
Electronic Communications of the EASST
Volume 70 (2014)

Proceedings of the
14th International Workshop on

Automated Verification of Critical Systems (AVoCS
2014)

Performance Analysis of Distributed and Asynchronous Systems
using Probabilistic Timed Actors

Ali Jafari , Ehsan Khamespanah , Marjan Sirjani , and Holger Hermanns

15 pages

Guest Editors: Marieke Huisman, Jaco van de Pol
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Performance Analysis of Distributed and Asynchronous
Systems using Probabilistic Timed Actors

Ali Jafari 1, Ehsan Khamespanah 21, Marjan Sirjani 1, and Holger Hermanns 3

1 Reykjavik University, School of Computer Science and CRESS
2 University of Tehran, School of ECE

3 University of Saarland, School of Computer Science

Abstract: Many real-time distributed applications exhibit probabilistic and
non-deterministic behaviors. In this paper, we introduce Probabilistic Timed
Rebeca (PTRebeca) as an actor-based language for modeling probabilistic
distributed real-time systems with asynchronous message passing. We pro-
pose the semantics of PTRebeca model in Timed Markov Decision Process
(TMDP), the integral semantics of probabilistic timed automaton (PTA) with
one digital clock. To analyze PTRebeca models, we develop a tool set to au-
tomatically generate a TMDP model from a PTRebeca model in the form of
the input language of PRISM model checker. We use PRISM for performance
analysis of PTRebeca models against expected reachability and probabilistic
reachability properties. We show the applicability of our approach using a
few case studies and experimental results.

Keywords: Probabilistic real-time system, probabilistic Timed Automata,
Timed Markov Decision Process, Probabilistic Timed Rebeca, Model check-
ing, Performance analysis

1 Introduction

Our society more and more relies on computing systems that are distributed, consisting
of concurrently executing components which communicate asynchronously over net-
works. Modeling and analyzing such systems is a nontrivial and intricate task, owed to
their complex behavior. There is thus a need for modeling languages that match well
with computational models and are supported by tools to analyze performance and
dependability aspects of such systems.

The actor model was proposed for modeling distributed and asynchronous systems,
advocating that software systems are built by composing concurrent objects. Actors
are distributed, autonomous objects that interact by asynchronous messages. Building
on an event-driven and message-based foundation, actors provide scalability and also
less error-prone concurrent models. With the growth of cloud computing, web services,
networks of embedded computers, and multicore architectures, programming using the
actor model has become increasingly relevant.

Popular actor programming languages and frameworks include Erlang and the Scala
/ Akka family. Many projects in industry, e.g. at Google (like DART) and Microsoft (like

1 / 15 Volume 70 (2014)

Performance Analysis of Distributed and Asynchronous Systems using Probabilistic

Timed Actors

Asynchronous Agents Library), have explored the actor model. Large applications such
as Twitter’s message queuing, image processing in MS Visual Studio 2010, as well as the
Vendetta game engine have been designed on the basis of this model.

Rebeca [SM01, SMSB04] is an actor-based modeling language designed to enable for-
mal verification of actor models and hence bridge the gap between formal methods
and software engineering. Using Rebeca we can deploy a model-driven development
approach with formal basis. Rebeca is supported by formal verification tools and tech-
niques which are based on the formal semantics of the language [SJ11]. An extension of
Rebeca [ACI+11] has been proposed to provide the ability of modeling and verification
of distributed systems with real-time constraints. In this context, Floating Time Transi-
tion System (FTTS) were introduced to significantly reduce the state space generated for
model checking of Timed Rebeca (TRebeca) models [KSS+14]. Deadlock freedom and
schedulability analysis of TRebeca models can be performed using FTTS.

Since its introduction, TRebeca has been used in different areas. One example is
in analyzing different routing algorithms and scheduling policies in NoC (Network
on Chip) designs [SMMS13, SMS13]. Another example is schedulability analysis of
distributed real-time sensor network applications [MKSA13], more specifically a real-
time continuous sensing application for structural health monitoring in [LMS13]. An
ongoing project is on evaluating different dispatching policies in clouds where we have
priorities and deadlines in Mapreduce clusters, based on the work in [GCR+09]. In
analyzing all the above mentioned applications, we observed the need for modeling
probabilistic behavior. In an earlier work, pRebeca is proposed as an extension of
Rebeca to model probabilistic systems [VK12], but pRebeca does not support the time
features.

In this paper, we propose Probabilistic Timed Rebeca (PTRebeca) which benefits from
modeling features of TRebeca and pRebeca, combining the syntax of pRebeca and
TRebeca languages. This aims at enhancing our modeling ability in order to cover
more properties, by performance evaluation of probabilistic real-time actors. Although
the syntax of PTRebeca is a combination of TRebeca and pRebeca, their semantics
and supporting tools are not applicable for PTRebeca. Consequently, we propose a
semantics to support timing, probabilistic, and non-deterministic features. To the best
of our knowledge, PTRebeca is the first actor-based language which supports time,
probability, and non-determinism in modeling distributed systems with asynchronous
message passing.

