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Abstract

Distributed systems exhibit probabilistic and non-deterministic behaviors and may have time constraints.
Probabilistic Timed Rebeca (PTRebeca) is introduced as a timed and probabilistic actor-based language for
modeling distributed real-time systems with asynchronous message passing. The semantics of PTRebeca is a
Timed Markov Decision Process. In this paper, we provide SOS rules for PTRebeca, introduce a new tool-set
and describe the corresponding mappings. The tool-set automatically generates a Markov Automaton from
a PTRebeca model in the form of the input language of the Interactive Markov Chain Analyzer (IMCA).
The IMCA can be used as a back-end model checker for performance analysis of PTRebeca models against
expected reachability and probabilistic reachability properties. Comparing to the existing tool-set, proposed
in the conference paper, we now have the ability of analyzing significantly larger models, and we also can
add different rewards to the model. We show the applicability of our approach and efficiency of our tool by
analyzing a Network on Chip architecture as a real-world case study.

Keywords:
Probabilistic Timed Automata, Timed Markov Decision Process, IMCA model checker, Probabilistic
Timed Rebeca, Model checking, Performance analysis

1. Introduction

Our modern society more and more relies on software systems that are distributed and consist of concur-
rently executing components which communicate asynchronously over networks. Modeling and analyzing
these complex systems is a nontrivial and intricate task. There is thus a need for modeling languages that
match well with computational models of such systems, and are supported by tools for analyzing performance
and dependability aspects of these systems.

A well-established paradigm for modeling the functional behavior of distributed and asynchronous sys-
tems is the actor model. Actor model is introduced by Hewitt as an agent-based language for programming
distributed systems [1], and is later developed by Agha [2, 3, 4] into a concurrent object-based model.
Actors are distributed, autonomous objects that interact via asynchronous message passing. Building on
an event-driven and message-based foundation, actors provide scalability and are easy-to-grasp concurrency
models. With the growth of cloud computing, web services, networks of embedded computers, and multicore
architectures, programming using the actor model has become increasingly relevant.

Popular actor programming languages and frameworks include Erlang [5] and the Scala / Akka family [6].
Many projects in industry, e.g. at Google (like DART) and Microsoft (like Asynchronous Agents Library),
have explored the actor model. Large applications such as Twitter’s message queuing, image processing in
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MS Visual Studio 2010, as well as the Vendetta game engine [7] have been designed on the basis of this
model.

Rebeca [8, 9] is an actor-based modeling language designed to enable formal verification of actor models.
It hence bridges the gap between formal methods and software engineering. Using Rebeca we can deploy a
model-driven development approach with a formal basis. Rebeca is supported by formal verification tools
and techniques which are based on the formal semantics of the language [10]. An extension of Rebeca [11]
has been proposed to provide the ability of modeling and verification of distributed systems with real-time
constraints. In this context, Floating Time Transition System (FTTS) is introduced to significantly reduce
the state space generated when model checking Timed Rebeca (TRebeca) models [12]. Checks for absence
of deadlock freedom and schedulability analysis of TRebeca models can be performed using FTTS.

Since its introduction, TRebeca has been used in different areas. Examples include the analysis of
different routing algorithms and scheduling policies in NoC (Network on Chip) designs [13, 14], as well as
schedulability analysis of distributed real-time sensor network applications [15], more specifically a real-time
continuous sensing application for structural health monitoring in [16]. In analyzing the above mentioned
applications, we observed the need for modeling probabilistic behavior. In an earlier work, pRebeca has
beem proposed as an extension of Rebeca to model probabilistic systems [17]. However, pRebeca does not
support the timing features.

In [18], we proposed Probabilistic Timed Rebeca (PTRebeca) which benefits from and integrates mod-
eling features of TRebeca and pRebeca, combining their respective syntax. This aims at enhancing our
modeling ability in order to cover more properties, so as to support performance evaluation of probabilistic
real-time actors. To keep the consistency, we designed the syntax of PTRebeca as a combination of TRebeca
and pRebeca. Still, as to be expected, existing formal semantics and supporting tools are not directly appli-
cable to PTRebeca. Consequently, Timed Markov Decision Processes (TMDP) are used as the semantics of
PTRebeca, to support timing, probabilistic, and non-deterministic features. TMDP can be regarded as the
discrete-time semantics of probabilistic timed automata (PTA) [19], or as variation of interactive probabilis-
tic chains [20]. For performance evaluation of PTRebeca models we employ probabilistic model checking, for
both functional verification and performance evaluation. The benefits of combining performance evaluation
with functional verification is elaborated upon in [21].

This paper is an extended version of the paper presented at AVoCS conference [18]. In this paper, we
provide Structural Operational Semantics (SOS rules) for the PTRebeca language in the style of Plotkin [22].
The tool developed in [18] uses PRISM [23] as a back-end model checker while in this paper we instead use
the IMCA (Interactive Markov Chain Analyzer) tool [24]. In our conference paper [18], we mapped a
PTRebeca model to a single, flat Markov Decision Process (MDP) module. This approach is consistent
with the semantics of PTRebeca. But as the entire PTRebeca model is mapped into a single MDP module,
the module becomes prohibitively large. As a consequence, the analysis time is very high. To overcome
this problem, we used the explicit engine of PRISM which works with an intermediate transition matrix
representation. This allows us to analyze larger models, but PRISM does not provide full support for this
format. Therefore, we were only able to use it for the analysis of probabilistic reachability properties, but
not for the expected reachability ones.

An alternative way, detailed in the present paper, maps each component (reactive object) in a PTRebeca
model to a Probabilistic Timed Automaton (PTA). Then the parallel composition of PTA (of all components)
represents the behavior of the PTRebeca model. We call this approach the parallel composition approach
and we will show this approach in Section 4.3. In Section 4.3, we will also compare the parallel composition
approach with TMDP semantics. We will demonstrate that the state space generated via the TMDP
semantics (proposed in the conference paper) is much smaller than the state space generated from the
parallel composition approach. So, although this way we can use the full power of PRISM the state space
explosion problem occurs very quickly.

To deal with the restriction of the previous approaches, as explained above, we turned to the IMCA
(Interactive Markov Chain Analyzer) model checker [24], and we used it as the back-end model checker for
the analysis of PTRebeca models. IMCA accepts Markov Automata (MA) [25] and Interactive Markov Chain
(IMC) [26] models. An MA-transition is either labelled with an action (probabilistic transition), or with
a positive real number representing the rate of a negative exponential distribution (Markovian transition).
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An action (probabilistic) transition leads to a discrete probability distribution over states. MA can thus
model action transitions as in labelled transition systems, probabilistic branching, as well as delays that are
governed by exponential distributions [27].

In order to use IMCA as a back-end model checker, we need to convert the TMDP of an underlying
PTRebeca model to its corresponding MA. There are two types of transitions in a TMDP: action (proba-
bilistic) transition, leading to a discrete probability distribution over states, and delay transition, carrying
a positive integer value. Probabilistic transitions in TMDP are mapped directly to probabilistic transitions
in MA. For the transition rate in the MA, the inverse of the integer value of a delay transition in TMDP
is considered as the rate of the corresponding transition in the MA. This conversion is proved to be correct
for checking expectation properties, and not for time-bounded reachability property. Therefore, we can use
our previously developed tools to generate the TMDP of our models automatically. The obtained TMDP is
converted to its Markov Automaton which is then the input to IMCA. Using this approach, we are able to
evaluate the performance of our models against probabilistic reachability, expected reward reachability, and
expected time reachability properties. In Section 5, we mathematically prove that the values of expected
time reachability in TMDP and its corresponding MA are identical.

The main contributions of this paper in comparison with the conference paper are as follows:

� Semantics: We present the SOS semantics of PTRebeca language. This provides a formal presentation
that is approachable for more researchers, and is the reference for any implementation effort.

� Analysis: We use Interactive Markov Chain Analyzer (IMCA) as a back-end model checker for PTRe-
beca, and we use probabilistic model checking algorithms developed for Markov Automata for the
analysis of probabilistic timed properties. We are able to check probabilistic reachability, long-run av-
erage, expected reward reachability, and expected time reachability properties for PTRebeca models.

� Implementation: We use our tool developed in [18] to generate the TMDP of a PTRebeca models
automatically. The generated TMDP is in the form of an XML file. The XML file is converted to the
input language of IMCA.

� Case Study: We present an analysis of a Network on Chip (NoC) architecture to demonstrate the
feasibility of our approach for a real-world case study.

2. Probabilistic Timed Rebeca

In this section, we introduce Probabilistic Timed Rebeca (PTRebeca). We first present Rebeca [8, 9], and
then we show its extension with timing features to build TRebeca [11]. Finally we discuss how probability
and time are added to Rebeca to build PTRebeca, enabling the modeling of probabilistic timed behaviors.
The syntax of PTRebeca is presented in Figure 1. We model a simple ticket service example to explain the
modeling features of PTRebeca.

Rebeca. Rebeca is an actor-based modelling language with formal semantics that is supported by model
checking tools. A Rebeca model consists of the definition of reactive classes and the instantiation part
which is called main. The main part defines instances of reactive classes, called rebecs. The behavior of the
instances of a reactive class is determined by its message servers. The internal state of a reactive class is
represented by the valuation of its state variables.

In Rebeca, computation is event-driven, where messages can be seen as events. Each rebec takes a
message from its message queue and executes the corresponding message server. Execution of a message
server body takes place atomically (non-preemptively). Communication takes place by asynchronous message
passing, which is non-blocking for both sender and receiver. The sender rebec sends a message to the receiver
rebec and continues its work. The message is put in the message queue of the receiver. The message stays
in the queue until the receiver takes and serves it. Although in theory we define no boundary for the queue
length, in the supporting tools we always have a queue length that is defined by the user. The operational
semantics of Rebeca is introduced in [9], to which we refer for more details. The syntax of Rebeca is
represented in Figure 1.

3



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Timed Rebeca. TRebeca was introduced as an extension of the Rebeca language to model real-time reac-
tive systems. Just as with Rebeca, the formal semantics of TRebeca is defined using Structural Operational
Semantics (SOS) [11]. In a TRebeca model, each rebec has its own local time, which can be considered as
synchronized distributed clocks. Methods are executed atomically, but passing of time can be modeled while
executing a method. Instead of a message queue for each rebec, there exists a bag containing sent messages
together with the timing information, which are used to process the message in the intended order in time.
Different timing primitives are added to Rebeca syntax to cover a variety of timing features that a modeler
might need to address in a message-based, asynchronous and distributed setting. These timing primitives
are delay, deadline and after, and are detailed below. The syntax of timing primitives is shown in Figure 1.

