
Jacco: More Efficient Model Checking
Toolset for Java Actor Programs

Arvin Zakeriyan
University of Tehran
a.zakeriyan@ut.ac.ir

Ehsan Khamespanah
University of Tehran, Tehran, Iran
Reykjavik University, Reykjavik,

Iceland
e.khamespanah@ut.ac.ir

Marjan Sirjani
Reykjavik University, Reykjavik,

Iceland
marjan@ru.is

Ramtin Khosravi
University of Tehran, Tehran, Iran

r.khosravi@ut.ac.ir

Abstract
Actors provide concurrent, distributed, and event-driven au-
tonomous objects which communicate asynchronously. Ac-
tor model benefits from higher level of scalability and actor
programs are less error-prone in comparison to programs de-
veloped in other concurrent models. However, it does not
prevent the racing and concurrency errors. So, to guaran-
tee the correctness of mission critical actor programs, ver-
ification techniques like model checking are needed. Previ-
ously, Basset has been developed based on Java PathFinder,
for model checking of Java actor programs. The message
scheduling approach of Basset can cause false negative re-
sults as well as and early state space exploration. In addi-
tion, using Java PathFinder as the back-end model checker
imposes the execution time inefficiencies. To resolve these
issues, we developed Jacco as the direct model checking
toolset for Java actor programs. We provided a new message
scheduling approach and implemented it in Java. To illus-
trate how efficiently Jacco works, Basset and Jacco model
checking results are compared for a number of case studies.
We also used Jacco for the model checking of a real-world
program in robotics systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AGERE@SPLASH, 2015 Pittsburgh, Pennsylvania USA.
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Categories and Subject Descriptors D.2.4 [SOFTWARE
ENGINEERING]: Software/Program Verification - Asser-
tion checkers, Formal methods, Model checking.

General Terms Theory

Keywords Actor Model, Java, Model Checking, Basset

1. Introduction
Actors are distributed, autonomous objects that interact by
asynchronous message passing. The actor model was origi-
nally introduced by Hewitt [13] as an agent-based language
and is later developed by Agha [9] as a mathematical model
of concurrent computation. Actors are seen as universal
primitives of concurrent computation [9]. Each actor pro-
vides a certain number of services which can be requested
by other actors by sending messages to the provider. Mes-
sages are put in the mailbox of the receiver, the receiver takes
a message from the mailbox and executes its corresponding
service, possibly sending messages to some other actors.

The actor model provides higher level of programming
abstraction, prevents low-level data races, and provides a
higher level of scalability. As a result, actor-based programs
are less error-prone in comparison with programs which are
developed based on other concurrency models. These fea-
tures make actor model appropriate for the mission criti-
cal distributed and concurrent programs. A number of pro-
gramming language vendors tried to provide language fea-
tures and libraries for actor-based programming, e.g. Erlang
[3] and Akka [2] as a well-known actor-based programming
language and a Java library for actor-based programming,
respectively. The developed libraries and languages have
been used in many industrial projects, e.g. Twitter’s message
queuing system and Vendetta’s game engine [16].

Actors, as the universal primitives of concurrent compu-
tation of an actor model, prevent low-level data racing be-
cause of data encapsulation; although, the mailboxes of ac-
tors are shared to allow the other actors putting messages
into them. So, racing among actors, as the main difficulty
of the development of concurrent programs, only may occur
in access to the mailboxes. As a result, different orders of
receiving messages may results in malfunctioning or dead-
lock. So, in order to guarantee the correctness of an actor
program, different interleaving of receiving messages in an
actor mailbox must be considered.

With all the benefits of the program testing approach, one
can never guarantee the correctness of a program using test-
ing; since, all of the possible orders of receiving messages
are not considered in testing approaches. It is in contrast
with the correctness requirements of safety-critical systems,
where guarantee on program correctness is needed. Model
checking, as an exhaustive exploration of the system’s states,
is an alternative to achieve guarantee on the correctness of
systems.