We propose PTRebeca on the basis of a study of different distributed and asynchronous
applications, studied to identify what is needed for modeling and analysis of those ap-
plications, relative to different probabilistic and timed probabilistic models (discrete,
continuous, stochastic) proposed in the literature. In PTRebeca, time is discrete, and
discrete probability distributions are used. Using probabilistic and non-deterministic
assignments, the computation outcomes and network delays can become probabilis-
tic or non-deterministic. For performance evaluation of PTRebeca models we employ
probabilistic model checking, as a single computational techniques for both functional
verification and performance evaluation. The benefits of combining performance eval-
uation with functional verification is elaborated upon in [BHHK10].

Proc. AVoCS 2014 2 / 15

ECEASST

The main contributions of this paper are as follows:

• Modeling: PTRebeca supports the modeling of non-deterministic and probabilistic
behaviors which is widely required in distributed asynchronous real-time systems.

• Semantics: We propose Timed Markov Decision Process (TMDP) as semantics of
PTRebeca. TMDP can be regarded as the discrete time semantics of probabilistic
timed automata (PTA) [KNPS06].

• Analysis: We harvest probabilistic model checking algorithms developed for PTA
and MDP for the analysis of probabilistic timed properties. For the analysis, we
use PRISM [HKNP06] as a back-end model checker, so as to also support expected
reachability and probabilistic reachability analysis for PTRebeca models.

• Implementation: We present a tool developed to generate the TMDP of PTRebeca
models automatically. The generated TMDP is in the form of an XML file. The
XML file is converted to the input language of PRISM.

• Case Studies: We present a ticket servicing and a sensor network application
example to demonstrate the feasibility of the approach.

Advantages of PTRebeca in digital time semantics. In PTRebeca, time is discrete, and
when generating state space, time can be modeled using a single integer-valued variable.
The state space of a PTRebeca model is finite whenever the model represents a recurrent
behavior. Additionally, the time-shift equivalency approach [KSS+14] can be used to
bound state space when time progresses, and efficient model checking algorithms de-
veloped for untimed systems can be applied to integer-timed models [KNPS06, HH09].

Using this approach, PTRebeca models can be verified against properties specified in
PCTL [KNSS02]. The model checker PRISM supports this and two other performance
measures: expected reachability and probabilistic reachability properties [KNPS06].
This analysis trajectory can be applied to PTRebeca models because the TMDP semantics
is equivalent to a diagonal-free and closed PTA. A closed PTA does not contain strict
inequalities, a diagonal-free PTA does not compare values of different clocks, which is
assured by construction since the sematics has a single clock.

The TMDP semantics unfolds parallel composition of PTRebeca components. There
is an alternative approach for performance analysis of PTRebeca models where each
component of the PTRebeca model is converted to a PTA. The parallel composition of
PTA (of all components) represents the behavior of the PTRebeca model. This approach
is explained in [JKS], and PRISM can be used for performance analysis of the PTRebeca
model through model checking the resulting PTA. The apparent benefit of avoiding
the state space explosion often caused by interleaving parallel composition does not
manifest itself in the PTRebeca setting: in [JKS], we demonstrate that the state space
generated via the TMDP semantics is much smaller than the state space generated from
the parallel composition approach. Therefore we advocate the TMDP semantics as the
basis for our mapping to PRISM and for performance analysis of PTRebeca models.

3 / 15 Volume 70 (2014)

Performance Analysis of Distributed and Asynchronous Systems using Probabilistic

Timed Actors

2 Probabilistic Timed Rebeca

In this section, we introduce Probabilistic Timed Rebeca (PTRebeca). We first present
Rebeca [SM01, SMSB04], and then we show its extension with timing features to build
TRebeca [ACI+11]. Finally we discuss how probability and time are added to Rebeca to
build PTRebeca, enabling the modeling of probabilistic timed behaviors. The syntax of
PTRebeca is presented in Figure 1. We model a simple ticket service example to explain
the modeling features of PTRebeca.

Rebeca. Rebeca is an actor-based modelling language with formal semantics that is
supported by model checking tools. A Rebeca model consists of the definition of reactive
classes and the instantiation part which is called main. The main part defines instances
of reactive classes, called rebecs. The behavior of the instances of a reactive class is
determined by its message servers. The internal state of a reactive class is represented
by the valuation of its state variables.

In Rebeca, computation is event-driven, where messages can be seen as events. Each
rebec takes a message from its message queue and executes the corresponding message
server. Execution of a message server body takes place atomically (non-preemptively).
Communication takes place by asynchronous message passing, which is non-blocking
for both sender and receiver. The sender rebec sends a message to the receiver rebec
and continues its work. The message is put in the message queue of the receiver. The
message stays in the queue until the receiver takes and serves it. Although in theory we
define no boundary for the queue length, in the supporting tools we always have a queue
length that is defined by the user. The operational semantics of Rebeca is introduced in
[SMSB04], to which we refer for more details. The syntax of Rebeca is represented in
Figure 1.

Timed Rebeca. TRebeca was introduced as an extension of the Rebeca language to
model real-time reactive systems. Just as with Rebeca, the formal semantics of TRebeca
is defined using Structural Operational Semantics (SOS) [ACI+11]. In a TRebeca model,
each rebec has its own local time, which can be considered as synchronized distributed
clocks. Methods are executed atomically, but passing of time can be modeled while
executing a method. Instead of a message queue for each rebec, there now exists a bag
containing sent messages together with timing information, which are used to process
the message in the intended order in time. Different timing primitives are added to
Rebeca syntax to cover a variety of timing features that a modeler might need to address
in a message-based, asynchronous and distributed setting. These timing primitives are
delay, deadline and after, and detailed below. The syntax of timing primitives is shown in
Figure 1.
Delay: delay(t) increases the value of the local time of the respective rebec by the amount

of t.
Deadline: r.m() deadline(t), after t units of time the message m of rebec r is not valid any
more and is to be purged from the bag.

