

Comparison of NoC Routing Algorithms Using Formal Methods

Zeinab Sharifi1*, Siamak Mohammadi1 and Marjan Sirjani2
(z.sharifi@ut.ac.ir, smohammadi@ece.ut.ac.ir, marjan@ru.is)

1 School of Electrical and Computer Engineering, University of Tehran, North Karegar, Pardis 2, Tehran,
Iran

2 School of Computer Science, Reykjavik University, Menntavegi 1, 101 Reykjavik, Iceland,
* Contact author
This paper is submitted to PDPTA'13

Abstract: Network on Chip (NoC) has emerged as a
promising interconnection paradigm for complex on-chip
communications. As fabrication cost is high, model based
design of NoC and early exploration to make proper
design decisions are important challenges in NoCs. To
tackle these challenges, we use formal methods and
utilize their expressivity and flexibility to model different
behaviors of a NoC and their abstraction to support early
analysis of the design. We propose a formal approach for
selection of the best routing algorithm in a NoC,
according to its performance requirements. We present a
model for two-dimensional mesh NoC using actor based
modeling language Rebeca. Both functional and timing
behaviors are modeled. The model is then used to
compare three routing algorithms XY, Odd-Even and
DyAD with respect to the maximum end-to-end packet
latency in different scenarios.

Keywords: Network on Chip (NoC), model checking,
Rebeca, routing algorithm, performance evaluation

1. Introduction
Asynchronous paradigm has become conspicuous in

Network on Chip (NoC) design to overcome problems of
clock skew and clock tree distribution of fully
synchronous design. Thereby Globally Asynchronous
Locally Synchronous (GALS) NoC has gained attention
in design of such systems [1]. Functional verification is a
major challenge in these systems to avoid increase in
design errors; but a functionally verified GALS NoC may
not meet all its desired performance. Thus, performance
prediction in the various stages of the design is another
necessity that should be performed to help the designer
make proper design decisions according to the parameters
of the system and also performance requirements. One
important design decision for systems where end-to-end
latency is a concern is to select a routing algorithm that
results in the least end-to-end latency.

As fabrication cost is high, it is desirable to perform
analysis on NoC design before having the first prototype
and even in the early stages of design process. For model-
based analysis we need to capture the crucial details in

the model. However, to the best of our knowledge
existing models of GALS NoC do not present the
required details for modeling adaptive, dynamic and
deterministic routings.

One important point in asynchronous systems is that
lack of a reference clock leads in an interleaved execution
of processes. Therefore, in GALS NoCs, a sent packet
might be delayed by different number of disrupting
packets and may have various end-to-end latencies. Thus,
for analysis of such systems it is essential to consider all
possible behaviors of the system and generate the whole
state space. However, existing work based on simulation
techniques cannot be applied for exhaustive verification.
Also, ensuring correctness to a certain degree using
simulation is highly time-consuming.

In this paper, we use model checking for performance
prediction on two-dimensional mesh GALS NoC1.
Model checking is a promising approach that can be used
for both performance evaluation and correctness checking
and allow us to perform exhaustive search in the state
space [2]. Important advantages of using model checking
for performance prediction, in the case of this work are:
• Expressiveness: by using a suitable modeling

language we can simply model both functional and
timing behavior of GALS NoC, and also consider
asynchronous paradigm and nondeterministic
behavior of the system.

• Abstraction: for higher efficiency and for
verifying more complicated properties we can model
only the necessary details with respect to the
property and abstract away the irrelevant parts.
Abstraction enables us to perform analysis in the
various stages of the design flow.

• Exhaustive verification: given the model of the
system and the targeted properties, model checker

1 We have shown in a paper in submission that the model
can be used for functional verification at the same time.

mailto:z.sharifi@ut.ac.ir
mailto:smohammadi@ece.ut.ac.ir

explores the whole state space to check for property
satisfaction rather than a set of traces.

• Finding the Finding the violating execution path:
Model checker can return the execution path in
which the property is violated (in contrast to
mathematical and analytical approaches), and thus
can help the designer for improving the design.

We used Timed Rebeca (Reactive Objects Language)
[3, 4, 5] as the modeling language. Timed Rebeca is an
actor-based modeling language capable of modeling
functionalities and timing behaviors of asynchronous
systems. In an actor model there are numbers of actors
which are communicating via message passing.
Consistency between the computational model of Rebeca
and GALS NoC, enables us to model a GALS NoC
naturally and simply. Each router in a GALS NoC is
modeled as an actor and the communication between
routers are modeled as message passing between actors.