Model checking is a formal verification approach aim-
ing to verify correctness of systems with a very high-level
of confidence. The importance of using model checking to
assure reliability of systems has long been acknowledged.
There are a number of toolsets for model checking of actor
programs. Basset [15] as the model checker for Java actor
programs and McErlang [12] as the model checker of Er-
lang programs are two well-known model checking toolsets
of actor programs (Section 2). The major limiting factor in
applying model checking for verification of real-world ac-
tor programs is the required amount of memory and time
for storing and exploring the systems state spaces. Lauter-
burg et.al. in [16] proposed a reduction technique to reduce
the number of explored states; however, it remained huge for
real-world programs (Section 4).

In this paper, we implemented a new toolset for model
checking of Java actor programs called Jacco (Section 3).
In Jacco, we developed a new message scheduling approach
which conforms the message scheduling of Java actor li-
braries like AKKA. We also provided a new approach for
finding the similar states in state spaces, results in speedup
in the model checking. This way, model checking of big-
ger case studies and real-world Java actor applications be-
come possible. To illustrate the applicability of Jacco, we
used Jacco for model checking of a distributed controller of a
robotic system. This system is developed using Robotic Op-
erating System (ROS), a frame-work for developing robotic
systems which provides libraries and a toolset for developing
distributed systems.

2. Model Checking of Actor Programs
Although using actor model makes the development of dis-
tributed systems easier, it presents a significant challenge for
the testing and verification community. It is because of the

fact that actor systems can nondeterministically exhibit ex-
ponentially many different interleaving of serving messages.
This stems from the fact that multiple messages sent to an
actor may be received in different orders, resulting in dif-
ferent configurations; however, usually only few specific in-
terleavings and configurations lead to bugs. Although many
testing approaches are developed to deal with this challenge
[14, 18, 19], none of them guarantee the correctness of actor
programs. In contrast, model checking ensures the program
correctness by exhaustive checking of all of the possible in-
terleavings and configurations. Model checking is a time and
resource consuming process but this correctness guarantee is
needed for mission-critical actor programs.

For Java actor programs, using the currently existing Java
model checking toolsets like [10, 11, 20] is a straight for-
ward solution. Java Path Finder (JPF) [20] is the most well-
known model checking toolset and has been used in many
real-world projects. JPF benefits from a special Java Vir-
tual Machine (JVM) that provides complex control over low
level interactions and also provides high level Java struc-
tures at low level code executions. JPF considers interleav-
ings of Java byte code instructions, results in the finest pos-
sible granularity of interleaving. The main obstacle against
using JPF and other general purpose Java model checking
toolsets for verification of actor programs is the state space
explosion problem. Since actor model provides higher level
of abstraction, low level data races between different actors
can not happen. As a result, there is no need for a fine-grain
interleaving among the statements of the codes.

The other alternative is using direct model checking
toolsets of Java actor programs. To the best of our knowl-
edge, Basset [15] is the only existing model checking toolset
of Java actor programs. Basset has been developed at the top
of JPF, provides model checking facilities for Scala and Ac-
torFoundry actor programs. Different reduction techniques
have been developed to prune generated state space, rely-
ing on the encapsulation of actors for creating state space
in coarser level of granularity. As we will show later, a pes-
simistic assumption in scheduler of Basset and using fine-
grain back-end model checking toolset (JPF) is the main
obstacle against using Basset for real-world case studies.
These two issues increase both the state space size and the
model checking time consumption.

In addition to the Java community, a toolset is developed
for verification of actor programs which are developed by
Erlang, called McErlang [12]. McErlang is a toolset for
verification of Erlang distributed programs which provides
support for a substantial part of the language. McErlang
generates the state space in a fine-grain manner, so it suffers
from state space explosion problem as well.