Model ::= Class∗ Main

Main ::= main { InstanceDcl∗ }
InstanceDcl ::= className rebecName(〈rebecName〉∗) : (〈literal〉∗);

Class ::= reactiveclass className { KnownRebecs Vars MsgSrv∗ }
KnownRebecs ::= knownrebecs { VarDcl∗ }

Vars ::= statevars { VarDcl∗ }

VarDcl ::= type 〈v〉+;

MsgSrv ::= msgsrv methodName(〈type v〉∗) { Stmt∗ }

Stmt ::= v = e; | v =?(e〈, e〉+); | Call; | if (e) { Stmt∗ } [else { Stmt∗ }]
Call ::= rebecName.methodName(〈e〉∗)

(a) Abstract Syntax of Rebeca

Stmt ::= v = e; | v =?(e〈, e〉+); | Call; | if (e) { Stmt∗ } [else { Stmt∗ }] | delay(v);

Call ::= rebecName.MethodName(〈e〉∗) [after(v)] [deadline(v)]

(b) Changes in the syntax of Rebeca to build TRebeca

Stmt ::= v = e; | v =?(e〈, e〉+); | Call; | if (e) { Stmt∗ } [else { Stmt∗ }] |

delay(v); | v =?(ep : e〈, ep : e〉+);

(c) Changes in the syntax of TRebeca to build PTRebeca

Figure 1: (a) Abstract syntax of Rebeca. Angle brackets 〈...〉 are used as meta parenthesis, superscript + for
repetition at least once, superscript ∗ for repetition zero or more times, whereas using 〈...〉 with repetition denotes
a comma separated list. Brackets [...] indicates that the text within the brackets is optional. The symbol ? shows
non-deterministic choice. Identifiers className, rebecName, methodName, v, literal, and type denote class name,
rebec name, method name, variable, literal, and type, respectively; and e denotes an (arithmetic, boolean or nonde-
termistic choice) expression.
(b) Changes for Timed Rebeca. The timing primitives are added to Stmt and Call statements. The value of variable
v in timing primitives is a natural number.
(c) Changes for Probabilistic Timed Rebeca. The probabilistic assignment is added to Stmt. The expression epi
denotes an expression which returns probability. The symbol ? shows either non-deterministic assignment or proba-
bilistic assignment.

Delay: delay(t) increases the value of the local time of the respective rebec by the amount of t.
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Deadline: r.m() deadline(t), after t units of time the message m of rebec r is not valid any more and is to
be purged from the bag.
After: r.m() after(t), the message cannot be taken from the bag before t time units have passed.

Upon sending a message, it is put in the message bag of the receiver, together with its associated time
tag and deadline tag. The time tag of a message is the value of the local time of the sender when the message
was sent, unless the message is augmented with an after primitive. In this case the value of the argument
of after is added to the value of local time of the sender to build the time tag.

Probabilistic Timed Rebeca. PTRebeca language supports modeling and verification of real-time systems
with probabilistic behaviors. Syntax of PTRebeca is a combination of pRebeca and TRebeca. In Figure 1,
we show the extension made to the syntax of TRebeca to build PTRebeca [18]. In a probabilistic assignment,
a value is assigned to the variable with the specified probability. In the probabilistic assignment, ep1 . . . epn
are real values between 0 and 1, and sum up to 1. Notably, by using probabilistic assignments, the value of
the timing constructs (delay, after, and deadline) can also become probabilistic.

Different probabilistic behaviors can be modeled using PTRebeca language, depending on the system
under study. We present a simple ticket service system in Figure 2 to illustrate how PTRebeca can be
applied. Each entity in the system is mapped to an actor in the PTRebeca model. The ticket service model
includes a customer, a ticket service, and an agent. The customer c sends a ticket request by sending the
message requestTicket() to the agent a (line 39). The agent forwards the request to the ticket service ts

by sending the message requestTicket() (line 24). The message requestTicket() has a deadline which
is set non-deterministically (line 23). The ticket service issues a ticket and replies to the agent request by
sending the message ticketIssued() (line 13). The agent sends the message ticketIssued to the customer
to complete the issuing process (line 27). The customer sends a new request after 10 or 30 units of time
with probabilities of 0.25 or 0.75, respectively (lines 42 and 43).

1 reactiveclass TicketService {

2 knownrebecs {

3 Agent a;

4 }

5 statevars {

6 int issueDelay;

7 }

8 msgsrv initial(int myDelay) {

9 issueDelay = myDelay;

10 }

11 msgsrv requestTicket() {

12 delay(issueDelay);

13 a.ticketIssued(1);

14 }

15 }

16

17 reactiveclass Agent {

18 knownrebecs {

19 TicketService ts;

20 Customer c;

21 }

22 msgsrv requestTicket() {

23 a = ?(4,5);

24 ts.requestTicket() deadline(a);

25 }

26 msgsrv ticketIssued(byte id) {

27 c.ticketIssued(id);

28 }

29 }

30

31 reactiveclass Customer {

32 knownrebecs {

33 Agent a;

34 }

35 msgsrv initial() {

36 self.try();

37 }

38 msgsrv try() {

39 a.requestTicket();

40 }

41 msgsrv ticketIssued(byte id) {

42 b = ?(0.75:30,0.25:10);

43 self.try() after(b);

44 }

45 }

46

47 main {

48 Agent a(ts, c):();

49 TicketService ts(a):(3);

50 Customer c(a):();

51 }

Figure 2: The PTRebeca model of the ticket service system.
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3. Structural Operational Semantics of PTRebeca

We present the TMDP of a PTRebeca model as a tuple (S, s0, Act,→,⇒) where S is a set of states, s0 is
the initial state, Act is a set of actions which consists of τ , signatures of all the messages, and N. The union of
scheduler and msg-fetcher transitions is→ (probabilistic transitions) and the set of time-progress transitions
(delay transitions) is ⇒. Scheduler transitions, msg-fetcher transitions, and time-progress transitions are
defined in the following paragraphs.

In this section we provide an SOS semantics for PTRebeca in the style of Plotkin [22]. The behaviour
of PTRebeca programs is described by means of transition relations that govern the step-by-step evolution
of the system.

The states of the system are tuples (Env,B, T ), where Env is a finite set of environments, B is a bag of
messages and T is a natural number that represents the current time of the system. For each rebec A of the
system, Env contains an environment σA that is a function that maps variables to their values. Basically,
σA is the private store of the rebec A. Environments contain four special-purpose variables: self, which
contains the name of the rebec, pc, which stands for program counter and contains the code that is currently
being executed, rt, which stores the resume time of the rebec, and sender, which stores the name of the
rebec that invoked the method that is currently being executed. Whenever a rebec A of a reactive class O
is created, an environment σA is assumed to be initialized. In particular, the code of each message server m
of O is loaded in σA(m) as a null-terminated list of statements.

The bag contains an unordered collection of messages of the form

(Ai,m(v), Aj , TT,DL).

Intuitively, such a tuple says that at time TT the sender Aj sent the message to the rebec Ai asking it to
execute its method m with actual parameters v. Moreover this message expires at time DL.

We denote by Tmsg the set of all the possible messages. Given a message msg ∈ Tmsg, ar(msg) denotes
the arrival time of the message msg , that is, TT in the tuple above. At each step, the system progresses

thanks to one of three transition relations:
τ→ ,

msg→ with msg ∈ Tmsg, and
n→ with n ∈ N. Any of these

transitions evolves a state (Env,B, T ) into a probability distribution pv that assigns probability values
to states. For readability, we represent pv as a set of mappings, for instance the probability distribution
{(Env,B, T ) 7→ 1} maps the state (Env,B, T ) to probability 1. Whenever more cases need to be specified
for pv, they will be embraced in a large bracket and the mappings involved in the distribution will be
graphically clear. States that are not mentioned in pv are assumed to be mapped to probability 0.

As a convention, whenever we single out an element from a set, as in the sets σA ∪ Env and msg ∪ B,
we will assume that σA 6∈ Env and msg 6∈ B. Moreover, we will use the notation σ[x = e] to denote the
mapping σ where x is redefined in order to map x to e.

The transitions
τ→ ,

msg→ ,
n→ , are formally defined by the following rules.

(scheduler)

σA(pc) = s s 6= null σA(rt) = T

(s, σA[pc = null], Env,B, T )
s−→ pv

({σA} ∪ Env,B, T )
τ→ pv

(msg–fetcher)

σAi (pc) = null TT ≤ T ≤ DL
σ′
Ai

= σAi [pc = σAi (m), σAi (rt) = T, arg = v, sender = Aj ]

msg = {(Ai,m(v), Aj , TT,DL)}

({σAi} ∪ Env,msg ∪ B, T )
msg→ {({σ′

Ai
} ∪ Env,B, T ) 7→ 1}

(time–progress)

(Env,B, T )
τ9 (Env,B, T )

msg9
n1 = minσ∈Env

{
σ(rt)

}
n2 = minmsg∈B

{
ar(msg)

}
T ′ = min{n1, n2} n = T ′ − T

(Env,B, T )
n→{(Env,B, T ′) 7→ 1}

6
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The (scheduler) rule is responsible for picking a rebec and executing its pending statements. This rule
choses a rebec non-deterministically among those for which the program counter still contains statements
to execute (conditions σA(pc) = s and s 6= null). Moreover, a rebec is eligible for being chosen only as long
as its resume time coincides with the current time (condition σA(rt) = T ). Rebecs that have previously
executed a delay statement might have a resume time ahead of the current time and in that case they
would not be chosen. The execution of the statement is performed with the auxiliary transition relation

s→ ,
described later in detail. Such a transition is responsible for the execution of one statements from the list
of statements s, the first one. It is to notice that the program counter is consumed immediately before the
call to statement execution (indeed, the environment σA[pc = null] is passed). However, s might contain
more than one statement and, moreover, statements such as if-then-else might imply the execution of further
statements (one of the branches). As we will see later, these scenarios are taken care by the transition

s−→ .
This transition will be responsible to feed the program counter back with the possible leftover statements
to be executed.

In our semantics, the transition
s→ returns the probability distribution pv for the next state of the

system. The (scheduler) rule simply uses pv for the transition. In order to let the system progress after a
step, we implicitly assume picking a state of pv according to its probability.

The (msg–fetcher) rule allows the system to progress by picking up a message from the bag and initialize
the rebec receiver of the message for the execution of such message. This rule is applicable for a rebec
only as long as this latter is not in the phase of executing any other message (condition σAi(pc) = null).
Moreover, the message can be picked only so long it is not too soon for fetching it nor too late (condition
TT ≤ T ≤ DL). The rule prepare the rebec Ai for the execution of the message m in the following way.

