
Science of Computer Programming 98 (2015) 184–204

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Timed Rebeca schedulability and deadlock freedom analysis

using bounded floating time transition system

Ehsan Khamespanah a,∗, Marjan Sirjani b,∗∗, Zeynab Sabahi Kaviani a,
Ramtin Khosravi a,∗∗, Mohammad-Javad Izadi a

a School of Electrical and Computer Engineering, University of Tehran, Islamic Republic of Iran
b School of Computer Science, Reykjavik University, Iceland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 March 2013
Received in revised form 1 July 2014
Accepted 8 July 2014
Available online 25 July 2014

Keywords:
Actor model
Timed Rebeca
Verification
Realtime systems
Schedulability and deadlock freedom

Timed Rebeca is an extension of the actor-based modeling language Rebeca that supports
timing features. Rebeca is purely actor-based with no shared variables and asynchronous
message passing with no explicit receive. Both computation time and network delays can
be modeled in Timed Rebeca. In this paper, we propose a new approach for checking
schedulability and deadlock freedom of Timed Rebeca models. The key features of Timed
Rebeca, asynchrony of actors and absence of shared variables, and the focus on events
instead of states in the selected properties, led us to a significant reduction in the state
space. In the proposed method, there is no unique time value for each state, instead of that
we store the local time of each actor separately. We prove the bisimilarity of the generated
transition system, called floating time transition system, and the state space generated from
the original semantics of Timed Rebeca. In addition, to avoid state space explosion because
of time progress, we define a type of equivalency among states called shift equivalency.
The shift equivalence relation between states can be used for Timed Rebeca as the timing
features are based on relative values. We developed a tool, and the experimental results
show that our approach mitigates the state space explosion problem of the former methods
and allows model checking of larger systems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A well-established paradigm for modeling concurrent and distributed systems is the actor model. Actor model was orig-
inally introduced by Hewitt [21] as an agent-based language and later developed by Agha [5] as a mathematical model of
concurrent computation. Actors are seen as the universal primitives of concurrent computation [5]. Each actor provides a
certain number of services which can be requested by other actors by sending messages to the provider. Messages are put
in the message buffer of the receiver, the receiver takes the message and executes the requested service, possibly sending
messages to some other actors. There are some extensions on the actor model such as RT-synchronizer [48] and Timed
Rebeca [4] for modeling timed systems.

* Principal corresponding author.

** Corresponding authors.
E-mail addresses: e.khamespanah@ut.ac.ir (E. Khamespanah), marjan@ru.is (M. Sirjani), z.sabahi@ece.ut.ac.ir (Z. Sabahi Kaviani), r.khosravi@ut.ac.ir

(R. Khosravi), m.j.izadi@ece.ut.ac.ir (M.-J. Izadi).

http://dx.doi.org/10.1016/j.scico.2014.07.005
0167-6423/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2014.07.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:e.khamespanah@ut.ac.ir
mailto:marjan@ru.is
mailto:z.sabahi@ece.ut.ac.ir
mailto:r.khosravi@ut.ac.ir
mailto:m.j.izadi@ece.ut.ac.ir
http://dx.doi.org/10.1016/j.scico.2014.07.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2014.07.005&domain=pdf

E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204 185

Timed Rebeca [4] is proposed as an extension of Reactive Objects Language, Rebeca [55]. Rebeca, is an operational inter-
pretation of the actor model with formal semantics, supported by model checking tools [54]. Rebeca is designed to bridge
the gap between formal methods and software engineering. The formal semantics of Rebeca is a solid basis for its formal
verification. Compositional and modular verification, abstraction, symmetry and partial-order reduction have been investi-
gated for verifying Rebeca models. The theory underlying these verification methods is already established and is embodied
in verification tools [54,27,51,53]. With its simple, message-driven and object-based computational model, Java-like syntax,
and a set of verification tools, Rebeca is an interesting and easy-to-learn model for practitioners [47]. In Timed Rebeca,
timing primitives are added to Rebeca to address computation time, message delivery time, message expiration, and period of
occurrence of events [4].

The advantage of Timed Rebeca from modeling point of view is its intuitive and easy-to-use syntax and the actor-based
paradigm of modeling. Comparing to other timed modeling languages like TCCS [56], Real-Time Maude [43], and Timed Au-
tomata [7], instead of using process algebra, rewriting logic, and automata (respectively), here you are using an actor-based
language and there is no need for any knowledge of formal methods. A comprehensive comparison is given in [4] and [49].

In this work, our focus is on the analysis of Timed Rebeca, and how the key features of actors and event-based properties
led us to a significant amount of state space reduction. We introduce the notion of floating time transition system (FTTS) for
model checking Timed Rebeca. Floating time transition system is built based on the states of concurrent reactive objects,
called rebecs (in this paper we use the words rebec and actor interchangeably). States in floating time transition system
contain the local times of each rebec, in addition to values of their state variables and the bag of their received messages.
The local times of each rebec in a state can be different from other rebecs, and there is no unique value for time in each
state. This is only admissible where we are not interested in the state of all the rebecs/actors at a specific point of time and
instead of the synchronized states the order of events matter.

The key features of actors that lead us to this technique are having no shared variables, no blocking send or receive,
single-threaded actors, and atomica execution (non-preemptive execution) of each message server which give us an isolated
message server execution. This means that execution of a message server of a rebec will not interfere with execution of a
message server of another rebec. For an actor model and its asynchronous message passing, the property language needs
to be able to reason about the timing and occurrence of the messages more than the values of some variables inside the
actors. This leads us towards event-based properties where an event occurs each time a message is received and served by
an actor, rather than a property on state propositions. Timed properties are usually one of the following: the minimum,
maximum, or exact distance between two events (where the second one can be a reaction or response to the first one),
periodicity of an event, and occurrence of an event before another event. Time-out or deadline-miss is an example of an
event-based property which happens by exceeding the desired distance between two events.

Generally, model checking and simulation tools for timed models, like Real-Time Maude [46], TLC [32], and McErlang [18],
generate a timed transition system (TTS). In these timed transition systems the current time of the model is represented as
the value of a state variable, called now (or clock). The passage of time is modeled by increasing the value of now [9]. In
contrast, in floating time transition system of Timed Rebeca there is a now variable for each rebec instead of a single now
for the system.

Most of the TTS-based model checking tools use “maximum time elapse” strategy [42] and only encounter the significant
events as transitions, but they keep the states of different components (processes, modules) in sync. By relaxing this syn-
chronization constraint, which seems unnecessary in the actor world, we gain a significant amount of state space reduction
(see Section 6). Note that in a Timed Rebeca model we consider the notion of synchronized local clocks for the rebecs of
the system which is similar to the notion of global time in other timed models. The novelty of our approach is building the
state space as floating time transition system where in each state the local time of rebecs can be shuffled while the order
of events is preserved.

The standard timed temporal logics like TCTL [6] and MTL [29] (an extension of LTL, adding optional real-time con-
straints to the temporal operators) can be used as property languages when the state space is presented as a TTS. However,
in reactive and distributed systems we mostly care about events. Therefore, although the states of FTTS represent values
of variables of each rebecs where the current time may be different for each rebec TCTL and MTL model checking become
limited, event based verification can be done using FTTS. In this work, we check schedulability (deadline-missed) and dead-
lock freedom of Timed Rebeca using FTTS. A Timed Rebeca model is schedulable if none of the rebecs miss any deadline
[25,24], so, the tool reports a failure at the first occurrence of deadline-miss for any rebec. Deadline-miss is checked per
rebec and for that we do not need to have a unique value of time for all the rebecs. Deadlock happens when there is
absolutely no message for any of the rebecs to handle, where again there is no need for a unique value of time in each
state.

Progress of time in floating time transition system results in unbounded number of states. Hence, we introduce bounded
floating time transition system. In bounded floating time transition system, a new kind of equivalency between states, called
shift equivalence relation, is used to bound the number of generated states. This approach is similar to time-translation
symmetry relation of Lamport for TLC [33]; however, instead of a state variable now in the model, we have several now
variables with different values, one per each rebec. We prove that there is a bisimulation relation between the bounded
floating time transition relation and the floating time transition relation.

186 E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204

Model ::= Class∗ Main

Main ::= main { InstanceDcl∗ }

InstanceDcl ::= className rebecName(⟨rebecName⟩∗) : (⟨literal⟩∗);

Class ::= reactiveclass className { KnownRebecs Vars MsgSrv∗ }

KnownRebecs ::= knownrebecs { VarDcl∗ }

Vars ::= statevars { VarDcl∗ }

VarDcl ::= type ⟨v⟩+;

MsgSrv ::= msgsrv methodName(⟨type v⟩∗) { Stmt∗ }

Stmt ::= v = e; | v =?(e, ⟨e⟩+); | Call; | if (e) { Stmt∗ } [else { Stmt∗ }] | delay(t);

Call ::= rebecName.MethodName(⟨e⟩∗) [after(t)] [deadline(t)]

Fig. 1. Abstract syntax of Rebeca (a slightly revised version of the syntax presented in [4]). Angle brackets ⟨...⟩ are used as meta parenthesis, superscript +
for repetition at least once, superscript ∗ for repetition zero or more times, whereas using ⟨...⟩ with repetition denotes a comma separated list. Brackets
[...] indicates that the text within the brackets is optional. The symbol ? shows non-deterministic choice. Identifiers className, rebecName, methodName,
v , literal, delay, and type denote class name, rebec name, method name, variable, integer number, delay method, and type, respectively; and e denotes an
(arithmetic, boolean or nondeterministic choice) expression. The parameter t is an expression with natural number result.

Contribution. The contributions of this paper can be summarized as follows:

– Introducing the notion of floating time transition system as a basis for state space generation and tool development for
Timed Rebeca models where the focus is on the order of events and the value of current time for each actor in a state
may differ from other actors.

– Introducing a time-shift equivalency relation to obtain bounded floating time transition system and proving the bisimi-
larity of the bounded floating time transition system and the floating time transition system.

– Implementing a tool for schedulability and deadlock-freedom analysis based on the proposed techniques and providing
experimental results which very well illustrate the efficiency of our technique by means of a number of case studies.

This paper is a revised and extended version of [28]. Here, we reorganized and rewrote all the formal definitions and
proofs. We added more case studies to the section on experimental results, we also added a comparison to the results of a
newly developed tool for model checking Timed Rebeca using McErlang [30]. More extensive related work and a section on
comparison between Timed Rebeca and timed automata are added to this paper.

Roadmap. The rest of this paper is structured as follows. The next section is on background knowledge, Rebeca, Timed
Rebeca, and the operational semantics of Timed Rebeca. Section 3 gives the definition of floating time transition system
based on the SOS semantics of Timed Rebeca in [4]. Section 4 defines bounded floating time transition system and provides
the proof of bisimulation relation between bounded floating time transition system and floating time transition system. In
Section 5 we explain the schedulability and deadlock freedom analysis of Timed Rebeca and the implementation issues of
state space generation algorithm. Section 6 presents the experimental results. Comparison between Timed Rebeca and timed
automata and related work are in Section 8 and Section 7 respectively. The concluding remarks are presented in Section 9.