3. Jacco
In this section, we will show how the new approach for
model checking of Java actor programs is implemented and

how it improves the currently existing approaches. As men-
tioned in Section 2, Basset is the only toolset for model
checking of Java actor programs. Basset currently provides
support for Scala and ActorFoundry and it can be easily ex-
tended to support model checking of other actor libraries
which execute over JVM. Here, prior to the detailed de-
scription of Jacco, we review the details of implementation
of Basset to illustrate why Jacco is needed. Afterwards, we
demonstrate the architecture of Jacco and its components.

3.1 Basset Message Scheduling
The message scheduling algorithm is the heart of model
checking toolsets of actor programs, as scenarios with dif-
ferent interleavings of serving messages are created by mes-
sage schedulers. Basset message scheduler stores all the on
the fly messages (i.e. the messages which are sent but not yet
delivered to their destination actors) in a message cloud. The
message scheduler chooses one of the on the fly messages
from the message cloud nondeterministically and delivers it
to its destination actor. So, there is no assumption on the
order of serving the received messages. Although in actor
model there is no assumption on the ordering of the received
messages, in real-world implementations of actor model it
is a safe assumption to consider message ordering when an
actor sends more than one message to another actor. It is be-
cause of the fact that the currently existing programming lan-
guages and libraries of actor model use TCP protocol to send
messages. Using TCP protocol guarantees that the order of
received data in destination is the same as its sending order.
Based on this fact, actor libraries and languages clarify pre-
serving the message ordering, e.g. for AKKA: “for a given
pair of actors, messages sent directly from the first to the
second will not be received out-of-order” [1]. So, the Basset
scheduling algorithm causes false negative results in some
cases. For example, in Listing 1 a special implementation of
Ping/Pong system is presented where two pong messages are
sent upon receiving a ping message. Using conditional state-
ment of line 15, no ping message is sent upon receiving the
first pong message and the only case of sending ping mes-
sage is by receiving the second pong message. This way, the
behavior of the model is the same as the normal Ping/Pong
system. But, using Basset for analysis of this system results
in a case where there is a queue overflow problem in the
system. As there is no assumption on the execution order of
messages in the message cloud of Basset, message scheduler
maybe delivers the message which is sent by the statement
send(po, "pong", 1) prior to the delivery of its previ-
ously sent message by the statement send(po, "pong",

-1). So, upon receiving the first pong message, a ping mes-
sage is sent and the execution of this ping message results in
sending two other pong messages. So, there is no need for
consuming the second pong message at all to have progress
in the program which results in queue overflow in Pong ac-
tor. However, this case is impossible in the real-world.

Listing 1. An special implementation of Ping/Pong model
with two pongs in ActorFoundry.

1 public class Ping {

2 private Pong po;

3 @message

4 public void ping() {

5 send(po, "pong", -1);

6 send(po, "pong", 1);

7 }

8 }

9 public class Pong {

10 private Ping pi;

11 private int counter = 0;

12 @message

13 public void pong(int value) {

14 counter += value;

15 if (counter >= 0)

16 send(pi, "ping", null);

17 }

18 }

So, in a nutshell, in Basset there is no assumption in the
delivery order of any messages while actor languages and
libraries preserve the order of messages which are sent by
an actor.

On the other hand, Basset is implemented over JPF tool
set which model checks the programs at granularity of in-
struction level. But, this fined-grained level of granularity is
not necessary for actor programs as actors do not have shared
states. To avoid this performance penalty, Basset uses the
macro-step semantics [8, 17] for an actor execution. In the
macro-step semantics, after delivering a message to an ac-
tor, the actor executes its corresponding service atomically
until the next receive point. This way, there is no need for
fine-grain interleaving at instruction level. This approach re-
duces state space size, although, it does not affect time con-
sumption significantly. We proposed an improvement from
this direction, using direct model checking toolset. As Sec-
tion 4 shows, using direct state space generation saves up to
99% of the time consumption.

