
Formal Semantics and Analysis of Timed Rebeca
in Real-Time Maude

Zeynab Sabahi-Kaviani1, Ramtin Khosravi1, Marjan Sirjani2,1,
Peter Csaba Ölveczky3, and Ehsan Khamespanah1

1 School of Electrical and Computer Engineering, University of Tehran
2 School of Computer Science, Reykjavik University

3 Department of Informatics, University of Oslo

Abstract. The actor model is one of the main models for asynchronous
and distributed computation. Timed Rebeca is a timed extension of the
actor-based modeling language Rebeca. Although Rebeca is supported by
a rich verification toolset, Timed Rebeca has not had an executable for-
mal semantics, and has therefore had limited support for formal analysis.
In this paper, we provide a formal semantics of Timed Rebeca in Real-
Time Maude. We have automated the translation from Timed Rebeca
to Real-Time Maude, allowing Timed Rebeca models to be automati-
cally analyzed using Real-Time Maude’s reachability analysis tool and
timed CTL model checker. This enables a formal model-based method-
ology which combines the convenience of intuitive modeling in Timed
Rebeca with formal verification in Real-Time Maude. We illustrate this
methodology with a collision avoidance protocol for wireless networks.

1 Introduction

The importance of formal modeling and analysis for ensuring the dependability
and correctness of safety-critical systems has long been acknowledged. How-
ever, the lack of formal modeling languages close to programming and modeling
languages used by practitioners has limited the use of formal methods. Timed
Rebeca [1] is an actor-based [2] modeling language that extends the Rebeca lan-
guage [17] to support the modeling of distributed real-time systems. Because
of its Java-like syntax and its simple and intuitive message-driven and object-
based computational model, Timed Rebeca is an easy-to-learn language for sys-
tem developers, thereby bridging the gap between formal methods and practical
software engineering.

Although Rebeca is supported by a rich model checking toolset [15], model
checking of Timed Rebeca models has not been supported until now. Even
though Timed Rebeca has an SOS semantics, it lacks an executable formal se-
mantics that would enable automated analysis methods such as simulation and
temporal logic model checking.

However, providing an executable formal semantics for Timed Rebeca is quite
challenging. For example, since Timed Rebeca has a rich expression/statement
language that allows the values of state variables to grow beyond any bound,

and since the message queues can become arbitrarily long, Timed Rebeca cannot
be translated into popular real-time formalisms such as, e.g., timed automata.

In this paper, we provide a formal Real-Time Maude semantics for Timed
Rebeca. Real-Time Maude [12] is a specification formalism and analysis tool for
real-time systems based on rewriting logic [11]. With its natural time model and
expressive formalism, which is particularly suitable for formally specifying dis-
tributed real-time systems in an object-oriented way, Real-Time Maude should
be ideally suited for this challenging task. Real-Time Maude is supported by a
high-performance toolset providing a spectrum of analysis methods, including
simulation through timed rewriting, reachability analysis, and (untimed) linear
temporal logic model checking as well as timed CTL model checking.

We have automated the translation from Timed Rebeca to Real-Time Maude,
so that the user gets Real-Time Maude simulation and model checking of his/her
Timed Rebeca model for free. Furthermore, such formal analysis is being inte-
grated into the Rebeca toolset. This would of course not be very useful if the
user would need to understand the Real-Time Maude representation of his/her
Timed Rebeca model, and/or would need to define state properties in Real-Time
Maude, in order to model check his/her Timed Rebeca model. We have therefore
taken advantage of Real-Time Maude’s support for parametric state propositions
to predefine useful generic state propositions, so that the user can define his/her
(possibly timed) temporal logic properties without having to know Real-Time
Maude or understand how the mapping from Timed Rebeca works.

Altogether, this enables a formal model-engineering methodology that com-
bines the convenience of modeling in an intuitive actor language with Java-like
syntax with formal verification in Real-Time Maude. We illustrate this method-
ology with a collision avoidance protocol case study.

The rest of the paper is structured as follows. Section 2 briefly introduces
Timed Rebeca and Real-Time Maude. Section 3 explains the Real-Time Maude
formalization of the Timed Rebeca semantics. Section 4 defines some useful
generic atomic state propositions that allows the user to easily define his/her
temporal logic formulas without knowing Real-Time Maude. Section 5 illustrates
our methodology on a collision avoidance protocol. Finally, Section 6 discusses
related work and Section 7 gives some concluding remarks.

2 Preliminaries

2.1 Timed Rebeca

Since Timed Rebeca is an extension of the Rebeca modeling language, we first
introduce Rebeca and then explain Timed Rebeca in more detail.

Rebeca [17] is a pure actor-based modeling language suitable for specifying
distributed systems. Rebeca is supported by a rich model checking toolset [15].