� The method body of m is looked up from the environment of Ai and loaded in the program counter.

� The resume time for Ai is set to the current time of the system, stating that is to be executed
immediately.

� The variable sender is set to the sender of the message.

� In executing the method m, the formal parameters arg are set to the values of the actual parameters
v. Methods of arity k are indeed supposed to have arg1, arg2, . . . , argk as formal parameters. This is
without loss of generality since such a change of variable names can be performed in a pre-processing
step for any program.

The (time–progress) rule is responsible for letting time pass for some units of time. This happens when
the system has no eligible statements of rebecs to execute and no eligible messages that can be picked
from the bag (eligible w.r.t. the conditions of rules (scheduler) and (msg–fetcher), respectively). In such
a scenario, the system lets the time pass for the minumum amount of time necessary to enable the rebec
whose resume time is the closest to the current time (minσ∈Env {σ(rt)}) or to enable the fetch of a message
whose picking time is the closest to the current time (minmsg∈B {ar(msg)}).

Figure 3 shows the SOS rules for the execution of statements in PTRebeca. The transition relation
s−→

defines the execution of statements. The general form of this type of transition is (s, σ, Env,B, T )
s−→ pv,

where s is a list of statements or a single statement1, σ is the local environment where to evaluate statements,
and Env, B, and T are the components of the system state. The step evolves into a probability distribution
pv. Carrying the global bag B is important because new messages may be added to it with the execution
of a statement. The global set of environments Env is also required because new statements create new
rebecs and may therefore add new environments to it. In the semantics, σ is separated from Env and passed
as a parameter for the sake of clarity and also because nearly every rule needs to readily affect it. A few
statements make use of the current time T which is therefore promoted as parameter as well.

1We overload
s−→ for lists of statements in rule (stmts∗). We prefer this presentation rather than splitting

s−→ into two
relations or splitting the scheduler into two parts.
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(msg)
pv = (σ ∪ Env, {(σ(varname),m(eval(v, σ)), σ(self), T + d, T +DL)} ∪ B, T ) 7→ 1

(varname.m(v) after(d) deadline(DL), σ, Env,B, T )
s−→ pv

(delay)
pv = (σ[rt = T + d] ∪ Env,B, T ) 7→ 1

(delay(d), σ, Env,B, T )
s−→ pv

(assign)
pv = (σ[x = eval(e, σ)] ∪ Env,B, T ) 7→ 1

(x = e, σ, Env,B, T )
s−→ pv

(non–det)
pv = (σ[x = eval(ei, σ)] ∪ Env,B, T ) 7→ 1 (with 1 ≤ i ≤ n)

(x =? e1 ⊕ e2 . . .⊕ en, σ, Env,B, T )
s−→ pv

(prob)

pv =


(σ[x = eval(e1, σ)] ∪ Env,B, T ) 7→ p1
(σ[x = eval(e2, σ)] ∪ Env,B, T ) 7→ p2

. . .
(σ[x = eval(en, σ)] ∪ Env,B, T ) 7→ pn

(x =? p1 : e1 ⊕ p2 : e2 . . .⊕ pn : en, σ, Env,B, T )
s−→ pv

(create)

σA = initialEnviroment(O) with A fresh in σ ∪ Env
pv =

(
σ[varname = A] ∪ {σA[self = A, pc = null]} ∪ Env,

{(A, initial(eval(v, σ)), σ(self)), T,+∞)} ∪ B, T
)
7→ 1

(varname = new O(v), σ, Env,B, T )
s−→ pv

(cond1)
eval(e, σ) = true pv = (σ[pc = s1]

⋃
Env,B, T ) 7→ 1

(if (e) then s1 else s2, σ, Env,B, T )
s−→ pv

(cond2)
eval(e, σ) = false pv = (σ[pc = s2]

⋃
Env,B, T ) 7→ 1

(if (e) then s1 else s2, σ, Env,B, T )
s−→ pv

(stmts∗)
(s1, σ, Env,B, T )

τ,n→ pv inject(rest,σ(self ),pv) = pv′

(s1 :: rest, σ, Env,B, T )
s−→ pv′

where the function inject(rest,ref,pv) is defined below:

if pv =


(σ ∪ Env1, B1, T ) 7→ p1
(σ ∪ Env2, B2, T ) 7→ p2

. . .
(σ ∪ Envn, Bn, T ) 7→ pn

where σ(self ) = ref

then inject(rest,ref,pv) =


(σ[pc = σ(pc) :: rest] ∪ Env1, B1, T ) 7→ p1
(σ[pc = σ(pc) :: rest] ∪ Env2, B2, T ) 7→ p2

. . .
(σ[pc = σ(pc) :: rest] ∪ Envn, Bn, T ) 7→ pn

we assume that the append operation :: is such that null :: rest = rest.

Figure 3: SOS rules for the execution of statements of PTRebeca.
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For all rules with the exception of (prob), the result of the step
s−→ first creates a new state that has a

new environment, a new bag and the current time, then this state is injected into a probability distribution
function where it has probability 1. The simple and non-determinstic assignment statements are handled by
rules (assign) and (non–det), respectively, and it is easy to see that they follow the schema just depicted:
their semantics coincides indeed with the standard one, modulo our injection to a probability distribution.

Rule (prob) handles the probabilistic assignment x =? p1 : e1 ⊕ p2 : e2 . . . ⊕ pn : en. In such a case, n
states are created that differ only in the assignment to the variable x for the local environment being used.
These states are injected into a probability distribution pv that maps them to the probabilities p1, p2, . . . ,
pn. The rules for the timing primitives deserve some explanation.

� Rule msg describes the effect of method invocation statements. For the sake of brevity, we limit
ourselves to presenting the rule for method invocation statements that involve both the after and
deadline keywords. The semantics of instances of that statement without those keywords can be
handled as special cases of that rule by setting the argument of after to zero and that of deadline to
+∞, meaning that the message never expires. Method invocation statements put a new message in
the bag, taking care of properly setting its fields. In particular the arrival time for the message is the
current time T plus the number d that is the parameter of the after keyword.

� Delay statements change the resume time of the rebec to T + d, where d is the parameter of the delay
keyword.

The creation of new rebecs is handled by the rule create. Whenever a rebec must be created out of
the reactive class O, we first pick a fresh name A that it is used to identify the newly created rebec. The
name A is assigned to the variable varname of the sender. We assume a function initialEnvironment(O)
that returns a new environment σA that is initialized depending on the specification of the rebec O, i,e.
inspecting the body of the specification reactiveclass O . . .. In particular, the code of each message server
m of O is loaded in σA(m) as a null-terminated list of statements. Ultimately, a message is put in the bag
in order to execute the initial method of the newly created rebec.

The reader should recall that the scheduler sets the program counter to null before executing a state-
ment (passing σA[pc = null] in rule (scheduler)). The statements that we have described so far have no
continuation and simply leave the pc variable set to null.

A conditional statement if (e) then s1 else s2 is different in this respect because after evaluating the
guard e the continuation is either s1 or s2. Rules (cond1) and (cond2) handle the execution of conditional
statements and they take care of setting pc to s1 or s2 according to the evaluation of e.

Another rule that affects the pc variable is (stmts∗). This rule handles the execution of the first statement
of a list. After the first statement has been executed, it might return some continuation statements. We
therefore need to put these latter statements in front, before evaluating the rest of the original list of
statements (rest). However, the execution step

s−→ returns a probability distribution. We therefore use
an auxiliary function in order to inject these statements in all of the possible states of such distribution.
Precisely, the function inject(rest,ref,pv) seeks for the private store of the rebec ref in each of the states of
the distribution pv and queues the statements rest in the program counter of those private stores.

4. Performance Analysis of PTRebeca Models Using PRISM

In [18], we presented the Afra tool-set in order to generate the TMDP corresponding to a PTRebeca
model. The resulting TMDP can be considered as the integral semantics of a probabilistic time automaton
with one digital clock. As shown in [19], probabilistic reachability and expected reachability properties can
be analyzed for PTA with digital clocks. Therefore, we are able to analyze PTRebeca models against these
two important performance measures.

To be able to implement PTA with digital clocks in PRISM, there are some restrictions in [19]. It does
not allow atomic constraints of the form x > c or x < c (closed) or x− y ∼ c (diagonal free), where c ∈ N,
∼∈ {≤,=,≥}, x and y are different clocks. In this way, “digital clocks” engine of PRISM is used, and
PTA modules are defined. In another way, we can consider MDP modules with integer-valued variables
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representing clocks in order to define PTA with digital clocks in PRISM. Using this approach, there is no
need to satisfy the above restrictions. In an MDP module, variables can be compared together without any
limitations.

In [19], the semantics of probabilistic timed automata is defined in terms of timed probabilistic systems,
which show timed, non-deterministic, and probabilistic behaviours. They are a variant of Markov decision
processes [28] and Segala’s probabilistic timed automata [29]. The syntax of probabilistic timed automata
is defined as follows.

Definition 1 (Syntax of PTA). A probabilistic timed automaton is a tuple(L, l̄, χ,
∑
, I, prob) where: L

is a finite set of locations including the initial location l̄; χ is a set of clocks;
∑

is a finite set of events; the
function I : L→ Zones(χ) is the invariant condition; and the finite set prob ⊆ L×Zones(χ)×

∑
×Dist(2χ×

L) is the probabilistic edge relation. �

Let T ∈ {R,N} be the time domain of either the non-negative reals or naturals. A point v ∈ T|χ| is
referred to as a clock valuation. Let 0 ∈ T|χ| be the clock valuation which assigns 0 to all clocks in χ. For
any v ∈ T|χ| and t ∈ T, the clock valuation v ⊕ t denotes the time increment of values in v by t. We use
v[X := 0] to denote the clock valuation obtained from v by resetting all of the clocks in X ∈ χ to 0. Let
Zones(χ) be the set of zones over χ, which are conjunctions of atomic constraints of the form x ∼ c for
x ∈ χ, ∼∈ {≤,=,≥}, and c ∈ N. The clock valuation v satisfies the zone ζ, written v |= ζ, if and only if ζ
resolves to true after substituting each clock x ∈ χ with the corresponding clock value from v. A state of a
probabilistic timed automaton is a pair (l, v) where l ∈ L and v ∈ T|χ| are such that v |= I(l).

4.1. Problem Statement

In this section we discuss two previously investigated approaches for modeling and verification of PTRe-
beca models in PRISM. We need an approach in which two features are preserved: First, the definition of
rewards is possible to be able to verify expected reachability properties. Second, model checking of a large
PTRebca model should take a reasonable amount of time.