3.2 Jacco Improvements
In order to consider all the possible interleaving of messages
between actors and at the same time consider the timing or-
der between received messages from an actor, in Jacco a
set of queues are used where each queue contains the mes-
sages which are sent by a specific actor to another actor.
This way, whenever the queue cloud contains more than
one queue which contain deliverable messages, a message
is chosen nondeterministically from the head of its corre-
sponding queue and it is delivered to its destination actor.
Figure 1 illustrates how messages are ordered in case of the
example of Listing 1 in Jacco and Basset. The values -1

and 1 are the parameters that are sent with the messages.
As shown in Figure 1(b), there are four different queues for
storing messages sent by any actor to the other actors. Nota-

tion a->b is used to address the queue of messages which
are sent to actor “b” from actor “a”. In Jacco scheduler,
both send(po, "pong" , -1) and send(po, "pong" ,

1) are placed in one queue since they are sent from the same
actor (Figure 1(b)). Consequently the timing order between
them is preserved and send(po, "pong", -1) is the only
message that can be delivered. However in Basset, no timing
order is preserved and as a result, both messages are ready
to deliver in the next step (Figure 1(a)).

Since actor model provides isolation for actors and actors
do not have shared variables, we use macro-step semantics
for actor verification like Basset. It means that, we do not in-
terrupt the message execution. This assumption is valid since
in Jacco, there is no synchronous communication among ac-
tors.

The other improvement in Jacco is in the way of storing
the states and detecting repeated states. Considering many
actor programs, we observed that in many actor systems,
a number of auxiliary actors are instantiated to do partial
calculations, then they are made garbage. This phenomena
leads to creation of different states which have the same ac-
tors and the states of actors are the same except the actor ids.
In addition, in some cases, there are some states which are
different because of the fact that the order of the creation of
actors is different; however, the states of actors are the same.
In these cases, considering only one of these states satisfies
verification requirements, as the behavior of an actor does
not affected by its id. To this aim, we don’t consider the ac-
tors ids in the state of that actor. It should be noted that we
just don’t consider the id of an actor in it’s own state but
mapping between actor ids and their state are kept to con-
sider different interleaving of actor executions.

3.3 Jacco Architecture and Implementation Issues
In order to directly verify any kind of actor programs with-
out making any changes in their source codes, some modifi-
cation on actor libraries are needed to connect the libraries to
the model checking engine of Jacco. In addition, some fea-
tures which are not related to the behavior of actor programs
(e.g. handling communication between different actors on a
geographically distributed nodes and fail over mechanism)
must be removed. Note that, these modifications have to be
minimized to keep the maintenance of libraries under con-
trol.

In case of Actor Foundry, we decided to perform modifi-
cations in the basic class which contains the actor behavior,
called actor class. The main modification in actor class is
that it must be inherited from Jacco Actor class. In addition,
some minor modifications in the constructors of actor class
are required. Performing modifications on constructors, we
make sure that the instantiated actors are registered in the ac-
tor repository of the Jacco’s model checking engine. Finally,
the send method of basic actor class has to be modified as
the communications between actors must be tracked. The
result library is uploaded in Jacco section in Rebeca home

page 1[5]. The architecture of Jacco from this point of view
is depicted in Package View presentation in Figure 2.

Currently, for the verification of actor programs, Jacco
provides deadlock-freedom analysis and assertions-based
model checking. To this aim, the state space of a program is
created using BFS graph traversal algorithm. To implement
BFS, a mechanism for detecting the repeated states must be
implemented to avoid the creation of infinite state spaces. To
this aim, during exploration of a state space, all the visited
states are kept in a hash table. For a newly generated state,
its hash value is computed; then, the set of all of the states
with the same hash value are created from the hash table,
called set of possibly similar states. To make sure that the
newly generated state is new, its content is compared to all
of the members of the possibly similar states set, consider-
ing the queue content of actors and the value of local fields.
In some cases, the values of some of local fields are not a
part of the state of the actor (their values do not impact ac-
tor actions and do not change during the time). We defined
exclude Java annotation in Jacco API to allow developers
to exclude a field from the state of an actor. For example it
is common to have a universal serial id field in actor defini-
tion, which has the same value in its instances. Developers
can use exclude annotation to remove this field from actor
states to keep them smaller. It should be noted that if a field
is excluded, the developer have to make sure that changing
the value of the excluded field does not impact the state of
the actor.

