
Floating Time Transition System: More Efficient
Analysis of Timed Actors

Ehsan Khamespanah1,2, Marjan Sirjani2, Mahesh Viswanathan3, and Ramtin
Khosravi1

1 School of Electrical and Computer Engineering, University of Tehran - Iran
2 School of Computer Science, Reykjavik University - Iceland

3 Department of Computer Science University of Illinois at Urbana-Champaign -
USA

Abstract. The actor model is a concurrent object-based computational
model in which event-driven and asynchronously communicating actors
are units of concurrency. Actors are widely used in modeling real-time
and distributed systems. Floating-Time Transition System (FTTS) is
proposed as an alternative semantics for timed actors, and schedulabil-
ity and deadlock-freedom analysis techniques have been developed for
it. The absence of shared variables and blocking send or receive, and
the presence of single-threaded actors along with non-preemptive execu-
tion of each message server, ensure that the execution of message servers
do not interfere with each other. The Floating-Time Transition System
semantics exploits this by executing message servers in isolation, and
by relaxing the synchronization of progress of time among actors, and
thereby has fewer states in the transition system. Considering an actor-
based language, we prove a weak bisimulation relation between FTTS
and Timed Transition System, which is generally the standard semantic
framework for discrete-time systems. Thus, the FTTS semantics pre-
serves event-based branching-time properties. Our experimental results
show a significant reduction in the state space for most of the examples
we have studied.
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1 Introduction

The semantics of real-time systems is often defined assuming an ambient global
time that proceeds uniformly for all participants in a distributed system. Even
when individual local clocks are assumed to have skews, these skews are modelled
relative to this ambient global time. For systems where the time domain is taken
to be discrete (i.e., the set of natural numbers), this results in the semantics being
described using a Timed Transition System (TTS). In a timed transition system,
transitions are partitioned into two classes: instantaneous transitions (in which
time does not progress), and time ticks when the global clock is incremented.



These time ticks happen when all participants “agree” for time elapse. Such TTS-
based semantics is standard and has been defined for a variety of formalisms [16,
?,8, 12]. Note that, using TTS is not limited to discrete-time systems. It also has
been used to give semantics for timed languages and formalisms that assume
continuous or dense time domains.

The timed transition system semantics, unfortunately, suffers from the usual
state space explosion problem (in addition to being infinite in many cases). The
transition system contains arbitrary interleavings of independent actions of the
various components of a distributed system, resulting in a large state space. In
the presence of a global clock and timing information this may become even
more acute.

A very different semantics, called Floating Time Transition System (FTTS),
was proposed in [15] for a timed actor-based language called Timed Rebeca [22].
Timed Rebeca has been used in a number of applications. Examples of such case
studies include analysis of routing algorithms and scheduling policies in NoC
(Network on Chip) designs [25, 24]; schedulability analysis of distributed real-
time sensor network applications [19], more specifically a real-time continuous
sensing application for structural health monitoring in [17]; evaluation of dif-
ferent dispatching policies in clouds with priorities and deadlines in Mapreduce
clusters, based on the work in [10].

Floating Time Transition Systems (FTTS) define a semantics where actors in
a distributed system proceed at their own rates with local clocks widely apart, in-
stead of moving in a lock step fashion with the global time as in TTS. Recall that
in the Actor model [3] of computation, actors encapsulate the concept of concur-
rent behavior. Each actor provides services that can be requested by other actors
by sending messages to the provider. Messages are put in the message buffer of
the receiver; the receiver takes the message and executes the requested service,
possibly sending messages to some other actors. In FTTS semantics, each tran-
sition is the complete execution of a message server of an actor (which contains
both timed and untimed statements), without any interleaving with the steps
of other actors. Since actors execute a message to completion in this semantics,
actors may have different local times in states of FTTS, as their local times are
increased by timed statements of message servers. Relaxing the synchronization
of progress of time among actors in FTTS can significantly reduce the size of the
state space as it avoids many of the interleavings present in the TTS semantics.

The main contribution of this paper is the establishment of the bisimularity
of the TTS and FTTS semantics for Timed Rebeca. Moreover, since the starting
time of the execution of actions is also preserved, we can prove the preservation of
any timed property of actions that is bisimulation invariant. Examples of such
properties include µ-calculus with weak modalities. Such a logic preservation
result is stronger than previous results about this and other reduction techniques,
which only establish the preservation of “reachability”-type properties. In [15],
we showed that FTTS preserves assertion-based properties like schedulability
and deadlock avoidance. Similarly, many other works on reduction techniques for
asynchronous systems papers like [7, 11, 18] consider assertion-based properties.



For timed systems, the norm is to show that there is a timed weak bisimula-
tion relation between two timed transition systems to prove that they preserve
the same set of timed branching-time properties (e.g. TCTL). Proving the ex-
istence of such a relation is impossible when one of the transition systems does
not have progress-of-time transitions which is the case of relation between TTS
and FTTS. In this paper, we proved that the actions and the execution time
of the actions are preserved in FTTS using an innovative approach for defining
relation between the states of a TTS and its corresponding FTTS.

Our bisimulation proof relies on observing that the FTTS semantics exploits
key features of the actor model of computation. In such a model there is no shared
memory, and sends and receives are non-blocking. Moreover, actors are single-
threaded, with message servers being executed non-preemptively. This means
that message servers can be executed in an isolated fashion, as is carried out in
FTTS, without compromising the semantics of the model. Since our correctness
proof of FTTS relies only on certain features of the actor model (rather than
something specific to timed Rebeca), it suggests that FTTSs can be used in
the analysis of other actor models and languages, and more generally, in other
asynchronous event-based models.