Standard PRISM Input Language. In [19], the integral semantics of a probabilistic timed automaton is
implemented in PRISM by using an MDP module and integer-valued variables representing clocks. Similarly,
in [18] the TMDP semantics of a PTRebeca model is implemented in PRISM using one MDP module and an
integer-valued variable for modeling passage of time. The MDP module is defined using the standard input
language of PRISM. We define a specific action called time, and each transition of module corresponding
to passage of time is labeled with this action. Using time action and the ability of assigning rewards to
transitions in PRISM, we can analyze expected-time reachability and time-bounded probabilistic reachability
properties. More generally, expected reachability and probabilistic reachability properties can be verified
for PTRebeca models.

In [18], we examine different case studies with different sizes. When the PTRebeca model is small, like the
ticket service example, the model checking is fast and takes a few seconds. When the model has a medium
size, like the sensor network example, its corresponding MDP module includes many states and transitions
and its analysis takes a few minuets. Obviously, model checking a large case study will take more time. To
support this claim, in Section 6.3 we report the time and memory needed to evaluate different PTRebeca
models with PRISM as the backend model checker. Although this approach supports the definition of
rewards, model checking of large PTRebeca models takes a significant amount of time.

Explicit Engine of PRISM. To tackle the problem mentioned above, instead of using the standard
PRISM input language, we decided to use the possibility of constructing models in PRISM through direct
specification of transition and state matrices. In [18], we used this method for the sensor network case study.
We provided the corresponding MDP in the form of its transition and state matrices and input the matrices
into PRISM for model checking. This method is faster than the previous one, but rewards are not supported
and we can only evaluate probabilistic reachability properties.

To provide faster model checking and support rewards for PTRebeca models, we introduce the parallel
composition approach for PTRebeca models which can be verified using PRISM. In this approach, rewards
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can be defined and so the evaluation of both expected reachability and probabilistic reachability properties
is possible. In the following section, we first introduce the approach and then we have to investigate the
efficiency of our approach for medium-size and large PTRebeca models in terms of the state space size.

4.2. Parallel Composition Approach for Probabilistic Timed Rebeca

Probabilistic timed automata (PTA) is one of the most widely used modeling languages for modeling of
real-time probabilistic systems. It is supported by the Modest toolset [30] and by PRISM. An alternative
approach for performance analysis of a PTRebeca model is a component-wise mapping of the PTRebeca
model to a number of PTA. The parallel composition of these modules (PTAs) represents the PTRebeca
model. We optimized the mapping to achieve the smallest possible state space, similar to what we did for
mapping from Timed Rebeca to timed automata in [12]. In the proposed mapping, each rebec is mapped
into two timed automata, called rebec-behavior automaton and rebec-bag automaton. Additionally, one time
automaton is defined to handle the behavior of after primitive for all rebecs, called after-handler automaton.

The rebec-behavior automaton models the behavior of a rebec according to the statements of its message
servers and valuations of state variables. The state variables of each rebec are mapped into variables of its
corresponding rebec-behavior automaton and its statements are mapped to transitions of the automaton.
The rebec-bag automaton handles the behavior of the message bag of each rebec using an internal buffer.
The rebec-bag accepts messages which are sent to its corresponding rebec asynchronously, regardless of the
state of the corresponding rebec-behavior automaton. The after-handler automaton handles the messages
which should be delivered to rebec-bag automata in the future (messages which are sent by after primitive).
The after-handler automaton accepts messages and put them into its buffer until the release time of the
messages arrives. When a message in buffer of after-handler is released, it is sent to its corresponding
rebec-bag automaton. Each probabilistic timed automaton can be implemented in PRISM in the form of an
MDP module with integer-valued variables representing digital clocks.

In Rebeca language and its extensions, the execution of message servers are atomic, making the coarse-
grain execution of a Rebeca model possible [9]. The coarse-grain execution of message servers reduces the
state space size significantly. We use the same approach in the TMDP semantics of a PTRebeca model to
reach a smaller state space. In the parallel composition approach, we implemented coarse-grain execution by
combining statements of different transitions; however, because of synchronization points among automata,
there is a poor chance for combining statements. It is the main obstacle against using network of PTA as an
ideal approach for PTRebeca models. Different automata need to be synchronized on different points: when
a message is sent; when a message is taken from the message bag to start its execution; when a transition
modeling a delay statement is reached; when it is the time for a sent message to be delivered to its receiver.
The mapping from a PTRebeca model to PTA is discussed in more details in the following subsection.

4.2.1. Mapping from a PTRebeca model to PTA.

To show the mapping procedure, the PTRebeca model of Figure 2 in Section 2 is considered and the
resulting PTAs are explained. In these PTAs, the condition on a state should be satisfied on its outgoing
transitions. It means that, the condition on a state can be considered as a guard for all the outgoing
transitions. The transition guard is the same as the one in PTA, meaning that a transition can be enabled
if its guard is satisfied. The mapping is not straightforward because in PTRebaca message passing is
asynchronous, while in PTA message passing occurs synchronously.

Rebec-behavior. The rebec-behavior automaton models the behavior of a rebec according to the
statements of its message servers and valuations of variables. To construct the rebec-behavior automaton
of a rebec, a corresponding PTA is generated for each message server, and then PTAs (of message servers)
are connected together in a way to describe the overall behavior of the rebec. Figures 4, 5, and 6 show the
rebec-behavior PTA for reactive classes of Customer, TicketService, and Agent, respectively.

Here, we explain the mapping of different statements and valuation of state variables.

� State variables: State variables are mapped to variables of the PTA.

� Ordinary Statements: The mapping for statements like conditionals, loops, assignments, etc., is
straightforward.
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� Non-deterministic Assignment: A non-deterministic statement is mapped to a number of states and
transitions. The number of states depends on the number of different possible values for the variable.
Line 23 of Figure 2 is mapped to transitions from “S2” to “S5” and to “S6” in Figure 6. The transitions
are chosen non-deterministically.

� Probabilistic Assignment: In PTA, a probabilistic assignment statement is mapped to a number of
states, each of them assigning a different value to the variable, and a probabilistic transition into the
states. The mapping of line 42 of Figure 2 is shown in Figure 4 as the transitions from “S2” to “S4”
and “S5”.

� Delay Statement: Delays are mapped by the use of one clock, a location and transition guards to PTA.
Mapping for delay statement of line 12 of Figure 2 is depicted in Figure 5, specified as transitions from
“S1” to “S3”. The required clock is extracted from pool of clocks using function selectClock.

� Sending Message Statement: In PTRebeca, each rebec has an internal clock, which shows the time
elapsed since the creation of the rebec. This specifies an absolute model of time, which cannot be
implemented in PTA, because it makes clock values to grow unboundedly. To solve the problem, for
message sending, a clock is dedicated to the message. The clock of a message is used for checking
its deadline and enabling time. The clock is returned to the pool, when the message is delivered to
the rebec-behavior automaton for execution. For example, message sending of Line 24 of Figure 2 is
mapped to the transitions from “S1” to “S3”, and from “S3” to “S7” in Figure 6.

Figure 4: The rebec-behavior PTA of Customer reactive class

Figure 5: The rebec-behavior PTA of TicketService reactive class
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Figure 6: The rebec-behavior PTA of Agent reactive class

Message sending is synchronized with either rebec-bag automaton or after-handler automaton. We use
channel “send” if the message is sent immediately and channel “after” if the sent message has “after” value.
Messages which are sent via send channel are directly put in the rebec-bag of their receivers. Messages
which are sent via after channel are put in a buffer in after-handler automaton. A message will be delivered
to the rebec-bag of the receiver when the value of the clock which is dedicated to the message reaches the
value of “after”.

Rebec-bag. The rebec-bag PTA always accept messages asynchronously, regardless of the state of the
corresponding rebec-behavior, and then delivers them, upon the rebec-behavior automaton’s request. The
rebec-bag is responsible to handle activation time and deadlines of messages. As depicted in Figure 7,
rebec-bag PTA inserts the incoming messages of the owner rebec (transition from “S1” to “S3”), discards
the messages with passed deadlines (self loop transition in “S1”), and extracts the messages from its buffer
and delivers them (transition from “S1” to “S2”). Extracting the message from the buffer is done by shift
function which is used as the update function of transition from “S2” to “S1”.

Figure 7: PTA of rebec-bag for a rebec

After-handler. The after-handler probabilistic timed automaton always accepts message asynchronously
and puts them in a buffer until its enabling time. Figure 8 shows the PTA of after-handler. As depicted in
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Figure 8, it inserts the incoming messages (transition from “S1” to “S2”) and extracts the messages from
its buffer and delivers them if the clock of any of them reaches the value of its corresponding enable time,
i.e. the value of its after (self loop transition of “S1”).

Figure 8: PTA of After-handler

4.3. Comparison of parallel Composition Approach with TMDP Semantics

In this section, we discuss which of the proposed analysis techniques is appropriate for performance
analysis of PTRebeca models. In [12] we reported the size of the state space for timed semantics of Timed
Rebeca and parallel composition approach of Timed Rebeca. In the parallel composition approach, each
rebec is converted to a timed automaton and parallel composition of timed automata represents the behavior
of Timed Rebeca model. There, UPPAAL was used, a well-known model checker for timed systems, for the
parallel composition of timed automata. We developed a tool to generate the state space based on timed
semantics of Timed Rebeca.

Experimental results show that the parallel composition of timed automata generates too many states in
comparison to timed semantics of Timed Rebeca. The main reason of this difference lies in the modeling of
asynchronous message passing between actors using synchronous communication between timed automata.
This increases the number of states. This problem is also mentioned in [31] on modeling distributed systems
using timed automata. Additionally, the number of clocks grows linearly by the number of rebecs. When the
number of clock increases, the state space grows exponentially. We have the same results for comparison of
the parallel composition of PTAs and the TMDP semantics of a PTRebeca model. The parallel composition
of PTAs generates too many states.

We explained the parallel composition approach in Section 4.2 without considering the details of imple-
mentation. We chose PRISM, a well-established model checker, for modeling PTAs and verifying probabilis-
tic properties. Since the input language of PRISM is a state-based language and lacks array, conditional
and loops statements, implementing these statements in PTAs increases the number of generated states
significantly. For example, implementation of rebec-queue PTA and related functions (like insert, shift, and
discard shown in Figure 7) adds many states to the corresponding PTA. So, the proposed approach becomes
more complicated and creates a large state space.