To reduce the memory consumption, the collapse tech-
nique of JPF is used in Jacco. To this aim, a static hash table
is created to keep all of the local states of actors. Using lin-
ear probing for resolving hash collisions, open addressing
is achieved and a unique hash key is assigned to the local
state of each actor. This way, a system state is a set of pairs,
where each pair is an actor id and the hash key of its state
in the static hash table. Comparing two actor states is a sim-
ple comparison on hash keys of both states, which is less
time consuming compared to the comparison on the actual
content of actors states. Besides, since performing transition
from one system usually does not change the state of the ma-
jority of actors; using collapse technique prevents keeping
redundant data.

4. Experimental Results
4.1 Jacco in Practice
This section presents experimental results of using Jacco for
the analysis of a set of different case studies. The presented
eight different case studies are a number of classic concur-
rent case studies in addition to a selection from the cases
of [15]. The case studies are developed in ActorFoundry, so
they can be model checked in both Jacco and Basset. The
model checking results are presented in Table 1 for different

1 http://www.rebeca-lang.org/wiki/pmwiki.php/Tools/Jacco

ƉŽŶŐ;ͲϭͿ

ƉŽŶŐ;ϭͿ

ƉŽŶŐ;ϭͿƉŽŶŐ;ͲϭͿ

(a) Organization of messages in message cloud of
Basset

ƉŽŶŐ;ͲϭͿ

ƉŽŶŐ;ϭͿ ƉŽͲхƉŽ

ƉŽŶŐ;ϭͿƉŽŶŐ;ͲϭͿ ƉŝͲхƉŽ

ƉŽͲхƉŝ

ƉŝͲхƉŝ

(b) Organization of messages in message cloud of
Jacco

Figure 1. How messages in the example of Listing 1 are organized in Basset and Jacco message clouds (1 and -1 are the
parameters of the message).

Actor

‐ id:String
+ send(message: Message):void

ReactiveSystem

‐ instance : ReactiveSystem
+ getInstance() : ReactiveSystem
+ addActor(actor : Actor) : void

Actor Foundry AKKA StateSpaceGenerator

‐ visitedStates: HashMap
+ createStateSpace() : void

…

Figure 2. Package view representation of Jacco Architecture.

configurations of each case study. The short description of
these cases studies are presented below.

• Fibonacci is the actor based implementation of comput-
ing the nth element in the Fibonacci sequence.

• Dining Philosophers is the actor implementation of the
classic dining philosophers problem, where each philoso-
pher is modeled as an actor.

• Merge sort, pipe sort, and quick sort problems are the
actor based implementation of sorting problems with the
same names.

• Pi is the distributed implementation of computing the
value of π number.

• Shortest Path problem is the distributed implementation
of graph traversal for finding the shortest path from a
vertex to the other vertices.

• Chameneos is the simplified version of the chameneos
game. A chameneos lives alone, eating leaves in the for-
est, and training. When feeling ready for competition,
a chameneos enters a mall, plays game with another

chameneos, possibly mutates (i.e. changing color accord-
ing to the neighbor chamenos), then returns to the forest.
Chameneos game examines a population of chameneos
for the possibility of reaching a state in which all chame-
neos have the same color; therefore, no one can mutate
anymore.