We present experimental results that demonstrate the savings obtained from
using FTTS. We have developed a toolset for generating the state space of
a given Timed Rebeca model based on both the TTS and FTTS semantics
that is accessible through the Rebeca homepage [1]. We show that using the
FTTS semantics results in a smaller state space, fewer transitions, and less model
checking time when compared with the TTS semantics (Section 4). In some case
studies, using FTTS results in a state space which is 10 times smaller than its
observational equivalent state space in TTS semantics.

2 Background

2.1 Timed Rebeca

Timed Rebeca is an extension of Rebeca [26] with time-related features for mod-
eling and verification of time-critical systems. We describe Timed Rebeca lan-
guage constructs using a simple ticket service example (see Figure 1).

Each Timed Rebeca model consists of a number of reactive classes, each de-
scribing the type of a certain number of actors (called rebecs in Timed Rebeca).
In this example (Figure 1), we have three reactive classes TicketService, Agent,
and Customer. Each reactive class declares a set of state variables which define
the local state of the rebecs of that class (like issueDelay of TicketService

which defines the time needed to issue a ticket). Following the actor model, the
communication in the model takes place by rebecs sending asynchronous mes-
sages to each other. Each rebec has a set of known rebecs to which it can send
messages. For example, a rebec of type TicketService knows a rebec of type
Agent (line 2), to which it can send messages (line 12). Reactive classes declare
the messages to which they can respond. The way a rebec responds to a message



is specified in a message server. A rebec can change its state variables through
assignment statements (line 13), make decisions through conditional statements
(not appearing in our example), and communicate with other rebecs by sending
messages (line 12). Iterative behavior is modeled by rebecs sending messages to
themselves (line 38). Since the communication is asynchronous, each rebec has
a message bag from which it takes the next incoming message. A rebec takes the
first message from its bag, executes the corresponding message server atomically,
and then takes the next message (or waits for the next message to arrive) and
so on.

1 reactiveclass TicketService {

2 knownrebecs {Agent a;}

3 statevars {

4 int issueDelay, nextId;

5 }

6 msgsrv initial(int myDelay) {

7 issueDelay = myDelay;

8 nextId = 0;

9 }

10 msgsrv requestTicket() {

11 delay(issueDelay);

12 a.ticketIssued(nextId);

13 nextId = nextId + 1;

14 }

15 }

16 reactiveclass Agent {

17 knownrebecs {

18 TicketService ts;

19 Customer c;

20 }

21 msgsrv requestTicket() {

22 ts.requestTicket()

23 deadline(5);

24 }

25 msgsrv ticketIssued(int id) {

26 c.ticketIssued(id);

27 }

28 }

29 reactiveclass Customer {

30 knownrebecs {Agent a;}

31 msgsrv initial() {

32 self.try();

33 }

34 msgsrv try() {

35 a.requestTicket();

36 }

37 msgsrv ticketIssued(int id) {

38 self.try() after(30);

39 }

40 }

41
42 main {

43 Agent a(ts, c):();

44 TicketService ts(a):(3);

45 Customer c(a):();

46 }

Fig. 1. The Timed Rebeca model of ticket service system.

Timed Rebeca allows nondeterministic assignment to model nondetermin-
istic behavior of message servers. In this paper we consider the fragment of
language without such nondeterministic assignment. Thus, message servers in
this paper specify deterministic behavior. Note, however, that even the Timed
Rebeca language considered in this paper exhibits nondeterminism that results
from the interleaving of the executions of different rebecs due to concurrency;
more details follow in the section defining the semantics.



Finally, the main block is used to instantiate the rebecs in the system. In our
example (lines 43-45), three rebecs are created receiving their known rebecs and
the arguments to their inital message servers upon instantiation.

In a Timed Rebeca model, although there is a notion of global time, each
rebec has its own local clock. The local clocks can be considered as synchronized
distributed clocks. Though methods (message servers) are executed atomically,
passing of time while executing a method can still be modeled. In addition,
instead of a queue for messages, there is a bag of messages for each rebec, ordering
its messages based on their arrival time.

Timed Rebeca adds three primitives to Rebeca to address timing issues: de-
lay, deadline and after. A delay statement models the passing of time for a rebec
during execution of a message server (line 11). Note that all other statements
are assumed to execute instantaneously. The keywords after and deadline can
be used in conjunction with a method call. The term after n indicates that it
takes n units of time (based on the local time of the sender) for the message to
be delivered to its receiver. For example, the periodic task of requesting a new
ticket is modeled in line 38 by the customer sending a try message to itself and
letting the receiver (itself) take it from its bag only after 30 units of time. The
term deadline n shows that if the message is not taken in n units of time, it will
be purged from the receiver’s bag automatically. For example, line 23 indicates
that a requestTicket message to the ticket service must be started to execute
before five units from sending the message. Note that, the deadline is counted
from the time of the sending of the message.

2.2 Semantics of Timed Rebeca

Prior to the detailed definition of semantics of Timed Rebeca, we formalize the
definition of a rebec and a model in Timed Rebeca. A rebec ri with the unique
identifier i is defined as the tuple (Vi,Mi,Ki) where Vi is the set of its state
variables, Mi is the set of its message servers, and Ki is the set of its known
rebecs. The set of all the values of the state variables of ri is denoted by Valsi.
For a Timed Rebeca modelM, there is a universal set I which contains identifiers
of all the rebecs of M.

A (timed) message is defined as tmsg = ((sid, rid,mid), ar, dl), where rebec
rsid sends the message mmid ∈ Mrid to rebec rrid. This message is delivered to
the rebec rrid at ar ∈ N0 as its arrival time and the message should be served
before dl ∈ N0 as its deadline. For the sake of simplicity, we assume parametrized
messages as different messages (i.e. the value of parameters are in the name of
the message) without loss of generality.Each rebec ri has a message bag Bi which
can be defined as a multiset of timed messages. Bi stores the timed messages
which are sent to ri. The set of possible states of Bi is denoted by Bagsi.

