecutable Ac-
tion Conflict

ρiac = Tgi :→ ei; ψi :→ αi Lρeic = {ei, αi}

Table 3: Properties for Detection of Policy Conflicts

(a) (b)

Figure 7: Performance of the Runtime Verification Approach

8. Related Work

Our work is related to different areas of research, however we focus here on
related work which intersects ours with modeling adaptive systems, modeling
future software systems, formal analysis and runtime verification of self-adaptive
systems.

Modeling Self-Adaptive Systems. We have compared PobSAM and HPobSAM
with existing formal approaches to model adaptive systems in terms of flexibil-
ity, separation of concerns and formal foundation in [9, 13, 14]. Most existing
work concentrates on modeling either structural or behavioral changes [6, 11].
The Mechatronic UML is employed for modeling complex mechatronic systems
in [27]. It supports the component-based specification of software structure
and its adaptation based on graph transformation systems [11]. In this graph
transformation-based approach, both behavior and structure are modeled with
graphs, however handling large and complex graphs would be difficult for large-
scale systems. We take the benefit of both an ordinary state-based formalism
for specifying behavioral information in addition to graphs as a natural model
to express the system structure. [26] proposed a framework so-called MARS
for model-based development of adaptive embedded systems in which a model
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consists of a set of modules. The MARS model has been extended to optimize
the adaptation behavior that emerges hierarchically from modular adaptation
behaviors in [38]. This model groups a composition of components together in a
hierarchical component, and uses model checking to ensure well-definedness of
components. FORM [39] is a formal reference model for self-adaptation based
on standardized Z specification language (ISO/IEC 13568:2002) which supports
structural adaptation. The scalable models FORM and hierarchal MARS use
a bottom-up approach to design the system, however they are inflexible to be
used for designing long-lived IT Ecosystems. In contrast to our model, they are
only concerned with structural adaptation.

PLASTIC [40] is a formal approach to develop self-adaptive services in which
the services should maintain certain levels of quality in changing environments.
In this framework, the system is designed by building a model and several vari-
ants of the service code are generated from the model to support adaptation
at runtime. In contrast to HPobSAM, this application-specific model is nei-
ther flexible nor scalable, because this framework only considers design-time
adaptations and the system can not evolve at runtime. While PLASTIC uses
an automatic approach to generate the code, we manually generate the system
code from its HPobSAM model. All in all, the formal approaches for model-
ing self-adaptive systems are essentially concerned with responding short-term
changes (e.g. [6, 11, 25, 26, 27]), while we require scalable approaches which
support the long-term evolution of the system. Hierarchical nature and flexibil-
ity of PobSAM make it a suitable model to design large-scale systems, as shown
in this paper.

Architectures of Self-Adaptive Systems. There are different frameworks and ar-
chitectures for engineering self-adaptive systems. Rainbow [28] is a framework
for self-adaptation which uses an abstract architecture model to monitor the
running system. This model is evaluated to control the violation of constraints.
In case of violation, several local or global adaptations are performed in the
system. In [29], Kramer and Magee propose a three layer architecture for de-
signing self-managed systems: (i) the control component layer implements the
functionality of the system, (ii) the change management reacts to the changes
at the lower level and executes plans to adapt the behavior of system, and (iii)
the goal management layer creates plans to achieve the goals according to the
specification of goals and the current state of the system. Similar to [28, 29], in
our model the functionality of system is implemented in one layer which is con-
trolled by the upper layers. While Rainbow architecture and Kramer-Magee’s
reference model are described at an abstract level, we are concerned with the
technical details of model and the way that adaptation is performed. Further-
more, our model has a formal foundation compared to [28, 29]. Both Rainbow
architecture and Kramer-Magee’s model employ a centralized approach to per-
form adaptation and control the system behavior which is not scalable to design
large-scale adaptive systems [21]. We use a combination of centralized and de-
centralized approaches to design the system. In contrast to [28, 29], our model
supports hierarchical structures which enhances the scalability of the model for
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designing large-scale systems.

Nature-inspired Design of Software Systems. Another relevant area of research
is nature-inspired frameworks and models that are proposed to design future
software systems. Systems are treated as a spatial Ecosystem in which services,
data items, and resources are all modeled as autonomous individuals (agents)
that locally act and interact in accordance with a simple set of well-defined
eco-laws [1]. There are different nature-inspired metaphors that have been sug-
gested to design future systems including physical metaphors (e.g. [2]), chem-
ical metaphors (e.g. [3]), biological metaphors (e.g. [4]), and social/ecological
metaphors (e.g. [30]). According to this definition, policies describe the eco-
laws in our model while agents are defined as managers, actors and self-adaptive
modules. So far, the proposed approaches have no formal foundation whereas
assurance of the correctness of such complex systems is crucial.