A Rebeca model consists of a set of actors (called rebecs) that communicate
asynchronously by message passing. Each actor maintains a queue of messages
that it has received but not yet processed. An actor repeatedly takes a message

Model ::= Class∗ Main

Main ::= main { InstanceDcl∗ }

InstanceDcl ::= className rebecName(〈rebecName〉∗) : (〈literal〉∗);

Class ::= reactiveclass className { KnownRebecs Vars Constr MsgSrv∗ }

KnownRebecs ::= knownrebecs { VarDcl∗ }

Vars ::= statevars { VarDcl∗ }

VarDcl ::= type 〈v〉+;

Constr ::= className methodName(〈type v〉∗) { Stmt∗ }

MsgSrv ::= msgsrv methodName(〈type v〉∗) { Stmt∗ }

Stmt ::= v = e; | v =?(e1, . . . , en) | Send ; | if (e) { Stmt∗ } [else { Stmt∗ }] |

delay(e); | for (Stmt1; e; Stmt2) { Stmt∗ }

Send ::= rebecName.methodName(〈e〉∗) [after(e)] [deadline(e)]

Fig. 1. Abstract syntax of Timed Rebeca. Angle brackets 〈...〉 are used as meta paren-
thesis. Identifiers className, rebecName, methodName, v, literal , and type denote class
name, rebec name, method name, variable, literal, and type, respectively; and e de-
notes an (arithmetic or boolean) expression. In for loops, Stmt1 is the initialization
statement, e2 is a boolean expression (the loop execution condition), and Stmt2 is the
update statement (executed after each iteration).

from the beginning of its queue and executes the corresponding message server,
which may involve sending messages to other actors and changing the actor’s lo-
cal state. Execution is non-preemptive: the actor does not take the next message
from its queue before the running message server is finished.

A Rebeca specification defines a number of reactive classes and a main block.
A reactive class defines an actor type and its behavior as well as its relationship
to other actors. The main block is used to instantiate rebecs as the objects of
reactive classes. The body of a reactive class definition has three sections: known
rebecs, state variables, and message servers. A rebec can only send messages to
its known rebecs. The local state of a rebec is given by the values of its state
variables. The type of state variables can be integer types, Boolean, and arrays.

The message servers specify how the rebecs respond to incoming messages.
They may have parameters and may define local variables. The body of a message
server consists of a number of statements, including assignments, conditionals,
loops, and sending messages. The expressions contains common arithmetic and
logical operators. The nondeterministic assignment v =?(e1, . . . , ek) nondeter-
ministically assigns (the current evaluation of) one of the expressions ei to the
variable v. Each class has a constructor (with the same name as the class) which
initializes the state variables of its instances.

Timed Rebeca [1] is a timed extension of Rebeca whose abstract syntax is
given in Fig. 1. The following timed features have been added for specifying
distributed real-time systems:

– delay is a statement used to model computation times. Since we assume that
the execution times of the other statements to be zero, the computation time
must be specified by the modeler using the delay statement.

– after is a time tag attached to a message and defines the earliest time the
message can be served, relative to the time when the message was sent.

– deadline is a time tag attached to a message which determines the expiration
time of the messages, relative to the time when the message was sent.

When a message with tag after t is sent, it is added to the set of undelivered
messages and resides there until t time units have elapsed. Then, it is delivered,
i.e., appended to the receiving rebec’s message queue. The messages in a rebec’s
queue are therefore ordered according to their delivery time (if the delivery
time of two messages are the same, the order in which they are delivered is
selected nondeterministically). If the deadline of a message is reached, regardless
of whether it is delivered or not, the message is purged. A rebec takes a message
from its queue as soon as it can (i.e., when it has finished processing the previous
message, and there are some messages in the queue).

Figure 2 shows a Timed Rebeca model of a simple thermostat system com-
posed of two actors t and h of reactive classes Thermostat and Heater, respec-
tively. The goal of the system is to keep the temperature between 25 and 30
degrees. The Thermostat actor checks the temperature every 5 time units, by
sending a checkTemp message to itself (line 19). If the temperature is not in the
acceptable range, it sends the Heater actor h the proper on or off message,
which expires after 20 time units (lines 16 and 18). It takes two time units for
the heater to turn itself on or off. The heater also models the change in the en-
vironment by nondeterministically changing the temperature by 1 to 3 degrees
every 10 time units (lines 47-49), and sending the delta to the heater (line 50).

2.2 Real-Time Maude

Real-Time Maude [13, 12] extends the rewriting-logic-based Maude language and
tool [6] to support the formal specification and analysis of real-time systems. A
Real-Time Maude timed module is a tuple (Σ,E,IR,TR), where:

− (Σ,E) is a membership equational logic [6] theory where Σ is an algebraic
signature, declaring the sorts, subsorts, and functions of the system, and E
a set of confluent and terminating conditional equations. (Σ,E) specifies the
system’s states as an algebraic data type, and must contain a specification
of a sort Time modeling the (discrete or dense) time domain.

− IR is a set of (possibly conditional) labeled instantaneous rewrite rules spec-
ifying the system’s instantaneous (i.e, zero-time) local transitions, written
with syntax rl [l] : u => v, where l is a label. Such a rule specifies a one-
step transition from an instance of the term u to the corresponding instance
of the term v. The rules are applied modulo the equations E.