In the following sections, two different semantics for Timed Rebeca models
are defined, called timed transition system and floating time transition system.
FTTS is defined in [15] as the natural semantics of Timed Rebeca but the rela-
tion between TTS and FTTS for Timed Rebeca has not been investigated before.
Timed transition system is generally the standard semantic framework for timed



systems, and we define the formal semantics of Timed Rebeca in TTS in Sec-
tion 2.3. Floating time transition system exploits key features of actor models
to generate smaller transition systems compared to TTS. The absence of shared
variables, and blocking send or receive, and the presence of single threaded ac-
tors along with non-preemptive execution of each message server, ensures that
the execution of a message server does not interfere with the execution of an-
other message server of a different rebec. The floating time transition system
semantics exploits this by executing message servers in isolation, and thereby
having fewer states in the transition system.

2.3 Semantics of Timed Rebeca in Timed Transition System

Timed Transition System of the Timed Rebeca model M is a tuple of TTS =
(S, s0, Act,→) where S is the set of states, s0 is the initial state, Act is the set
of actions, and → is the transition relation.

States. A state s ∈ S consists of the local states of the rebecs, together with
the current time of the state. The local state of rebec ri in state s is defined as
the tuple (Vs,i, Bs,i, pcs,i, ress,i), where

– Vs,i ∈ Valsi is the values of the state variables of ri
– Bs,i ∈ Bagsi is the message bag of ri
– pcs,i ∈ {null} ∪ (Mi × N) is the program counter, tracking the execution of

the current message server (null if ri is idle in s)

– ress,i ∈ N0 is the resuming time, if ri is executing a delay in s

So, state s ∈ S can be defined as
(∏

i∈I (Vs,i, Bs,i, pcs,i, ress,i) , nows
)

where
nows ∈ N is the current time of s.

Initial State. s0 is the initial state of the Timed Rebeca model M where
the state variables of the rebecs are set to their initial values (according to their
types), the initial message is put in the bag of all rebecs having such a message
server (their arrival times are set to zero), the program counters of all rebecs are
set to null, and the resuming time of all rebecs and the time of the state are set
to zero.

Actions. There are three possible types of actions: taking a message tmsg (as
defined in Section 2.2 there is tmsg = ((sid, rid,mid), ar, dl) ), executing a state-
ment by an actor (which we consider as an internal transition τ), and progress of
n ∈ N units of time. Hence, the set of actions isAct =

⋃
i∈I ((I × i×Mi)× N× N)∪

{τ} ∪ N.

Transition Relations. Before defining the transition relation, we introduce the
notation Es,i which denotes the set of enabled messages of rebec ri in state s
which contains the messages whose arrival time is less than or equal to nows.
The transition relation→⊂ S×Act×S is defined such that (s, act, t) ∈→ if and
only if one of the following conditions holds.



1. (Taking a message for execution) In state s, there exists ri such that
pcs,i = null and there exists tmsg ∈ Es,i. Here, we have a transition of the

form s
tmsg−→ t. This transition results in extracting tmsg from the message bag

of ri, setting pct,i to the first statement of the message server corresponding
to tmsg, and setting rest,i to nowt (which is the same as nows). Note that Vt,i
remains the same as Vs,i. These transitions are called taking-event transitions
and ri is called enabled rebec.

2. (Internal action) In state s, there exist ri such that pcs,i 6= null and
ress,i = nows (the value of ress,i does not change during the execution of a
message, except for running a delay statement). The statement of message
server of ri specified by pcs,i is executed and one of the following cases occurs
based on the type of the statement. Here, we have a transition of the form
s
τ→ t.

(a) Non-delay statement: the execution of such a statement may change
the value of a state variable of rebec ri or send a message to another
rebec. Here, pct,i is set to the next statement (or null if there is no more
statements). In this case now(t) and now(s) are the same.

(b) Delay statement with parameter d ∈ N: the execution of a delay state-
ment sets rest,i to nows + d. All other elements of the state remain
unchanged. Particularly, pct,i = pcs,i because the execution of delay
statement is not yet complete. The value of the program counter will be
set to the next statement after completing the execution of delay (as will
be shown in the third case).

These transitions are called internal transitions.

3. (Progress of time) If in state s none of the conditions in cases 1 and 2 hold,
meaning that @ri ·((pcs,i = null∧Es,i 6= ∅)∨(pcs,i 6= null ∧ ress,i = nows)),
the only possible transition is progress of time. In this case, nowt is set
to nows + d where d ∈ N is the minimum value which makes one of the

aforementioned conditions become true. The transition is of the form s
d→ t.

For any rebec ri, if pcs,i 6= null and ress,i = nowt (the current value of pcs,i
points to a delay statement), pct,i is set to the next statement (or to null if
there are no more statements). These transitions are called time transitions.
Note that when such a transition exists, there is no other outgoing transition
from s.

Later, for each state of a TTS we need to find messages which are sent by a
given rebec. Therefore, we define the following function which returns a bag of
messages which are sent by a rebec.

Definition 1 (Sent Messages in TTS). For a given state s ∈ S and re-
bec ri, function sent(s, ri) returns bag of messages which are sent by ri in
state s. In other words, tmsg ∈ sent(s, ri) if and only if for message tmsg =
((sid, rid,mid), ar, dl) there is ∃ rj · tmsg ∈ Bs,j ∧ sid = ri. ut



2.4 Semantics of Timed Rebeca in Floating Timed Transition
System

The notion of floating time transition system (FTTS) as a semantics for Timed
Rebeca has been introduced in [15]. States in floating time transition system
contain the local times of each rebec, in addition to values of their state variables
and the bag of their received messages. However, the local times of rebecs in a
state can be different, and there is no unique value for time in each state. Such
a semantics is reasonable when one is only interested in the order of visible
events. FTTS may not be appropriate for analyses that require reasoning about
all synchronized global states of a Timed Rebeca model. The key features of
Rebeca actors that make FTTS a reasonable semantics are having no shared
variables, no blocking send or receive, single-threaded actors, and atomic (non-
preemptive) execution of each message server which give us an isolated message
server execution. This means that the execution of a message server of a rebec will
not interfere with execution of a message server of another rebec. Therefore, we
can execute all the statements of a given message server (even delay statements)
during a single transition. This makes the transition system significantly smaller,
because there will be only one kind of action, which is taking a message and
executing the corresponding message server entirely.