2. Background

Here we give a brief overview of syntax and semantics of Rebeca, the extension which builds Timed Rebeca, and the
semantics of Timed Rebeca given as SOS rules.

Rebeca. Rebeca [55,54] is an actor-based language for modeling concurrent and reactive systems with asynchronous
message passing. The Rebeca model is similar to the actor model as it has reactive objects with no shared variables, asyn-
chronous message passing with no blocking send and no explicit receive, and unbounded buffers for messages. Objects
in Rebeca are reactive, self-contained, and each of them is called a rebec (reactive object). Communication takes place by
message passing among rebecs. Each rebec has an unbounded buffer, called message queue, for its arriving messages. Com-
putation is event-driven, meaning that each rebec takes a message that can be considered as an event from the top of its
message queue and execute the corresponding message server (also called a method). The execution of a message server is
atomic execution (non-preemptive execution) of its body that is not interleaved with any other method execution.

A Rebeca model consists of a set of reactive classes and the main block (for the syntax of (Timed) Rebeca see Fig. 1
and for an example see Fig. 2). In the main block the rebecs which are instances of the reactive classes are declared. The
body of the reactive class includes the declaration for its known rebecs, state variables, and message servers. The rebecs
instantiated from a reactive class can only send messages to the known rebecs of that reactive class. Message servers consist
of the declaration of local variables and the body of the message server. The statements in the body can be assignments,
conditional statements, enumerated loops, non-deterministic assignment, and method calls. Method calls are sending asyn-

E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204 187

Fig. 2. The model of ticket service system.

chronous messages to other rebecs (or to self). A reactive class has an argument of type integer denoting the maximum size
of its message queue. Although message queues are unbounded in the semantics of Rebeca, to avoid state space explosion
in model checking we need a user-specified upper bound for the queue size. The operational semantics of Rebeca has been
introduced in [55] in more details. In comparison with the standard actor model, dynamic creation and dynamic topology
are not supported by Rebeca. Also, actors in Rebeca are single-threaded.

We illustrate Rebeca language with an example. Fig. 2 shows the Rebeca model of a ticket service system (ignore the
time primitives delay, after, and deadline for now). The model consists of three reactive classes: TicketService, Agent, and
Customer. Customer sends the requestTicket message to Agent and Agent forwards the message to TicketService. TicketService
replies to Agent by sending a ticketIssued message and Agent responds to Customer by sending the issued ticket.

Timed Rebeca. Timed Rebeca is an extension on Rebeca with time features for modeling and verification of time-critical
systems. These primitives are added to Rebeca to address computation time, message delivery time, message expiration, and
period of occurrence of events. In a Timed Rebeca model, each rebec has its own local clock. The local clocks evolves uniformly.
Methods are still executed atomically, however passing of time while executing a method can be modeled. In addition,
instead of queue for messages, there is a bag of messages for each rebec.

The timing primitives that are added to the syntax of Rebeca are delay, deadline and after. The delay statement models
the passing of time for a rebec during execution of a message server. The keywords after and deadline can only be used in
conjunction with a method call. The value of the argument of after shows how long it takes for the message to be delivered
to its receiver. The deadline shows the timeout for the message, i.e., how long it will stay valid. We illustrate the application
of these keywords with an example. Fig. 2 shows the Timed Rebeca model of a ticket service system. As shown in line 12
of the model, issuing the ticket takes three time units (the value of issueDelay passed to rebec ts in the main block). At
lines 23 and 24 the rebec instantiated from Agent sends a message requestTicket to rebec ts instantiated from TicketService,
and gives a deadline of five to the receiver to take this message and start serving it. The periodic task of retrying for a new
ticket is modeled in line 42 by the customer sending a try message to itself and letting the receiver to take it from its bag
only after 30 units of time (by stating after(30)).

Structural operational semantics of Timed Rebeca. Now we provide an overview of the SOS rules of Timed Rebeca which
has been proposed in [4]. Based on this semantics, guided search for deadlock analysis [52] and performance evaluation [31]
toolset are developed for Timed Rebeca models.

Timed Rebeca states are pairs (Env, B), where Env is a finite set of environments and B is a bag of messages. For
each rebec r of the model there exists σr ∈ Env which stores information about the actor, including the values of its state
variables, as well as structural characteristics like the body of the message servers. σr also contain the variable now, the
current time, and sender, which keeps track of the rebec that invoked the method that is currently being executed.

The bag B contains an unordered collection of all the messages of all rebecs. Each message is a tuple of the form
(ri, m(v), r j, TT, DL). Intuitively, such a tuple says that at time TT (time tag), the sender r j sent the message to the rebec ri
requesting it to execute its message server m with actual parameters v . Moreover this message expires at time DL [4]. Note
that DL specifies the latest time that the message has to be picked, i.e., the messages server has to start its execution or it
will expire otherwise.

188 E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204

(scheduler)
(σri (m),σri [now = max(TT,σri (now)), [arg = v], sender = r j],Env, B)

τ→ (σ ′
ri
,Env′, B ′)

({σri } ∪ Env, {(ri ,m(v), r j,TT,DL)} ∪ B) → ({σ ′
ri } ∪ Env′, B ′)

C

(enabling condition) C =
(
TT ≤ min(B)

)
∧

(
σri (now) ≤ DL

)
∧

((
ri ,m(v), r j ,TT,DL

)
/∈ B

)
∧ (σri /∈ Env)

Fig. 3. The SOS rule for the scheduler in Timed Rebeca from [4].

(send message)
(

varname.m(v) after(d) deadline(DL),σ ,Env, B
)

τ→
(
σ ,Env,

{(
σ (varname),m

(
eval(v,σ)

)
,σ (self),σ (now) + d,σ (now) + DL

)}
∪ B

)

(delay)
(
delay(d),σ ,Env, B

) τ→
(
σ

[
now = σ (now) + d

]
,Env, B

)

(assignment) (x = e,σ ,Env, B)
τ→

(
σ

[
x = eval(e,σ)

]
,Env, B

)

(condition 1)
eval(e,σ) = true (S1,σ ,Env, B)

τ→
(
σ ′,Env′, B ′)

(
if (e) then S1 else S2,σ ,Env, B

) τ→
(
σ ′,Env′, B ′)

(condition 2)
eval(e,σ) = false (S2,σ ,Env, B)

τ→
(
σ ′,Env′, B ′)

(
if (e) then S1 else S2, σ ,Env, B

) τ→
(
σ ′,Env′, B ′)

(seq)
(S1,σ ,Env, B)

τ→
(
σ ′,Env′, B ′),

(
S2,σ ′,Env′, B ′) τ→

(
σ ′′,Env′′, B ′′)

(S1; S2,σ ,Env, B)
τ→

(
σ ′′,Env′′, B ′′)

Fig. 4. The formal presentation of the effect of Timed Rebeca statements. The function eval evaluates expressions in a given environment in the expected
way and the value of special variables self is the name of the rebec. In each rule, we assume that σ is not contained in Env [49].

The system transition relation → is defined by the rule scheduler of Fig. 3. The scheduler rule allows the system to
progress by picking up messages from the bag and executing the corresponding methods.

The first term of the enabling condition is the predicate TT ≤ min(B), which shows that the time tag TT of the selected
message is the smallest time tag of all the messages (for all the rebecs ri) in the bag B . The second term of the enabling
condition, namely σri (rtime) ≤ DL, checks whether the deadline of the selected message is expired to handle schedulability
analysis of the models.

The τ transition shows the execution of the message server of the rebec ri . Intuitively, execution of a message server
means carrying out its body statements atomically (non-preemptively). The execution may change the environment of the
rebec ri by assigning new values to its state variables, the σri (now) (current time of the rebec) may be modified if the
timing statement delay is executed, the content of the bag maybe changed by sending messages to other rebecs. The newly
sent messages are put in the bag with their time tag and deadline. The effect of the execution of the statements is formally
defined in Fig. 4.

3. Floating time transition system of Timed Rebeca

In this section, we describe the floating time transition system of Timed Rebeca, an alternative semantics for Timed
Rebeca which is bisimilar to SOS semantics of [4]. Although both of SOS and floating time semantics present the same
behavior for Timed Rebeca models, floating time transition system has a more explicit representation for both states and
transitions. It makes floating time transition system more suitable as a basis for developing a toolset for analysis of Timed
Rebeca models, as described in Section 5.

To define floating time transition system, we first formalize the necessary notions and present the definitions for Timed-
Rebeca models.

For a Timed Rebeca model M, the function O (M) returns all the rebec instances in the model. Each rebec of a Timed
Rebeca model M has a state, and the collection of the states of all the rebecs of O (M) builds the state of the model.
A state of a rebec consists of the values of its state variables, messages in its message bag, and its local time.

Definition 1 (State of a rebec and state in a Timed Rebeca model). A state of a Timed Rebeca model is a tuple s =∏
ri∈O (M) state(ri), where state(ri) is the state of rebec ri . A state of a rebec ri ∈ O (M) is a tuple state(ri) = (sv, bag, now)

where sv is the valuation of the state variables, bag is the content of the message bag, and now is the value of the local
time of the rebec ri .

Functions sv(s, ri), bag(s, ri), and now(s, ri) return the value of the state variables, the content of message bag, and the
current time of rebec ri in state s, respectively.

As shown in Definition 1 the message bag of a rebec is a part of it’s state. Message bag of a rebec contains messages
which have been sent to the rebec. A message consists of its content (its name, the sender, the receiver, and the parameters)

E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204 189

Fig. 5. The initial state and one of other states of the model of ticket service system which has been depicted in Fig. 2. The receiver of each message is
shown in the left-most column (as a, ts, c).

augmented by its arrival time and deadline. The arrival time can be considered as the time the message is put in the bag,
which is the value of now of the sender when the call occurs unless the call statement has a non-zero after argument. In
this case, the value of after argument will be added to the now of the sender to give us the arrival time. Note that the
notion of release time of a message which is the time that the message is taken from the bag to be served is a different
notion from the arrival time. Deadline is the time that the request will become invalid. It can be considered as a request
from the sender for a release time less than the deadline.

The values of the arguments of the timing primitives, delay, deadline and after, in a Rebeca code are relative values. For
example if you have deadline(5) in a call statement, it means that the deadline for the receiver rebec to take the message
from its bag to serve is five time units after the current time (now) of the sender. The assumption of uniformly evolving
clocks for rebecs allows us to change the arguments of deadline and after to absolute values when putting the message in
the bag of the receiver. This can be done by adding the values of the arguments to the value of now of the sender. The
structure of sent messages is depicted in the following definition.

Definition 2 (Message in a Timed Rebeca model). A tuple tmsg = (sig, arrival, deadline) is a message where sig is the message
signature, arrival is the arrival time of the message (equals to the value of “after” argument of the call statement added to
the “now” of the sender), and deadline is the deadline of the message (equals to the value of “deadline” argument of the
call statement added to the “now” of the sender).