Although the parallel composition approach supports the definition of rewards, it generates more states
comparing to TMDP semantics of a PTRebeca model, and it cannot be the suitable approach for large
PTRebeca models. In Section 5 and Section 6, we provide a new approach in which the TMDP model
of a large case study is converted into one Markov automata. Then, the IMCA is used as the back-end
model checker to analyze the PTRebeca model against expected reachability and probabilistic reachability
properties.
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5. Performance Analysis of PTRebeca Models Using IMCA

As we concluded in Section 4.3, the parallel composition approach is not efficient for performance analysis
of large PTRebeca models. To provide a practical approach, we convert the TMDP underlying a PTRebeca
model to a Markov automaton (MA) [32] to be able to use the IMCA model checker for performance
analysis of PTRebeca models. In this section, we mathematically prove that expectation properties are
preserved by this conversion. The proofs are presented for minimum expected time reachability and minimum
expected reward reachability properties. Maximum values of expected time reachability and expected reward
reachability can be proved similarly.

5.1. Preliminaries

Prior to our proof, we have to prepare the following definitions and notations for TMDP. We also define
how a TMDP is converted to MA.

Definition 2 (Timed Markov Decision Process). A timed Markov decision process T = (S, s0, Act, ↪→
, L) consists of a set S of states, an initial state s0 ∈ S, a set Act of actions, a timed probabilistic, non-
deterministic transition relation ↪→⊆ S ×Act× N×Dist(S) such that, for each state s ∈ S, there exists at
least one tuple (s, a, d, µ) ∈↪→. 2

The transitions in a TMDP are performed in two steps: given that the current state is s, the first step
is a non-deterministic selection of (s, act, d, µ) ∈↪→, where act denotes a possible action and d specifies the
duration of the transition; in the second step, a probabilistic transition to state s′ is made with probability
µ(s′). Function µ ∈ Dist(S) denotes a discrete probability distribution.

We present the TMDP TM of a given PTRebeca modelM as a tuple (S, s0, Act,→,⇒) where S is a set
of states, s0 is the initial state, Act is a set of actions which consists of τ , signatures of all the messages, and
N. Considering Section 3, the union of scheduler and msg-fetcher transitions is→ (probabilistic transitions)
and the set of time-progress transitions (delay transitions) is ⇒.

In the TMDP of a PTRebeca model, because of the maximal progress assumption, probabilistic transi-
tions have a higher priority than delay transitions in the execution as their execution time is zero. According
to the maximal progress assumption, transitions with execution time of zero, i.e. probabilistic transitions,
must be executed before any time progress which is caused by the execution of delay transitions. Therefore,
in states with enabled probabilistic transitions, delay transitions are disabled. Here, states with some en-
abled probabilistic transitions are called probabilistic states (PS) and states with delay transitions are called
delay states (DS). For a given delay state s the value of its unique outgoing delay transition is shown by ds.

Definition 3 (Paths). A path in a TMDP is an infinite sequence π = s0
σ0,µ0,t0−−−−−→ s1

σ1,µ1,t1−−−−−→ · · · where
si ∈ S, σi ∈ Act ∪ {⊥}, and ti ∈ N. In case of σi ∈ Act the value of ti is zero and it means that TMDP
moves from si to si+1 using a probabilistic transition with the probability of µi = µsiσi(si+1). In case of
σi = ⊥ the value of ti is larger than zero and TMDP moves from si to si+1 after residing ti units of time
with the probability of µi = 1. For any given t ∈ N>0, π@t denotes the sequence of states that π occupies at
time t. 2

Due to the instantaneous probabilistic transitions, a TMDP may occupy various states at the same
time instance. The time elapsed along the path π is computed by

∑∞
i=0 ti. Path π is Zeno whenever this

summation converges to a number and its corresponding TMDP has Zeno behavior. A TMDP has Zeno
behavior if and only if it has a strongly connected component with only probabilistic transitions. In the rest
of this paper we assume that TMDPs do not have Zeno behavior.

Definition 4 (Policies). Policies are used to resolve non-deterministic choices in states. To define a prob-
ability space, non-determinism should be resolved. A policy is a measurable function (ranged over D) which
provides for each finite path ending in state s, a probability distribution over the set of enabled transitions
in s. A stationary deterministic policy is a special type of policy which always takes the same decision in a
state s. 2
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Definition 5 (Stochastic Shortest Path (SSP) Problem). A tuple (s, s0, G,Act,P, c, g) is a SSP prob-
lem (non-negative) such that (S, s0, Act,P) is a MDP, G ⊆ S is a set of goal states, c : S \G×Act→ R≥0

is a cost function for non-goal states, g : G×Act→ R≥0 is a cost function for goal states. 2

As described in [33], the minimum expected cost reachability of one of the goals states in G from state s,
shown by eRmin(s,3G), can be obtained by solving a linear programming (LP) problem. To compute the
minimum expected cost reachability, we reduce the analysis of a TMDP to the analysis of a non-negative
SSP problem to be able to use an LP problem.

In addition to the above definitions on TMDPs, we have to formally define MAs.

Definition 6 (A Markov Automaton). An MA is a transition system with two types of transitions,
called probabilistic and Markovian transitions, shown by tuple (S′, s′0, Act

′,→′,⇒′). Here, S′ is a set of
states, s′0 ∈ S′ is an initial state, Act′ is a set of actions, →′ is set of probabilistic transitions, and ⇒′ is
a set of Markovian transitions. Probabilistic transitions are instantaneous transitions which are defined as
→′⊆ S′×Act′×Distr(S′) (where Distr(S′) denote the set of discrete probability distribution functions over
the countable set S′) and Markovian transitions are defined as ⇒′⊆ S′ × R≥0 × S′ [32]. 2

Here, transition (s′, α, µ) ∈ →′ is abbreviated to s′
α

→′ µ and (s′, λ, t′) ∈⇒′ by s′
λ

⇒′ t′. An MA can

evolve via its probabilistic and Markovian transitions. In case of s′
α→
′
µ, it leaves state s′ by executing

action α and state t′ is its destination with the probability of µ(t′). Here, s′ is called a probabilistic state

(PS). In case of s′
λ⇒
′
t′, state s′ is left after waiting for exponentially distributed units of time with rate

λ and the target state is t′. It means that the expected delay from s′ to t′ is 1/λ. Here, state s′ is called
Markovian state (MS).

In the rest of this paper we used the primed version of alphabet and arrows to address MAs and the
normal ones to address TMDPs.

Definition 7 (Conversion of the TMDP of PTRebeca model M). A given TMDP TM = (S, s0, Act,
→,⇒) is converted to MA AM = (S′, s′0, Act

′,→′,⇒′) such that S = S′, s0 = s′0, Act = Act′, and →=→′.
In addition, (s, d, t) ∈⇒ implies that (s′, 1/d, t′) ∈⇒′. In other words, TM and AM are the same except that
the delay transitions in TM are converted to Markovian transitions in AM. In this conversion, if a given
state s ∈ S is a delay state in TM, its corresponding state s′ ∈ S′ is a Markovian state in AM, and if s is
a probabilistic state in TM its corresponding state s′ is probabilistic state in AM. 2

5.2. Expected Time Reachability in TMDP

Assume that for a given PTRebeca model M, its TMDP TM = (S, s0, Act,→,⇒) is given and the set
of goal states G ⊆ S is defined. Here, we want to find the minimum expected time for reaching one of the
states in G. So, we need to define a random variable on the time which is spent in paths from the start
state to one of the goal states of G. Assume that random variable VG : Paths→ N is this random variable.
So, the minimum expected time reachability for a given state s ∈ S to one of the goal states is defined by

eTmin(s,3G) = inf
D
Es,D(VG) = inf

D

∑
π∈Paths

VG(π) · Prs,D(π)

where D is a generic policy on M. To compute the value of eTmin(s,3G) we have to reformulate the
above equation into a linear equation system, as shown in the following theorem. Note that the proofs of
theorems are depicted in the Appendix.

Theorem 1. The function eTmin is a fix point of the Bellman operator

[L(v)](s) =


ds + v(t) s ∈ DS \G

min
a∈Act(s)

{∑
t∈S

µa(t) · v(t)

}
s ∈ PS \G

0 s ∈ G

(1)
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2

The characterization of eTmin(s,3G) in Theorem 1 allows us to reduce computing the minimum expected
time reachability problem in a TMDP to the minimum expected time reachability in a non-negative SSP
problem, denoted by sspet.

Definition 8 (SSP for minimum expected time reachability). The SSP of a given TMDP TM =
(S, s0, Act,→,⇒) for the expected time reachability to a set of goal states G ⊆ S is a tuple sspet(M) =
(S, s0, Act ∪ {⊥}, G, c, g) where:

� S, s0, andAct in TMDP and sspet are the same,

� P(s, α, t) =


1 s ∈ DS \G
µsα(t) s ∈ PS \G
0 s ∈ G

,

� c(s, α) =

{
ds s ∈ DS \G ∧ α = ⊥
0 otherwise

,

� g(s) = 0.

2

As shown in [34], the minimum expected cost problem of a SSP has a unique fixed point; which enables
us using standard solution techniques like value iteration and linear programming to compute the minimum
expected cost of SSP. Using the reduction from TMDPs to SSP problems, we can use the same techniques
as there is only one fixed point in TMDPs.

Theorem 2. For a TMDP TM the value of eTmin(s,3G) equals to cRmin(s,3G) in sspet(M). 2

This way, we showed how the minimum expected time reachability for a TMDP is computed. As we
want to use the IMCA for computing the expected time reachability of the TMDP, we present the conversion
of a TMDP to its corresponding MA (which can be analyzed by the IMCA). Then, we prove that expected
time reachability in the TMDP and its conversion in the form of MA are equal.

As shown in [32] for a given Markov Automaton AM = (S′, s′0, Act
′,→′,⇒′) the following Bellman

operator is used for finding the expected time reachability.

[L(v)](s′) =



1

E(s′)
+
∑
t′∈S′

P (s′, t′) · v(t′) s′ ∈MS \G′

min
a∈Act(s′)

{∑
t′∈S′

µa(t′) · v(t′)

}
s′ ∈ PS \G′

0 s′ ∈ G′

(2)

The TMDP conversion to its corresponding MA preserves the expected time reachability properties. As
depicted in Equations 1 and 2, for a given state s ∈ S in TM where s is a probabilistic (or goal) state, its
corresponding state s′ ∈ S′ in AM is probabilistic (or goal) state, and the equations of finding [L(v)](s)
is the same as [L(v)](s′). In the case of s is a delay state, based on the semantics of PTRebeca, delay
states have only one outgoing delay transition. So, in its corresponding state s′ in AM there is only one
outgoing transition with the probability of one, results in changing the formula of computing the expected
time reachability from 1

E(s′) +
∑
t′∈S′ P (s′, t′) · v(t′) to 1

E(s′) + v(t′). As during conversion from TM to AM
a delay value ds is changed to 1/ds, there is 1

E(s′) +v(t′) = ds+v(t). Here, we assumed that there are states

t ∈ S and t′ ∈ S′ such that s
ds⇒ t and s′

1/ds

⇒′ t′. In a nutshell, the minimum expected time reachability in
all three cases of Equation 1 for state s is the same as the minimum expected time reachability in all three
cases of Equation 2 for state s′.
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5.3. Expected Reward Reachability in TMDP

We want to compute expected reward reachability in TMPDs where the rewards are associated to delay
states and probabilistic transitions. This is similar to what we did for computing expected time reachability
in TMDPs. Assume that there are two functions ρ and r for accessing to the associated rewards to states
and transitions respectively. For a given state s function ρ(s) returns the reward which is associate to s.
For a given transition from s to t with action α, function r(s, α) returns the reward which is associated to
the transition.