− TR is a set of (usually conditional) tick rules, written with syntax crl [l] :

{t} => {t′} in Time τ if cond, that model time elapse. { } is a built-in

1 reactiveclass Thermostat {

2 knownrebecs {

3 Heater heater;

4 }

5 statevars {

6 int period;

7 int temp;

8 }

9 Thermostat() {

10 period = 5;

11 temp = 25;

12 self.checkTemp();

13 }

14 msgsrv checkTemp() {

15 if (temp >= 30)

16 heater.off() deadline(20);

17 if (temp <= 25)

18 heater.on() deadline(20);

19 self.checkTemp()

after(period);

20 }

21 msgsrv changeTemp(int delta) {

22 temp = temp + delta;

23 }

24 }

26 reactiveclass Heater {

27 knownrebecs {

28 Thermostat thermostat;

29 }

30 statevars {

31 boolean on;

32 int delta;

33 }

34 Heater() {

35 on = false;

36 self.run();

37 }

38 msgsrv on() {

39 delay(2);

40 on = true;

41 }

42 msgsrv off() {

43 delay(2);

44 on = false;

45 }

46 msgsrv run(){

47 delta = ?(1,2,3);

48 if (on == false)

49 delta = -1 * delta;

50 thermostat.changeTemp(delta);

51 self.run() after(10);

52 }

53 }

55 main {

56 Thermostat t(h):();

57 Heater h(t):();

58 }

Fig. 2. The Timed Rebeca model for a simple thermostat/heater system.

constructor of sort GlobalSystem, and τ is a term of sort Time that denotes
the duration of the rewrite.

The initial state must be a ground term of sort GlobalSystem and must be
reducible to a term of the form {u} using the equations in the specification.

The Real-Time Maude syntax is fairly intuitive. A function symbol f in Σ
is declared with the syntax op f : s1 ... sn -> s, where s1...sn are the sorts
of its arguments, and s is its result sort. Equations are written with syntax
eq u = v, and ceq u = v if cond for conditional equations. The mathemati-
cal variables in such statements are declared with the keywords var and vars.
An equation f(ti, . . . , tn) = t with the owise (for “otherwise”) attribute can
be applied to a subterm f(. . .) only if no other equation with left-hand side
f(u1, . . . , un) can be applied.

A class declaration class C | att1 : s1, ... , attn : sn declares a
class C with attributes att1 to attn of sorts s1 to sn, respectively. An object
of class C is represented as a term < O : C | att1 : val1 ,..., attn : valn >

where O, of sort Oid is the object’s identifier, and where val1 to valn are
the current values of the attributes att1 to attn. The state is a term of sort

Configuration, and has the structure of a multiset of objects and messages,
with multiset union denoted by a juxtaposition operator that is declared asso-
ciative and commutative, so that rewriting is multiset rewriting.

The dynamic behavior of concurrent object systems is axiomatized by spec-
ifying each of its transition patterns by a rewrite rule. For example, the rule

rl [l] :

m(O,w)

< O : C | a1 : x, a2 : O’, a3 : Z >

=>

< O : C | a1 : x+w, a2 : O’, a3 : Z >

dly(m’(O’),x) .

defines a parameterized family of transition in which a message m, with parameter
O and w, is read and consumed by an object O of class C. The transitions change
the attribute a1 of the object O and send a new message m’(O’) with delay x.

Formal Analysis. The Real-Time Maude tool provides a spectrum of analysis
methods, including:

– timed rewriting that simulates one behavior of the system up to certain
duration from an initial state;

– timed search analyzes whether a state matching a state pattern is reachable
from the initial state within a certain time interval;

– model checking to check whether each possible behavior from the initial state
satisfies a temporal logic formula. Real-Time Maude extends Maude’s lin-
ear temporal logic model checker. State proposition are terms of sort Prop,
and their semantics should be given by (possibly conditional) equations of
the form {statePattern} |= prop = b, for a b a term of sort Bool, which
defines the state proposition prop to hold in a state {t} if {t} |= prop evalu-
ates to true. A temporal logic formula is constructed by state propositions
and temporal logic operators such as True, False, ∼ (negation), /\, \/, ->
(implication), [] (“always”), <> (“eventually”), and U (“until”). The time-
bounded model checking command has the syntax mc {t} |=t ϕ in time

<= τ . for initial state {t} and temporal logic formula ϕ. Real-Time Maude
has also recently been equipped with a model checker for timed computation
tree logic (TCTL) properties [10].

3 Real-Time Maude Semantics of Timed Rebeca

This section explains how we have formalized the semantics of Timed Rebeca in
Real-Time Maude in an object-oriented style.

Specifying the Static Parts. In the Real-Time Maude semantics of a Timed
Rebeca model we need to keep track of (i) the declarations of the (message

servers of the) reactive classes; (ii) the rebecs in their current states; and (iii)
the set of as-yet undelivered messages.