Proc. AVoCS 2014 4 / 15

ECEASST

ModelF Class∗ Main
MainFmain { InstanceDcl∗ }

InstanceDclF className rebecName(〈rebecName〉∗) : (〈literal〉∗);
ClassF reactiveclass className { KnownRebecs Vars MsgSrv∗ }

KnownRebecsF knownrebecs { VarDcl∗ }
VarsF statevars { VarDcl∗ }

VarDclF type 〈v〉+;
MsgSrvFmsgsrv methodName(〈type v〉∗) { Stmt∗ }

StmtF v = e; | v =?(e〈,e〉+); | Call; | i f (e) { Stmt∗ } [else { Stmt∗ }]
CallF rebecName.methodName(〈e〉∗)

(a) Abstract Syntax of Rebeca

StmtF v = e; | v =?(e〈,e〉+); | Call; | i f (e) { Stmt∗ } [else { Stmt∗ }] | delay(v);
CallF rebecName.MethodName(〈e〉∗) [after(v)] [deadline(v)]

(b) Changes in the syntax of Rebeca to build TRebeca

StmtF v = e; | v =?(e〈,e〉+); | Call; | i f (e) { Stmt∗ } [else { Stmt∗ }] | delay(v);
| v =?(ep : e〈,ep : e〉+);

(c) Changes in the syntax of TRebeca to build PTRebeca

Figure 1: (a) Abstract syntax of Rebeca. Angle brackets 〈...〉 are used as meta parenthesis, super-
script + for repetition at least once, superscript ∗ for repetition zero or more times, whereas using
〈...〉 with repetition denotes a comma separated list. Brackets [...] indicates that the text within
the brackets is optional. The symbol ? shows non-deterministic choice. Identifiers className,
rebecName, methodName, v, literal, and type denote class name, rebec name, method name, vari-
able, literal, and type, respectively; and e denotes an (arithmetic, boolean or nondetermistic
choice) expression.
(b) Changes for Timed Rebeca. The timing primitives are added to Stmt and Call statements.
The value of variable v in timing primitives is a natural number.
(c) Changes for Probabilistic Timed Rebeca. The probabilistic assignment is added to Stmt. The
expression epi denotes an expression which returns probability. The symbol ? shows either
non-deterministic assignment or probabilistic assignment.

After: r.m() after(t), the message cannot be taken from the bag before t time units have
passed.

Upon sending, a message is put in the message bag at the receiver together with its
associated time tag and deadline tag. The time tag of a message is the value of local time

5 / 15 Volume 70 (2014)

Performance Analysis of Distributed and Asynchronous Systems using Probabilistic

Timed Actors

of the sender when the message was sent, unless the message is augmented with an after
primitive. In this case the value of the argument of after is added to the value of local
time of the sender to build the time tag.

2.1 Probabilistic Timed Rebeca

PTRebeca language supports the modeling and verification of real-time systems with
probabilistic behaviors. The syntax of PTRebeca is a combination of pRebeca and
TRebeca. We propose the appropriate semantics for PTRebeca to be able to model and
verify probabilistic properties. In Figure 1, we show the extension made to the syntax
of TRebeca to build PTRebeca. In a probabilistic assignment, a value is assigned to the
variable with the specified probability. In probabilistic assignment, ep1 . . . epn are real
values between 0 and 1, and sum up to 1. Notably, by using probabilistic assignment, the
value of the timing constructs (delay, after, and deadline) can also become probabilistic.

Different probabilistic behaviors can be modeled using PTRebeca, depending on the
system under study. We present a simple ticket service system in Figure 2 to illustrate
how PTRebeca can be applied. Each entity in the system is mapped to an actor in
PTRebeca model. The ticket service model includes a customer, a ticket service, and an
agent. The customer c sends a ticket request by sending the message sendRequest() to
the agent a (line 27). The agent forwards the request to the ticket service ts by sending
the message requestTicket() (line 17). The message requestTicket() has a deadline which
is set non-deterministically (line 16). The ticket service issues a ticket and replies to the
agent request by sending the message sendTicket() (line 6). The agent sends the message
getTicket to the customer to complete the issuing process (line 20). The customer sends
a new request after 10 or 30 units of time with probabilities of 0.25 or 0.75, respectively
(lines 29-32).