Now, assume that TMDP TM = (S, s0, Act,→,⇒) is given and the set of goal states is defined as G ⊆ S.
Here, we want to find the minimum expected reward which is gained from each state s ∈ S to one of the
states in G. So, we need to define a random variable on the total reward which is gained in paths from s to
one of the goal states of G. Assume that random variable RG : Paths→ N is this random variable. So, the
minimum expected reward reachability from s to one of the goal states is defined by

eRmin(s,3G) = inf
D
Es,D(RG) = inf

D

∑
π∈Paths

RG(π) · Prs,D(π)

where D is a generic policy on M. To compute the value of eRmin(s,3G) we have to reformulate the
above equation into a linear equation system, as shown in Theorem 3.

Theorem 3. The function eRmin is a fix point of the Bellman operator

[L(v)](s) =


ds × ρ(s) + v(t) s ∈ DS \G

min
a∈Act(s)

{
r(s, a) +

∑
t

µa(t) · v(t)

}
s ∈ PS \G

0 s ∈ G

(3)

The characterization of eRmin(s,3G) in Theorem 3 allows us to reduce computing the minimum expected
reward reachability problem in TMDPs to the minimum expected cost in non-negative SSP problems, shown
by ssper.

Definition 9 (SSP for minimum expected reward reachability). The SSP of a given TMDP TM =
(S, s0, Act,→,⇒) for the expected reward reachability to a set of goal states G ⊆ S is a tuple ssper(M) =
(S, s0, Act ∪ {⊥}, G, c, g) where:

� S, s0, andAct in TMDP and ssper are the same,

� P(s, α, t) =


1 s ∈ DS \G
µsα(t) s ∈ PS \G
0 s ∈ G

,

� c(s, α) =

{
r(s, α) s ∈MS \G
0 otherwise

,

� g(s) = ρ(s).

2

As the problem is reduced to the minimum expected cost problem of a SSP, we conclude that there is
only one fixed point in TMDPs as discussed before.

Theorem 4. For a TMDP TM the value of eRmin(s,3G) equals to cRmin(s,3G) in ssper(M). 2
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This way, we showed how the minimum expected reward reachability for a TMDP is computed. As we
want to use the IMCA for computing the expected reward reachability of TMDPs, we present the conversion
of a TMDP to its corresponding MA. Then, we prove that expected reward reachability in a TMDP and its
conversion in the form of MA are equal.

A given TMDP TM = (S, s0, Act,→,⇒) with reward functions ρ and r is converted to MA AM =
(S′, s′0, Act

′,→′,⇒′) with reward functions ρ′ and r′ such that S = S′, s0 = s′0, Act = Act′, →=→′,
r(s, a) = r′(s′, a), and ρ(s) = ρ′(s′). The properties of this conversion is the same as the properties of
conversion which is described in Section 5.2.

As shown in [35] for a given Markov Automaton AM = (S′, s′0, Act
′,→′,⇒′) with reward functions ρ′

and r′ the following Bellman operator is used for finding the expected time reachability.

[L(v)](s′) =



ρ′(s′)

E(s′)
+
∑
t′∈S′

P (s′, t′) · v(t′) s′ ∈MS \G′

min
a∈Act(s′)

{
r′(s′, a) +

∑
t′∈S′

µa(t′) · v(t′)

}
s′ ∈ PS \G′

0 s′ ∈ G′

(4)

This conversion preserves the expected time reachability of states. As depicted in Equations 3 and 4,
for a given state s ∈ S in TM where s is a probabilistic (or goal) state, its corresponding state s′ ∈ S′

in AM is probabilistic (or goal) state, and the equations of finding [L(v)](s) is the same as [L(v)](s′). In
the case of s is a delay state, based on the semantics of PTRebeca, delay states have only one outgoing
delay transition. So, in its corresponding state s′ in AM there is only one outgoing transition with the
probability of one, results in changing the formula of computing the expected reward reachability from
ρ′(s′)
E(s′) +

∑
t′∈S′ P (s′, t′) · v(t′) to ρ′(s′)

E(s′) + v(t′). As during conversion from TM to AM a delay value ds is

changed to 1/ds, there is ρ′(s′)
E(s′) + v(t′) = ds × ρ(s) + v(t). Here, we assumed that there are states t ∈ S and

t′ ∈ S′ such that s
ds⇒ t and s′

1/ds

⇒′ t′. In a nutshell, the minimum expected reward reachability in all three
cases of Equation 3 for state s is the same as the minimum expected reward reachability in all three cases
of Equation 4 for state s′.

6. The Toolset and Case studies

To illustrate the applicability of the approach presented in this paper, we developed a toolset and analyzed
two different case studies, which are accessible from Rebeca home page [36]. The architectural overview of
the toolset is depicted in Figure 9. As shown in the figure, Afra IDE serves as the front-end of the toolset
and IMCA [24] is the back-end model checking engine of the toolset.

Using the Afra IDE, a number of C++ files are generated for a PTRebeca model. These C++ files
are compiled and linked by g++ compiler, which results in an executable file. Running the executable file
generates the TMDP of the model (i.e. the state space of the model). In the PTRebeca models, the size of
message bags is bounded. The state space of a PTRebeca model is finite when the model shows a recurrent
behavior. We used the time-shift equivalence approach, proposed in [12], to make the state space finite.

The TMDP-MA tool is developed to convert the TMDP of the model to the input language of IMCA
model checker. To perform the conversion, the generated TMDP and the specification of the goal states of
the model are input to TMDP-MA and one Markov automaton is generated. The obtained MA is imported
to the IMCA for model checking.

Evaluation of The Toolset. IMCA provides algorithms for expected time and expected reward reachabil-
ity analysis, long-run average analysis, time-bounded probabilistic reachability and probabilistic reachability
analysis of Markov automata. Since IMCA is used as the backend model checker for PTRebeca models, we
investigate which properties are preserved by the conversion (refer to Definition 7), and so can be evaluated
by our developed toolset.
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Figure 9: The architectural overview of the analyzer of PTRebeca models

In Section 5, we proved that expected time reachability and expected reward reachability properties are
preserved by the conversion. By using a dedicated time action in the TMDP (equivalently in its correspond-
ing MA) and because of the ability of assigning rewards to the transitions in IMCA, expected reachability
properties can be computed for a PTRebeca model. Therefore, our toolset can be used for the evaluation
of expected reachability properties of PTRebeca models.

According to Definition 7, probabilistic transitions in the TMDP are directly converted to probabilistic
transitions in the MA. Obviously, probabilistic reachability properties are preserved in this conversion, and
so can be checked for PTRebeca models. The rate of a Markovian transition in the MA is estimated by the
inverse of the integer value of a corresponding delay transition in the TMDP. Because of this estimation,
time-bounded probabilistic reachability properties are not preserved by the conversion. So, we are not able
to evaluate this type of properties for PTRebeca models. We believe that long-run average properties are
preserved by the conversion, but its mathematical proof remains as a future work.

In the following sections, we choose two case studies to cover the evaluation of two types of properties:
expected reachability and probabilistic reachability. The probabilistic reachability property is checked for
toxic gas sensing system, and the expected time reachability is calculated for network on chip case study.
These case studies show the applicability of the toolset for the performance evaluation of systems.

6.1. Performance Analysis of a Toxic Gas Sensing System

In the conference paper [18], we examined toxic gas sensing (named sensor network in the conference
paper) case study and used PRISM as the back-end model checker. Here, we perform the experiments again
and use IMCA for performance evaluation. We obtain the same results via PRISM and IMCA. The system
consists of a lab environment in which the level of a toxic gas changes over time. There is one scientist in
this lab. If the toxic gas level raises above a certain threshold, the scientist’s life is in danger. A sensor
in the lab periodically measures the amount of toxicity in the air, and send the measurements to a central
controller. The central controller periodically checks whether the scientist is in danger. If so, it notifies the
scientist about the danger. The scientist should acknowledge the notification; if the scientist fails to do so in
a timely manner, the central controller notifies a rescue team. When the team reaches the lab it notifies the
controller that the scientist has been rescued. If the controller does not receive this notification, it means
that the scientist has lost his life.

PTRebeca Model. The PTRebeca model of this system is shown in Figure 10 and contains five different
reactive classes: Environment, Rescue, Controller, Sensor, and Scientist. The toxic level of the en-
vironment changes periodically by a probabilistic assignment of line 23. The sensor periodically measures
the level of toxic gas by sending giveGas message to the environment (which is modeled in line 44). After
sensing, the sensor reports the measured data to the controller. The sensor may fail to report the measured
data as shown by the probabilistic assignment of line 46. Upon receiving the measured data from a sensor
(in the report message server), the controller stores the value in sensorValue0 (line 82).
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1 env byte scientistDeadline = 10;

2 env byte rescueDeadline = 5;

3 env byte netDelay = 1;

4 env byte controllerCheckDelay = 5;

5 env byte sciAckDeadline = 5;

6 env byte rescuedeadline = 10;

7

8 reactiveclass Environment(10){

9 knownrebecs{

10 Sensor sensor;

11 Scientist scientist;

12 }

13 statevars{

14 byte gasLevel, changingPeriod;

15 boolean meetDangerousLevel;

16 }

17 Environment(){

18 changingPeriod = 5;

19 gasLevel = 2; // 2 = safe, 4 = dangerous

20 self.changeGasLevel() after(changingPeriod);

21 }

22 msgsrv changeGasLevel(){

23 if(gasLevel == 2) gasLevel=?(0.98:2, 0.02:4);

24 if(gasLevel > 2 && !meetDangerousLevel) {

25 scientist.die() after(scientistDeadline);

26 meetDangerousLevel = true;

27 }

28 self.changeGasLevel() after(changingPeriod);