The operational semantics of a Timed Rebeca modelM is defined as a float-
ing time transition system FTTS = (S′, s′0, Act

′ , ↪→) and is as described below.
In this paper, we use the primed version for letters and notations related to
FTTS except for transitions which are shown by ↪→ (for TTS we use the un-
primed letters).

States. Similar to TTS, a state s ∈ S′ consists of the local states of the rebecs.
However, the current time is kept separately for each rebec, denoted by nows′,i.
We will see shortly, the message servers are executed entirely in one transition;
therefore, there is no need to keep track of the program counter and the resuming
time. So, the state s′ ∈ S′ is defined as s′ =

∏
i∈I (Vs′,i, Bs′,i, nows′,i).

Initial State. s′0 is the initial state of the Timed Rebeca model M where the
state variables of the rebecs are set to their initial values (according to their
types), the initial message is put in the bag of rebecs (their arrival times are
set to zero), and the current times of all the rebecs are set to zero.

Actions. As mentioned before, there is only one kind of action, which is taking
a message and executing the corresponding message server entirely. Therefore,
Act′ =

⋃
i∈I ((I × {i} ×Mi)× N× N) is defined as the set of all the possible

timed messages.

Transition Relations. We first define the notion of release time of a message.
A rebec ri in a state s′ ∈ S′ has a number of timed messages in its bag. The
release time of tmsg = ((sid, rid,mid), ar, dl) ∈ Bs′,i is defined as rttmsg =
max(nows′,i, ar) (Note that ar < nows′,i means that tmsg has arrived at some
time when ri has been busy executing another message server. Hence, tmsg is
ready to be processed at nows′,i). Consequently, the set of enabled messages of



rebec ri in state s′ is Es′,i = {tmsg ∈ Bs′,i|∀tmsg′ ∈ Bs′,i · rttmsg ≤ rttmsg′}
which are the messages with the smallest release time. For a set of enabled
messages Es′,i, enabling time ETs′,i is defined as the release time of members of
Es′,i.

Now we define the transition relation ↪→⊂ S′ ×Act′ × S′ such that for every
pair of states s′, t′ ∈ S′, we have (s′, tmsg, t′) ∈↪→ for every tmsg ∈ Es′,i ∧ (∀j ∈
I · ETs′,i ≤ ETs′,j). All the transitions of FTTS are called taking-event tran-
sitions and as a result of a taking-event transition labeled with tmsg, tmsg is
extracted from the bag of ri, the local time of ri is set to ETs′,i, and all the state-
ments in the message server corresponding to tmsg are executed sequentially.
Here, ri is called enabled rebec. The effect of executing non-delay statements
is changing the state variables of ri and sending some messages to si or other
rebecs. The effect of executing a delay statement with parameter d ∈ N is in-
creasing the local time of ri by d units of time.

We define bag of sent messages in FTTS the same as what we defined in
TTS.

Definition 2 (Sent Messages in FTTS). For a given state s′ ∈ S′ and rebec
ri, function sent(s′, ri) returns bag of messages which are sent by ri in state
s′. In the other words, tmsg ∈ sent(s′, ri) if and only if for message tmsg =
((sid, rid,mid), ar, dl) there is ∃ rj · tmsg ∈ Bs′,j ∧ sid = ri. ut

There is no explicit reset operator for the time in Timed Rebeca, so, progress
of time results in an infinite number of states in the transition systems of both
FTTS and TTS. However, Timed Rebeca models are models of reactive systems
which generally show periodic or recurrent behaviors. Hence, if we ignore the ab-
solute time of the states, usually finite number of untimed traces are generated
for Timed Rebeca models. Based on this fact, in [15] we presented a new notion
for equivalence relation between two states to make the transition systems fi-
nite, called shift equivalence relation. In shift equivalence relation two states are
equivalent if and only if they are the same except for the value of parts which
are related to the time (value of now, arrival times of messages, and deadlines
of messages) and shifting the value of parts which are related to the time in one
state makes it the same as the other one. This way, instead of preserving absolute
value of time, only the relative difference of timing parts of states are preserved.
As discussed in [15], shift equivalence relation makes transition systems of the
majority of Timed Rebeca models finite.

3 An Action-Based Weak Bisimulation Between TTS and
FTTS

As described in Section 2.4, in FTTS representation of a Timed Rebeca model,
all the statements of a message server are executed at once during a single
transition. In contrast, the TTS semantics executes one statement at a time, and
interleaves the execution of different message servers. We demonstrate despite
these differences, these semantics are equivalent in some sense. To this end, we



define an action-based weak bisimulation (observational equivalence) relation
between TTS = (S, s0, Act,→) and FTTS = (S′, s′0, Act

′, ↪→) for a given Timed
Rebeca modelM. Note that in the following text we denote the states of FTTS
as the primed version of the states in TTS.

This definition is valid for Zeno-free Timed Rebeca models. As the model of
time in Timed Rebeca is discrete, the execution of infinite number of message
servers in zero time is the only scenario resulting Zeno behavior. In other words,
execution of infinite number of message servers which make progress in time
goes to the infinity, as the smallest time elapse in Timed Rebeca is one unit.
Therefore, the Zeno behavior happens if and only if there is a cycle of message
servers invocations among different actors without progress of time. This can be
detected by performing a depth-first-search (DFS) in both TTS and FTTS [14].