Since the message servers do not change dynamically, we do not need to carry
them around in the state. Instead, the message servers are modeled by a function

op msgServer : ClassName MsgHeader -> Statements .

where msgServer(c, m) defines the code to be executed by a rebec of reactive
class c when it treats a message with header m. The sort Statements is a
straight-forward representation of the body of a message server. For example, in
our thermostat example, msgServer(Thermostat, Thermostat) equals

(period := 5) ; (temp := 25) ;

(sendSelf checkTemp with noArg deadline INF after 0)

and msgServer(Thermostat, checkTemp) equals

(if(temp >= 30) then (send off with noArg to "heater" deadline 20 after 0)) ;

(if(temp <= 25) then (send on with noArg to "heater" deadline 20 after 0)) ;

(sendSelf checkTemp with noArg deadline INF after 5)

We also have a function formalParams such that formalParams(c, m) returns
the list of the formal parameters of the message server for m in reactive class c.

We mostly omit the details of how basic Rebeca statements (e.g., assignments
and evaluation of expressions) are formalized in Real-Time Maude, and refer
to [3] for a thorough treatment of the Real-Time Maude formalization of the
evaluation of expressions in a fairly sophisticated language. The only expression
we mention is due to the possibility of having nondeterministic assignments. We
formalize the expression list ? (e1, e2, . . . , en) in a nondeterministic assignment
as a list e1 ? e2 ? . . . ? en using the following list data type:

sort NDExpr . subsort Expr < NDExpr .

op nil : -> NDExpr .

op _?_ : NDExpr NDExpr -> NDExpr [assoc id: nil] .

Since nil is the identity element for lists, Maude considers l and nil ? l and
l ? nil to be identical lists. In particular, a single expression e is considered by
Maude to be identical to the lists nil ? e and e ? nil and nil ? e ? nil.

The state of the Real-Time Maude representation of a Timed Rebeca model
is a multiset consisting of one Rebec object for each rebec in the system and one
message for each message in the set of undelivered messages.

A rebec is modeled by an object instance of the following class Rebec:

class Rebec | stateVars : Valuation, queue : MsgList,

classId : ClassName, toExecute : Statements,

knownRebecs : KnownList .

where stateVars represents the state variables of the rebec and the formal pa-
rameters of the message server being treated, together with their current values,
as a set of terms of the form var-name |-> value; queue is a ‘::’-separated list
of messages representing the message queue of the rebec; classId is the name
of the reactive class of the rebec; toExecute denotes the remaining statements

the rebec has to execute (and is noStatements if the rebec is not executing a
message server); and knownRebecs denotes the “known rebecs” of the rebec.

For example, the following term models the rebec "t" of class Thermostat

right after completing its constructor. Its state variables have the values 5 and
25, there is only one message in its queue (sent by itself), and the rebec is not
executing any message server.

< "t" : Rebec | stateVars : (’period |-> 5) (’temp |-> 25),

queue : (checkTemp with noArg from "t" to "t" deadline INF),

classId : Thermostat,

toExecute : noStatements,

knownRebecs : (Heater heater --> "h") >

Communication between rebecs takes place when a rebec sends a message
to another rebec (or to itself). The message is put into the multiset of undeliv-
ered messages until its message delay ends. It is then delivered to the receiver’s
message queue. Delivered messages are modeled using the constructor

msg _with_from_to_deadline_ : MsgHeader Valuation Oid Oid TimeInf -> Msg .

A delivered message therefore contains a header (the message name), its argu-
ments, the id of the sender rebec, the id of the receiver, and the time remaining
until the expiration (deadline) of the message. Delayed messages have the form
dly(m, t), where m is a message as above and t is the remaining delay of the
message, and where dly(m, 0) is considered to be identical to m [12].

Instantaneous Transitions. We next formalize the instantaneous actions of a
Timed Rebeca rebec using rewrite rules. We show 9 of the 16 rewrite rules that
define our semantics of the Timed Rebeca.

In the following rule, an idle rebec takes the first message from its queue and
starts executing the statements in the corresponding message server by putting
those statements into its toExecute attribute. Some additional bookkeeping is
also required: the formal parameters of the message server must be initialized to
the values in the message and added to the state variables; to clean up at the
end of the execution, we add a new statement removeVars to execute after the
statements in the message server have been executed:4

rl [takeMessage] :

< O : Rebec | stateVars : SVARS,

queue : (M with VAL from O’ deadline DL) :: MSGLIST,

classId : C, toExecute : noStatements >

=>

< O : Rebec | stateVars : SVARS VAL (’sender |-> O’),

queue : MSGLIST,

toExecute : msgServer(C, M) ; removeVars(VAL (’sender |-> O’)) > .

4 In this paper we follow the Maude convention that variables are written with (only)
capital letters, and do not show the variable declarations.

Because of the possibility of having nondeterministic assignments, the rewrite
rule modeling (both deterministic and nondeterministic) assignment is interest-
ing. The following rule uses pattern matching and the fact that the list con-
catenation operator ? is declared to be associate and to have identity nil to
nondeterministically select any possibly expression EX from a list of expressions.
This rule also covers deterministic assignment, since the list variables LIST1 and
LIST2 may both match the empty list nil. In addition, the rebec updates its
toExecute attribute to only execute the remaining statements:

rl [detAndNondetAssignment] :

< O : Rebec | stateVars : (VAR |-> VAL) SVARS,

toExecute : (VAR := LIST1 ? EX ? LIST2) ; STMTLIST >

=>

< O : Rebec | stateVars : (VAR |-> evalExp(EX, (VAR |-> VAL) SVARS)) SVARS,

toExecute : STMTLIST > .