For tmsg ∈ bag(s, ri) the functions sig(tmsg), ar(tmsg), and dl(tmsg) return the sig, arrival, and deadline of the message
tmsg respectively.

Definition 3 (Message signature). For a message tmsg, the message signature consists of its name, the sender, the receiver,
and the actual parameters in the form of “sender → receiver.name(parameters)”.

Two different states of the Timed Rebeca model of Fig. 2 are depicted in Fig. 5. The state in Fig. 5I is an initial state. The
now of rebecs in initial state are set to zero and the initial message is put in their message bags. Initial messages are special
messages with no sender. Fig. 5II shows one of the intermediate states of the model. In Fig. 5II, rebec c has a message from
rebec a which will be delivered to a at time 3. As shown in Fig. 5II, there is no guarantee on the equality of the local times
of rebecs of a state; therefore, we call Timed Rebeca states “Floating time State (FTS)”. To ease the reading of the paper, we
use the word “state” instead of FTS in the paper.

The set of the next enabled messages of each rebec is defined based on the FIFO policy of Timed Rebeca using the arrival
times of the messages. Enabled messages are the messages which arrived before the others; hence, should be executed
before all the other messages in the bag.

Definition 4 (Enabled messages of a rebec). A set of enabled messages of rebec ri in a state s is defined as em(s, ri) = {tmsg ∈
bag(s, ri) | ∀tmsg′ ∈ bag(s, ri), ar(tmsg) ≤ ar(tmsg′)}.

Timed Rebeca floating time transition system is defined based on the above definitions. As an example, Fig. 6 depicts
floating time transition system of the ticket-service model in Fig. 2. To make the figure simpler, transition labels from state
s0 to state s13 are omitted.

Definition 5 (Timed Rebeca floating time transition system). A Timed Rebeca floating time transition system (FTTS) is a labeled
transition system FTTS(M) = (S, s0, Act, ↪→), where:

• S is a set of states in Timed Rebeca,
• s0 ∈ S is the initial state,

190 E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204

Fig. 6. Floating time transition system of the Timed Rebeca model of ticket service system which has been described in Fig. 2.

• Act is a set of actions, containing all possible messages in Timed Rebeca,
• ↪→⊆ S × Act × S is the set of transition relation, where ∀s, s′ ∈ S, (s, tmsg, s′) ∈↪→ iff there exists ri ∈ O (M) and

tmsg ∈ em(s, ri) such that ∀r j ∈ O (M) ∧ ∀tmsg′ ∈ em(s, r j) ⇒ ar(tmsg) ≤ ar(tmsg′). In the states where we have more
than one enabled messages, one of them will be chosen non-deterministically. State s′ results from s and tmsg as
follows:
– tmsg is taken from the bag of ri ,
– the value of now of ri is set to max{now, ar(tmsg)} (i.e. the starting time for execution of tmsg),
– The body of the message server corresponding to tmsg is executed. Execution of statements conforms to the Timed

Rebeca SOS rules in [4] which can be modification of the state variables of ri , sending messages to rebecs, and
changing the value of now of ri because of a delay statement.

Because of the unbounded progress of time, FTTS of a Timed Rebeca model has unbounded number of states. Therefore,
for analysis of FTTS of Timed Rebeca models some techniques are developed to avoid generation of unbounded number of
states. In the following section our technique for generating a bounded state space, when possible, is explained.

4. Bounded floating time transition system of Timed Rebeca

Unlike in Timed Automata, there is no explicit reset operator for time in Timed Rebeca. So, progress of time and hence
the increasing values of now variables of each rebec results in an unbounded number of states in the floating time transition
system of the models. Due to the unbounded number of states, model checking of both SOS-based transition system and
floating time transition system is impossible. However, Timed Rebeca models are models of reactive systems which generally

E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204 191

Fig. 7. Three different states of the Timed Rebeca model of ticket service system.

show a periodic or recurrent behavior, and hence if we ignore the absolute time in the states the models usually generate
bounded number of untimed traces.

As the time variables are changing in each transition, the tool can never recognize two states to be equivalent. But
observe that where the properties are only based on values of state variables, or the difference between timing primitives
then the absolute value of timing primitives are no longer relevant. For example, consider a message as a request for a
specific task. Catching a deadline-miss of a message in a state, is based on the difference between the value of now of the
receiver rebec and the value of deadline of the message in that state. Based on this observation, we define an equivalence
relation between two states called shift equivalence relation.

For an example see Fig. 7 presenting three different states of the Timed Rebeca model of the ticket service system of
Fig. 2. Assume that the model is in the state shown in Fig. 7I. Based on the bag of the rebecs ts, c, and a, em(s20, a) = {},
em(s20, ts) = {}, and em(s20, c) = {(a → c.ticketIssued(1), 36, ∞)}. Therefore, only rebec c has an enabled message whose
execution results in s21, shown in Fig. 7II. Here, shifting back the time of s21 by 33 units, makes it equal to s16, so s21 and
s16 are shift equivalent by shifting 33 units, i.e. s21 projected to s16 by shifting 33 units, denoted by s21 ∼=33 s16.

Our method is similar to Lamport’s work in [33] where he suggested that in most systems time can be modeled by an
explicit variable, called now. In these systems, actions only depends on the passage of time, not the absolute time when the
actions occur. In other words, the behavior of actions depends on their relative times not their absolute time. In Lamport
model the value of now is incremented by a predefined Tick action. Then he introduced time-translation symmetry relation:
two states are in time-translation symmetry relation iff they are the same except for their absolute time. The idea of shift
equivalence relation is similar to time-translation symmetry relation, but in FTTS in each state we have a now variable for
each rebec, and we have to consider the other timing primitives in the states too.

The shift equivalence relation is used to make floating time transition system bounded. Now we proceed to present the
formal definitions for shift equivalence relation between two states in FTTS.

Definition 6 (Shift equivalence relation between two states of FTTS with respect to a rebec). Two states s and s′ are shift equivalent
by t units with respect to rebec ri , denoted as s′ ∼=i,t s, if the following conditions hold.

• sv(s, ri) = sv(s′, ri)

• now(s′, ri) = now(s, ri) + t and there is a bijective relation ↔ between bag(s′, ri) and bag(s, ri) such that for all
tmsg′ ∈ bag(s′, ri) there is a message tmsg ∈ bag(s, ri) where sig(tmsg′) = sig(tmsg) ∧ar(tmsg′) = ar(tmsg) +t ∧dl(tmsg′) =
dl(tmsg) + t .

Note that the time primitives of Timed Rebeca are integer numbers, hence t is a natural number.
Two states of FTTS are in shift equivalence relation if and only if all the rebecs in these states are in shift equivalence

relation.

192 E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204

Definition 7 (Shift equivalence relation between two states of FTTS). Two states s and s′ are in shift equivalence relation by t
units of time, denoted as s′ ∼=t s, iff ∀ri ∈ O (M) we have s′ ∼=i,t s.

In addition to shift equivalence relation of two states, two messages tmsg and tmsg′ are defined to be shift equivalent iff
sig(tmsg) = sig(tmsg′) and ∃t ∈ N ∪ {0} such that ar(tmsg′) = ar(tmsg) + t ∧ dl(tmsg′) = dl(tmsg) + t . Shift equivalence relation
of messages is shown as ∼=t (the same as the shift equivalence relation of states). Note that the time shift preserves the
relative difference of timing primitives which results in the following lemmas.

Lemma 1 (Shift equivalence relation preserves enabled message). For two states s and s′ where s ∼=t s′ , and for each rebec ri and
message tmsg ∈ em(s, ri) there exists a message tmsg′ ∈ em(s′, ri) such that tmsg ∼=t tmsg′ .

Proof. Based on the definition of shift equivalence relation, as tmsg ∈ em(s, ri) and em(s, ri) ⊂ bag(s, ri) there is a message
tmsg′ ∈ bag(s′, ri) such that sig(tmsg′) = sig(tmsg), ar(tmsg′) = ar(tmsg) + t , and dl(tmsg′) = dl(tmsg) + t . tmsg has the mini-
mum arrival time among all the messages of rebec ri in state s. Therefore, if the arrival times of all the messages of rebec
ri in state s are increased by t units (shifting the values of time variables in the content of the bag of rebec ri in state s),
the new arrival time of tmsg remains the minimum value among all the other new arrival times of other messages. This is
the same for the messages of ri in state s′ so tmsg′ ∈ em(s′, ri).

Lemma 2 (Shift equivalence relation preserves effect of execution of message servers). If we have s ∼=t s′ and the execution of an
enabled message tmsg in states s results in state q, then there exists a tmsg′ ∼=t tmsg in state s′ and the execution of tmsg′ in state s′

results in state q′ where q ∼=t q′ .

Proof. In this proof assume that tmsg ∈ bag(s, ri). As described in Fig. 4, in Timed Rebeca only the effect of sending message
and delay statements depend on the timing of rebecs. Therefore, in case of tmsg ∼=t tmsg′ , as the signature of tmsg and tmsg′

are the same after the execution of tmsg and tmsg′ the state variables of ri have the same values. So, the values of the state
variables of rebecs in q and q′ are the same, satisfying the first condition in existence of shift equivalency between q and
q′ . On the other hand, as now(s′, ri) = now(s, ri) + t and sending message and delay statements are working with relative
time of ri , the execution of these statements are the same by shifting the values of now of ri and arrival time and deadline
of sent messages, hence satisfying the second condition in existence of shift equivalency between q and q′ .

Now the Timed Rebeca bounded floating time transition system can be defined based on the above definitions. As an
example, see Fig. 8 which depicts the bounded floating time transition system of the ticket-service model. To make Fig. 8
simpler, transition labels from state s0 to state s15 are omitted. As shown in Fig. 8, a transition label is a pair consisting of
the executed message and the time shift. The time shifts of all the transitions of Fig. 8 are zero except for the transition
from s20 to s16, because of the equivalence relation defined in Definition 7.

Definition 8 (Timed Rebeca bounded floating time transition system). A Timed Rebeca bounded floating time transition system
(BFTTS) is a labeled transition system BFTTS(M) = (S, s0, Act, ↪→, AP, L), where:

• S is a set of states,
• s0 ∈ S is the initial state,
• Act is a set of actions, containing pairs of all possible messages that can be sent in the model and a natural number as

the time shift,
• ↪→⊆ S × Act × S is the set of transition relation, where ∀s, s′ ∈ S, (s, (tmsg, t), s′) ∈↪→ iff there exists ri ∈ O (M) and

tmsg ∈ em(s, ri) such that ∀r j ∈ O (M) ∧ ∀tmsg′ ∈ em(s, r j) ⇒ ar(tmsg) ≤ ar(tmsg′), and the execution of tmsg results in
a state s′′ where s′′ ∼=t s′ . In the states where we have more than one enabled messages, one of them will be chosen
non-deterministically. State s′′ results from s and tmsg as follows:
– tmsg is taken from the bag of ri ,
– the value of now of ri is set to max{now, ar(tmsg)} (i.e. the starting time for execution of tmsg),
– The body of the message server corresponding to tmsg is executed. Execution of statements conforms to the Timed

Rebeca SOS rules in [4] which can be modification of the state variables of ri , sending messages to rebecs, and
changing the value of now of ri because of a delay statement.

