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Abstract: Network on Chip (NoC) has emerged as a 
promising interconnection paradigm for complex on-chip 
communications. As fabrication cost is high, model based 
design of NoC and early exploration to make proper 
design decisions are important challenges in NoCs. To 
tackle these challenges, we use formal methods and 
utilize their expressivity and flexibility to model different 
behaviors of a NoC and their abstraction to support early 
analysis of the design. We propose a formal approach for 
selection of the best routing algorithm in a NoC, 
according to its performance requirements. We present a 
model for two-dimensional mesh NoC using actor based 
modeling language Rebeca. Both functional and timing 
behaviors are modeled. The model is then used to 
compare three routing algorithms XY, Odd-Even and 
DyAD with respect to the maximum end-to-end packet 
latency in different scenarios.  
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1. Introduction 
Asynchronous paradigm has become conspicuous in 

Network on Chip (NoC) design to overcome problems of 
clock skew and clock tree distribution of fully 
synchronous design. Thereby Globally Asynchronous 
Locally Synchronous (GALS) NoC has gained attention 
in design of such systems [1]. Functional verification is a 
major challenge in these systems to avoid increase in 
design errors; but a functionally verified GALS NoC may 
not meet all its desired performance. Thus, performance 
prediction in the various stages of the design is another 
necessity that should be performed to help the designer 
make proper design decisions according to the parameters 
of the system and also performance requirements. One 
important design decision for systems where end-to-end 
latency is a concern is to select a routing algorithm that 
results in the least end-to-end latency.  

As fabrication cost is high, it is desirable to perform 
analysis on NoC design before having the first prototype 
and even in the early stages of design process. For model-
based analysis we need to capture  the crucial details in 

the model. However, to the best of our knowledge 
existing models of GALS NoC do not present the 
required details for modeling adaptive, dynamic and 
deterministic routings. 

One important point in asynchronous systems is that 
lack of a reference clock leads in an interleaved execution 
of processes. Therefore, in GALS NoCs, a sent packet 
might be delayed by different number of disrupting 
packets and may have various end-to-end latencies. Thus, 
for analysis of such systems it is essential to consider all 
possible behaviors of the system and generate the whole 
state space. However, existing work based on simulation 
techniques cannot be applied for exhaustive verification. 
Also, ensuring correctness to a certain degree using 
simulation is highly time-consuming.  

In this paper, we use model checking for performance 
prediction on two-dimensional mesh GALS NoC1.  
Model checking is a promising approach that can be used 
for both performance evaluation and correctness checking 
and allow us to perform exhaustive search in the state 
space [2]. Important advantages of using model checking 
for performance prediction, in the case of this work are: 
• Expressiveness: by using a suitable modeling 

language we can simply model both functional and 
timing behavior of GALS NoC, and also consider 
asynchronous paradigm and nondeterministic 
behavior of the system. 

• Abstraction: for higher efficiency and for 
verifying more complicated properties  we can model 
only the necessary details with respect to the 
property and abstract away the irrelevant parts. 
Abstraction enables us to perform analysis in the 
various stages of the design flow. 

• Exhaustive verification: given the model of the 
system and the targeted properties, model checker 

                                                 
1 We have shown in a paper in submission that the model 
can be used for functional verification at the same time. 
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explores the whole state space to check for property 
satisfaction rather than a set of traces. 

• Finding the Finding the violating execution path: 
Model checker can return the execution path in 
which the property is violated (in contrast to 
mathematical and analytical approaches), and thus 
can help the designer for improving the design. 

We used Timed Rebeca (Reactive Objects Language) 
[3, 4, 5] as the modeling language. Timed Rebeca is an 
actor-based modeling language capable of modeling 
functionalities and timing behaviors of asynchronous 
systems. In an actor model there are numbers of actors 
which are communicating via message passing. 
Consistency between the computational model of Rebeca 
and GALS NoC, enables us to model a GALS NoC 
naturally and simply. Each router in a GALS NoC is 
modeled as an actor and the communication between 
routers are modeled as message passing between actors.    

To estimate the maximum end-to-end packet latency, 
the delay for read/write from/to a buffer, and delays of 
links and routing are considered in the model. Four-phase 
handshake communication protocol is also modeled for 
communication through channels. To model different 
kinds of routing algorithms, especially adaptive and 
dynamic algorithms, we capture buffer statuses (number 
of elements in the buffers). Subsequently, the model is 
used for comparison of some routing algorithms, namely 
XY, Odd-Even and DyAD. Results of comparison can be 
further used by designers to take proper decision about 
routing algorithms in the early phases of design. 