Policy-based Design of Software Systems. Furthermore, [5] proposes a policy-
based model for engineering ubiquitous computing systems. Our notion of self-
adaptive modules is inspired by the self-managed cells in this model. Security
and fault management are discussed and the tool-set Ponder2 is provided for
implementation. This model has no formal foundation, however event calculus
is used to analyze policies. Our model has a formal foundation, we provide an
executable formal specification of our model in Maude for analysis purposes,
and propose an approach to verify it at runtime. ASSL [31, 32] is a policy-
based framework for specification, validation, and code generation of autonomic
systems. This approach uses consistency checking to validate the system, and
a model-checking approach is provided to verify ASSL models [33]. This flexi-
ble three-tier model uses a centralized approach to control the system behavior
which makes it non-scalable compared to HPobSAM. While our approach sup-
ports both behavioral and structural adaptations, to the best of our knowledge,
this model supports only behavioral adaptation.

Formal Verification. Formal verification of adaptive systems at behavioral level
is a young research area [34]. Authors in [25] extend LTL with an “adapt” op-
erator called A-LTL to specify adaptation requirements before, during and after
adaptation and introduce a model checking approach to verify the program for-
mally. In another work [35], they propose a modular approach to verify adaptive
program. [36] present a method to describe adaptation behavior at an abstract
level. After deriving transition systems from the system description, the system
properties are verified using model checking techniques. In their later work [26],
they propose MARS in which the system is specified using Synchronous Adap-
tive Systems [37] and is verified using theorem proving, model checking and
specialized verification methods. All above model checking approaches to verify
adaptive systems share the common problem of state explosion with our ap-
proach. The modular model checking approaches can enhance the performance
of analysis, however, the degree of improvement depends on the granularity of
the produced sub-models. It is likely that we encounter the state explosion
problem for model checking large sub-model.
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Runtime Verification. There are different approaches to verify the adherence
of the software behavior to a set of formal specifications. Generally, a desired
property to be checked, say ϕ, is expressed and a monitor which accepts all its
models is generated. The monitor and the system run in parallel and the system
is monitored by the monitor. The language used to specify the property ϕ are
usually based on algebra (e.g. [41, 42]), automata (e.g. [43]), logic (e.g. [44, 45]),
or regular expressions [46]. In particular, Linear Temporal Logic (LTL) and
its different variations have been core to several attempts. Java PathExplorer
(JPaX) [47] is a general-purpose monitoring approach to check if the execution
of a Java program conforms with a set of user provided properties formulated
in temporal logic. JPaX instruments Java byte code to capture the relevant
events and send them to the observers. Eagle[48] and RuleR [49] are two rule-
based approaches which use a set of rules to monitor the system behavior.
In contrast to our approach, the specification language of both approaches is
based on temporal logic. Rules in [48, 49] are state-based denoting the state
changing in the system while our policies are event-based rules to monitor the
system. In [42] a process-algebraic approach is proposed to verify web service
compositions at runtime. The specification is transformed into an LTS which is
traversed at runtime. While we use a similar language to specify the properties,
however, we use a symbolic policy-based approach to implement the monitor.
Different from the existing approaches, we used a policy-based approach to
implement the monitor. An advantage of a policy-based monitoring approach
is that it allows us to deactivate the verification of a property at runtime by
disabling the policies used for monitoring that property dynamically. Stopping
the verification of a property can be performed due to the reasons such as
preventing the performance degradation.

To the best of our knowledge, few researchers concentrate on runtime verifi-
cation of adaptive systems. In [50], a runtime verification approach is proposed
for monitoring adaptive systems. In this work, properties to be checked are
specified using LTL and A-LTL. An aspect-oriented approach is used to instru-
ment the code and collect state information for analysis. The model checker
AMOEBA [35] is used to analyze the state information, and check the proper-
ties. In [51], an LTL-based approach is used to verify properties of service com-
positions at runtime. Different from [50, 51], we use an algebraic approach to
verify properties at runtime. Thanks to flexibility of our policy-based approach,
we can also define strategies to handle violation of properties dynamically.

9. Concluding Remarks

In this paper, we studied suitability of HPobSAM for modeling and analyzing
IT Ecosystems through a transportation service in a smart airport case study.
We discussed different capabilities of HPobSAM including formal foundation,
flexibility and scalability. These features make it a suitable model for modeling
future software systems. We modeled our case study using HPobSAM, and
present formal specification of this model in Maude. We analyzed the case
study using the model checking tools provided by Maude at design time. Due
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to the state explosion problem of model checking, we could not verify all the
properties successfully. Moreover, our analysis is done for a model with known
managers’ configurations, i.e. we have to reverify the system when the managers’
configurations are updated at runtime. Hence, we proposed a new run-time
verification approach as a complement to model checking which enables us to
verify a system with dynamic managers’ configurations at runtime. Runtime
verification is incomplete compared to (non-bounded) model checking, because
we can only check an execution path or a finite subset of execution paths at
runtime. Moreover, we have shown how flexibility of our approach can help us
to handle property violations at runtime.
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