As shown in the following theorem, for a Timed Rebeca model M there is a bisimulation relation between FTTS(M) and
BFTTS(M). Therefore, analysis over BFTTS, which has bounded number of states, gives in the same results as for FTTS(M).

Definition 9 (Bisimulation relation between two transition systems). The set of states of two transition systems are in a bisim-
ulation relation R if and only if whenever s1Rs2 and α is an action, the following conditions holds.

E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204 193

Fig. 8. Floating time transition system of the Timed Rebeca model of Fig. 2.

(I) if s1
α−→ s′

1 then there is a transition relation s2
α−→ s′

2 such that s′
1Rs′

2
(II) if s2

α−→ s′
2 then there is a transition relation s1

α−→ s′
1 such that s′

1Rs′
2

Theorem 1. For a Timed Rebeca model M, FTTS(M) = (S, s0, act, ↪→) is bisimilar to the bounded Timed Rebeca floating time transi-
tion system BFTTS(M) = (S ′, s0

′, act′, ↪→′).

Proof. From Lemma 1 and Lemma 2 we can see that conditions I and II of bisimulation relation hold as for two states
s ∈ FTTS(M) and s′ ∈ BFTTS(M), the enabled messages of s and s′ are the same (Lemma 1) and execution of the enabled
messages results in the shift equivalent states (Lemma 2). ✷

5. Schedulability and deadlock freedom analysis

Schedulability and deadlock freedom are two safety properties of real-time models. A Timed Rebeca model M is schedu-
lable if and only if none of the messages misses their deadline. This property can be formulated as in Definition 10.

194 E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204

1 BFS-STATE-SPACE-GENERATOR (M)
2 CLQ ← ∅
3 NLQ ← ∅
4 Visited ← ∅
5 ENQUEUE (CLQ, INITIAL_STATE(M))
6 while CLQ ≠ ∅ do
7 for each state S ∈ CLQ do
8 NewStates ← SUCCESSOR(S, M)
9 for each State N ∈ NewStates do
10 ID ← HASH_CODE(N)
11 if ID /∈ Visited
12 then PUT(Visited, N)
13 ENQUEUE(NLQ, N)
14 fi
15 od
16 od
17 swap(CLQ, NLQ)
18 NLQ ← ∅
19 od

Fig. 9. Pseudo-code of state space generation algorithm of Modere based on the BFS search algorithm.

Definition 10 (Schedulability of Timed Rebeca model). A given Timed Rebeca model M is schedulable if and only
if for BFTTS(M) = (S, s0, Act, ↪→) there is no transition (s, (tmsg, t), s′) ∈↪→ such that tmsg ∈ em(s, ri) ∧ dl(tmsg) >
max{now(s, ri), ar(tmsg)}.

Deadlock freedom property for Timed Rebeca models is defined in the same way as deadlock freedom for Rebeca. Dead-
lock happens in a Timed Rebeca model M if and only if M reaches a state in which there is no enabled message in the
bag of any of the rebecs. This state is called a deadlock state.

Definition 11 (Deadlock freedom of Timed Rebeca model). A given Timed Rebeca model M is deadlock free if and only if for
BFTTS(M) = (S, s0, Act, ↪→) there is no state s ∈ S such that ∀ri ∈ O (M), em(s, ri) = ∅.

These two properties are verified during the state space generation of models. To generate BFTTS of Timed Rebeca
models we modify Rebeca model checking engine. Rebeca comes equipped with an on-the-fly explicit-state LTL model
checking engine, called Modere [26]. Modere uses both the nested DFS and BFS search algorithms to explore the state
space. To generate state space based on semantics of floating time transition system, BFS search algorithm of Modere has
been extended to support Timed Rebeca, incorporating detection of shift equivalent states.

Rebeca BFS state space generation algorithm. The BFS state space generation algorithm, creates and explores the transi-
tion system in a level-by-level fashion. In the first level of the BFS algorithm, the initial state of a Rebeca model is generated
and marked as visited. Then, for each level, the successors of the states of that level are generated by applying the successor
function, called next level states. When there are no unvisited states in the next level states, the algorithm terminates. For
more details about the successor function and its formal semantics refer to [55].

The BFS state space generation algorithm is implemented using two queues. The first queue stores the states of current
level (CLQ) and the second one stores the successors of the states of CLQ, called next level queue (NLQ). In each iteration,
the states of the CLQ are dequeued and their unvisited successors are generated and are put in the NLQ. When all states
of the CLQ are dequeued, the content of the NLQ is swapped with the CLQ and the algorithm continues until NLQ becomes
empty, i.e., all successors of the states of CLQ have been visited before. Pseudo-code of this algorithm is depicted in Fig. 9.
As shown in lines 10 and 11, the visited states are detected using a hash code generator function. Hash code generator
function assigns a unique identifier (in natural number domain) to each state based on the state content, i.e. values of state
variables and message signatures of message queues of all rebecs.

Timed Rebeca BFS state space generation algorithm. The major difference between BFS state space generation algorithm
in Modere and in Timed Rebeca analysis tool is in detecting shift equivalence among states. Shift equivalence detection is
implemented by modifying visited data structure in algorithm of Fig. 9. In BFS algorithm of Fig. 9, visited is a hash table
which maps each ID to a single state. In Timed Rebeca extension of BFS algorithm, visited maps each ID to a list of states.
IDs of states in Timed Rebeca BFS algorithm are not unique because two states which are the same except in the value of
now, arrival of a message, or deadline of a message, has the same ID. Hence, two shift equivalent states has the same ID but
different values for timing primitives. If differences between all the timing primitives of two states are the same and they
have the same IDs, these states are shift equivalent. Details of detecting shift equivalence among states are shown in lines
12 to 30 of Fig. 10. Inputs of the algorithm are the model M and identifiers of rebecs in M. As shown in lines 26 and 27 of
Fig. 10, each newly generated state is analyzed for deadlock freedom and schedulability of the messages of its rebecs using
CHECK-FOR-DEADLINE-MISSED(N) and CHECK-FOR-DEADLOCK(N) procedures. These two procedures are implemented based
on Definition 10 and Definition 11.

E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204 195

1 BFS-STATE-SPACE-GENERATOR (M, r0, ..., rn)
2 CLQ ← ∅
3 NLQ ← ∅
4 Visited ← ∅
5 ENQUEUE (CLQ, INITIAL_STATE(M))
6 while CLQ ≠ ∅ do
7 for each state S ∈ CLQ do
8 NewStates ← SUCCESSOR(S, M)
9 for each State N ∈ NewStates do
11 ID ← HASH_CODE(N)
12 if ID /∈ Visited
13 then PUT(Visited, N)
14 ENQUEUE(NLQ, N)
15 CHECK-FOR-DEADLINE-MISSED(N)
16 CHECK-FOR-DEADLOCK(N)
17 else
18 VisitedStates ← GET(Visited, ID)
19 for each VisitedState ∈ VisitedStates do
20 if VisitedState and N are shift equivalent
21 then
22 // discard N
23 else
24 PUT(Visited, N)
25 ENQUEUE(NLQ, N)
26 CHECK-FOR-DEADLINE-MISSED(N)
27 CHECK-FOR-DEADLOCK(N)
28 fi
29 od
30 fi
31 od
32 od
33 swap(CLQ, NLQ)
34 NLQ ← ∅
35 od

Fig. 10. Pseudo-code of state space generation algorithm of Timed Rebeca based on the BFS search algorithm.

Model checker of Timed Rebeca is developed and is integrated in Afra [2]. Afra is the modeling and verification IDE of
Rebeca and Timed Rebeca. It is an eclipse plugin and the non-commercial distribution of Afra can be downloaded from
Rebeca homepage [2].

6. Experimental results

We provide three different case studies in different sizes to illustrate the performance of using BFTTS in comparison to
UPPAAL and McErlang for model checking Timed Rebeca models. These three model checkers are installed on servers with
4 CPUs and 16 GB of RAM storage, running Ubuntu 12.04 as the operating system. The selected case studies are Distributed
Sensor Network, simplified version of Slotted ALOHA Protocol, and Ticket Service. The Timed Rebeca code of the case studies
are in Rebeca homepage [2].

Sensor network. The distributed sensor network is a model of a set of sensors that measure the toxic gas level of the
environment. Upon sensing a dangerous level of gas, the system notifies the scientist who is working in that area. In the
case that no acknowledgment is received from the scientist the system sends a rescue team to the area.

There are four reactive classes Sensor, Admin, Scientist, and Rescue in the model. Sensor rebecs send the measured gas level
value to Admin rebec over the network. If Admin receives a report of dangerous gas levels, it notifies Scientist immediately
and waits for the Scientist acknowledgment. If Scientist does not respond, Admin requests Rescue to reach and save Scientist.
The main property to be checked is saving Scientist before the rescue deadline is missed. We have different models with
different numbers of sensors to produce state spaces of different sizes. This case study is first presented in [4] and its source
code is in http :/ /www.rebeca-lang .org /wiki /pmwiki .php /Examples /SensorNetwork.

Slotted ALOHA protocol. The Slotted ALOHA protocol [3] controls access to the data link medium of computer networks.
Slotted ALOHA divides the time into some slots. In each slot, one of the network interfaces, which are connected to the data
link medium, is allowed to send its data via the medium. The other interfaces sniff the medium for incoming data when
some one sends data. We have modeled the Slotted ALOHA using four different reactive classes User, Interface, Medium, and
Controller. To make the model more realistic, we linked rebec User to each Interface which provides the Interface data. We
generated different sizes of models by varying the number of Users and Interfaces. The source code of this case study is in
http :/ /www.rebeca-lang .org /wiki /pmwiki .php /Examples /SlottedAloha.

http://www.rebeca-lang.org/wiki/pmwiki.php/Examples/SensorNetwork
http://www.rebeca-lang.org/wiki/pmwiki.php/Examples/SlottedAloha

196 E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204

Table 1
Model checking time and size of state space, using three different tools. The † sign on the reported time shows that model checking takes more than the
time limit (24 hours). The ‡ sign on the reported number of states shows that state space explosion occurs as the model checker want to allocate more
than 16 GB in memory which is more than total amount of memory.