To estimate the maximum end-to-end packet latency,
the delay for read/write from/to a buffer, and delays of
links and routing are considered in the model. Four-phase
handshake communication protocol is also modeled for
communication through channels. To model different
kinds of routing algorithms, especially adaptive and
dynamic algorithms, we capture buffer statuses (number
of elements in the buffers). Subsequently, the model is
used for comparison of some routing algorithms, namely
XY, Odd-Even and DyAD. Results of comparison can be
further used by designers to take proper decision about
routing algorithms in the early phases of design.

The remainder of the paper is organized as follows. In
Section 2 related work is introduced, Section 3 contains
preliminaries. Section 4 presents GALS NoC model in
Rebeca. Three routing algorithms are introduced and
modeled in Section 5. Results are shown in Section 6, and
finally conclusion and future work are presented.

2. Related Work
There exist many simulation based works on analysis

of different aspects of NoCs. Various arbitration and
routing algorithms, router switches, and traffic patterns
have been modeled using simulators. Nirgam [6] and
gem5 [7] are two simulators for analyzing NoCs. In [8] a
simulation based method for deadlock detection in a
multiprocessor system with many running processes is
proposed. As discussed before, simulation based methods
are non-exhaustive and cannot be applied for early
exploration because they do not have the adequate level
of abstraction.

 Formal and mathematical approaches are able to
perform exhaustive verification at the expense of losing
some precision. There are some works based on
mathematical approaches; such as [9], which uses
deductive method to prove that a routing algorithm is
deadlock free. Although mathematical techniques are
powerful, they cannot show how a violation occurred in
the system. Formal methods are able to address this
challenge.

There exist formal tools used for functional
verification and performance prediction of the same
model simultaneously. Formal techniques have been
widely used for analysis of different aspects of
multiprocessor systems that are in close relation with
NoCs. A Petri net model is presented in [10] for
performance modeling of asynchronous circuits. In [11]
and [12] multiprocessor systems have been modeled by
Timed Automata considering bus based methodology as
interconnect network. In none of the above works GALS
NoC was analyzed; GALS NoC has many special timing
details and complex modules.

In [13] a NoC is modeled in Extended Timed
Automata, and its router is verified against some
functional properties. Authors in [14] applied Interactive
Markov Chain (IMC) and Interactive Probabilistic Chain
(IPC) to model a buffer used in NoC design. However,
details of hardware timing and link model are not
mentioned. In [15] an analytical method based on
Markov chain stochastic processes is proposed for
computation of mean latency of the end-to-end
communications via a 2-dimensional mesh NoC. Using
probabilities reduces the state space at the expense of
losing the buffer analysis.

In this paper, we use formal methods to model
different kinds of routing algorithms. The comparison is
performed with respect to the maximum end-to-end
packet latencies. In contrast to existing works based on
formal methods, our model considers hardware details
like link and buffer (read and write) delays and buffer
statuses and thus can model adaptive and dynamic
routing algorithms. Also, the model could be easily
extended to contain more details in various stages of
design flow and can help the designer to make better
architectural choices.

3. Preliminaries
Here, Timed Rebeca is introduced as the modeling

language used for our analysis.
3.1 Timed Rebeca

Timed Rebeca is an extension to Rebeca, capable of
modeling functional and timing behaviors of distributed
reactive systems.

 Rebeca is an actor based modeling language [16]
with a Java-like syntax. Actors can be considered as a
reference model for concurrent computation. A Rebeca
model consists of reactive classes and a main part that
contains instantiation of reactive objects (rebecs) from
reactive classes. Rebecs have encapsulated states and
their own execution thread. Each rebec contains a set of
state variables, methods and a set of known rebecs with
which it can communicate. Communication is
asynchronously established through message passing.
Message passing is fair and implemented by method
calls; calling a method of a rebec results in sending a
message to the actor that invokes corresponding message
server. Each rebec has a buffer, called a queue, for
arriving messages. In each step a rebec is executed by

removing a message from the top of its queue and
executing its corresponding message server.

To model timing behaviors of a system, three
constructs are provided as follows:

- delay (t): causes a delay of t time units.
- after (t): this construct is paired with an invocation of

a message server (method call), and causes a
message to be sent with a delay of t units of time.

- deadline (t): this construct is paired with a method
call, and the corresponding message will be deleted
from the queue after t time units.

Abstract syntax of Timed Rebeca is illustrated in Fig. 1.