1 reactiveclass
TicketService(4) {

2 knownrebecs {Agent a;}
3 TicketService () { }
4 msgsrv requestTicket() {
5 delay(3) ;
6 a.sendTicket() ;
7 }

8 }

9 reactiveclass Agent(4){
10 knownrebecs {
11 TicketService ts ;
12 Customer c;
13 }

14 Agent(){ }
15 msgsrv sendRequest() {
16 int a = ?(4,5) ;
17 ts .requestTicket()

deadline(a);
18 }

19 msgsrv sendTicket() {
20 c.getTicket () ;
21 }

22 }

23 reactiveclass Customer(4) {
24 knownrebecs {Agent a;}
25 Customer() {self . try () ;}
26 msgsrv try() {

27 a.sendRequest();
28 }

29 msgsrv getTicket() {
30 int b =

?(0.75:30,0.25:10) ;
31 self . try () after (b) ;
32 }

33 }

34 main {
35 Agent a(ts, c) :() ;
36 TicketService ts (a) :() ;
37 Customer c(a):() ;
38 }

Figure 2: The model of the ticket service system.

Proc. AVoCS 2014 6 / 15

ECEASST

3 Semantics of Probabilistic Timed Rebeca

In this section, we define the Timed Markov Decision Process (TMDP) semantics of a
PTRebeca model. Formally, a TMDP is defined as follows [JLS07].

Definition 1 (Timed Markov Decision Process) A timed Markov decision process is a
tuple of (TMDP)T = (S,s0,Act,→,L) includes the following components:

• A set of states S with an initial state s0 ∈ S,

• A set of actions Act,

• A timed probabilistic, non-deterministic transition relation→⊆S×Act×N×Dist(S)
such that, for each state s ∈ S, there exists at least one tuple (s,−,−,−) ∈→,

• A labelling function L : S→ 2AP, where AP is the set of atomic propositions. �

The transitions in a TMDP are performed in two steps: given that the current state
is s, the first step is a non-deterministic selection of (s,act,d,ν) ∈→, where act denotes
a possible action and d specifies the duration of the transition; in the second step, a
probabilistic transition to state s′ is made with probability ν(s′). Function ν ∈ Dist(S)
denotes a discrete probability distribution.

In the following, we define some concepts for PTRebeca models before turning to the
TMDP semantics of PTRebeca.

Definition 2 (Probabilistic Timed Rebeca Model) A Probabilistic Timed Rebeca model
M is the set of rebecs which are concurrently executing. �

A computation of Probabilistic Timed Rebeca model M takes place by execution of
all rebecs defined in the model according to the SOS-semantics in [ACI+11]. For a
Probabilistic Timed Rebeca modelM, the function O(M) returns all rebecs in the model
M.

Definition 3 (State of a PTRebeca model in TMDP) A state of a PTRebeca modelM is
a tuple s =

(∏
ri∈O(M)

(
state(ri)×pc× rt

))
×T, where state(ri) is the state of rebec ri, T ∈N

is the current time of state, pc ∈N is the program counter of rebec ri, and rt ∈N is the
resuming time of rebec ri. �

Each rebec ofM has a state which consists of the values of its state variables, its local
time, and its message bag. Functions sv(s,ri), bag(s,ri), and now(s,ri) return the state
variable valuation function, the content of message bag, and the local time of rebec ri in
state s, respectively. In TMDP semantics of a PTRebeca model, the local times of rebecs
have the same value. We define function now(s) to access the time in state s.

The rebec program counter, pc of rebec ri specifies the statement to be executed, and
function pc(s,ri) returns the value of program counter of rebec ri in state s. The rebec
resuming time, rt of rebec ri determines the time when the statement of the message

7 / 15 Volume 70 (2014)

Performance Analysis of Distributed and Asynchronous Systems using Probabilistic

Timed Actors

server of rebec ri, pointed to by pc, is executed. Function rt(s,ri) returns the value of
resuming time of rebec ri in state s.

In the initial state, the local time of all rebecs are set to zero, and the constructor of
all rebecs are executed to initialize state variables and queues content. Initially, for all
rebecs the value of program counter and the value of resuming time are supposed to be
null.

Definition 4 (The Content of a Message Bag) A tuple tmsg = (msgsig,arrival, deadline)
is a message where msgsig is the message content, arrival is the arrival time of the
message, and deadline is the deadline of the message. The arrival time of the message is
computed based on the local time of the sender and the value of “after” of send message
statement. The deadline of the message is also computed based on the local time of the
sender. �

For tmsg ∈ bag(s,ri), the functions sig(tmsg), ar(tmsg), and dl(tmsg) return the msgsig,
arrival, and deadline of the message tmsg, respectively. The message content msgsig
consists of the message name, the sender, the receiver, and its actual parameters and is
shown as “sender→ receiver.msgname(parameters)”.

Definition 5 (Possible Messages) The set of messages Tmsg = {tmsg | ∀ri,r j ∈O(M),∀ar,dl∈
N, tmsg = (ri→ r j.msgname(),ar,dl)} is the set of all possible messages which can be sent
by any rebec ri to another rebec r j at any arrival time ar and deadline dl. �

Definition 6 (Rebec Enabled Messages) Enabled messages of a rebec are messages whose
arrival time is less than the time of state s: em(s,ri) = {tmsg ∈ bag(s,ri)| ar(tmsg)≤ now(s)}.
�

Definition 7 (TMDP semantics of a PTRebeca model) A TMDP of PTRebeca modelM
is a tuple (S,s0,Act,→,L), where:

– S is the set of states according to Definition 3,

– s0 ∈ S is the initial state,

– Act is a set of Tmsg∪{τ}∪T, where Tmsg is the set of all possible messages which
can be sent by any rebec to its known rebecs, τ is an internal action and T ∈N is
the progress of time.