We next describe the semantics of loops for (init; cond; update){body},
where init is a statement executed once in the beginning, cond is a Boolean
expression that must be true to continue the iterations, update is a statement
executed after each iteration, and body is a statement list executed in each iter-
ation. The semantics of loops is formalized in a standard “unfolding” style:

rl [forLoop] :

< O : Rebec | toExecute : for(INIT, COND, UPDATE, BODY) ; STMTLIST >

=>

< O : Rebec | toExecute : INIT ; iterate(COND, UPDATE, BODY) ; STMTLIST > .

rl [iterate] :

< O : Rebec | stateVars : SVARS,

toExecute : iterate(COND, UPDATE, BODY) ; STMTLIST >

=>

< O : Rebec | toExecute : if evalBoolExp(COND, SVARS) then

BODY ; UPDATE ; iterate(COND, UPDATE, BODY) ; STMTLIST

else STMTLIST fi > .

If the first statement is a send statement, the rebec creates a delayed message
which is added to the undelivered message soup.

rl [sendMessage] :

< O : Rebec | stateVars : SVARS,

toExecute : (send M with ARGS to REC deadline DL after AFT)

; STMTLIST , knownRebecs : (CN NK --> RCVR) NL >

=>

< O : Rebec | toExecute : STMTLIST >

dly(M with getVals(ARGS, SVARS, formalParams(CN,M)) from O to RCVR

deadline evalIntExp(DL,SVARS),

evalIntExp(AFT,SVARS)) .

Both DL and AFT are expressions evaluated using evalIntExp in the context
of the current variable assignment SVARS. The created message is added to the
system configuration; when its remaining delay becomes 0, the message becomes
“undelayed” as explained above, and can be received by the intended recipient,
which puts the message into its message queue:

rl [readMessage] :

(M with ARGS from O to O’ deadline DL)

< O’ : Rebec | queue : MSGLIST >

=>

< O’ : Rebec | queue : MSGLIST :: (M with ARGS from O deadline DL) > .

Another interesting case is the execution of a delay statement, which is
treated as follows: When the rebec encounters the delay statement, it evalu-
ates the delay expression using the current values of the variables. Once it has
done that, it leaves the delay statement in the beginning of its toExecute at-
tribute until the remaining delay becomes 0, when the rebec just continues with
the next statement. Decreasing the remaining delay is done by the tick rule be-
low. The following rules then, respectively, evaluate the delay expression at the
beginning of the delay, and finish the delay when the remaining delay is 0:

crl [evaluateDelayExpression] :

< O : Rebec | stateVars : SVARS, toExecute : delay(EX) ; STMTLIST >

=>

< O : Rebec | toExecute : delay(evalIntExp(EX, SVARS)) ; STMTLIST >

if not (EX :: Int) .

rl [endDelay] :

< O : Rebec | toExecute : delay(0) ; STMTLIST >

=>

< O : Rebec | toExecute : STMTLIST > .

Timed Behavior. The following “standard” object-oriented tick rule [12] is
used to model time advance until the next time when something must “happen”:

var SYSTEM : Configuration .

crl [tick] : {SYSTEM} => {elapsedTime(SYSTEM, mte(SYSTEM))} in time mte(SYSTEM)

if mte(SYSTEM) > 0 .

The variable SYSTEM matches the entire state of the system. The function mte

(maximal t ime elapse) determines how much time can advance in a given state.
If an instantaneous rule is enabled, it must be executed immediately; therefore,
mte of a state must be zero when an instantaneous rule is enabled in that state.

The function mte is the minimum of the mte of each rebec and each message
in the soup. As mentioned above, the mte must be 0 when the rebec has a
statement to execute which does not have the form delay(i), for an integer i;
in the latter case, the mte equals i. If there are no statements to be executed,
the mte equals 0 if the rebec has a message in its queue, and equals the infinity
value INF if the message queue is empty:

op mte : Configuration -> TimeInf [frozen (1)] .

eq mte(none) = INF .

eq mte(dly(M, T) CONF) = min(T, mte(CONF)) .

ceq mte(OBJECT CONF) = min(mte(OBJECT), mte(CONF)) if CONF =/= none .

eq mte(< O : Rebec | toExecute : noStatements, queue : empty >) = INF .

eq mte(< O : Rebec | toExecute : delay(T) ; STMTLIST >) = T .

eq mte(< O : Rebec | >) = 0 [owise] .