Problem Size Using BFTTS Using timed automata Using McErlang

#States Time #States Time #States Time

Ticket Service 1 customer 8 <1 s 801 <1 s 150 <1 s
2 customers 51 <1 s 19M 5 hours 4.5k 3 s
3 customers 280 <1 s – >24 hours† 190K 5.1 min
4 customers 1.63K <1 s – >24 hours† >4M‡ –
5 customers 11K <1 s – >24 hours† >4M‡ –
6 customers 83K 2 s – >24 hours† >4M‡ –
7 customers 709K 3 min – >24 hours† >4M‡ –
8 customers 6.8M 9.7 hours – >24 hours† >4M‡ –

Sensor network 1 sensor 183 <1 s – >24 hours† >6.5M‡ –
2 sensors 2.4K <1 s – >24 hours† >6M‡ –
3 sensors 33.6K 1 s – >24 hours† >6M‡ –
4 sensors 588K 13 s – >24 hours† >6M‡ –

Slotted ALOHA protocol 1 interface 68 <1 s – >24 hours† 153K 1.8 s
2 interfaces 750 <1 s – >24 hours† >2.8M‡ –
3 interfaces 7.84K 1 s – >24 hours† >2.8M‡ –
4 interfaces 45.7K 6 s – >24 hours† >2.8M‡ –
5 interfaces 331K 64 s – >24 hours† >2.8M‡ –

Table 2
Model checking the modified version of the three case studies which missed their deadlines in some cases.

Problem Size #States Time Result

Ticket Service 1 customer 8 <1 s hit deadline
2 customers 51 <1 s hit deadline
3 customers 280 <1 s hit deadline
4 customers 770 <1 s deadline missed
5 customers 4.92K <1 s deadline missed
6 customers 38K <1 s deadline missed
7 customers 316K 6 s deadline missed
8 customers 3M 1 min deadline missed

Sensor network 1 sensor 206 <1 s deadline missed
2 sensors 2.8K <1 s deadline missed
3 sensors 47.7k 2 s deadline missed
4 sensors 1.14M 26 s deadline missed

Slotted ALOHA protocol 1 interface 68 <1 s hit deadline
2 interfaces 750 <1 s hit deadline
3 interfaces 5.16K <1 s hit deadline
4 interfaces 12K 1 s deadline missed
5 interfaces 41K 1 s deadline missed

Ticket Service. Details of Ticket Service case study are explained in Section 2. Catching the deadline of issuing the ticket
is the main property of this model. We achieved different size of ticket service model by varying the number of customers.
The source code of this case study is in http :/ /www.rebeca-lang .org /wiki /pmwiki .php /Examples /TicketServiceSystem.

We set limit on maximum time and maximum memory consumption of each round of model checking. Each round
duration should not exceed 24 hours, and consumes less than 16 GB of RAM storage. The results of model checking these
case studies using the three different tools are depicted in Table 1. All the case studies hit their deadlines and are deadlock
free. Table 1 shows that using UPPAAL or McErlang for model checking Timed Rebeca, results in the state space explosion
at the preliminary steps.

Increasing the service time and message passing delay in the case studies results in deadline-miss in some cases. For
example, as shown in Table 2 the modified version of ticket service model missed its deadline when there are more than
four customers. The deadline-miss happens in this case because issuing a ticket takes three time units and the response to
the customers’ requests should be sent in eight time units. Therefore, when more than four customers request for ticket, the
last request is processed after its deadline. The same modifications are applied to the other two case studies. The results of
model checking three case studies by increasing the service times is depicted in Table 2.

We also made some modifications on the case studies by adding non-determinism to sending messages as the following.

http://www.rebeca-lang.org/wiki/pmwiki.php/Examples/TicketServiceSystem

E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204 197

Table 3
Model checking the modified version of the three case studies which have deadlock state.

Problem Size #States Time Result

Ticket Service 1 customer 5 <1 s deadlock
2 customers 25 <1 s deadlock
3 customers 180 <1 s deadlock
4 customers 1.4K <1 s deadlock
5 customers 11.7K <1 s deadlock
6 customers 108K 2 s deadlock
7 customers 1.14 22 s deadlock
8 customers 13M 7.6 min deadlock

Sensor network 1 sensor 19 <1 s deadlock
2 sensors 147K <1 s deadlock
3 sensors 23.7k <1 s deadlock
4 sensors 1.14M 26 s deadlock

Slotted ALOHA protocol 1 interface 57 <1 s deadlock
2 interfaces 277 <1 s deadlock
3 interfaces 1.2K 1 s deadlock
4 interfaces 4.9K 1 s deadlock
5 interfaces 20K 9 s deadlock

• Ticket service: TicketService rebec non-deterministically discards some of the requests of a customer and does not issue
a ticket in that case.

• Sensor network: Sensors stop working non-deterministically. Sensors do not send information about the environment of
the scientist when they stop working.

• Slotted ALOHA protocol: The controller of the medium stops working non-deterministically. Therefore, none of the inter-
faces can send data via the medium.

The Added non-determinism results in system deadlock. The state space size and time consumption of model checking the
case studies to find deadlock states are depicted in Table 3.

7. Model checking of Timed Rebeca models using UPPAAL

Timed automata [7] is one of the most widely used modeling languages for modeling of real-time systems which is
supported by UPPAAL toolset. Because of successful results in modeling and verification of different types of real-time
systems, including [35,11,37], we decided to use UPPAAL as the back-end model checker for verification of Timed Rebeca
models. Therefore, we proposed a mapping from Timed Rebeca models to networks of timed automata in [23]. We tried to
optimize the mapping to achieve the smallest possible state space. Our experiments showed that modeling of asynchronous
message passing between actors using synchronous communication of timed automata results in large state space, even for
small case studies. The details of this mapping are shown in this section. We also compare this approach with FTTS and
show the reasons for getting more reduction in FTTS comparing to timed automata in most cases.

In the proposed mapping, each rebec is mapped into two timed automata, called rebec-behavior automaton and rebec-bag
automaton. Additionally, one time automaton is defined to handle the behavior of after primitive for all rebecs, called after-
handler automaton. To reduce the number of clocks in the model, one global clock pool is defined. This clock pool contains
predefined number of clocks. When a time automaton requires a clock, it picks a clock from the pool using selectClock func-
tion. To illustrate the mapping, the timed automata of ticket service model of Fig. 2 is described as the running example in
the rest of this section.

7.1. Rebec-behavior automaton

The rebec-behavior automaton models the behavior of a rebec according to the statements of its message servers and
valuations of state variables. The state variables of each rebec are mapped into variables of its corresponding rebec-behavior
automaton. After receiving a message in rebec-behavior automaton of each rebec, the first transition checks the received
message and based on that the behavior of the corresponding message server is modeled in the succeeding transitions. To
model the behavior of a message server, its statements are mapped to transitions of timed automata as described in the
following. In the following items, assume that each statement is modeled by some outgoing transition from state S . The
label of the outgoing transitions are a tuple of (a, g, c) in which a is the action, g is the guard, and c is the set of clocks
that are reset during the transition.

• Conditional statement if (cond){· · ·}: is mapped to transition t from S to S ′ . The label of t is set to (−, g, −) in which g
is the same as the cond expression of the conditional statement.

198 E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204

Fig. 11. The implementation of delay and sending message statements of lines 12 and 13 of the Timed Rebeca model of Fig. 2 in timed automata.

Fig. 12. The rebec-behavior automaton of customer reactive class of Fig. 2.

• Assignment statement var = exp: is mapped to transition t from S to S ′ . The label of t is set to (a, −, −) in which a
assigns the value of exp to the variable var.

• Non-deterministic assignment statement var =?(exp1, · · · , expn): is mapped to transitions t1, · · · tn from S to S ′
1 · · · S ′

n .
The label of ti is set to (ai, −, −) in which ai assigns the value of expi to the variable var.

• Delay statement delay(d): in mapping of a delay statement one clock and one additional state is required. In this case,
the mapping results in transition t1 from S to S ′ and transition t2 from S ′ to S ′′ . The label of t1 is set to (a, −, −) in
which a is the action of selecting a clock from the global clock pool. The clock is selected from pool of clocks using
selectClock function. Assume that cl is the selected clock. The guard of state S ′ is set to cl ≤ d and the label of t2 is set
to (−, g, −) in which g equals to cl = d. Based on this mapping, the active state of the timed automaton is forced to
stay in S ′ for d units of time. Mapping of delay statement in line 12 of Fig. 2 is shown in Fig. 11I.

• Sending message statements: For message sending, one clock is attached to each message to show its sent time. This
clock is used for checking the release times and deadlines. The clock is returned to the pool when the message is
delivered to the rebec-behavior automaton for execution. We used channel send if the message is sent immediately and
channel after if the sent message has value for after primitive. Messages which are sent via send channel are directly
put in the rebec-bag of their receivers. Messages which are sent via after channel are put in an internal buffer in
after-handler automaton. Mapping of sending message in line 13 of Fig. 2 is shown in Fig. 11II.

Upon completion of the execution of a message server, a rebec-behavior automaton will be in its initial state again and
the outgoing transition is requesting for the next message. To illustrate the mapping of reactive classes to rebec-behavior
automata, the rebec-behavior automaton of customer reactive class of Fig. 2 is shown in Fig. 12. On transition from S0 to S1
the action of the transition is set to receiving a message from rebec-bag automaton. Based on the message name, which is
stored in currentMessage variable, the execution point is directed from S1 to one of S2 or S3 states. In this timed automaton,
the execution of ticketIssued message server is started from state S2 and the execution of try message server is started from
state S3. The rebec-behavior automata of agent and ticket service are shown in Figs. 13 and 14 respectively.

7.2. Rebec-bag automaton

The rebec-bag automaton handles the behavior of the message bag of each rebec using an internal buffer called messageQ
as shown in Fig. 15. The rebec-bag accepts messages which are sent to its corresponding rebec asynchronously, regardless
of the state of the corresponding rebec-behavior automaton. Then, rebec-bag automaton delivers received messages upon
the requests of its corresponding rebec-behavior automaton. Additionally, the rebec-bag automaton is responsible to handle
message deadlines. Fig. 15 shows the timed automaton of rebec-bag. As shown in Fig. 15, rebec-bag automaton inserts the
incoming messages into its buffer (transition from S1 to S3), discards the messages with passed deadlines from its buffer

E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204 199

Fig. 13. The rebec-behavior timed automaton of agent reactive class of Fig. 2.

Fig. 14. The rebec-behavior timed automaton of TicketService reactive class of Fig. 2.

Fig. 15. The rebec-bag automaton. Rebec-bag has a buffer, named messageQ, which stores the received messages. In this automaton, the incoming messages
are inserted into the buffer (transition from S1 to S3), messages with passed deadlines are discarded from the buffer (self loop transition in S1), and
messages are extracted from buffer and are delivered to the corresponding rebec-behavior automaton to execute them (transition from S1 to S2). Extracting
a message from the buffer is done by shift function which is used as the update function of transition from S2 to S1.

(self loop transition in S1), and extracts the messages from its buffer and delivers them (transition from S1 to S2). Extracting
a message from the buffer is done by shift function which is used as the update function of transition from S2 to S1.