Prior to the formal definition of the relation between the states of FTTS and
TTS the following definitions and proposition are required to make the relation
easy to understand.

We begin by defining the observable and τ actions in both transitions systems.
All actions in FTTS are observable. In the TTS, only taking-event transitions
are observable. Therefore, time transitions and internal transitions in TTS are
assumed to be τ transitions. In other words, only taking-event actions are ob-
servable in TTS and FTTS. This definition conforms the definition of events and
observer primitives in the actor model which is introduced by Agha et. al. in
[2] as a reference actor framework. Next, we define the notion of a completing
trace for a rebec ri in TTS state s as an execution which results in completing
the execution of the message server of ri that has already commenced in state s.
Note that during a completing trace for ri the other rebecs, may complete their
servers (or not), and may start the execution of new message servers. We begin
by first defining an execution.

Definition 3 (Execution Trace). Execution trace from state s in TTS is a
sequence of transitions from state s to one of its reachable states u, shown by

s
act1→ s1

act2→ · · · actn→ u. ut

Definition 4 (Completing Trace for a Rebec). A given execution trace
from state s to state u in TTS is a completing trace for rebec ri if and only if ri
does not execute any taking-event transition from s to u, pcu,i = null, and there
is no other state in the trace where the program counter of ri is null. Here, we
also define CTs,i as one of the completing traces from s for rebec ri (no matter
which one in the case there are more than one completing traces from s for rebec
ri). In case of pcs,i = null, there is CTs,i = ε as no more action is needed for
completing the execution of a message server of ri in s. ut

Note that, as there is no preemption in the message server execution and there
is no infinite message server body in Timed Rebeca, there is a completing trace
for all the rebecs from all the states.

We define three functions on the completing traces. The first one returns the
value of the state variables of the specific rebec at the last state of the trace (the
rebec that the completing trace is defined for). The second one returns the time



of the last state of the trace. The third one returns the bag of messages that are
sent by the specific rebec during this trace.

Definition 5 (Three Functions on completing traces). Func-
tion statei(CTs,i) returns the values of state variables of ri in the target state
of trace CTs,i. Function nowi(CTs,i) returns the time of the target state of
trace CTs,i. Function senti(CTs,i) returns a bag of messages where tmsg =
((sid, rid,mid), ar, dl) ∈ senti(CTs,i) if and only if tmsg is sent during the exe-
cution of completing trace CTs,i and sid = ri. ut

Based on the isolated execution of rebecs (no shared variables and no pre-
emption of a message server) we can easily conclude that in case of more than
one completing trace for a rebec, any of the completing traces ends in the same
values for state variables, the same state time, and the same bag of sent messages.

Proposition 1 (Completing Traces end in the same final condition).
Assume that there are two different completing traces CT 1

s,i and CT 2
s,i from a

given state s ∈ S and rebec ri. We have senti(CT
1
s,i) = senti(CT

2
s,i), nowi(CT

1
s,i) =

nowi(CT
2
s,i), and statei(CT

1
s,i) = statei(CT

2
s,i).

Proof. As mentioned in the semantics of Timed Rebeca, execution of a message
server is not interfered with the execution of other rebecs because in Timed
Rebeca there is no shared variable or any kind of preemption of execution of
a message server while its executing. In addition, we assumed that there is no
non-deterministic expression in messages servers of rebecs. Therefore, in all the
completing traces from state s, execution of τ transitions which are related to
ri ends in the same values for state variables and bag of sent messages. On the
other hand, as delay statements which are related to the execution of ri are the
same in two different competing traces, the time at the target states of CT 1

s,i

and CT 2
s,i are the same. ut

This proposition is valid when there is no nondeterminism in the body of
message servers. At the beginning of this section we made clear that in this
work we address Timed Rebeca models which do not have nondeterministic
assignments.

Next, we define a projection function for states of TTS and FTTS. Projection
functions extract values of state variables and the collection of messages which
are sent by one rebec from a given TTS or FTTS state. Using these projection
functions, we get uniform views from states of TTS and FTTS which are nec-
essary for the definition of the action-based weak bisimulation relation. To this
aim, as the execution of a message in TTS is completed in several steps, the
projection function in TTS is defined based on completing traces to be able to
have access to the valuation of state variables and bags of sent messages after
completing the execution of currently executing messages.

Definition 6 (Projection Function in TTS). For a given TTS state s ∈ S
and rebec ri, projection function Proj(s, i) returns a collection of statei(CTs,i),
nowi(CTs,i), and sent(s, i)∪senti(CTs,i).Here, CTs,i is one of completing traces
of rebec ri in state s. ut



Definition 7 (Projection Function in FTTS). For a given FTTS state s′ ∈
S′ and rebec ri, projection function Proj(s′, i) returns a collection of the values
of state variables of ri in s′, now(s′, i), and sent(s′, i). ut

Using the above definitions, we define the action-based weak bisimulation
relation among states of TTS and FTTS. Two states in TTS and FTTS are in
the relation if and only if the projection of states to each rebec is the same. This
way, we will prove that two states have the same future behavior in Theorem 1.
Figure 2 shows how states in TTS are mapped to their corresponding states
in FTTS. As the observational behavior of s1 and s′1 are the same (only the
observable action a is enabled), s1 is mapped to s′1 and as the observational
behavior of s2, s3, and s4 are the same as the observational behavior of s′2 (the
observable actions b and c are enabled), they are mapped to s′2.

Fig. 2. How states in TTS are mapped to states of FTTS with the same future behav-
iors.

Definition 8 (Relation among states of TTS and FTTS). Two states
s ∈ S and s′ ∈ S′ are in relation R ⊆ S×S′ if and only if Proj(s, i) = Proj(s′, i)
holds for every rebec ri. ut

Directly from the definition of relation R it is concluded that the bag of
enabled taking-event messages in s and s′ are the same.