– →⊆ S×Act×N×Dist(S) is the transition relation, where (s,act,d,ν) ∈→ if and only
if one of the following conditions hold for s.

1. (Taking a message for execution) If in state s, there exists ri ∈ O(M) such
that pc(s,ri) = null and em(s,ri) , ∅: The execution of tmsg ∈ em(s,ri) results in
s′ with probability ν(s′) = 1 and d=0. In this case act is equal to tmsg, tmsg
is extracted from the message bag of the rebec ri, pc(s,ri) is set to the first
statement of message server tmsg, and rt(s,ri) is set to now(s).

Proc. AVoCS 2014 8 / 15

ECEASST

2. (Internal action τ) If in state s, there exists ri ∈ O(M) such that pc(s,ri) , null
and rt(s,ri) = now(s): The statement of message server of ri specified by pc(s,ri)
is executed and one of the following cases may occur based on the statement
execution:
(a) The statement is an ordinary statement: the execution of statement may

change the value of some state variables of the rebec ri or induce sending
a message to a rebec. Then, pc(s,ri) is increased by one, the act is τ, d=0,
and the execution of τ results in s′ with probability ν(s′) = 1.

(b) The statement is a non-deterministic assignment: the execution of non-
deterministic assignment a =?(v1, ...,vn) results in n different transitions
from s to states s′1,s

′

2, ...,s
′
n, where a = vi in state s′i . For each transition, the

act is τ, d=0, and the execution of τ results in s′i (1≤ i≤ n) with probability
ν(s′i) = 1.

(c) The statement is a probabilistic assignment: the execution of probabilistic
assignment a =?(p1 : v1, ...,pn : vn) results in a transition from s to states
s′1,s

′

2, ...,s
′
n, where a = vi in state s′i . The act is τ, d=0, and the execution of

τ results in s′i (1 ≤ i ≤ n) with probability ν(s′i) = pi.
(d) The statement is a delay statement with parameter t ∈N: the execution

of the delay statement does not change pc(s,ri) (because the execution of
delay statement is not yet complete), and rt(s,ri) is set to now(s)+ t. (Note:
the value of pc(s,ri) will change to the next statement after completing
the execution of the delay which can be seen in item 3.) The act is τ, d=0,
and the execution of τ results in s′ with probability ν(s′) = 1.

When the last statement of the message server of ri is executed, the pc(s,ri) is
set to null.

3. (Progress of time) If in state s, none of the aforementioned conditions in items
1 and 2 hold: this means @ri ∈ O(M), ((pc(s,ri) = null∧ em(s,ri) , ∅)∨ (pc(s,ri) ,
null ∧ rt(s,ri) = now(s))). In this case, now(s) is increased by the minimum
amount of t1 ∈N such that one of the aforementioned conditions becomes
true. If pc(s,ri) , null and rt(s,ri) = now(s) (the current value of pc(s,ri) points
at a delay statement), pc(s,ri) is increased by one. The act is set to time, d = t1,
and the execution of action time results in s′ with probability ν(s′) = 1.

– A labelling function L : S→ 2AP.

When more than one transition is enabled in state s, a non-deterministic selection is
made. �

4 Analysis of Probabilistic Timed Rebeca and Experimental Re-
sults

We have developed a tool set [Reb] in order to generate the TMDP semantics from PTRe-
beca models. This TMDP semantics can be exported to PRISM as a single MDP module

9 / 15 Volume 70 (2014)

Performance Analysis of Distributed and Asynchronous Systems using Probabilistic

Timed Actors

with one integer-valued variable modeling the passage of time. In [JKS], we show
the PRISM code generated for the ticket service example presented in Figure 2. Using
a dedicated time action and the ability of assigning rewards to transitions in PRISM,
we can analyze expected-time reachability and time-bounded probabilistic reachability
properties.

In PTRebeca models, the capacity of message bags is bounded. The number of states in
PTRebeca model can be finitely represented when the system shows recurrent behavior.
We also use the time-shift equivalence approach proposed in [KSS+14] to avoid state
space explosion otherwise induced by time progress. In this approach, two TMDP
states s and t (in the sense of Definition 3) are time-shift equivalent if the values of all
variables except timing variables, i.e. local time, arrival time, deadline, in states s and t
are identical. Therefore, the two states can be identified by shifting time.

The PRISM modeling language is a state-based language while PTRebeca language
benefits from high-level data structures and constructs which arguably makes model-
ing easier. PRISM models are thus closer to the underlying probabilistic models and
therefore we bridge to PRISM on the semantics level.

4.1 Experimental Results

In this section, we present an example demonstrating the applicability of the proposed
approach for performance analysis of asynchronous systems. We also examine different
versions of the ticket service model shown in Figure 2, which is detailed in [JKS].

Sensor Network. The sensor network model is shown in [JKS]. There is a lab envi-
ronment in which the toxic level changes periodically after an amount of time, specified
by the value of variable changingPeriod. The environment is safe at first. The toxic
level is changed to a dangerous level with a probability of 0.02. If the toxic level of the
environment reaches a dangerous level, the scientist, working inside the lab, will die
after a specified amount of time, specified by the value of variable scientistDeadline. One
sensor in the lab environment is measuring the toxic level of the lab. The measured
information is sent periodically by the sensor to the administrator. A sensor may fail to
report the measurement to the administrator with a probability of 0.01. If the toxic level
reported by the sensor reaches a predefined dangerous level, the administrator sends a
message to the scientist, who is assumed to be working in the environment, to inform
him to leave the lab and go to a safe place. The administrator waits for a while for an
acknowledgement from the scientist. If the acknowledgement is not received by the
admin on time, the admin orders a rescue team to get hold of the scientist.