7.3. After-handler automaton

The after-handler automaton handles the messages which should be delivered to rebec-bag automata in the future (mes-
sages which are sent by after primitive). The after-handler automaton accepts messages and put them into its buffer until the
release time of the messages. When a message in buffer of after-handler is released, it is sent to its corresponding rebec-bag
automaton. Fig. 16 shows the timed automaton of after-handler. As shown in Fig. 16, the incoming messages are inserted
into its buffer by transition from S1 to S2. The messages are extracted from the buffer of after-handler and are delivered in
their release times by self loop transition on S1.

200 E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204

Fig. 16. Timed automaton of after-handler.

7.4. Analysis of network of timed automata

The parallel composition of the resulting timed automata and the schedulability analysis of the model is done using the
UPPAAL toolset [13].

Modeling of asynchronous message passing between actors using synchronous communication of automata increases
the number of states dramatically [33]. We can apply some techniques, like using committed states, to reduce the number
of states of the resulting region transition system; although, we still need points of synchronization. During the parallel
composition of the network of timed automata, related to an actor model, different automata need to synchronize on the
following four actions.

1. A message is sent (on after or send channels).
2. A message is taken from the message bag to start to execute.
3. A transition modeling a delay statement is reached in an automaton.
4. It is the time for a sent message to be delivered to its receiver.

This will increase the number of states and is the main reason that using network of timed automata is not an ideal ap-
proach for asynchronous models. Additionally, the time consumption of the analysis of the models is increased dramatically
by increasing the number of actors of the model, as the number of clocks grows linearly by the number of actors.

To reduce the number of states some reduction techniques are proposed for verification of timed automata models.
In [12] authors proved that instead of a global clock synchronization among all timed automata in a network of timed au-
tomata, synchronization of clocks are only required in communication between two timed automata. Therefore, they allowed
clocks to increase independently and they only synchronize the clocks when two timed automata want to communicate.
This way the third item of the synchronization actions (see above) is omitted and other three synchronization points are
considered in parallel composition of timed automata. This work is continued in [41] by applying the proposed reduction
technique in model checking of timed extension of LTL. Later in [20] a new approach is suggested for partial order reduction
in component-based systems. This approach is only applicable for systems where components work in three phases: reading
from their input ports, performing their internal operations, and writing the result of the internal operations to their output
ports. Based on these phases, the progress of time and inter-component timing complexity of phase two is hidden and can
be modeled using a single clock. This reduction is not applicable for timed automata derived from Timed Rebeca models.
Phases two and three cannot be separated in Timed Rebeca models because message passings and internal actions of the
actors are interleaved.

In FTTS, instead of four synchronization points which are required for generating region transition system (or three
synchronization points in case of using partial order reduction of [12] and [41]), one synchronization point is required. This
synchronization point is on the release time of messages. Using FTTS requires less number of synchronizations, so, in each
state actors are in different time point and therefore we cannot support TCTL or TLTL model checking. Instead, properties
based on events can be verified on FTTS because the order and execution time of the messages are preserved in FTTS.

8. Related work

Here, we give an overview of the widely used timed models and their analysis tools and techniques: real-time Maude
[44], timed automata [7] and TLA+ [32]. Then we compare them with Timed Rebeca from modeling and verification tech-
niques point of views. We also explain the existing analysis tools for Timed Rebeca.

Real-Time Maude. Maude is a high level declarative programming language supporting specification of models in rewrit-
ing logic. Maude is used for modeling nondeterministic concurrent computations and also concurrent object oriented
models. Real-Time Maude language [44,45] is an extension on Maude language [16] for modeling real-time and hybrid
systems, their simulation, and verification. The rewriting rules of a real-time Maude model are divided into two categories,
the instantaneous rules that model instantaneous changes done in zero time, and a predefined tick rule that model the
elapse of time [42]. Real-Time Maude supports both discrete and continuous time models.

E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204 201

A set of tools are developed for analysis of real-time Maude. Timed rewrite builds a trace in the execution of system from
the initial state up to a certain time. Timed search builds all behaviors of the system from the initial state up to a certain time
and checks whether a specific state is reachable or not. Timed model checking checks whether all possible behaviors satisfy
a temporal logic formula using an extension of Maude’s bounded LTL model checker for verification of time-bounded TLTL
formulas. Recently, Real-Time Maude is equipped with a model checker for timed computation tree logic (TCTL) properties
for systems with bounded-time behavior [36].

Comparing to Timed Rebeca from modeling point of view, although real-time Maude is a powerful and flexible modeling
language it needs intimate knowledge of the theory behind rewriting logic to adapt its computational model to actors.
Timed Rebeca benefits from its similarity with other commonly used programming languages and it is more susceptible
to be used by practitioners. In modeling of the progress of time, Timed Rebeca only supports discrete time model; while
real-time Maude supports both discrete and continuous time models.

From verification techniques and tool support point of view, real-time Maude is supported by a rich set of analysis
tools for simulation, reachability analysis, and TLTL and TCTL verification of models as used in [50] for verification of
Timed Rebeca models. These toolsets generate timed transition system of their given model as a basis of analysis. Similarly,
Timed Rebeca is supported by a toolset for simulation and model checking which generates timed transition system of the
models. In addition to the analysis of the models using timed transition system, Timed Rebeca is supported by BFTTS based
schedulability and deadlock freedom analysis toolset. Building event-based property checking tools based on BFTTS and the
property language proposed in [39] is an ongoing work.

Timed automata. Timed automata [7] model the behavior of timed systems using a set of automata that is equipped
with the set of clock variables. Although clocks are the system variables, their values can only be checked or set to zero.
Therefore, they can be intuitively considered as stop watches. The values of all clocks are increased in the same rate or can
be reset to zero while moving from one state to other states. Constraints over clocks can be added as enabling conditions on
both states and transitions. Timed automata supports parallel composition as a convenient approach for modeling complex
systems. As described in [9], parallel composition of timed automata is based on the handshaking actions. Timed automata
support both continuous and discrete timed models [15,22].

There are two well-known toolsets for verification of timed automata, UPPAAL [13] and Kronos [14]. UPPAAL is an inte-
grated environment for verification of real-time systems [10]. The tool is designed to verify systems that can be modeled
as networks of timed automata, extended with data types (bounded integers, arrays, functions, etc.). UPPAAL provides both
simulator and model checker for its models. Model checker of UPPAAL verifies TCTL properties. Kronos is a toolbox built
with the aim of providing a verification engine to be integrated into design environment of real-time systems. Correctness
criteria for Kronos verification engine can be specified in TCTL formula or timed automata. Kronos implements a symbolic
verification method based on predicate transformation [17]. Both of UPPAAL and Kronos generate region transition sys-
tem of timed automata (symbolic representation of timed transition system of the timed automata) and apply verification
techniques on it.

Timed automata is one of the main candidates for modeling and verification of real-time systems. We compared timed
automata and Timed Rebeca in detail in Section 7.

TLA+. TLA+ is a formal specification language that extends Temporal Logic of Actions (TLA) by set theory and first-order
logic [32]. A TLA specification is a temporal formula, often named Spec, showing the initial state predicate, the actions,
and the specification variables. Applying rules of actions on the initial state results in changing the values of specification
variables and generation of the next states of the system. TLA+ includes modules and ways of combining them to form
larger specifications [34].

TLC [57] is an on-the-fly model checker of TLA+ which uses explicit state representation. Although there are many
constructs in TLA+, TLC can handle a subclass of TLA+ specifications that seems to include the ones that are needed in
describing actual systems [34]. TLC verifies both safety and liveness properties. To verify safety properties of a model, TLC
explores all reachable states of the given model to find a state in which an invariant is not satisfied or deadlock occurs.
Liveness properties are model checked using tableau method of [40].

TLA+ is a high level specification language which needs knowledge of set theory and logic. From verification techniques
point of view, the main similarity between our work and TLC is the similarity between shift equivalent relation and time-
translation symmetry relation as a technique to achieve bounded state space. In TLC two states are in time-translation
symmetry relation if and only if they are the same except for their absolute times [33] which is the same as the shifting
time between two shift equivalent states.

Erlang. Erlang is a dynamically-typed general-purpose programming language which was developed in 1986 [8]. Erlang
was mostly used for telephony applications such as switches. Erlang is designed for the implementation of distributed,
real-time and fault-tolerant applications. Its concurrency model is based on the actor model.

McErlang is a model checker for Erlang. McErlang [19] supports full Erlang features. McErlang offers ability of expressing
correctness properties in the form of monitors (safety or Büchi), abstraction algorithms to reduce state-space, and explo-
ration algorithms to verify or simulate Erlang programs [19]. Fredlund et al. in [18] proposed timed extension of McErlang
as a model checker of timed Erlang programs. In this extension a new API is introduced to provide the definition and
manipulation of time-stamps.

Erlang as a programming language and Timed Rebeca as a modeling language are both targeting actor systems. However,
their model checkers follow different approaches. McErlang provides fine-grain model checker for Erlang systems which

202 E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204

results in state space explosion quickly. In contrast, states in bounded floating time transition system of Timed Rebeca
are coarse-grain and more abstract than that of McErlang. Our experimental results show very well the efficiency of our
approach.

Analysis of Timed Rebeca. Before introducing bounded floating time transition system, two other approaches have been
developed for verification of Timed Rebeca models. These approaches translate Timed Rebeca model to timed automata and
Erlang to use their back-end model checkers as verification engine [23,4]. An ongoing project is using real-time Maude as
the back-end analysis engine. As mentioned above, because of difficulties of modeling asynchronous message passing in
timed automata, and fine-grain model checking of McErlang and real-time Maude, all these three approaches result in state
space explosion earlier than FTTS model checking. The state space generation approach that we have used in BFTTS is an
innovative and novel technique that gives us a significant reduction and enables us to model check larger systems.

9. Conclusion and future work

In this paper we introduced the floating time transition system for schedulability and deadlock freedom analysis of
Timed Rebeca models. Floating time transition system exploits the key features of Timed Rebeca. In summary, having no
shared variables, no blocking send or receive, single-threaded actors, and non-preemptive execution of each message server
give us an isolated message server execution, meaning that execution of a message server of a rebec will not interfere
with execution of a message server of another rebec. Moreover, for checking schedulability and deadlock freedom we can
focus only on events. In FTTS each transition shows releasing an event, or in other words execution of a message server
of a rebec. Hence, in each state in FTTS rebecs may have different local times, but the transitions still gives us a correct
order of release times of events of a specific rebec. The floating time transition system of Timed Rebeca models is derived
from the SOS semantics presented in [4]. Our proposed approach is implemented as a part of Afra toolset [2]. Experimental
evidence supports that direct model checking of Timed Rebeca models using floating time transition system decreases both
model checking state space size and time consumption in comparison with translating to secondary models such as timed
automata and Erlang. Therefore, we can efficiently model check more complex models.