Proposition 2 (Relation R preserves enabled messages). Two states s ∈
S and s′ ∈ S′ which are in relation R and Es,i 6= ∅, have the same bag of enabled
messages and the enabled messages have the same enabling time.

Proof. Assume that for given states s ∈ S and s′ ∈ S′ there is s R s′. Then,
∀ i ∈ I·Proj(s, i) = Proj(s′, i) which results in ∀ i ∈ I·sent(s, i)∪senti(CTs,i) =
sent(s′, i). As a result, there is

⋃
i∈I (sent(s, i) ∪ senti(CTs,i)) =

⋃
i∈I (sent(s′, i))



which implies that
⋃
i∈I (Bs,i) ∪

⋃
i∈I senti(CTs,i) =

⋃
i∈I (Bs′,i). As the mes-

sages in
⋃
i∈I senti(CTs,i) will be send in the future, none of the enabled mes-

sages in s are in
⋃
i∈I senti(CTs,i). Therefore, enabled messages in

⋃
i∈I (Bs′,i)

are in
⋃
i∈I (Bs,i).

On the other hand, based on the definition of enabled messages in TTS, en-
abled rebecs are not busy with the execution of messages in s. So, their complet-
ing trace are empty trace. Assume that ri is one of the enabled rebecs of s. Having
CTs,i = ∅ results in nowi(CTs,i) = now(s). Therefore, as Proj(s, i) = Proj(s′, i)
there is now(s′, i) = nowi(CTs,i) = now(s). So, for enabled rebecs in s, their
local times in s′ is the same as the time of state s.

Finally, as in s and s′ there are the same messages in the bag of enabled
rebecs and their times are the same, based on the definition of enabled rebecs in
Section 2.2, s and s′ have the same bag of enabled rebecs. This property holds
for both conditions one and two. ut

Having the same enabled messages (messages with the same signature and
the same execution time) in two given states s ∈ S and s′ ∈ S′ where s R s′, we
are able to prove that s and s′ have the same future behavior. To this aim, we
have to prove that R is an action-based weak bisimulation relation.

Definition 9 (Action-based weak bisimulation relation). A relation P
over two transition systems TS1 = (S1, s10 , Act1,→1) and TS2 = (S2, s20 , Act2,→2

) where TS2 is τ -free transition system, is an action-based weak bisimulation re-
lation if the following conditions hold for states of TS1 and TS2.

1. ∀s1, t1 ∈ S1 and s2 ∈ S2 where s1 P s2, in case of s1
α→1 t1 where α ∈ Act1

then ∃ t2 ∈ S2 such that s2
α→2 t2 and t1 P t2 and in case of s1

τ→1 t1 there
is t1 P s2.

2. ∀s2, t2 ∈ S2 and s1 ∈ S1 where s1 P s2, for a message α ∈ Act2 such that
s2

α→2 t2 then ∃ s′, s′′, . . . , s(k), t1 ∈ S1 (for k ≥ 0) such that s1
τ→1 s

′ τ→1

s′′
τ→1 · · ·

α→1 t1 and t1 P t2. ut

Theorem 1. The relation R is an action-based weak bisimulation relation be-
tween states of TTS and FTTS.

Proof. It is presented in Appendix A.

We discussed in Section 2.4 that in actor systems we are interested in re-
lation among actions of systems and the time where they are triggered (mes-
sages are taken from bags). So, we have to find the most expressive action-based
logic which is preserved in action-based weak bisimulation relation. As men-
tioned in [27], weak bisimulation relation preserves properties in form of modal
µ-calculus with weak modalities. Weak-bisimulation relation does not preserve
complete modal µ-calculus. Weak modal µ-calculus has the same syntax as modal
µ-calculus, where we assume that the diamond (〈a〉ϕ) and box ([a]ϕ) modali-
ties are restricted to observable transitions, i.e., action a must be a taking-event
transition. The semantics of this logic is identical to that of µ-calculus, except
for the semantics of the diamond and box operators — a state s satisfies 〈a〉ϕ



if there is an execution starting from state s to t, such that a is the only visible
action, and t satisfies (inductively) ϕ. The semantics of box is defined dually.

Corollary 1. Transition systems of Timed Rebeca models in TTS and FTTS
are equivalent with respect to all formulas that can be expressed in modal µ-
calculus with weak modalities where the actions are taking messages from bags.
ut

4 Experimental Results

We developed a toolset for the model checking of Timed Rebeca models based on
the semantics of both FTTS and TTS, as a part of the Afra project 4. The cur-
rent version of the model checking toolset supports schedulability and deadlock-
freedom analysis and assertion based verification of Timed Rebeca models. The
Timed Rebeca code of the case studies and the model checking toolset are acces-
sible from Rebeca homepage [1]. We provide four case studies of different sizes
to illustrate the reduction in state space size, number of transitions, and time
consumption of model checking using FTTS in comparison with TTS. The host
computer of model checking toolset was a desktop computer with 1 CPU (2
cores) and 6GB of RAM storage, running Microsoft Windows 7 as the operating
system. The selected case studies are the models of a Wireless Sensor and Actu-
ator Networks (WSAN), the simplified version of Scheduler of Hadoop, a Ticket
Service system, and simplified version of 802.11 Wireless Protocol.