The remainder of the paper is organized as follows. In 
Section 2 related work is introduced, Section 3 contains 
preliminaries. Section 4 presents GALS NoC model in 
Rebeca. Three routing algorithms are introduced and 
modeled in Section 5. Results are shown in Section 6, and 
finally conclusion and future work are presented.  

2. Related Work 
There exist many simulation based works on analysis 

of different aspects of NoCs. Various arbitration and 
routing algorithms, router switches, and traffic patterns 
have been modeled using simulators. Nirgam [6] and 
gem5 [7] are two simulators for analyzing NoCs. In [8] a 
simulation based method for deadlock detection in a 
multiprocessor system with many running processes is 
proposed. As discussed before, simulation based methods 
are non-exhaustive and cannot be applied for early 
exploration because they do not have the adequate level 
of abstraction. 

 Formal and mathematical approaches are able to 
perform exhaustive verification at the expense of losing 
some precision. There are some works based on 
mathematical approaches; such as [9], which uses 
deductive method to prove that a routing algorithm is 
deadlock free. Although mathematical techniques are 
powerful, they cannot show how a violation occurred in 
the system. Formal methods are able to address this 
challenge.  

There exist formal tools used for functional 
verification and performance prediction of the same 
model simultaneously. Formal techniques have been 
widely used for analysis of different aspects of 
multiprocessor systems that are in close relation with 
NoCs. A Petri net model is presented in [10] for 
performance modeling of asynchronous circuits. In [11] 
and [12] multiprocessor systems have been modeled by 
Timed Automata considering bus based methodology as 
interconnect network. In none of the above works GALS 
NoC was analyzed; GALS NoC has many special timing 
details and complex modules.  

In [13] a NoC is modeled in Extended Timed 
Automata, and its router is verified against some 
functional properties. Authors in [14] applied Interactive 
Markov Chain (IMC) and Interactive Probabilistic Chain 
(IPC) to model a buffer used in NoC design. However, 
details of hardware timing and link model are not 
mentioned. In [15] an analytical method based on 
Markov chain stochastic processes is proposed for 
computation of mean latency of the end-to-end 
communications via a 2-dimensional mesh NoC. Using 
probabilities reduces the state space at the expense of 
losing the buffer analysis. 

In this paper, we use formal methods to model 
different kinds of routing algorithms. The comparison is 
performed with respect to the maximum end-to-end 
packet latencies. In contrast to existing works based on 
formal methods, our model considers hardware details 
like link and buffer (read and write) delays and buffer 
statuses and thus can model adaptive and dynamic 
routing algorithms. Also, the model could be easily 
extended to contain more details in various stages of 
design flow and can help the designer to make better 
architectural choices. 

3. Preliminaries 
Here, Timed Rebeca is introduced as the modeling 

language used for our analysis. 
3.1 Timed Rebeca 

Timed Rebeca is an extension to Rebeca, capable of 
modeling functional and timing behaviors of distributed 
reactive systems. 

 Rebeca is an actor based modeling language [16]  
with a Java-like syntax. Actors can be considered as a 
reference model for concurrent computation. A Rebeca 
model consists of reactive classes and a main part that 
contains instantiation of reactive objects (rebecs) from 
reactive classes. Rebecs have encapsulated states and 
their own execution thread. Each rebec contains a set of 
state variables, methods and a set of known rebecs with 
which it can communicate. Communication is 
asynchronously established through message passing. 
Message passing is fair and implemented by method 
calls; calling a method of a rebec results in sending a 
message to the actor that invokes corresponding message 
server. Each rebec has a buffer, called a queue, for 
arriving messages. In each step a rebec is executed by 



removing a message from the top of its queue and 
executing its corresponding message server. 

To model timing behaviors of a system, three 
constructs are provided as follows: 

- delay (t): causes a delay of t time units. 
- after (t): this construct is paired with an invocation of 

a message server (method call), and causes a 
message to be sent with a delay of t units of time. 

- deadline (t): this construct is paired with a method 
call, and the corresponding  message will be deleted 
from the queue after t time units.  

Abstract syntax of Timed Rebeca is illustrated in Fig. 1. 

4. GALS NoC Model  
If the model is too abstract, results may become 

imprecise; on the other hand very low level of abstraction 
may intensively increase complexity and leads analysis to 
state explosion. Using the proper abstraction level is the 
key for model based analysis of NoC. To this end one 
should define the constituent of the model with respect to 
the properties that the model is verified against.  