The function elapsedTime models the effect of time elapse on a state as
follows: The effect of time elapse on a rebec is that the remaining time until the
message deadline is decreased according to the elapsed time for each message
in the queue. Furthermore, the remaining delay of a delay statement being ex-
ecuted is also decreased according to the elapsed time. For messages traveling
between rebecs, their remaining delays and deadline are decreased according to
the elapsed time. In both cases, if the deadline expires before the message is
treated, the message is purged (i.e., becomes the empty configuration none):

op elapsedTime : Configuration Time -> Configuration [frozen (1)] .

eq elapsedTime(none, T) = none .

eq elapsedTime(dly(M with ARGS from O to O’ deadline T1, T2) CONF, T)

= (if T2 <= T1 then dly(M with ARGS from O to O’ deadline (T1 - T), T2 - T)

else none fi) elapsedTime(CONF, T) .

eq elapsedTime(< O : Rebec | toExecute : STMTLIST, queue : MSGLIST > CONF, T)

= < O : Rebec | toExecute : decreaseDelay(STMTLIST, T),

queue : decreaseDeadline(MSGLIST, T) > elapsedTime(CONF, T) .

op decreaseDelay : StatementList Time -> StatementList .

eq decreaseDelay(delay(T1) ; STMTLIST, T) = delay(T1 - T) ; STMTLIST .

eq decreaseDelay(STMTLIST, T) = STMTLIST [owise] .

op decreaseDeadlines : MsgList Time -> MsgList .

eq decreaseDeadlines(nil, T) = nil .

eq decreaseDeadlines((M with ARGS from O to O’ deadline T1) :: MSGLIST, T)

= (if T <= T1 then (M with ARGS from O to O’ deadline T1 - T) else none fi)

decreaseDeadlines(MSGLIST, T) .

4 Formal Analysis of Timed Rebeca Models

We have automated the translation of Timed Rebeca models to Real-Time
Maude. The translator is currently being integrated into RMC (Rebeca Model
Checker) [15] to support Real-Time Maude simulation, reachability analysis,
and untimed LTL and timed CTL model checking of Timed Rebeca models
from within the Rebeca toolset. To allow the Timed Rebeca modeler to define
his/her LTL and TCTL formulas without having to know anything about the
Real-Time Maude representation of his/her model, and without having to know
how to define atomic state propositions in Real-Time Maude, we have predefined
a number of useful generic atomic propositions. LTL and TCTL formulas can
then be defined using these propositions and the usual logical operators such
as ~ (not), /\ (conjunction), etc., linear temporal logic operators such as []

(always), <> (eventually), etc., and timed CTL operators such as AG (always),
AF[<= than t] (always reachable within time t), etc.

We have defined atomic propositions on the state variables of the rebecs.
The value of the state variables can be compared to the constants of the same
type using common relational operators is (equality), <=, etc. For example,
the proposition variable of rebec <= value holds if the current value of the
state variable variable in the rebec rebec is less than or equal to value:

ops _of_is_ _of_<=_ _of_<_ ... : IntVar Oid Int -> Prop .

eq {CONF < O : Rebec | stateVars : (V |-> I) VAL >} |= V of O is J = I == J .

eq {CONF < O : Rebec | stateVars : (V |-> I) VAL >} |= V of O <= J = I <= J .

As an example, temp of "h" <= 30 is true if the temp state variable of the
rebec h is less than or equal to 30.

Likewise, we have defined generic propositions o hasSent m to o′, denoting
that rebec o has sent a message with header m to the rebec o′ and that the
message is still in the network; and o hasReceived m from o′ (the message with
header m is already in o’s queue), and the more generic o hasReceived m:

ops _hasSent_to_ _hasReceived_from_ : Oid MsgHeader Oid -> Prop .

eq {CONF dly((MN with VAL from O to O’ deadline T), T’)}

|= O hasSent MN to O’ = true .

eq {CONF < O : Rebec | queue : ML1 :: (MN with VAL from O’ to O deadline T) :: ML2 >}

|= O hasReceived MN from O’ = true .

op _hasReceived_ : Oid MsgHeader -> Prop [ctor] .

eq {CONF < O : Rebec | queue : ML1 :: (MN with VAL from O’ to O deadline T) :: ML2 >}

|= O hasReceived MN = true .

We can now easily define temporal logic properties of our Timed Rebeca models:

[] ((temp of "t" >= 30) -> <> (on of "h" is false))

5 Case Study: A Collision Avoidance Protocol

This section illustrates our modeling and verification methodology on the IEEE
802.11 RTS/CTS protocol for collision avoidance in wireless networks [8]. When
a node decides to send data to another node, it sends a Request to Send (RTS)
message to the destination node, which is expected to reply with a Clear to Send
(CTS) message. Other nodes in the network which receive RTS or CTS messages
wait for a certain amount of time, making the medium free for the two communi-
cating nodes. This mechanism also solves the hidden node problem, which occurs
when two nodes want to send data to the same node. The destination node is
in the range of both senders, but the senders are out of the range of each other
(hence, unaware of each other’s decision to send a message). In the protocol, the
destination node sends a CTS message to only one of the senders. The other
sender waits for a random amount of time, and then sends an RTS message to
the destination node. Furthermore, this protocol solves the exposed node problem
as well, where two adjacent nodes send data to two different destination nodes,
so that the interference of data transfer of adjacent senders results in message
collision. The problem is solved by preventing the senders from sending data
after receiving the CTS message from other sender nodes.

We have analyzed the following properties of our Timed Rebeca model:

– Collision freedom: there are not data messages from two different senders at
the same time.

– Starvation avoidance: A node that wants to send data to any destination
will eventually be able to do so.

– Delivery time bound: The must be an upper time bound on the data transfer
to a node that is not in the radio transmission range of the sender; this time
bound depends on the network topology and delays.