As shown in Table 1, in all of the case studies the size
of the state space and time consumption of Jacco model
checker is far lower than of the Basset’s. In the cases where
the results are not present for Basset, it did not finish suc-
cessfully (i.e. state space explosion). In Fibonacci the gained
improvement is mainly because of the way of finding the re-
peated states which makes the state space very small. In this
case study, for calculating the nth element, two new actors
are created to calculate the values of (n−1)th and (n−2)th
elements. Consequently, for calculating the (n − 1)th ele-
ment, two new actors have to be created to calculate the
(n−2)th and (n−3)th elements and so on. So, almost all the
elements are calculated twice. The implementation of Jacco
for detecting repeated states does not count these two states
as different states and this causes a big reduction in com-

Table 1. Comparing the size of the state space and time consumption in different case studies
experiment Jacco Basset %ReductionCase Study Name configuration # states time # states time

Fibonacci
4th element 43 < 1 sec 434 3 secs 90%
5th element 753 2 secs 115K 7.5 mins 99%
6th element 110K 1.5 min - - -

Dining Philosophers

2 philosophers 22 < 1sec 176 2 secs 87%
3 philosophers 110 < 1sec 5.8K 17 secs 98%
4 philosophers 550 < 1sec 260K 14 mins 99%
5 philosophers 2750 2 sec - - -

Merge Sort
array of size 3 94 < 1sec 655 3 secs 86%
array of size 4 5K 2 secs 25K 1 min 80%
array of size 5 361K 1 min 566K 28 mins 37%

Pi

4 nodes 116 < 1sec 6K 15 secs 98%
5 nodes 320 < 1sec 58K 2 mins 99%
6 nodes 1094 1 sec 712K 32 mins 99%
7 nodes 3K 3 sec - - -

Pipe Sort

array of size 3 81 < 1sec 540 3 secs 85%
array of size 4 744 < 1 sec 6K 18 secs 87%
array of size 5 13K < 1sec 107K 5 mins 88%
array of size 6 361K 2 min - - -

Quick Sort
array of size 3 94 < 1sec 655 3 secs 86%
array of size 4 2K 1 sec 8K 25 secs 75%
array of size 5 361K 1 min 553K 29 mins 33%

Shortest Path
graph with 3 nodes 59 < 1sec 1159 4 secs 95%
graph with 4 nodes 161 < 1sec 10K 23 secs 98%
graph with 5 nodes 855 < 1sec 192K 10 mins 99%

Chameneos
N = 1 382 < 1sec 29K 1 min 98%
N = 2 574 < 1sec 54K 2 mins 99%
N = 3 1146 1 sec 138K 5 mins 99%

parison to Basset. In the cases of dining philosophers and
shortest path the number of active actors are the same in all
of the states and the main reason for gaining reduction is in
the message scheduling approach, described in Section 3.2.

4.2 Towards Real-World Case Studies
In order to illustrate the applicability of Jacco for the real-
world case studies, we used Jacco for verification of dis-
tributed controller of a robotic system. This system is devel-
oped using Robotic Operating System (ROS). ROS provides
a frame-work (including a set of libraries and toolset) for
developing distributed robotic systems [6]. The goal of the
frame-work is to encourage collaborative development by
providing an infrastructure for orchestrating different mod-
ules together to make a system. Many complex and indus-
trial robotic systems have been developed using ROS frame-
work, e.g. Husky [4] robot and Turtlebot [7]. Using ROS,
different components of systems run in an isolated environ-
ment and communications among them take place by asyn-
chronous message passing. There are two types of message
passing in ROS, which are Publisher/Subscriber message
passing style and asynchronous Service call style. In Pub-

lisher/Subscriber style, program developers define some top-
ics and different modules subscribe for the topics. These top-
ics can use TCP or UDP for message transfer but The default
message transport protocol in ROS systems is TCP and since
TCP preserve order of the data, we can be sure that our as-
sumption on preserving order of messages between actors is
served. In Service call style, the communication takes place
by sending a message from one module to another module
and getting a reply. These features make ROS computation
model very close to the actor model. Each processing unit of
a ROS system can be viewed as an actor that performs some
actions.

Based on this similarity, we provided an approach for
transforming ROS elements to ActorFoundry actors to verify
ROS systems. In this transformation, an actor is instantiated
for each node and both types of communication styles in
the ROS code are transformed into message passing among
actors.