4. GALS NoC Model
If the model is too abstract, results may become

imprecise; on the other hand very low level of abstraction
may intensively increase complexity and leads analysis to
state explosion. Using the proper abstraction level is the
key for model based analysis of NoC. To this end one
should define the constituent of the model with respect to
the properties that the model is verified against.

In this paper we target maximum end-to-end packet
latency for comparison of different routing algorithms.
Network topology, router buffers, routing algorithm,
communication policy, storage strategy and channels are
modeled. Timing behaviors like link delay and the delay
for writing and reading to/from buffers are also
considered in the model.
Using an actor based modeling language we can
efficiently map the constituents of GALS NoC, to actor
model. Different elements of a GALS NoC can be
modeled as follows,
- Router: each router can be modeled as an actor which
communicates with other routers through message
passing. Delay for processing in a router, e. g. scheduling
or routing algorithms can be modeled by "delay"
construct.
- Routing algorithm: we can define some message servers
to model routing algorithms. An actor in Rebeca model is
able to recognize who has invoked its message server,
thus the router can understand from which port a packet
entered and then decide to which router the packet should
be sent.

- Buffer: router buffers can be seen as an array of
elements (packets). We can use Rebec queues to model
buffers, and then keep track of the number of packets in
the buffer by defining a state variable as a counter for the
number of elements in the buffer. Doing so, we always
have the number of packets in the buffer, thus being able
to model adaptive and dynamic routings. Delay of writing
and reading to/from buffers can be modeled by "after"
constructs.
- Packet: we model a packet only with its identifier and
its destination.

Fig. 1: Syntax for Timed Rebeca

Fig. 2: Pseudo code for GALS NoC model

- Channel (link): channels can be simply modeled by
message passing. Delay of passing through a channel can
be modeled using "after" construct.
- Communication protocol: by defining appropriate
message servers, we can model communication protocols
of a GALS NoC.

Fig. 2 shows a pseudo code for our model for GALS
NoC 4×4 in Rebeca. The code is not limited to 4×4 NoCs
and can be used for larger ones provided that we take into
consideration the problem of state space explosion. The
code is available in [17]. According to the pseudo code
the model consists of one reactive class Router, and
sixteen instantiated rebecs namely r00, r01, r02 to r33.

Packets are generated in initial message server of
routers. Each packet only contains its destination address
and no data are modeled, because only analysis of
communication part of a NoC is of interest. Packets
transfer through channels, using four-phase handshake
communication protocol. We modeled channel
functionalities by means of message passing capability of
Rebeca. Four-phase handshake protocol is modeled using
three message servers reqSend, giveAck and getAck. A
router calls its reqSend message server to send a request
to its neighbors; reqSend requires as parameter, a
direction that determines in which input buffer the packet
is stored and a destination address that shows the
destination of the packet. Routing algorithm selects
which neighbor router the packet should be sent to, and

then giveAck message server of the selected neighbor
router is called. giveAck first checks if the corresponding

input buffer have enough capacity to store the packet, if it
does, the packet will be stored and an acknowledgement
is sent to the sender by calling its getAck message server.
Then, it will be either consumed or sent to other
neighboring routers using reqSend message server. While
the buffer is full the packet will not be stored and should
wait until the buffer has an empty place.

In two reqSend and giveAck message servers the
length of the buffer can change. when a packet is inserted
or deleted from the buffer. Writing and reading delays are
also considered for buffers.

5. Model for Routing Algorithm
Routing algorithms can be classified into deterministic

and adaptive routings. In a deterministic routing there can
only be one path between a source and a destination,
whereas in adaptive routing more than one possible path
may exist and the algorithm considers dynamic network
condition to decide in which direction a packet should be
transferred.

In the following sub-sections we present a formal
model for XY and Odd-Even routing algorithms as
instances for deterministic and adaptive routings
respectively. Dynamic Adaptive Deterministic (DyAD) is
also modeled.
5.1 XY Routing

In this algorithm, first packets move along X direction
to get to the column of the destination, and then along Y
direction to reach their destination.

To model this algorithm, a router (X,Y) compares its
X location to that of the packet destination, if it is

Fig. 3: Scenarios 1, 2 and 3.

Fig. 4: Scenarios 4, 5 and 6.

greater/smaller, it calls the giveAck method of west/east
neighbor. The same approach is done for the Y
coordinate.
5.2 Odd-Even Routing

Odd-Even routing is an adaptive routing algorithm
based on Odd-Even turn model [18]. Odd-Even turn
model restricts the turns in the packet path to ensure
about the deadlock freedom. According to Odd-Even turn
model north-to-west and south-to-west turns are
prohibited in routers located in an odd column and east-
to-south and east-to-north turns are prohibited in routers
located in an even column.