In addition, our technique is based on the actor model of computation where the interaction is solely based on asyn-
chronous message passing between the components. So, the proposed transition system and analysis techniques are general
enough to be applied to similar computation models where they have message-driven communication and autonomous ob-
jects as units of concurrency such as agent-based systems. Note that, although using FTTS for actor models results in smaller
transition systems, it only supports analysis of the event-based properties (schedulability and deadlock freedom analysis).

In an ongoing work at University of Illinois at Urbana-Champaign, Timed Rebeca and our model checking tool are being
used for modeling and analysis of distributed real-time sensor network applications. As a case study a real-time continuous
sensing application for structural health monitoring [1] is considered which is built largely from component middleware
services of the Illinois SHM Services Toolsuite [38]. This is an example where efficient resource utilization is critical, since
it directly determines the scalability (number of nodes) and fidelity (sampling frequency) of the data acquisition process.
Timed Rebeca is being used to find a configuration and scheduling that improves resource utilization.

Although using FTTS results in smaller state space, it only supports schedulability and deadlock freedom analysis. We
are now improving our tool to support the event-based property language proposed in [39]. This will give us the ability of
checking a subset of MTL-like properties where the propositions are defined on events instead of states.

Acknowledgements

The work on this paper has been partially supported by the project “Timed Asynchronous Reactive Objects in Distributed
Systems: TARO” (nr. 110020021) of the Icelandic Research Fund.

References

[1] Illinois SHM Services Toolsuite, http://shm.cs.illinois.edu/software.html.
[2] Rebeca home page, http://www.rebeca-lang.org.
[3] Norman Abramson, THE ALOHA SYSTEM: another alternative for computer communications, in: AFIPS ’70 (Fall): Proceedings of the November 17–19,

1970, Fall Joint Computer Conference, ACM, New York, NY, USA, 1970, pp. 281–285.
[4] Luca Aceto, Matteo Cimini, Anna Ingólfsdóttir, Arni Hermann Reynisson, Steinar Hugi Sigurdarson, Marjan Sirjani, Modelling and simulation of

asynchronous real-time systems using Timed Rebeca, in: Mohammad Reza Mousavi, António Ravara (Eds.), FOCLASA, in: Electronic Proceedings in
Theoretical Computer Science, vol. 58, 2011, pp. 1–19.

[5] Gul A. Agha, ACTORS – A Model of Concurrent Computation in Distributed Systems, MIT Press Series in Artificial Intelligence, MIT Press, 1990.
[6] Rajeev Alur, Costas Courcoubetis, David L. Dill, Model-checking for real-time systems, in: LICS, 1990, pp. 414–425.
[7] Rajeev Alur, David L. Dill, A theory of timed automata, Theor. Comput. Sci. 126 (2) (1994) 183–235.
[8] Joe Armstrong, A history of Erlang, in: Barbara G. Ryder, Brent Hailpern (Eds.), HOPL, ACM, 2007, pp. 1–26.
[9] Christel Baier, Joost-Pieter Katoen, Principles of Model Checking, MIT Press, 2008.

[10] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, A tutorial on Uppaal, in: Marco Bernardo, Flavio Corradini (Eds.), SFM, in: Lecture Notes in
Computer Science, vol. 3185, Springer, 2004, pp. 200–236.

[11] Johan Bengtsson, W.O. David Griffioen, Kåre J. Kristoffersen, Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson, Wang Yi, Verification of an audio
protocol with bus collision using Uppaal, in: Rajeev Alur, Thomas A. Henzinger (Eds.), CAV, in: Lecture Notes in Computer Science, vol. 1102, Springer,
1996, pp. 244–256.

http://shm.cs.illinois.edu/software.html
http://www.rebeca-lang.org
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib4162723730s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib4162723730s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F636F72722F6162732D313130382D30323238s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F636F72722F6162732D313130382D30323238s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F636F72722F6162732D313130382D30323238s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A626F6F6B732F6461676C69622F30303636383937s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F6C6963732F416C757243443930s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F7463732F416C7572443934s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F686F706C2F41726D7374726F6E673037s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A626F6F6B732F6461676C69622F30303230333438s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F73666D2F426568726D616E6E444C3034s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F73666D2F426568726D616E6E444C3034s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F6361762F42656E677473736F6E474B4C4C50593936s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F6361762F42656E677473736F6E474B4C4C50593936s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F6361762F42656E677473736F6E474B4C4C50593936s1

E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204 203

[12] Johan Bengtsson, Bengt Jonsson, Johan Lilius, Wang Yi, Partial order reductions for timed systems, in: Davide Sangiorgi, Robert de Simone (Eds.),
CONCUR, in: Lecture Notes in Computer Science, vol. 1466, Springer, 1998, pp. 485–500.

[13] Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson, Wang Yi, UPPAAL – a tool suite for automatic verification of real-time
systems, in: Rajeev Alur, Thomas A. Henzinger, Eduardo D. Sontag (Eds.), Hybrid Systems III: Verification and Control. Proceedings of the DIMACS/SYCON
Workshop, October 22–25, 1995, Ruttgers University, New Brunswick, NJ, USA, in: Lecture Notes in Computer Science, vol. 1066, Springer, 1996,
pp. 232–243.

[14] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, Sergio Yovine, Kronos: a model-checking tool for real-time systems, in:
Alan J. Hu, Moshe Y. Vardi (Eds.), CAV, in: Lecture Notes in Computer Science, vol. 1427, Springer, 1998, pp. 546–550.

[15] Marius Bozga, Oded Maler, Stavros Tripakis, Efficient verification of timed automata using dense and discrete time semantics, in: Laurence Pierre,
Thomas Kropf (Eds.), Correct Hardware Design and Verification Methods, Proceedings of the 10th IFIP WG 10.5 Advanced Research Working Conference,
CHARME ’99, Bad Herrenalb, Germany, September 27–29, 1999, in: Lecture Notes in Computer Science, vol. 1703, Springer, 1999, pp. 125–141.

[16] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José Meseguer, Jose F. Quesada, Maude: specification and programming
in rewriting logic, Theor. Comput. Sci. 285 (2) (2002) 187–243.

[17] Conrado Daws, Sergio Yovine, Two examples of verification of multirate timed automata with Kronos, in: RTSS, IEEE Computer Society, 1995, pp. 66–75.
[18] Clara Benac Earle, Lars-Åke Fredlund, Verification of timed Erlang programs using McErlang, in: Holger Giese, Grigore Rosu (Eds.), FMOODS/FORTE, in:

Lecture Notes in Computer Science, vol. 7273, Springer, 2012, pp. 251–267.
[19] Lars-Åke Fredlund, Hans Svensson, McErlang: a model checker for a distributed functional programming language, in: Ralf Hinze, Norman Ramsey

(Eds.), ICFP, ACM, 2007, pp. 125–136.
[20] John Håkansson, Paul Pettersson, Partial order reduction for verification of real-time components, in: Jean-François Raskin, P.S. Thiagarajan (Eds.),

FORMATS, in: Lecture Notes in Computer Science, vol. 4763, Springer, 2007, pp. 211–226.
[21] C. Hewitt, Description and theoretical analysis (using schemata) of PLANNER: a language for proving theorems and manipulating models in a robot,

MIT Artificial Intelligence Technical Report 258, Department of Computer Science, MIT, April 1972.
[22] Oscar H. Ibarra, Jianwen Su, Generalizing the discrete timed automaton, in: Sheng Yu, Andrei Paun (Eds.), CIAA, in: Lecture Notes in Computer Science,

vol. 2088, Springer, 2000, pp. 157–169.
[23] Mohammad-Javad Izadi, An actor based model for modeling and verification of real-time systems, Master’s thesis, University of Tehran, School of

Electrical and Computer Engineering, Iran, 2010.
[24] Mohammad Mahdi Jaghoori, Frank S. de Boer, Tom Chothia, Marjan Sirjani, Schedulability of asynchronous real-time concurrent objects, J. Log. Algebr.

Program. 78 (5) (2009) 402–416.
[25] Mohammad Mahdi Jaghoori, Frank S. de Boer, Marjan Sirjani, Task scheduling in Rebeca, in: The 19th Nordic Workshop on Programming Theory, Oslo,

Norway, October 10–12, 2007, pp. 16–18.
[26] Mohammad Mahdi Jaghoori, Ali Movaghar, Marjan Sirjani, Modere: the model-checking engine of Rebeca, in: Hisham Haddad (Ed.), SAC, ACM, 2006,

pp. 1810–1815.
[27] Mohammad Mahdi Jaghoori, Marjan Sirjani, Mohammad Reza Mousavi, Ehsan Khamespanah, Ali Movaghar, Symmetry and partial order reduction

techniques in model checking Rebeca, Acta Inform. 47 (1) (2010) 33–66.
[28] Ehsan Khamespanah, Zeynab Sabahi-Kaviani, Ramtin Khosravi, Marjan Sirjani, Mohammad-Javad Izadi, Timed-Rebeca schedulability and deadlock-

freedom analysis using floating-time transition system, in: Gul A. Agha, Rafael H. Bordini, Assaf Marron, Alessandro Ricci (Eds.), AGERE!@SPLASH, ACM,
2012, pp. 23–34.

[29] Ron Koymans, Specifying real-time properties with metric temporal logic, Real-Time Syst. 2 (4) (1990) 255–299.
[30] Haukur Kristinsson, Event-based analysis of real-time actor models, Master’s thesis, Reykjavik University, School of Computer Science, Iceland, 2012,

http://rebeca.cs.ru.is/files/MasterThesisHaukurKristinsson2012.pdf.
[31] Haukur Kristinsson, Ali Jafari, Ehsan Khamespanah, Brynjar Magnusson, Marjan Sirjani, Analysing Timed Rebeca using McErlang, in: Nadeem Jamali,

Alessandro Ricci, Gera Weiss, Akinori Yonezawa (Eds.), AGERE!@SPLASH, ACM, 2013, pp. 25–36.
[32] Leslie Lamport, Specifying Systems, the TLA+ Language and Tools for Hardware and Software Engineers, Addison–Wesley, 2002.
[33] Leslie Lamport, Real-time model checking is really simple, in: Dominique Borrione, Wolfgang J. Paul (Eds.), CHARME, in: Lecture Notes in Computer

Science, vol. 3725, Springer, 2005, pp. 162–175.
[34] Leslie Lamport, John Matthews, Mark R. Tuttle, Yuan Yu, Specifying and verifying systems with TLA+, in: Gilles Muller, Eric Jul (Eds.), ACM SIGOPS

European Workshop, ACM, 2002, pp. 45–48.
[35] Kim Guldstrand Larsen, Paul Pettersson, Wang Yi, Diagnostic model-checking for real-time systems, in: Rajeev Alur, Thomas A. Henzinger, Eduardo D.

Sontag (Eds.), Hybrid Systems III: Verification and Control. Proceedings of the DIMACS/SYCON Workshop, October 22–25, 1995, Ruttgers University,
New Brunswick, NJ, USA, in: Lecture Notes in Computer Science, vol. 1066, Springer, 1996, pp. 575–586.