Our model uses the two reactive classes Node and RadioTransfer. Each Node

knows a RadioTransfer rebec, which is responsible for broadcasting its messages
to all nodes in the node’s transmission range. To transmit data, the sender sends
an RTS message to the receiver (through its RadioTransfer rebec) and waits for
its response. When an RTS message is delivered, the receiver checks wether the
network is busy. In that case, it sends an RTS message to itself after a random
backOff (modeled by a non-deterministic choice among the values {2, 3, 4}). If
the receiver is not the target of the message, it mark the status of the network
as busy. Otherwise, it sends a CTS message to the sender. Receiving an RTS
message is handled by the following message server:

msgsrv rcvRTS(byte sndr, byte rcvr) {

if (rcvr == id)

if (channleIdle) radioTransfer.passCTS(id, sndr);

else self.rcvRTS(sndr,rcvr) after(backOff);

else

channleIdle = false;

}

When a node receives a CTS message, it checks whether it is the target of the
message. If so, it sends its data. If not, it sets the network status to idle:

msgsrv rcvCTS(byte sndr,byte rcvr) {

if (rcvr == id) self.sendData();

else channelIdle = true;

}

We have performed the analysis on a 2.53 GHz Intel processor with 2GB
RAM, running Ubuntu 10.10. The case examined has four nodes in a ring topol-
ogy (each node has two adjacent nodes in its communication range). We have
analyzed different transmission topologies to also analyze the hidden node and
the exposed node problems.

To verify collision freedom, we must ensure that no two messages with differ-
ent senders exist in radio transfer range, which can be verified for all behaviors
up to time 1000 using the following model checking command:

(mc initState |=t

[] ~ ((("node1" hasSent passData) /\ ("node2" hasSent passData))

\/ (("node2" hasSent passData) /\ ("node3" hasSent passData))

\/ (("node3" hasSent passData) /\ ("node4" hasSent passData))

\/ (("node4" hasSent passData) /\ ("node1" hasSent passData)))

in time <= 1000 .)

The model checking result reported by Real-Time Maude in 5 minutes was true.
To analyze starvation freedom we use the following command, which states

that each node will eventually (within time 1000) be able to send a data message:

(mc initState |=t (<> ("node1" hasSent passData to "radioTransfer1")) /\

(<> ("node2" hasSent passData to "radioTransfer2")) /\

(<> ("node3" hasSent passData to "radioTransfer3")) /\

(<> ("node4" hasSent passData to "radioTransfer4")) in time <= 1000 .)

This model checking command returns a counterexample, since the protocol
suffers from starvation.

To analyze whether the upper time bound for a transmission from node 1
to node 3 via node 2 is less than t, we can use the TCTL formula ∀�(s12 →
∀♦≤tr32), where s12 is true if node 1 has just sent a message to node 2, and r32
is true if node 3 has just received the message from node 2. This can be verified
using the following command for t = 6:

(mc-tctl initState |= AG (("node1" hasSent passData to "node2") implies

(AF[<= than 6] ("node3" hasRcv rcvData from "node2"))) .)

The protocol fails to satisfy this property, because of the starvation. But changing
AF to EF makes the property hold; i.e., for all possible behaviors from the initial
state, there exists a path where the transmission can take place in less than 6
time units. Model checking this property took about 20 hours.

6 Related Work

Timed Actor Models. Although there are some actor-based modeling languages
for real-time systems, their lack of effective analysis tools is a significant obstacle
to applying formal verification to real systems. In some cases, assertion-based
verification is suggested to analyze invariance and other safety properties. How-
ever, there is need for more general verification methods, such as model checking
liveness properties and other (timed or untimed) temporal logic properties.

One real-time actor-based modeling language is RTSynchronizer [16]. The
formalism specifies the model in terms of a number of actors and a global syn-
chronizer which simulates the timed behavior of the actors. Each actor is ex-
tended with timing assumptions which are used by the synchronizer to figure
out the ready-to-execute messages of the actor. In contrast with the “pure” ac-
tor language Timed Rebeca, the computation in RTSynchronizer takes place
through interactions between the synchronizer and the actors. RTSynchronizer
provides limited verification by placing the desired invariant properties in the
body of the actors, but this approach does not support the model checking of
more general temporal logic properties. (See also below.)

Creol is an actor-based language for modeling concurrent objects enriched by
synchronization patterns and type system [4]. Jaghouri et al. add timing features
to Creol in [5], where they also develop a schedulability analysis technique, but,
again, there is no support for temporal logic verification of such models.

Work on Timed Rebeca. Aceto et al. in [1] suggested a mapping from Timed Re-
beca models to Erlang for simulation (but not further formal analysis) purposes.
A semantics based on floating-time transition system was recently proposed for

Timed Rebeca [9]. Schedulability and deadlock-freedom can be checked efficiently
using this semantics, but no state-based property can be verified.