Since ROS currently does not support actors and the
ROS systems are developed on Python or C++, we used the
aforementioned approach to transform the control system
of a Quadricopter from Python to ActorFoundry. The trans-

Figure 3. Data flow between nodes in quadricopter con-
troller system.

formed system contains five actors Controller, Transmitter,
Quadricopter, Feedback, and Observer. Each actor in this
implementation is a representative of a computational node
in the original system. Message handlers of the system had
complex codes for calculating control values. Since our pur-
pose was to verify this system against concurrency problems
such as encountering deadlock, we abstracted computation
and replaced them with random value generators. But the
value of variables which are used in communication among
actors remained the same as the original system. This way
the system can be considered in two parts. The first part con-
tains Quadricopter actor as the target device and Transmit-
ter and Feedback as the interfaces of Quadricopter to the
system controller. The second part contains Controller and
Observer.

Controller is the actor that computes direction and other
parameters for moving based on its received information.
Controller sends the commands to the Transmitter. The
Transmitter actor translates the received commands to the
Quadricopter’s commands. Upon receiving a command,
Quadricopter moves to a new position. It has a camera
recorder and some other sensors for measuring the envi-
ronmental metrics. The measured data are sent to Feedback
actor. Feedback actor translates received data to informa-
tion which can be used by Observer. The sent information is
validated by Observer and the required portion of it is sent
to the Controller. This cycle creates the feedback loop of
Quadricopter system. Figure 3 shows the data flow among
different modules of Quadricopter system. We implemented
this system in ActorFoundry and model checked it. Using
Jacco, we verified the correctness of the existing implemen-
tation of the controller against deadlock and queue overflow
properties. It results in a state space with 1,317,597 states
and verified in 80 seconds.

5. Conclusion
In this paper, we presented Jacco as a new toolset for model
checking of Java actor programs. Prior to our work, Basset
has been developed for model checking of Java actor pro-
grams. We showed the message scheduling assumption of
Basset makes it inappropriate for model checking of real-
world Java actor programs; as it does not consider the order
of received messages. This assumption is in contrast with
the property of the existing actor libraries which guarantee
the order of received messages in some conditions. This as-
sumption causes false negative results in model checking of
programs.

In addition, Basset has been developed on the top of Java
Path Finder (JPF) which results in model checking ineffi-
ciencies. Since JPF verifies programs at byte-code instruc-
tion level granularity, the model checking time consumption
is high, although Basset benefits from macro step seman-
tics. To illustrate the applicability of Jacco, we used it for
model checking of the problems which are previously model
checked by Basset. Jacco dominates Basset results in both
time consumption and state space size.

Currently, Jacco supports model checking against safety
properties. As the future work, we are going to develop
LTL and CTL model checking algorithms for Jacco. We
also want to develop new other reduction techniques for
Jacco to make it more suitable for verification of real-world
programs. Besides, we want to verify some other control
systems in robotics domain which are implemented on ROS,
like Husky.

References
[1] Akka Java Documentation. http://akka.io/docs/.

[2] Akka Programming Language Homepage.
http://www.akka.io.

[3] Erlang Programming Language Homepage.
http://www.erlang.org.

[4] Husky Robot Web Page. wiki.ros.org/Robots/Husky.

[5] Rebeca Home Page. http://www.rebeca-lang.org.

[6] ROS Web Page. http://www.ros.org.

[7] Turtlebot Web Page. wiki.ros.org/Robots/Turtlebot.

[8] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A
foundation for actor computation. J. Funct. Program., 7(1):1–
72, 1997.

[9] G. A. Agha. ACTORS - A Model of Concurrent Computation
in Distributed Systems. MIT Press series in artificial intelli-
gence. MIT Press, 1990.