In this model the value of probabilities are small enough to let the model converge
to the optimum value; and consequently show the real behavior. Since the model
includes non-deterministic behaviors, the model checker computes the maximum and
the minimum probabilities over all paths in the generated state space.

Figure 3(a) shows the maximum and the minimum probabilities of the scientist death
when the value of variable checkingPeriod changes. If the sensor checks the environment
with a high frequency, i.e. the value of variable checkingPeriod is low, the probability

Proc. AVoCS 2014 10 / 15

ECEASST

sensorFreq Pmax Pmin sensorFreq Pmax Pmin
1 0.006519 0.005525 1 0.7259 0.7232

2 0.5675 0.5654
3 0.4668 0.4651
4 0.54 0.3957

2 0.003983 0.003547 adminCheck =1 5 1 0.3422
6 0.6378 0.4162
7 0.6833 0.4787
8 0.7096 0.5293
9 0.7434 0.5711

5 10 1 0.6096
12 0.7934 0.662
14 0.8231 0.7041

killAfter=10 15 1 0.724
16 0.8308 0.7374
17 0.847 0.7513
18 0.8505 0.7639
20 1 0.7876
22 0.8788 0.804
25 1 0.828

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5 6

Pmax

Pmin

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5 6
0

0.2

0.4

0 2 4 6 8 10 12 14 16 18 20 22 24

Pr
ob

ab
ili

ty

Period in which the Sensor checks the environment

Pmax Pmin

(a) The value of variable scientistDeadline is 10.

sensorFreq pmax Pmin
1 0.7259 0.7232
3 0.4668 0.4651
5 0.3488 0.3422
7 0.2763 0.2753
10 0.6016 0.2112
12 0.4501 0.3172
15 0.7184 0.4424
17 0.5944 0.4975
20 0.7832 0.5708
22 0.6798 0.6041
25 0.8245 0.6525

killAfter=12

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Pr
ob

ab
ili

ty

Period in which the Sensor checks the environment

pmax Pmin

Period in which the Sensor checks the environment

pmax Pmin

(b) The value of variable scientistDeadline is 12.

Figure 3: The maximum and minimum probabilities that the scientist eventually dies, when the
sensor frequency changes.

of sensor failure will increase, resulting in high probability of the scientist death. For
example, when the sensor checks the environment once every units of time, the envi-
ronment is checked five times before the first change in the environment. Therefore,
the cost of the sensor use and consequently the probability of sensor failure increases.
When the sensor frequency is low, the environment changes cannot be detected on time;
resulting in a high probability of the scientist death. There is an optimum value for the
variable checkingPeriod, i.e. sensor frequency, which is five according to the obtained
results reported in Figure 3(a).

As the results show, at times 5, 10, 15, 20, and 25, the maximum probability of the
scientist death equals one. At these times because of concurrency between time related
behaviors in the system, there is a scenario in which the dangerous level is reported
too late to the administrator and the scientist will die. At these times, the execution
sequence of the following messages is important and causes the special behavior: (1)
checking the sensor value by the administrator (it is repeated periodically after 5 units
of time), (2) changing the toxic level of the environment to a dangerous level (period
is 5 units of time), (3) checking the environment by the sensor (Figure 3(a) shows the
probability of the scientist death for different value of this period), and (4) sending a
message die to the scientist (after 10 units of time) when the environment is dangerous.

This experiment shows that the exceptional timing behavior can be revealed by prob-
abilistic performance evaluation. It is not possible to find this special behavior by the
tools and techniques developed for TRebeca language at this moment.

In Figure 3(b), the value of variable scientistDeadline equals 12; the scientist has more
time to be saved before being killed by the toxic environment. The maximum probability
of the scientist death is not equal to one at times 5, 10, 15, 20, and 25, but because of
concurrency between time related behaviors, there is a scenario in which the dangerous
level is reported too late and consequently the maximum probability of the scientist
death increases. There is an optimum value for the variable checkingPeriod, i.e. sensor
frequency, which is ten in this experiment.

11 / 15 Volume 70 (2014)

Performance Analysis of Distributed and Asynchronous Systems using Probabilistic

Timed Actors

5 Related Work

PRISM. PRISM is a well-established and powerful model checker with a state-based
input language. An input model of PRISM is composed of a number of modules which
can share variables and interact with each other. PRISM is well equipped with theories
and reduction techniques [HKNP06], but lacks high-level programming constructs like
loops, and primary data structures like arrays, which makes modeling hard.

In contrast, PTRebeca provides high-level object-based programming features and
asynchronous message passing, which makes modeling easier. So, in modeling we
benefit from capabilities of PTRebeca, and in analysis we use the capabilities of the
PRISM model checker.