29 }

30 msgsrv giveGas(){

31 if(sender==sensor) sensor.doReport(gasLevel);

32 }

33 }

34 reactiveclass Sensor(7) {

35 knownrebecs {

36 Controller controller;

37 Environment environment;

38 }

39 statevars { int checkingPeriod; }

40 Sensor(int myPeriod) {

41 checkingPeriod = myPeriod;

42 self.checkGasLevel();

43 }

44 msgsrv checkGasLevel() {environment.giveGas();}

45 msgsrv doReport(byte value) {

46 boolean working = ?(0.01:false,0.99:true);

47 if(working){

48 controller.report(value) after(netDelay);

49 self.checkGasLevel() after(checkingPeriod);

50 }

51 }

52 }

53 reactiveclass Scientist(7) {

54 knownrebecs { Controller controller; }

55 statevars {boolean isDead, isOutEnv, ackSent;}

56 msgsrv die(){ if(!isOutEnv) isDead = true; }

57 msgsrv abortPlan() {

58 isOutEnv = true;

59 if(!ackSent) controller.ack()

after(netDelay);

60 ackSent = true;

61 }

62 msgsrv leftEnv(){isOutEnv = true;}

63 }

64 reactiveclass Rescue(7) {

65 knownrebecs {Controller controller;}

66 msgsrv go() {

67 delay(2); //unexpected obstacle

68 controller.rescuereach() after(netdelay)

deadline(rescuedeadline-netdelay);

69 }

70 }

71 reactiveclass Controller(13) {

72 knownrebecs {

73 Sensor sensor;

74 Scientist scientist;

75 }

76 statevars {

77 int sensorValue0;

78 boolean scientistAck,scientistDead,ackIsSent;

79 }

80 Controller() { self.checkSensors(); }

81 msgsrv report(int value) {

82 if (sender == sensor) sensorValue0 = vale;

83 }

84 msgsrv rescueReach() {

85 scientistReached = true;

86 scientist.leftEnv();

87 }

88 msgsrv checkSensors() {

89 boolean danger = false;

90 if (sensorValue0 > 3) danger = true;

91 if(!scientistAck){

92 if (danger) {

93 scientist.abortPlan() after(netDelay);

94 if(!ackIsSent)

95 self.checkScientistAck()

after(sciAckDeadline);

96 ackIsSent = true;

97 }

98 self.checkSensors()

after(controllerCheckDelay);

99 }

100 }

101 msgsrv ack() {scientistAck = true;}

102 msgsrv checkScientistAck() {

103 if (!scientistAck)

104 rescue.go() after(netDelay);

105 scientistAck = false;

106 }

107 }

108 main {

109 Environment environment(sensor, scientist):();

110 Sensor sensor(controller,environment):(10);

111 Scientist scientist(controller):();

112 Controller controller(sensor, scientist,

rescue):();

113 Rescue rescue(controller):();}

Figure 10: The model of toxic gas sensing system.
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(a) The value of variable scientistDeadline is 10.
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(b) The value of variable scientistDeadline is 12.

Figure 11: The maximum and minimum probabilities that the scientist eventually dies, when the sensor frequency
changes.

Periodically, in the checkSensors message server, the controller checks if the reported value is above the
normal amount. In case of detecting high toxicity, the controller informs the scientist by sending abortPlan

message (line 93), and checks the scientist’s acknowledgment after a specified amount of time (line 95). If
the controller does not receive an ack message from the scientist, the rescue team is informed about the
situation. If this process takes more than the value of scientistDeadline units of time, the scientist will
die and this is modeled by sending a message die to the scientist by the environment. This message is
scheduled immediately after changing the gas level to the dangerous level (line 25).

In this model, the network delay is assumed to be one time unit. In different experiments, we consider
different values for the period in which the sensor measures the toxic level of the lab. The value ranges from
1 to 25. The period of the controller checking the sensor’s data is 5 time units.

Experimental Results. We study one property for this model which is “what is the probability of the
death of the scientist?”. Since the model includes non-deterministic behaviors, the model checker computes
the maximum and the minimum probabilities over all paths in the generated state space.

Figure 11(a) shows the maximum and the minimum probabilities of the scientist death when the value of
variable checkingPeriod of sensor changes. If the sensor checks the environment with a high frequency (i.e.
the value of variable checkingPeriod is low), the message server checkGasLevel is sent frequently (Line 49)
which incurs frequently sending the message server doReport. So, the probability of sensor failure increases,
resulting in high probability of the scientist death.

For example, when the sensor checks the environment once every unit of time, i.e. the value of checking-
Period equals one (Line 49), the environment is checked five times before the first change in the environment.
The first change in the environment occurs at time 5 as the value of variable changingPeriod equals 5 (Line
18). Therefore, the probability of sensor failure increases because of working a lot during time. When the
sensor frequency is low, the environment changes cannot be detected on time; resulting in a high probability
of the scientist death.

There is an optimum value for the variable checkingPeriod (i.e. sensor frequency) which is five according
to the obtained results reported in Figure 11(a) for the minimum probability of the scientist death. The
value of variable scientistDeadline equals 10. As the results show, the trend of changes in the value of the
maximum probability of the scientist death is normal but at times 5, 10, 15, 20, and 25 it jumps to one.
At these times because of concurrency between time related behaviors in the system, there is a scenario in
which the dangerous level is reported too late to the administrator and the scientist will die. At these times,
the execution sequence of the following messages is important and causes the special behavior: (1) checking
the sensor value by the controller (it is repeated periodically after 5 units of time), (2) changing the toxic
level of the environment to a dangerous level (period is 5 units of time), (3) checking the environment by
the sensor (Figure 11(a) shows the probability of the scientist death for different value of this period), and
(4) sending a message die to the scientist (after 10 units of time) when the environment is dangerous.
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In Figure 11(b), the value of variable scientistDeadline equals 12; the scientist has more time to be saved
before being killed by the toxic environment. The maximum probability of the scientist death is not equal
to one at times 5, 10, 15, 20, and 25, but because of concurrency between time related behaviors, there is
a scenario in which the dangerous level is reported too late and consequently the maximum probability of
the scientist death increases. The same as the previous case, there is an optimum value for the variable
checkingPeriod, i.e. sensor frequency, which is ten in this experiment.

6.2. Performance Analysis of Network on Chip

Our second example is a model of a network on chip (NoC). NoC has emerged as a promising architecture
paradigm for many-core systems. As complexity grows in NoCs, functional verification and performance
evaluation in the early stages of the design process are suggested as ways to reduce the fabrication cost.
Globally Asynchronous Locally Synchronous (GALS) NoC [37] has gained many attentions in designing
of such systems. As an example of a NoC, we model and analyze ASPIN (Asynchronous Scalable Packet
switching Integrated Network), which is a fully asynchronous two-dimensional GALS NoC design using XY
routing algorithm. Using this algorithm, packets can only move along X direction first, and then along Y
direction to reach their destination. In ASPIN, packets are transferred through channels, using four-phase
handshake communication protocol. The protocol uses two signals, namely Req and Ack to implement
four-phase handshaking protocol. To transfer a packet, first, the sender sends a request by rising Req signal,
and waits for an acknowledgment which is raising Ack from the receiver. All the signals return to zero after
a successful communication. There are four adjacent routers to each router and also four internal buffer for
storing the incoming packets of different neighbors.

The timed version of ASPIN was investigated in [13] using simulation and model checking. The Timed
Rebeca language was used for modeling of ASPIN, and Afra tool-set [36] was applied to the model for
estimating the maximum end-to-end latency through model checking. Here, we add faulty routers to ASPIN,
and examine the model for different traffic patterns and faulty routers. In the PTRebeca model, all nodes
are working correctly with probability one except a few of them which are specified in their constructors. For
example, the node with Xid=1 and Yid=0 is supposed to be faulty (Line 16 of Figure 12). The probabilistic
version of the case study is similar to the timed version presented in [13]. The way we model channels, the
topology of the communication, routing algorithm, buffer status, and communication protocol in the model
is the same as in [13].

PTRebeca Model. The simplified version of PTRebeca model of ASPIN is shown in Figure 12, which
contains two different reactive classes: Manager and Router. The Manager does not exists in real NoCs.
Here, it is used as the starter of the model. It sends init message to routers to ask them for generating
packets. This way, different traffic patterns are created by modifying only Manager. The Router is the
model of a router in an ASPIN. So, its definition contains four known rebecs which are its neighbor routers
(line 7), its id in XY manner (Xid and Yid in line 8), its buffer variables which show that the buffer is enable
or busy (line 10), a variable which shows that whether it works properly or not (line 11), and variables that
show whether its neighbors are faulty or not (line 12). The communication channel functionalities among
neighbors are modeled by message passing in Rebeca. Four-phase handshake protocol is modeled using three
message servers: reqSend, giveAck, and getAck. A router calls its reqSend message server to send a request
to its neighbor. The XY-routing algorithm is implemented inside reqSend (lines 24-54) and determines to
which neighbor router the packet is sent. If the neighbor router is faulty, a dynamic XY-routing algorithm
presented in [38] is used to reroute the packet. The congestion links are not considered in our algorithm.
The packet is rerouted to an operative neighbor by calling function reRoute (e.g. line 30). In lines 39-45
of Figure 12, the details of routing a packet with Xtarget > Xid and Y target > Y id is shown. If the
packet must be sent to the router’s east neighbor and the east neighbor is not faulty (line 40), the function
routeToEast is called (line 41). In this function message giveAck is sent to the east neighbor and the
internal state of the sender router is changed. The giveAck message server first checks the address of the
destination of the newly received packet. If the address is the same as the current router, then the packet
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1 env byte bufSize = 2;

2 reactiveclass Manager(10){

3 knownrebecs{Router r00, r10, ... , r33;}

4 msgsrv reset(){ r00.init(); r23.init();}

5 }

6 reactiveclass Router(10) {

7 knownrebecs {Router N, E, S, W;}

8 statevars { byte Xid, Yid;

9 byte[4] bufNum;

10 boolean[4] full, enable, outMutex;

11 boolean recieved, isWorking;

12 boolean [4] neighborIsWorking; // 0=N, 1=E,

2=S, 3=W

13 }

14 Router(byte X, byte Y){ Xid = X; Yid = Y;

recieved = false;

15 //specifying faulty nodes

16 if(Xid == 1 && Yid == 0) self.coreIsFaulty();

17 ...

18 }

19 msgsrv coreIsFaulty (){ isWorking = ?