In this paper we target maximum end-to-end packet 
latency for comparison of different routing algorithms. 
Network topology, router buffers, routing algorithm, 
communication policy, storage strategy and channels are 
modeled. Timing behaviors like link delay and the delay 
for writing and reading to/from buffers are also 
considered in the model.  
Using an actor based modeling language we can 
efficiently map the constituents of GALS NoC, to actor 
model. Different elements of a GALS NoC can be 
modeled as follows, 
- Router: each router can be modeled as an actor which 
communicates with other routers through message 
passing. Delay for processing in a router, e. g. scheduling 
or routing algorithms can be modeled by "delay" 
construct.      
- Routing algorithm: we can define some message servers 
to model routing algorithms. An actor in Rebeca model is 
able to recognize who has invoked its message server, 
thus the router can understand from which port a packet 
entered and then decide to which router the packet should 
be sent.  

- Buffer: router buffers can be seen as an array of 
elements (packets). We can use Rebec queues to model 
buffers, and then keep track of the number of packets in 
the buffer by defining a state variable as a counter for the 
number of elements in the buffer. Doing so, we always 
have the number of packets in the buffer, thus being able 
to model adaptive and dynamic routings. Delay of writing 
and reading to/from buffers can be modeled by "after" 
constructs. 
- Packet: we model a packet only with its identifier and 
its destination. 

 
Fig. 1: Syntax for Timed Rebeca 

 

 
Fig. 2: Pseudo code for GALS NoC model 

 



- Channel (link): channels can be simply modeled by 
message passing. Delay of passing through a channel can 
be modeled using "after" construct.  
- Communication protocol: by defining appropriate 
message servers, we can model communication protocols 
of a GALS NoC.  

Fig. 2 shows a pseudo code for our model for GALS 
NoC 4×4 in Rebeca. The code is not limited to 4×4 NoCs 
and can be used for larger ones provided that we take into 
consideration the problem of state space explosion.  The 
code is available in [17]. According to the pseudo code 
the model consists of one reactive class Router, and 
sixteen instantiated rebecs namely r00, r01, r02 to r33.  

Packets are generated in initial message server of 
routers. Each packet only contains its destination address 
and no data are modeled, because only analysis of 
communication part of a NoC is of interest. Packets 
transfer through channels, using four-phase handshake 
communication protocol. We modeled channel 
functionalities by means of message passing capability of 
Rebeca. Four-phase handshake protocol is modeled using 
three message servers reqSend, giveAck and getAck. A 
router calls its reqSend message server to send a request 
to its neighbors; reqSend requires as parameter, a 
direction that determines in which input buffer the packet 
is stored and a destination address that shows the 
destination of the packet. Routing algorithm selects 
which neighbor router the packet should be sent to, and 

then giveAck message server of the selected neighbor 
router is called. giveAck first checks if the corresponding 

input buffer have enough capacity to store the packet, if it 
does, the packet will be stored and an acknowledgement 
is sent to the sender by calling its getAck message server. 
Then, it will be either consumed or sent to other 
neighboring routers using reqSend message server. While 
the buffer is full the packet will not be stored and should 
wait until the buffer has an empty place. 

In two reqSend and giveAck message servers the 
length of the buffer can change. when a packet is inserted 
or deleted from the buffer. Writing and reading delays are 
also considered for buffers.  

5.  Model for Routing Algorithm 
Routing algorithms can be classified into deterministic 

and adaptive routings. In a deterministic routing there can 
only be one path between a source and a destination, 
whereas in adaptive routing more than one possible path 
may exist and the algorithm considers dynamic network 
condition to decide in which direction a packet should be 
transferred.  

In the following sub-sections we present a formal 
model for XY and Odd-Even routing algorithms as 
instances for deterministic and adaptive routings 
respectively. Dynamic Adaptive Deterministic (DyAD) is 
also modeled.  
5.1  XY Routing 

In this algorithm, first packets move along X direction 
to get to the column of the destination, and then along Y 
direction to reach their destination. 

To model this algorithm, a router (X,Y) compares its 
X location to that of the packet destination, if it is 

 
 

Fig. 3: Scenarios 1, 2 and 3. 
 

 
Fig. 4: Scenarios 4, 5 and 6. 

 



greater/smaller, it calls the giveAck method of west/east 
neighbor. The same approach is done for the Y 
coordinate.  
5.2  Odd-Even Routing  

Odd-Even routing is an adaptive routing algorithm 
based on Odd-Even turn model [18]. Odd-Even turn 
model restricts the turns in the packet path to ensure 
about the deadlock freedom. According to Odd-Even turn 
model north-to-west and south-to-west turns are 
prohibited in routers located in an odd column and east-
to-south and east-to-north turns are prohibited in routers 
located in an even column.  

Among possible directions where an Odd-Even router 
can send packet, the direction in which the downstream 
router has less empty slots in its corresponding input 
buffer is selected.  