Among possible directions where an Odd-Even router
can send packet, the direction in which the downstream
router has less empty slots in its corresponding input
buffer is selected.

In this algorithm each router keeps track of the number
of packets in input buffer of each of its neighbors. In our
model whenever the size of an input buffer of a router
changes, it informs its corresponding upstream neighbor
by sending a message.
5.3 DyAD Routing

DyAD routing dynamically uses a deterministic or an
adaptive routing exploiting both of them in different
network congestion conditions.

Each router monitors the occupation ratio of its input
buffers (except for the local buffer). Whenever one of the
buffers reaches a predefined congestion threshold a mode
flag is set to inform the corresponding neighboring router
about the congestion. On the other hand, each router
continuously checks mode flag of its neighbors to decide
whether to work with deterministic or adaptive routing.
According to [19] if at least one of the neighboring
routers were congested the router would decide to work
with adaptive routing; otherwise it would work with
deterministic routing.

To model a DyAD router we add a mode flag to our
model. The mode flag becomes true if the size of the
corresponding input buffer reaches the congestion
threshold.

6. Results
We use Afra [20] tool for model checking of XY,

Odd-Even and DyAD Rebeca models, and compare them
with respect to the maximum latency of the target packet.
The NoC size in these comparisons is 4×4. All input
buffers are of size 3 packets and %33 congestion
threshold.

To compare the three algorithms we introduce six
different scenarios describing different network
conditions. In all scenarios the target packet is packet (1).
We call the path of a packet to its destination R-path,
when it is routed by the routing algorithm R.

The scenarios are as follows:

 Scenario 1. Router R10 generates two packets1 as soon
as it receives packet (1). The two packets may cause
disruption for packet (1) (Fig. 3. a).
Scenario 2. Each of the routers R10 and R30 sends two
packets to R30 and R33. This may cause disruption to
any packet transferring from their paths (Fig. 3. b).
Scenario 3. Three routers R10, R20 and R21 send packets
in XY-path of packet (1) in a way that they disrupt
packet(1) (Fig. 3. c).
Scenario 4. R10 sends two packets to each of the routers
R30 and R21 as soon as it receives the packet (1); hence,
they will cause disruption to packet (1) in all directions
(Fig. 4. a).
Scenario 5. R10 sends two packets to R30 causing DyAD
and Odd-Even to rout packets in south direction of R10 to
avoid being delayed. On the other hand, R11 sends two
packets to each of its south and east neighboring routers
that would cause delay for packet(1) if DyAD or Odd-
Even was used(Fig. 4. b).
Scenario 6. As illustrated in Fig. 4. c routers R10, R11,
R21 and R31 send some packets to their neighbors
making delay for packet (1) while it passes through them.

These scenarios can be divided into two categories. In
the first three ones most of the network traffic is directed
in XY-path of packet (1). As illustrated in Fig.5 in these
scenarios, DyAD and Odd-Even avoid congestion by
monitoring their neighbors and thus have less end to end
packet latency. Also, DyAD has better results than Odd-
Even because it exploits the low latency of deterministic
routings in low traffics. The second three scenarios show
distributed traffic in which disrupting packets exist in all
possible directions, by which the target packet can get to
its destination. These scenarios investigate the impact of
low latency of deterministic routings which is the result
of their simplicity in contrast to adaptive ones. As shown
in Fig. 6, XY works as the best in these cases; as stated in
[19] because XY has a global and long term knowledge
about the traffic, it exhibits better results than the others.

7. Conclusion and Future Work

This paper used formal methods that are able to
perform exhaustive verification to performance
prediction on GALS NoC in the early phase of design
flow. To this end, a formal model for GALS NoC was
presented using high level modeling language Rebeca.
The model was then used for comparison between three
routing algorithms, namely XY (deterministic), Odd-
Even (adaptive) and DyAD (dynamically adaptive and
deterministic) with respect to the maximum end-to-end
packet latency. Results of comparison are presented
under two different traffic patterns and show that under
distributed traffic a deterministic routing could better
work. However, in a directed traffic -that is of more
interest in real applications- adaptive routing algorithms
are better. The routing performance results obtained

1 We mean two packets are sent with negligible delay
between two routers.

through Rebeca model checking confirm the same
previously published results in simulations.