[36] Daniela Lepri, Erika Ábrahám, Peter Csaba Ölveczky, Timed CTL model checking in Real-Time Maude, in: Franciso Durán (Ed.), WRLA, in: Lecture Notes
in Computer Science, vol. 7571, Springer, 2012, pp. 182–200.

[37] Magnus Lindahl, Paul Pettersson, Wang Yi, Formal design and analysis of a gear controller, Int. J. Softw. Tools Technol. Transf. 3 (3) (2001) 353–368.
[38] Lauren Linderman, Kirill Mechitov, Billie F. Spencer, TinyOS-based real-time wireless data acquisition framework for structural health monitoring and

control, in: Structural Control and Health Monitoring, 2012.
[39] Brynjar Magnusson, Simulation-based analysis of Timed Rebeca using TeProp and SQL, Master’s thesis, Reykjavik University, School of Computer Sci-

ence, Iceland, 2012, http://rebeca.cs.ru.is/files/MasterThesisBrynjarMagnusson2012.pdf.
[40] Zohar Manna, Amir Pnueli, The Temporal Logic of Reactive and Concurrent Systems – Specification, Springer, 1992.
[41] Marius Minea, Partial order reduction for model checking of timed automata, in: Jos C.M. Baeten, Sjouke Mauw (Eds.), CONCUR, in: Lecture Notes in

Computer Science, vol. 1664, Springer, 1999, pp. 431–446.
[42] Peter Csaba Ölveczky, José Meseguer, Real-Time Maude: a tool for simulating and analyzing real-time and hybrid systems, Electron. Notes Theor.

Comput. Sci. 36 (2000) 361–382.
[43] Peter Csaba Ölveczky, José Meseguer, Specification of real-time and hybrid systems in rewriting logic, Theor. Comput. Sci. 285 (2) (2002) 359–405.
[44] Peter Csaba Ölveczky, José Meseguer, Specification and analysis of real-time systems using Real-Time Maude, in: Michel Wermelinger, Tiziana Margaria

(Eds.), FASE, in: Lecture Notes in Computer Science, vol. 2984, Springer, 2004, pp. 354–358.
[45] Peter Csaba Ölveczky, José Meseguer, Real-Time Maude 2.1, Electron. Notes Theor. Comput. Sci. 117 (2005) 285–314.
[46] Peter Csaba Ölveczky, José Meseguer, Semantics and pragmatics of Real-Time Maude, High.-Order Symb. Comput. 20 (1–2) (2007) 161–196.
[47] Niloofar Razavi, Razieh Behjati, Hamideh Sabouri, Ehsan Khamespanah, Amin Shali, Marjan Sirjani, Sysfier: actor-based formal verification of systemC,

ACM Trans. Embed. Comput. Syst. 10 (2) (2010) 19.
[48] Shangping Ren, Gul Agha, RTsynchronizer: language support for real-time specifications in distributed systems, in: Richard Gerber, Thomas J. Marlowe

(Eds.), Workshop on Languages, Compilers, & Tools for Real-Time Systems, ACM, 1995, pp. 50–59.
[49] Arni Hermann Reynisson, Marjan Sirjani, Luca Aceto, Matteo Cimini, Ali Jafari, Anna Ingólfsdóttir, Steinar Hugi Sigurdarson, Modelling and simulation

of asynchronous real-time systems using Timed Rebeca, Sci. Comput. Program. 89 (2014) 41–68, http://dx.doi.org/10.1016/j.scico.2014.01.008.
[50] Zeynab Sabahi-Kaviani, Ramtin Khosravi, Marjan Sirjani, Peter Csaba Ölveczky, Ehsan Khamespanah, Formal semantics and analysis of Timed Rebeca in

Real-Time Maude, in: Cyrille Artho, Peter Csaba Ölveczky (Eds.), FTSCS, in: Commun. Comput. Inf. Sci., vol. 419, Springer, 2013, pp. 178–194.

http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F636F6E6375722F42656E677473736F6E4A4C593938s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F636F6E6375722F42656E677473736F6E4A4C593938s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F6879627269642F42656E677473736F6E4C4C50593935s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F6879627269642F42656E677473736F6E4C4C50593935s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F6879627269642F42656E677473736F6E4C4C50593935s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F6879627269642F42656E677473736F6E4C4C50593935s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F6361762F426F7A6761444D4F54593938s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F6361762F426F7A6761444D4F54593938s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F636861726D652F426F7A67614D543939s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F636861726D652F426F7A67614D543939s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F636861726D652F426F7A67614D543939s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F7463732F436C6176656C44454C4D4D513032s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F7463732F436C6176656C44454C4D4D513032s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F727473732F44617773593935s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F666F7274652F4561726C65463132s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F666F7274652F4561726C65463132s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F696366702F467265646C756E64533037s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F696366702F467265646C756E64533037s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F666F726D6174732F48616B616E73736F6E503037s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F666F726D6174732F48616B616E73736F6E503037s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib4865776974743732s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib4865776974743732s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F7769612F496261727261533030s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F7769612F496261727261533030s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib497A6164693A5468657369733A32303130s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib497A6164693A5468657369733A32303130s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F6A6C702F4A6167686F6F72694243533039s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F6A6C702F4A6167686F6F72694243533039s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F6E7770742F6D616864693037s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F6E7770742F6D616864693037s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib6D6F64657265s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib6D6F64657265s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F616374612F4A6167686F6F7269534D4B4D3130s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F616374612F4A6167686F6F7269534D4B4D3130s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F73706C61736A2F656873616E3132s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F73706C61736A2F656873616E3132s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F73706C61736A2F656873616E3132s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F7274732F4B6F796D616E733930s1
http://rebeca.cs.ru.is/files/MasterThesisHaukurKristinsson2012.pdf
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F61676572652F4B72697374696E73736F6E4A4B4D533133s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F61676572652F4B72697374696E73736F6E4A4B4D533133s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A626F6F6B732F61772F4C616D706F727432303032s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F636861726D652F4C616D706F72743035s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F636861726D652F4C616D706F72743035s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F7369676F7073452F4C616D706F72744D54593032s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F7369676F7073452F4C616D706F72744D54593032s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F6879627269642F4C617273656E50593935s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F6879627269642F4C617273656E50593935s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F6879627269642F4C617273656E50593935s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F77726C612F4C65707269414F3132s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F77726C612F4C65707269414F3132s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F737474742F4C696E6461686C50593031s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib4D65636869746F7636s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib4D65636869746F7636s1
http://rebeca.cs.ru.is/files/MasterThesisBrynjarMagnusson2012.pdf
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A626F6F6B732F6461676C69622F30303737303333s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F636F6E6375722F4D696E65613939s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F636F6E6375722F4D696E65613939s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F656E7463732F4F6C7665637A6B794D3030s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F656E7463732F4F6C7665637A6B794D3030s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F7463732F4F6C7665637A6B794D3032s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F666173652F4F6C7665637A6B794D3034s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F666173652F4F6C7665637A6B794D3034s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F656E7463732F4F6C7665637A6B794D3035s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F6C6973702F4F6C7665637A6B794D3037s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F746563732F52617A61766942534B53533130s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F746563732F52617A61766942534B53533130s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F6C63747274732F52656E413935s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F6C63747274732F52656E413935s1
http://dx.doi.org/10.1016/j.scico.2014.01.008
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F66747363732F5361626168692D4B617669616E694B534F4B3133s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F66747363732F5361626168692D4B617669616E694B534F4B3133s1

204 E. Khamespanah et al. / Science of Computer Programming 98 (2015) 184–204

[51] Hamideh Sabouri, Marjan Sirjani, Slicing-based reductions for Rebeca, in: Proceedings of FACS 2008, in: ENTCS, 2008.
[52] Steinar Hugi Sigurdarson, Marjan Sirjani, Yngvi Björnsson, Arni Hermann Reynisson, Guided search for deadlocks in actor-based models, in: Corina S.

Pasareanu, Gwen Salaün (Eds.), FACS, in: Lecture Notes in Computer Science, vol. 7684, Springer, 2012, pp. 242–259.
[53] Marjan Sirjani, Frank S. de Boer, Ali Movaghar-Rahimabadi, Modular verification of a component-based actor language, J. Univers. Comput. Sci. 11 (10)

(2005) 1695–1717.
[54] Marjan Sirjani, Mohammad Mahdi Jaghoori, Ten years of analyzing actors: Rebeca experience, in: Gul Agha, Olivier Danvy, José Meseguer (Eds.), Formal

Modeling: Actors, Open Systems, Biological Systems, in: Lecture Notes in Computer Science, vol. 7000, Springer, 2011, pp. 20–56.
[55] Marjan Sirjani, Ali Movaghar, Amin Shali, Frank S. de Boer, Modeling and verification of reactive systems using Rebeca, Fundam. Inform. 63 (4) (2004)

385–410.
[56] Wang Yi, CCS + time = an interleaving model for real time systems, in: Javier Leach Albert, Burkhard Monien, Mario Rodríguez-Artalejo (Eds.), ICALP,

in: Lecture Notes in Computer Science, vol. 510, Springer, 1991, pp. 217–228.
[57] Yuan Yu, Panagiotis Manolios, Leslie Lamport, Model checking TLA+ specifications, in: Laurence Pierre, Thomas Kropf (Eds.), Correct Hardware Design

and Verification Methods, Proceedings of the 10th IFIP WG 10.5 Advanced Research Working Conference, CHARME ’99, Bad Herrenalb, Germany,
September 27–29, 1999, in: Lecture Notes in Computer Science, vol. 1703, Springer, 1999, pp. 54–66.

http://refhub.elsevier.com/S0167-6423(14)00315-3/bib7361626F7572692D7369726A616E692D30382D46616373s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F66616373322F5369677572646172736F6E5342523132s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F66616373322F5369677572646172736F6E5342523132s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib6D6F6476657231s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib6D6F6476657231s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F62697274686461792F5369726A616E694A3131s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F62697274686461792F5369726A616E694A3131s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F6675696E2F5369726A616E694D53423034s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A6A6F75726E616C732F6675696E2F5369726A616E694D53423034s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F6963616C702F59693931s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F6963616C702F59693931s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F636861726D652F59754D4C3939s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F636861726D652F59754D4C3939s1
http://refhub.elsevier.com/S0167-6423(14)00315-3/bib44424C503A636F6E662F636861726D652F59754D4C3939s1

	Timed Rebeca schedulability and deadlock freedom analysis using bounded ﬂoating time transition system
	1 Introduction
	2 Background
	3 Floating time transition system of Timed Rebeca
	4 Bounded ﬂoating time transition system of Timed Rebeca
	5 Schedulability and deadlock freedom analysis
	6 Experimental results
	7 Model checking of Timed Rebeca models using UPPAAL
	7.1 Rebec-behavior automaton
	7.2 Rebec-bag automaton
	7.3 After-handler automaton
	7.4 Analysis of network of timed automata

	8 Related work
	9 Conclusion and future work
	Acknowledgements
	References