In this algorithm each router keeps track of the number 
of packets in input buffer of each of its neighbors. In our 
model whenever the size of an input buffer of a router 
changes, it informs its corresponding upstream neighbor 
by sending a message.  
5.3 DyAD Routing 

DyAD routing dynamically uses a deterministic or an 
adaptive routing exploiting both of them in different 
network congestion conditions.  

Each router monitors the occupation ratio of its input 
buffers (except for the local buffer). Whenever one of the 
buffers reaches a predefined congestion threshold a mode 
flag is set to inform the corresponding neighboring router 
about the congestion. On the other hand, each router 
continuously checks mode flag of its neighbors to decide 
whether to work with deterministic or adaptive routing. 
According to [19] if at least one of the neighboring 
routers were congested the router would decide to work 
with adaptive routing; otherwise it would work with 
deterministic routing. 

To model a DyAD router we add a mode flag to our 
model. The mode flag becomes true if the size of the 
corresponding input buffer reaches the congestion 
threshold. 

6. Results 
We use Afra [20] tool for model checking of XY, 

Odd-Even and DyAD Rebeca models, and  compare them 
with respect to the maximum latency of the target packet. 
The NoC size in these comparisons is 4×4. All input 
buffers are of size 3 packets and %33 congestion 
threshold. 

To compare the three algorithms we introduce six 
different scenarios describing different network 
conditions. In all scenarios the target packet is packet (1). 
We call the path of a packet to its destination R-path, 
when it is routed by the routing algorithm R.  

The scenarios are as follows:  

 Scenario 1. Router R10 generates two packets1 as soon 
as it receives packet (1). The two packets may cause 
disruption for packet (1) (Fig. 3. a). 
Scenario 2. Each of the routers R10 and R30 sends two 
packets to R30 and R33. This may cause disruption to 
any packet transferring from their paths (Fig. 3. b). 
Scenario 3. Three routers R10, R20 and R21 send packets 
in XY-path of packet (1) in a way that they disrupt 
packet(1) (Fig. 3. c). 
Scenario 4. R10 sends two packets to each of the routers 
R30 and R21 as soon as it receives the packet (1); hence, 
they will cause disruption to packet (1) in all directions 
(Fig. 4. a). 
Scenario 5. R10 sends two packets to R30 causing DyAD 
and Odd-Even to rout packets in south direction of R10 to 
avoid being delayed. On the other hand, R11 sends two 
packets to each of its south and east neighboring routers 
that would cause delay for packet(1) if DyAD or Odd-
Even was used(Fig. 4. b). 
Scenario 6. As illustrated in Fig. 4. c routers R10, R11, 
R21 and R31 send some packets to their neighbors 
making delay for packet (1) while it passes through them. 

These scenarios can be divided into two categories. In 
the first three ones most of the network traffic is directed 
in XY-path of packet (1). As illustrated in Fig.5 in these  
scenarios, DyAD and Odd-Even avoid congestion by 
monitoring their neighbors and thus have less end to end 
packet latency. Also, DyAD has better results than Odd-
Even because it exploits the low latency of deterministic 
routings in low traffics. The second three scenarios show 
distributed traffic in which disrupting packets exist in all 
possible directions, by which the target packet can get to 
its destination. These scenarios investigate the impact of 
low latency of deterministic routings which is the result 
of their simplicity in contrast to adaptive ones. As shown 
in Fig. 6, XY works as the best in these cases; as stated in 
[19] because XY has a global and long term knowledge 
about the traffic, it exhibits better results than the others. 

 

7. Conclusion and Future Work 

This paper used formal methods that are able to 
perform exhaustive verification to performance 
prediction on GALS NoC in the early phase of design 
flow. To this end, a formal model for GALS NoC was 
presented using high level modeling language Rebeca. 
The model was then used for comparison between three 
routing algorithms, namely XY (deterministic), Odd-
Even (adaptive) and DyAD (dynamically adaptive and 
deterministic) with respect to the maximum end-to-end 
packet latency. Results of comparison are presented 
under two different traffic patterns and show that under 
distributed traffic a deterministic routing could better 
work. However, in a directed traffic -that is of more 
interest in real applications- adaptive routing algorithms 
are better. The routing performance results obtained 
                                                 
1 We mean two packets are sent with negligible delay 
between two routers. 



through Rebeca model checking confirm the same 
previously published results in simulations. 

Results of such comparisons can help designers to 
make early decision about the parameters of the system 
based on the performance parameters. To have more 
realistic model and more precise analysis, our model can 
be extended by inserting more details of the system along 
with progress in the design flow, which we leave as 
future work. 
 

      
Fig. 5: Results for comparison of XY, DyAD and Odd-Even under 1-3 
scenarios 
 

 
Fig. 6: Results for comparison of XY, DyAD and Odd-Even under 4-6 
scenarios 
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