[10] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Pasareanu, Robby, and H. Zheng. Bandera: extracting finite-
state models from java source code. In C. Ghezzi, M. Jazayeri,
and A. L. Wolf, editors, Proceedings of the 22nd International
Conference on on Software Engineering, ICSE 2000, Limerick
Ireland, June 4-11, 2000., pages 439–448. ACM, 2000.

[11] M. d’Amorim and K. Havelund. Event-based runtime verifica-
tion of java programs. ACM SIGSOFT Software Engineering
Notes, 30(4):1–7, 2005.

[12] L. Fredlund and H. Svensson. McErlang: a model checker for
a distributed functional programming language. In R. Hinze
and N. Ramsey, editors, Proceedings of the 12th ACM SIG-
PLAN International Conference on Functional Programming,
ICFP 2007, Freiburg, Germany, October 1-3, 2007, pages
125–136. ACM, 2007.

[13] C. Hewitt. Description and Theoretical Analysis (Using
Schemata) of PLANNER: A Language for Proving Theorems
and Manipulating Models in a Robot. MIT Artificial Intel-
ligence Technical Report 258, Department of Computer Sci-
ence, MIT, Apr. 1972.

[14] J. Hughes. Software testing with QuickCheck. In Z. Horváth,
R. Plasmeijer, and V. Zsók, editors, Central European Func-
tional Programming School - Third Summer School, CEFP
2009, Budapest, Hungary, May 21-23, 2009 and Komárno,
Slovakia, May 25-30, 2009, Revised Selected Lectures, vol-
ume 6299 of Lecture Notes in Computer Science, pages 183–
223. Springer, 2009.

[15] S. Lauterburg, M. Dotta, D. Marinov, and G. A. Agha. A
framework for state-space exploration of java-based actor pro-
grams. In ASE 2009, 24th IEEE/ACM International Con-
ference on Automated Software Engineering, Auckland, New
Zealand, November 16-20, 2009, pages 468–479. IEEE Com-
puter Society, 2009.

[16] S. Lauterburg, R. K. Karmani, D. Marinov, and G. Agha. Eval-
uating ordering heuristics for dynamic partial-order reduction
techniques. In D. S. Rosenblum and G. Taentzer, editors, Fun-
damental Approaches to Software Engineering, 13th Interna-
tional Conference, FASE 2010, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS
2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, vol-
ume 6013 of Lecture Notes in Computer Science, pages 308–
322. Springer, 2010.

[17] K. Sen and G. Agha. Automated systematic testing of open
distributed programs. In L. Baresi and R. Heckel, editors,
Fundamental Approaches to Software Engineering, 9th Inter-
national Conference, FASE 2006, Held as Part of the Joint
European Conferences on Theory and Practice of Software,
ETAPS 2006, Vienna, Austria, March 27-28, 2006, Proceed-
ings, volume 3922 of Lecture Notes in Computer Science,
pages 339–356. Springer, 2006.

[18] S. Tasharofi, R. K. Karmani, S. Lauterburg, A. Legay,
D. Marinov, and G. Agha. TransDPOR: A novel dynamic
partial-order reduction technique for testing actor programs.
In H. Giese and G. Rosu, editors, Formal Techniques for Dis-
tributed Systems - Joint 14th IFIP WG 6.1 International Con-
ference, FMOODS 2012 and 32nd IFIP WG 6.1 International
Conference, FORTE 2012, Stockholm, Sweden, June 13-16,
2012. Proceedings, volume 7273 of Lecture Notes in Com-
puter Science, pages 219–234. Springer, 2012.

[19] S. Tasharofi, M. Pradel, Y. Lin, and R. E. Johnson. Bita:
Coverage-guided, automatic testing of actor programs. In
E. Denney, T. Bultan, and A. Zeller, editors, 2013 28th
IEEE/ACM International Conference on Automated Software

Engineering, ASE 2013, Silicon Valley, CA, USA, November
11-15, 2013, pages 114–124. IEEE, 2013.

[20] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda.
Model checking programs. Autom. Softw. Eng., 10(2):203–
232, 2003.