Modest. Modest [HHHK13] is a high-level and convenient language for describing
stochastic timed and hybrid systems. It supports loop constructs, structs and arrays,
exception handling, and other advanced programming constructs. For the probabilistic
timed fragment of Modest, model checking can be performed using a digital time
semantics [HH09] or by a direct mapping to timed automata. Both approaches use
PRISM as a backend model checker.

In contrast to Modest, PTRebeca supports object-based programming features, and
follows the asynchronous message passing paradigm of actors, while Modest relies
on synchronous message passing. Otherwise, the spirit, especially with respect to the
analysis via PRISM, is similar.

ProbMela. ProbMela is a probabilistic version of Promela [Hol97]. The operational
semantics of ProbMela is defined as an MDP [BCG04]. In [CB06], ProbMela is used
as input language for the MDP model checker LiQuor which provides qualitative and
quantitative analysis of LTL properties. There is also a mapping from ProbMela to the
PRISM language, which makes probabilistic analysis possible [CBGP08].

PTRebeca is an event-driven and actor-based language whereas ProbMela is process-
based. Both languages are asynchonous in spirit. We proposed a semantics of PTRebeca
as TMDP (or PTA with digital clocks), enabling the analysis of timing and probabilistic
behaviors of asynchronous systems.

PMaude. PMaude extends standard rewriting theories of Maude with probability
[AMS06]. There is an actor extension of probabilistic rewriting theories for PMaude
which removes non-determinism. A statistical technique is provided to analyze quanti-
tative aspects of systems using discrete-event simulation. In comparison with PMaude,
modeling asynchronous systems is more straightforward in PTRebeca language as it
is an actor-based language. Also PTRebeca supports non-determinism in the model
and there is no need to resolve it by assuming distribution on different choices of
non-determinism. It is because of the probabilistic model checking facilities which are
provided by PRISM.

Proc. AVoCS 2014 12 / 15

ECEASST

Summary. In PMaude, probability distribution functions (rates and stochastic func-
tions) are provided for modeling probabilistic behaviors. Also, PMaude implements
stochastic continuous-time. In ProbMela, probabilities are drawn from discrete proba-
bility distributions, and passage of time can be modeled using a timer process. Modest
enables a direct high-level modelling of PTA and more complex models. In all afore-
mentioned languages, non-deterministic behavior can be modeled. In analysis, PMaude
resolves non-determinism, and uses statistical model checking to verify properties which
results in inaccurate results. In the analysis of ProbMela and Modest, non-determinism
is not resolved. Modest also provides the option of a digital clock semantics, which, just
like we do here, is handed over to PRISM for model checking.

Our focus in designing PTRebeca has been on ease of modeling and efficiency of anal-
ysis mainly for asynchronous applications. To this end, we use discrete time model and
discrete probability distributions. These decisions showed to be effective in modeling
different applications that we have targeted. Moreover, resolving non-determinism by
a discrete probability distribution generates inaccurate estimations, so, we avoided that
by choosing TMDP as the semantics of PTRebeca. We were able to formalize the advance
of time in our model using a single integer-valued variable. The language design of
PTRebeca and its analysis approach is closest to the Modest approach, apart from the
latter not being object-oriented and not being asynchronous by design.

6 Conclusion

In this paper we introduced the syntax and semantics of Probabilistic Timed Rebeca
(PTRebeca) for modeling and verification of probabilistic real-time actor systems. As
the model of time in PTRebeca is discrete, we decided to use discrete-time TMDP with
an integer-valued time variable for the semantics of PTRebeca. PTRebeca models can
thus be analyzed against PCTL, expected reachability, and probabilistic reachability
properties. Our proposed approach is implemented as a part of Afra toolset [Reb].
PRISM is used as a back-end model checker for analyzing PTRebeca models. This is
similar to the approach put forward for Modest, and we are therefore considering a
direct connection between PTRebeca and Modest.

In addition to the benefits of using TMDP semantics for analysis of PTRebeca models,
our technique is based on the actor model of computation where the interaction is solely
based on asynchronous message passing between the components. Hence, the proposed
semantics is general enough to be applied to similar computation models where there
is message-driven communication and autonomous objects as units of concurrency, and
there exists discrete probabilistic behaviors in the model such as agent-based systems.

Acknowledgement

The work on this paper was supported by the project “Timed Asynchronous Reactive
Objects in Distributed Systems: TARO” (nr. 110020021) of the Icelandic Research Fund.

13 / 15 Volume 70 (2014)

Performance Analysis of Distributed and Asynchronous Systems using Probabilistic

Timed Actors

Bibliography

[ACI+11] L. Aceto, M. Cimini, A. Ingólfsdóttir, A. H. Reynisson, S. H. Sigurdarson,
M. Sirjani. Modelling and Simulation of Asynchronous Real-Time Systems
using Timed Rebeca. In FOCLASA’11. Pp. 1–19. 2011.

[AMS06] G. Agha, J. Meseguer, K. Sen. PMaude: Rewrite-based Specification Lan-
guage for Probabilistic Object Systems. Electronic Notes in Theoretical Com-
puter Science (ENTCS) 153(2):213–239, May 2006.

[BCG04] C. Baier, F. Ciesinski, M. Groesser. PROBMELA: a modeling language for
communicating probabilistic processes. 2004.

[BHHK10] C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen. Performance eval-
uation and model checking join forces. Commun. ACM 53(9):76–85, Sept.
2010.