Real-Time Maude as a Semantic Framework. Because of its expressiveness and
natural model for object-oriented distributed real-time systems, Real-Time Maude
has proved to be a suitable semantic framework in which a number of formal
modeling languages have been given a formal semantics. Examples of such mod-
eling languages include Ptolemy II discrete-event models, the Orc web orches-
tration language, subsets and synchronous versions of the avionics modeling
standard AADL, timed model transformation frameworks, and so on (see [14]
for an overview). However, the only work on Real-Time Maude semantics for
timed actor languages is the work by Ding et al. [7] on the above-mentioned
quite different RTSynchronizer model. Unfortunately, no details about the Real-
Time Maude semantics are given in [7], and it seems that their work does not
define the semantics for the entire language, but only for the case study of a
Simplex architecture modeled using RTSynchronizer. Furthermore, no attempts
at temporal logic model checking was performed in [7].

7 Conclusion

Using Real-Time Maude, we have defined the first executable formal semantics of
Timed Rebeca. This enables a wide range of formal analysis methods for Timed
Rebeca models, including simulation, reachability analysis, and both timed and
untimed temporal logic model checking. We have integrated such Real-Time
Maude analysis of Timed Rebeca models into the Rebeca toolset, and have de-
fined a number of useful atomic propositions, allowing the Timed Rebeca user to
define her desired properties without knowing Real-Time Maude. We illustrated
such verification of Timed Rebeca models on a collision avoidance protocol.

Since Timed Rebeca, with its Java-like syntax and simple and intuitive actor-
based communication model, should be easy to learn and use for people unfa-
miliar with formal methods, our work bridges the gap between practitioners and
formal methods, since it enables a model-engineering methodology that com-
bines the convenience of Timed Rebeca modeling with powerful formal analysis
in Real-Time Maude.

We have focused on providing a clean and intuitive semantics. If states en-
countered during the execution of a message server do not matter for the prop-
erties we are interested in, we could significantly optimize the semantics by exe-
cuting together, in one step, all the statements in a message server. This would
significantly reduce the number of interleavings and would drastically improve
the model checking performance. Finally, although the counterexamples from
the Real-Time Maude analyses should be fairly easy to understand, we should
nevertheless provide them in terms of the Timed Rebeca model.

References

1. Aceto, L., Cimini, M., Ingólfsdóttir, A., Reynisson, A.H., Sigurdarson, S.H., Sir-
jani, M.: Modelling and simulation of asynchronous real-time systems using Timed
Rebeca. In: Proc. FOCLASA’11. EPTCS, vol. 58 (2011)

2. Agha, G.: ACTORS – a model of concurrent computation in distributed systems.
MIT Press series in artificial intelligence, MIT Press (1990)

3. Bae, K., Ölveczky, P.C., Feng, T.H., Lee, E.A., Tripakis, S.: Verifying hierarchical
Ptolemy II discrete-event models using Real-Time Maude. Science of Computer
Programming 77(12), 1235–1271 (2012)

4. Bjørk, J., Johnsen, E.B., Owe, O., Schlatte, R.: Lightweight time modeling in
Timed Creol. In: Proc. RTRTS’10. EPTCS, vol. 36 (2010)

5. de Boer, F.S., Chothia, T., Jaghoori, M.M.: Modular schedulability analysis of
concurrent objects in Creol. In: Proc. FSEN’09. LNCS, vol. 5961. Springer (2009)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude – A High-Performance Logical Framework, LNCS, vol. 4350.
Springer (2007)

7. Ding, H., Zheng, C., Agha, G., Sha, L.: Automated verification of the dependability
of object-oriented real-time systems. In: Proc. WORDS Fall. IEEE (2003)

8. IEEE Standard for Information Technology - Specific Requirements Part 11: Wire-
less LAN Medium Access Control (MAC) and Physical Layer (PHY). IEEE Std
802.11e-2005 (Amendment to IEEE Std 802.11, 1999 Edition (Reaff 2003)) (2005)

9. Khamespanah, E., Sabahi, Z., Khosravi, R., Sirjani, M., Izadi, M.: Timed-rebeca
schedulability and deadlock-freedom analysis using floating-time transition system.
In: AGERE!’12, SPLASH Workshops. ACM (2012)

10. Lepri, D., Ábrahám, E., Ölveczky, P.C.: Timed CTL model checking in real-time
maude. In: Proc. WRLA’12. LNCS, vol. 7571. Springer (2012)

11. Meseguer, J.: Conditioned rewriting logic as a united model of concurrency. The-
oretical Computer Science 96(1), 73–155 (1992)

12. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

13. Ölveczky, P.C., Meseguer, J.: The Real-Time Maude tool. In: Proc. TACAS’08.
LNCS, vol. 4963. Springer (2008)

14. Ölveczky, P.C.: Semantics, simulation, and formal analysis of modeling languages
for embedded systems in Real-Time Maude. In: Formal Modeling: Actors, Open
Systems, Biological Systems. LNCS, vol. 7000. Springer (2011)

15. Rebeca Language Home Page. http://www.rebeca-lang.org
16. Ren, S., Agha, G.: RTsynchronizer: Language support for real-time specifications

in distributed systems. In: Proc. LCT-RTS’95. ACM (1995)
17. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of

reactive systems using Rebeca. Fundam. Inform. 63(4), 385–410 (2004)