The details of the Ticket Service case study is explained in Section 2.1.
Catching the deadline of issuing the ticket is the main property of this model. We
created different sizes of ticket service model by varying the number of customers,
which results in four to ten rebecs in the model. In the case of the simplified
version of 802.11 Wireless Protocol, we modeled three wireless nodes which are
communicating via a medium. The medium sets random back-off time when
more than one node starts to send data, to resolve data collision in the medium.
Deadlock avoidance is the main property of this model. In the third case study,
a WSAN is modeled as a collection of actors for sensing, radio communication,
data processing, and actuation. Schedulability of the model is verified as the main
property of this model. Finally, we modeled a simplified version of the behavior
of MapReduce of Hadoop system, called YARN. We modeled one client which
submits jobs to YARN resource manager. The resource manager distributes the
submitted job among application masters and application masters split the job
into some tasks and distribute tasks among some nodes. This model has 32
rebecs and is model checked to meet deadline of jobs.

Using FTTS results in significant reduction in the size of the state space
for the majority of timed actor models. As shown in Table 1, in Yarn model
we have about 90% of reduction. The reason is many delay statements in the
message servers of Yarn model which results in splitting the execution of message

4 The latest version of the toolset (version 2.5.0) is accessible from http://www.

rebeca-lang.org/wiki/pmwiki.php/Tools/RMC



servers in TTS. Interleaving of the execution of these parts results in larger state
spaces in TTS. The same argument is valid to support results of Ticket Service
and WSAN. In the case of WSAN, in each row, the size (the numbers which
are separated by comma) is a combination of the sampling rate, the number
of nodes, the packet size, and the sensor task delay of the model, respectively.
As the complexity of these examples are less than Yarn model, the reduction
is about 50%. There are some exceptional models in which the state space size
and the number of transitions in TTS and FTTS are close to each other. The
model of 802.11 prot. is one of them. As there is no delay statement in the
body of the message servers of 802.11 prot., the execution of the message servers
is without progress of time. Therefore, atomic execution of message servers in
FTTS and the rather fine-grain execution of message servers in TTS results in
state spaces with comparable sizes. The effectiveness of FTTS is reduced in this
kind of models. Table 1 also shows that using FTTS reduces the model checking
time consumption (even in case of 802.11 prot.). It is because of the simplicity of
the generated state space in FTTS, using atomic execution of message servers.

Problem Size Using FTTS Using TTS Reduction
states trans time states trans time states trans

Yarn - 1.30K 5.71K < 1 sec 11.03K 61.08K 6 secs 88% 91%

WSAN

33,6,4,2 977 1.5K < 1 sec 1.92K 2.52K < 1 sec 49% 41%
25,5,4,10 1.85K 2.54K < 1 sec 3.72K 4.55K < 1 sec 50% 44%
30,6,4,2 4.75K 5.78K < 1 sec 9.35K 10.46K 2 secs 50% 45%
25,6,4,2 17.02K 20K 5 secs 34.5K 37.85K 24 secs 51% 47%
20,6,4,2 28.19K 32.19K 16 secs 57.62K 62.21K 64 secs 51% 48%

Ticket Service

1 5 6 < 1 sec 8 9 < 1 sec 38% 33%
2 51 77 < 1 sec 77 107 < 1 sec 34% 28%
3 252 418 < 1 sec 360 550 < 1 sec 30% 24%
4 1.29K 2.21K < 1 sec 1.82K 2.89K < 1 sec 30% 24%
5 7.53K 12.8K < 1 sec 10.7K 16.9K < 1 sec 30% 24%
6 51.6K 84.7K 2 secs 73.5K 114K 2 secs 30% 26%
7 408K 650K 18 secs 582K 884K 24 secs 30% 26%

802.11 Prot.
2 1.12K 2.09K 2 secs 1.92K 2.62K 2 secs 10% 4%
3 59K 196K 122 secs 61K 198K 153 secs 3% 1%

Table 1. Number of states and transitions, time consumption, and reduction ratio in
model checking based on floating time transition system and timed transition system.

5 Related Work

Here, we give an overview of the approaches which are used for dealing with
time in some widely used real-time system modeling and verification languages.

Real-Time Maude. Real-Time Maude [20, 21] is a high level declarative
programming language supporting specification of real-time and hybrid systems



in timed rewriting logic. Real-Time Maude supports both discrete and continu-
ous time models. A set of tools are developed for time-bounded analysis of real-
time Maude. Timed rewrite and Timed search build traces of the model from
its initial state and checks whether a specific state is reachable or not. Timed
model checking verifies models against time-bounded TLTL formulas. Recently,
Real-Time Maude is equipped with a model checker for TCTL properties [16].
In [23] we used these facilities for the model checking of Timed Rebeca models
against TCTL formulas. Comparing to FTTS, the mentioned tools are working
on lock step fashion which results in generating timed transition systems of the
Timed Rebeca models. To the best of our knowledge, no reduction technique is
implemented for real-time Maude models to relax lock step fashion. In addition,
timed transition systems of real-time Maude models are generated to the defined
time-bound. In contrary, using shift equivalence relation in FTTS, there is no
need to define time-bound to achieve finite transition system.

Timed Automata. Timed automata [4] model the behavior of timed sys-
tems using a set of automata that is equipped with the set of clock variables.
Although clocks are the system variables, their values can only be checked or
set to zero. The values of all clocks are increased in the same rate or can be
reset to zero while moving from one state to other states. Constraints over
clocks can be added as enabling conditions on both states and transitions. Timed
automata support parallel composition as a convenient approach for modeling
complex systems. As described in [6], parallel composition of timed automata
is based on the handshaking actions. Timed automata support both continuous
and discrete timed models [9, 13]. UPPAAL [8] generates region transition system
of timed automata (symbolic representation of timed transition system of the
timed automata) and apply verification techniques on it. Modeling of real-time
distributed systems with asynchronous message passing between components
using synchronous communication of automata increases the number of states
dramatically (because of many synchronizations among automta for model asyn-
chronous behavior, as shown in [15] in detail). In contrast, using FTTS requires
fewer synchronizations, because messages are executed atomically.