[CB06] F. Ciesinski, C. Baier. LiQuor: A tool for Qualitative and Quantitative Linear
Time analysis of Reactive Systems. In Proc. 3rd International Conference on
Quantitative Evaluation of Systems (QEST’06). Pp. 131–132. IEEE CS Press,
2006.

[CBGP08] F. Ciesinski, C. Baier, M. Groesser, D. Parker. Generating Compact MTBDD-
Representations from Probmela Specifications. In Proceedings of the 15th in-
ternational workshop on Model Checking Software. SPIN ’08, pp. 60–76. 2008.

[GCR+09] I. Gupta, B. Cho, M. R. Rahman, T. Chajed, C. L. Abad, N. Roberts, P. Lin.
Natjam: Eviction Policies For Supporting Priorities and Deadlines in Mapre-
duce Clusters. 2009.

[HH09] A. Hartmanns, H. Hermanns. A Modest Approach to Checking Probabilistic
Timed Automata. In QEST. Pp. 187–196. IEEE Computer Society, 2009.

[HHHK13] E. M. Hahn, A. Hartmanns, H. Hermanns, J.-P. Katoen. A compositional
modelling and analysis framework for stochastic hybrid systems. Formal
Methods in System Design 43(2):191–232, 2013.

[HKNP06] A. Hinton, M. Z. Kwiatkowska, G. Norman, D. Parker. PRISM: A Tool for
Automatic Verification of Probabilistic Systems. In Proceedings of 12th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’06). Lecture Notes in Computer Science, pp. 441–444.
Springer-Verlag, 2006.

[Hol97] G. J. Holzmann. The Model Checker SPIN. Software Engineering 23(5):279–
295, 1997.

[JKS] A. Jafari, E. Khamespanah, M. Sirjani. Performance Analysis of Distributed
and Asynchronous Systems using Probabilistic Timed Actors (technical re-
port). http://rebeca.cs.ru.is/files/Documents/PTR2PTA.pdf.

Proc. AVoCS 2014 14 / 15

ECEASST

[JLS07] M. Jurdziński, F. Laroussinie, J. Sproston. Model checking probabilistic
timed automata with one or two clocks. In Proceedings of the 13th inter-
national conference on Tools and algorithms for the construction and analysis of
systems. TACAS’07, pp. 170–184. 2007.

[KNPS06] M. Kwiatkowska, G. Norman, D. Parker, J. Sproston. Performance Analysis
of Probabilistic Timed Automata using Digital Clocks. Formal Methods in
System Design 29:33–78, 2006.

[KNSS02] M. Kwiatkowska, G. Norman, R. Segala, J. Sproston. Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput.
Sci. 282(1):101–150, June 2002.

[KSS+14] E. Khamespanah, Z. Sabahi Kaviani, M. Sirjani, R. Khosravi, M.-J. Izadi.
Timed Rebeca Schedulability and Deadlock Freedom Analysis Using
Bounded Floating-Time Transition System. In Journal of Science of Computer
Programming. 2014.

[LMS13] L. Linderman, K. Mechitov, B. F. Spencer. TinyOS-based Real-Time Wireless
Data Acquisition Framework for Structural Health Monitoring and Control.
Structural Control and Health Monitoring 20(6):10071020, June 2013.

[MKSA13] K. A. Mechitov, E. Khamespanah, M. Sirjani, G. Agha. A Model Check-
ing Approach for Schedulability Analysis of Distributed Real-Time Sensor
Network Applications. In Submitted for Publication. 2013.

[Reb] Rebeca. Rebeca Homepage. http://www.rebeca-lang.org.

[SJ11] M. Sirjani, M. M. Jaghoori. Ten Years of Analyzing Actors: Rebeca Experi-
ence. In Formal Modeling: Actors, Open Systems, Biological Systems. Pp. 20–56.
2011.

[SM01] M. Sirjani, A. Movaghar. An Actor-Based Model for Formal Modelling of
Reactive Systems: Rebeca. Technical report CS-TR-80-01, Tehran, Iran, 2001.

[SMMS13] Z. Sharifi, M. Mosaffa, S. Mohammadi, M. Sirjani. Functional and Perfor-
mance Analysis of Network-on-Chips Using Actor-based Modeling and
Formal Verification. In proceedings of AVOCS’13. 2013.

[SMS13] Z. Sharifi, S. Mohammadi, M. Sirjani. Comparison of NoC Routing Algo-
rithms Using Formal Methods. In proceedings of PDPTA’13. 2013.

[SMSB04] M. Sirjani, A. Movaghar, A. Shali, F. de Boer. Modeling and Verification of
Reactive Systems using Rebeca. Fundamenta Informatica 63(4):385–410, Dec.
2004.

[VK12] M. Varshosaz, R. Khosravi. Modeling and verification of probabilistic actor
systems using prebeca. In Proceedings of the 14th international conference on
Formal Engineering Methods. ICFEM’12, pp. 135–150. 2012.

15 / 15 Volume 70 (2014)

	Introduction
	Probabilistic Timed Rebeca
	Probabilistic Timed Rebeca

	Semantics of Probabilistic Timed Rebeca
	Analysis of Probabilistic Timed Rebeca and Experimental Results
	Experimental Results

	Related Work
	Conclusion