Results of such comparisons can help designers to
make early decision about the parameters of the system
based on the performance parameters. To have more
realistic model and more precise analysis, our model can
be extended by inserting more details of the system along
with progress in the design flow, which we leave as
future work.

Fig. 5: Results for comparison of XY, DyAD and Odd-Even under 1-3
scenarios

Fig. 6: Results for comparison of XY, DyAD and Odd-Even under 4-6
scenarios

References
[1] International Technology Roadmap for Semiconductors- ITRS 2011,
http://www.itrs.net/Links/2011ITRS/Home2011.htm
[2] C. Baier, B.R. Haverkort, H. Hermanns and Joost-Pieter
Katoen. "Performance Evaluation and Model Checking Join
Forces." Commun. ACM, vol. 53, 2010, pp. 76-85.
[3] E. Khamespanah, Z. Sabahi Kaviani, R. Khosravi, M. Sirjani and
M.J. Izadi. "TimedRebeca Schedulability and Deadlock-Freedom
Analysis Using Floating-Time Transition System." in Proc. AGERE!,
2012, pp. 23-34.

[4] M. Sirjani, A. Movaghar, A. Shali and F. S. De Boer, “Modeling and
Verification of Reactive Systems using Rebeca,” Fundemental
Information, vol. 63, pp. 385-410, Dec. 2004.
[5] M. Sirjani and M. M. Jaghoori. "Ten Years of Analyzing Actors:
Rebeca Experience." in Formal Modeling: Actors, Open Systems,
Biological Systems, 2011, pp. 20-56.
[6] NIRGAM, http://nirgam.ecs.soton.ac.uk/.
[7] The gem5 simulator, dx.doi.org/10.1145/2024716.2024718, 2011.
[8] A. Sen, V. Ogale and M. S. Abadir. “Predictive Runtime
Verification of Multi-Processor SoCs in SystemC,” in 2008 Design
Automation Con.f, pp. 948-953.
[9] W. Dally and C. L. Seitz, “Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks,” IEEE Trns. Computers,
vol. 36, pp. 547-553, May 1987.
[10] M. Najibi and P. A. Beerel, “Performance Bounds of Asynchronous
Circuits with Mode-Based Conditional Behavior,” in 2012 IEEE
Asynchronous Circuits and Systems Conf., pp. 9-16.
[11] G. Madl, “Model-based Analysis of Event-driven Distributed Real-
time Embedded Systems,” Ph.D. dissertation, Univ. California, 2009.
[12] A. Brekling, “Modelling and Verification of MPSoC,” M.Sc.
dissertation, Univ. Technical University of Denmark, 2006.
[13] Y. Chenl, W. SU, P. Hsiungt, Y. Lan, Y. Hu and S. Chen. "Formal
modeling and verification for network-on-chip." in ICGCS, 2010, pp.
299-304.
[14] N. Coste, H. Hermanns, E. Lantreibecq and W. Serwe, “Towards
Performance Prediction of Compositional Models in GALS Designs,” in
Proc. 2009 Computer Aided Verification Conf., pp. 204-218.
[15] S. Foroutan, Y. Thonnart, R. Hersemeule and A. Jerraya,
“Analytical Computation of Packet Latency in 2D-Mesh NoC,” in
0T 0Tproc. 2009 Circuits and Systems and TAISA Conf., pp. 1 – 4.
[16] C. Hewitt, “Description and Theoretical Analysis (Using
Schemata) of PLANNER: A Language for Proving Theorems and
Manipulating Models in a Robot,” MIT Artificial Intelegence, Tech.
Rep. TR-258, 1972.
[17] Rebeca Homepage,
 http://www.rebeca-lang.org/wiki/pmwiki.php/Examples/NOC4x4
[18] G. M. Chiu, “The odd-even turn model for adaptive routing,” IEEE
Trans. Parallel and Distributed Systems, vol. 11, pp. 729-738, Jul.
2000.
[19] J. Hu and R. Marculescu, “DyAD – Smart Routing for Networks-
on-Chip,” in Proc. 2004 IEEE Design Automation Conf., pp. 260-263.
[20] Rebeca Formal Modeling Language, http://www.rebeca-lang.org

http://www.informatik.uni-trier.de/~ley/db/conf/birthday/talcott2011.html#SirjaniJ11
http://www.informatik.uni-trier.de/~ley/db/conf/birthday/talcott2011.html#SirjaniJ11
http://nirgam.ecs.soton.ac.uk/
http://dx.doi.org/10.1145/2024716.2024718