Erlang. Erlang is a dynamically-typed general-purpose programming lan-
guage which was developed in 1986 [5]. The concurrency model of Erlang is based
on the actor model. Fredlund et. al. in [12] proposed a timed extension of McEr-
lang as a model checker of timed Erlang programs. In comparison with FTTS,
McErlang provides fine-grain model checker for Erlang systems which results in
generating timed transition system; however, states in FTTS are coarse-grain
and more abstract than that of McErlang. Experimental results in [15] show
very well the efficiency of FTTS in comparison with the results of the approach
of McErlang.

Partial Order Reduction. The reduction from TTS to FTTS has aspects
that are similar to partial order reduction (POR). In fact the relationship be-
tween POR and FTTS is subtle. FTTS is unaware of any independence relation,
persistence/ample sets for timed actor systems that will result in POR tech-
niques producing FTTS as the reduced transition system. Moreover, not only



is the formal relationship between FTTS and POR nontrivial, POR techniques
for timed systems were empirically compared against the FTTS semantics and
found that the FTTS results in smaller transition systems in [15].

6 Conclusion

In this paper we proved that there is a weak bisimulation relation between timed
transitions system (TTS) – as a standard semantics of discrete time systems –
and floating time transitions system (FTTS) – as a natural semantics for time
actor systems. FTTS was previously introduced in [15] along with an algorithm
for schedulability and deadlock freedom analysis. Proving the weak bisimilarity
of TTS and FTTS, enables one to use FTTS for verification of branching-time
properties in addition to previously proposed analyses. Experimental evidence
supports our theoretical observation that FTTS of Timed Rebeca models are
smaller than TTS in general. In case of models with many concurrently executing
actors, FTTS is up to 90% smaller than TTS. Therefore, we can efficiently
model check more complicated models. In addition, our technique and the proofs
are based on the actor model of computation where the interaction is solely
based on asynchronous message passing between the components. So, they are
generalized enough to be applied to computation models which have message-
driven communication and autonomous objects as units of concurrency such as
agent-based systems.
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C., Ölveczky, P.C. (eds.) Formal Techniques for Safety-Critical Systems - Second



International Workshop, FTSCS 2013, Queenstown, New Zealand, October 29-
30, 2013. Revised Selected Papers. Communications in Computer and Information
Science, vol. 419, pp. 178–194. Springer (2013)

24. Sharifi, Z., Mohammadi, S., Sirjani, M.: Comparison of NoC Routing Algorithms
Using Formal Methods. In: PDPTA (2013)

25. Sharifi, Z., Mosaffa, M., Mohammadi, S., Sirjani, M.: Functional and performance
analysis of network-on-chips using actor-based modeling and formal verification.
ECEASST 66 (2013)

26. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and Verification of
Reactive Systems using Rebeca. Fundam. Inform. 63(4), 385–410 (2004)

27. Sprenger, C.: A verified model checker for the modal µ-calculus in Coq. In: Steffen,
B. (ed.) Tools and Algorithms for Construction and Analysis of Systems, 4th Inter-
national Conference, TACAS ’98, Held as Part of the European Joint Conferences
on the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 -
April 4, 1998, Proceedings. LNCS, vol. 1384, pp. 167–183. Springer (1998)

A Proof of Theorem 1

To prove that the first condition of action-based weak bismulation holds for R,
based on the type of tmsg the following two cases are possible.

– s
tmsg→ t: Based on the definition of relationR, in this case projection function

for all the rebecs in s and t return the same value except for the sender and
receiver of tmsg. For the sender rebec (assume that it is ri) the difference
is in the bag of sent messages, results in sentt,i = sents,i − tmsg. On the
other hand, projection function in s′ and t′ have the same value for all
the rebecs except the sender and receiver of tmsg. For the sender rebec
(assume that it is ri) the difference is in the bag of sent messages, results in
sentt′,i = sents′,i − tmsg.
For the receiver rebec (assume that it is rj), there is a completing trace CTt,j
such that Proj(t, j) returns valuation of state variables of rj from the target
state of CTt,j and messages which are sent by rj in t in union with messages
which are sent during CTt,j . In FTTS state t′, projection function returns
valuation of state variables and the sent messages of rj after the execution of
all the statements of tmsg (i.e. doing transition tmsg in FTTS) which is the
same as what projection function returns in t. Therefore, there is t R t′ as
the results of projection function in t and t′ are the same for all the rebecs.

– s
τ→ t: As transition from s to t is not observable, we have to show that there

is relation R between t and s′. This way, doing a τ transition from s results
in stuttering in s′ as one of the properties of action-based weak bisimulation
relations.
Assume that τ transition belongs to rebec ri. Doing τ transition by ri makes
projection function return the same result in s and t for all the rebecs except
ri. It is because of the fact that only ri has progress which may result in
changing the valuation of its state variables or sending a message to other
rebec. For ri in state s one of the completing traces is a trace which contains
τ transition from s to t as its first transition. Therefore, completing traces of



ri which are started from s and t are ended in the same target state, results
in Proj(s, i) = Proj(t, i). Therefore, result of projection function for all the
rebecs in TTS and FTTS are the same and t is in relation R with s′.

To prove the second condition, as all the transitions in FTTS are taking-event
transitions, tmsg must be taking-event transition. On the other hand, transition
tmsg is enabled in s as we discussed in Proposition 2. Now we can prove that
t and t′ are in relation R with the argument the same as what we did in case

s
tmsg→ t of condition one.

Finally, we have to show that the initial states of the transitions systems
are in relation R. As the program counter of all of the rebecs in s0 is set
to null, the completing traces started from s0 are ε. So, for any given rebec
ri, statei(CTs,i) = state(s, i) = state(s′, i), sent(CTs,i) = ∅ → sent(s0, i) =
sent(s′0, i), and now(CTs,i) = now(s) = now(s′, i) = 0, results in s0 R s′0. ut