(0.95:true,0.05:false);}

20 msgsrv init(){ ... }

21 void routeToSouth( ){...}

22 void routeToNorth(){...}

23 void routeToWest(){...}

24 void routeToEast(){...}

25 void reRoute(){...}

26 msgsrv reqSend(byte Xtarget, byte Ytarget, int

dirS, int packId, boolean routing) {

27 if (enable[directionS]){

28 boolean sent = false; int hardwareDelay;

hardwareDelay = 26;

29 if (Xid == Xtarget){

30 if(Ytarget > Yid){

31 if(neighborIsWorking[2] && senderR !=

2){routeToSouth();}

32 else{reRoute();}

33 }

34 else if (Ytarget < Yid ){...}

35 }

36 else if (Yid == Ytarget){

37 if(Xtarget > Xid){...}

38 else if (Xtarget < Xid){...}

39 }

40 else{ //first move through horizontal

channels

41 if(Xtarget > Xid && Ytarget > Yid){

42 if(neighborIsWorking[1] && senderR !=

1){

43 routeToEast();}

44 else if(neighborIsWorking[2] &&

senderR != 2){

45 routeToSouth();}

46 else{

47 reRoute();}

48 } else if(Xtarget < Xid && Ytarget >

Yid){...}

49 else if(Ytarget < Yid && Xtarget >

Xid){...}

50 }

51 else if(Ytarget < Yid && Xtarget <

Xid){...}

52 }

53 }

54 else

55 self.reqSend(Xtarget,Ytarget,directionS,

56 packId,senderR) after(1);

57 }

58 msgsrv isFaulty(int senderCore,byte Xtarget,

byte Ytarget, int directionS, int

packId){...}

59 msgsrv getAck(int dirS){ ... }

60 msgsrv giveAck(byte Xtarget, byte Ytarget,int

dirS, int dirD, int msgSender, int

packId, boolean routing) {

61 int MSGSender;

62 if(sender == N) MSGSender = 0;

63 else if (sender == E) MSGSender = 1;

64 ...

65 else MSGSender = msgSender;

66 if(!isWorking){

67 if(MSGSender == 0)

68 N.isFaulty(2,Xtarget,

Ytarget,directionS, packId);

69 else if(MSGSender == 1)

70 E.isFaulty(3,Xtarget,

Ytarget,directionS, packId);

71 ...

72 }

73 if(!(Xtarget == Xid && Ytarget == Yid)) {

74 if (full[dirD])

75 self.giveAck(Xtarget, Ytarget,dirS,dirD,

MSGSender, packId, routing)

after(2) deadline(5);

76 else {

77 bufNum[dirD] = (byte)bufNum[dirD] + 1;

78 if (bufNum[dirD] == bufSize)

79 full[dirD] = true;

80 self.reqSend(Xtarget, Ytarget, dirD,

packId,routing) after(1);

81 if(MSGSender == 0) N.getAck(dirS);

82 else if(MSGSender == 1) E.getAck(dirS);

83 ...

84 }

85 }

86 else if((Xtarget == Xid && Ytarget == Yid))

{ ... if (packId == 1) recieved = true;

...}

87 }

88 }

89 main {

90 Manager m(r00,r10, ... ,r33):();

91 Router r00(m,r03,r10,r01,r30):(0,0);

92 Router r10(m,r13,r20,r11,r00):(1,0);

93 ...

94 Router r33(m,r32,r03,r30,r23):(3,3);

95 }

Figure 12: The model of ASPIN network.
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is consumed (line 84). Otherwise, if the router’s buffer is not full (line 74), the packet will be stored and an
acknowledgment is sent to the sender router by calling its getAck message server (line 80). If the incoming
buffer of the neighbor is full (line 72), the router must wait for some amount of time and try sending later,
which is modeled by sending to itself (line 78). To model the behavior of router buffers, we use the rebec’s
queue to store all packets received by a router and only keep track of the length of north, south, east and
west buffers to have buffer status at all time. The complete PTRebeca model of ASPIN is accessible from
Rebeca home page [36].

Experimental Results. We performed three experiments in a 4 × 4 ASPIN model. In each experiment
we consider different scenarios each of which including different faulty nodes to measure the end-to-end
latency. The traffic pattern of all scenarios of each experiment is identical. In the following we explain each
experiment and the obtained results in more details.

In all experiments, the minimum and maximum expected latencies of packet (1) are reported. The
expected latency shows the needed time for delivery of packet (1) to its destination. The minimum and
maximum probabilities of reaching packet (1) to its destination are equal to one for all scenarios. In other
words, there is no scenario in which packet (1) does not reach to its destination.

(a) R10 is faulty in scenario 1 (b) R10 and R11 are faulty in
scenario 2

(c) R10, R11, and R12 are faulty
in scenario 3

Figure 13: The 4× 4 ASPIN model: The traffic in experiment 1.

0.01 144.2599948 144.2625948 144.2626208
0.05 145.2999947 145.3649947 145.3682447
0.1 146.5999947 146.8599947 146.8859947
0.15 147.8999946 148.4849946 148.5727446
0.2 149.1999946 150.2399946 150.4479945
0.25 150.4999945 152.1249945 152.5312445
0.3 151.7999945 154.1399944 154.8419944
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Figure 14: Experiment 1: the min/max expected latency for different scenarios.

As shown in Figure 13, in the first experiment, packet (1) is sent from R00 to R23 and there is no other
packet in the network. In scenario 1, router R10 is faulty. In scenario 2, routers R10 and R11 are faulty,
and in scenario 3, routers R10, R11 and R12 are faulty. The results are presented in Figure 14, where the
minimum expected latency is the same as the maximum expected latency for all scenarios. Scenario 3 has
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the highest expected latency since there are more faulty routers and the packet is rerouted more times in
comparison to other scenarios. Also, scenario 1 has the least expected latency as there are less faulty nodes
in the network.

In the second experiment as shown in Figure 15, router R10 generates packet (2) as soon as it receives
packet (1), thus packet (2) may cause disruption to packet (1). On the other hand, R02 produces packet
(3) in a way that it reaches R22 at the same time as packet (1), so packet (1) may be delayed by packet
(3) too. In scenario 1, router R10 is faulty. In scenario 2, routers R10 and R11 are faulty, and in scenario
3 routers R10, R11 and R12 are faulty. The results are presented in Figure 16. Scenario 3 has the highest
and scenario 1 has the least expected latency. The reason is the same as the one explained for the first
experiment.

(a) R10 is faulty in scenario 1 (b) R10 and R11 are faulty in
scenario 2

(c) R10, R11, and R12 are faulty
in scenario 3

Figure 15: The 4× 4 ASPIN model: The traffic in experiment 2.

194.5

195

195.5

196

196.5

197

M
in

im
um

 E
xp

ec
te

d 
La

te
nc

y

Scenario1 Scenario2 Scenario3

193.5

194

194.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

M
in

im
um

 E
xp

ec
te

d 
La

te
nc

y

Fault Probability

(a) The minimum expected latency

196.5

197

197.5

198

198.5

M
ax

im
um

 E
xp

ec
te

d 
La

te
nc

y

Scenario1 Scenario2 Scenario3

195.5

196

196.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

M
ax

im
um

 E
xp

ec
te

d 
La

te
nc

y

Fault Probability

(b) The maximum expected latency

Figure 16: Experiment 2: the expected latency for different scenarios.

In the third experiment, packet (1) is disrupted by packet (2), and packet (2) is itself disrupted because
of congestion in R21. On the other hand, congestion in R23 leads packet (5) to be blocked until packet (4)
leaves the input port of R22. This may results in disruption of packet (1) by packet (5), if they reach R32
at the same time (Figure 17). In scenario 1, router R10 is faulty. In scenario 2, routers R10 and R11 are
faulty. The results are presented in Figure 18. In contrast to experiments 1 and 2, increasing the probability
of fault decreases the maximum expected latency. The reason is that rerouting packet (1) from the normal
path (i.e. R00 → R10 · · · → R30 → R31· · · → R33) to an alternative path (i.e. R00 → R01 → R02 →
R12· · · → R32 → R33 in case of in scenario 2), avoids the congestion caused by packets (3), (5), and (7).
So, the total latency decreases.
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(a) R10 is faulty in scenario 1 (b) R10 and R11 are faulty in
scenario 2

Figure 17: The 4× 4 ASPIN model: The traffic in experiment 3.
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Figure 18: Experiment 3: the expected latency for different scenarios.

6.3. Comparing PRISM-based and IMCA-based Approaches

In this section we investigate the time and memory necessary to run experiments using the two approaches
based on PRISM and IMCA. Table 1 presents the results for different case studies with different sizes. The
experiments of PRISM-based approach are run on a laptop with Windows 7, 4 GB RAM, and Intel Core i5-
2430M CPU @2.4 GHz. To run the experiments of IMCA-based approach, Ubuntu 12.04.5 LTS is installed on
the same laptop, but RAM is restricted to 1 GB. In the PRISM-based approach, the TMDP of a PTRebeca
model is input to PRISM as a single MDP module. The MDP module is defined using the standard PRISM
input language. The IMCA-based approach was explained at the beginning of this section.

As Table 1 shows, two numbers are reported for time when using the PRISM-based approach. The
first one is the time needed via PRISM to construct the model, and the second one is the computation
time to model check the model. The time for model construction is considerable, and this makes the
approach inefficient even for small case studies like scenario 1 of experiment 2 in NoC case study (refer
to Exp 2-Scenario 1 in Table 1). In the IMCA-based approach, the Markov automaton of a PTRebeca
model is input using a state-based language. So, the time for model construction is negligible, and the
approach is efficient for large PTRebeca models like scenario 2 of experiment 3 in NoC case study (refer to
Exp 3-Scenario 2 in Table 1). PRISM crashed when trying to construct the model for Exp 3-Scenario

2. The needed memory for model checking is not reported by PRISM, so it’s not available to be compared
with the IMCA-based approach.
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Problem #states #trans Using PRISM Using IMCA
time (sec) memory time (sec) memory

NoC

Exp 1-Scenario 1 84 109 23.52 NA 0.000711 ∼ 12.945 KB
Exp 1-Scenario 2 484 909 167.392 + 0.02 NA 0.017655 ∼ 79.07 KB
Exp 1-Scenario 3 507 666 307.439 + 0.03 NA 0.02387 ∼ 77.172 KB
Exp 2-Scenario 1 342 379 161.835 + 0.03 NA 0.033238 ∼ 51.187 KB
Exp 2-Scenario 2 2184 3045 1031.11 + 0.17 (∼17 min) NA 0.509681 ∼ 337.226 KB
Exp 2-Scenario 3 5220 9922 2955.611 + 0.94 (∼49 min) NA 1.768932 ∼ 857.344 KB
Exp 3-Scenario 1 10032 15915 3228.434 + 0.94 (∼54 min) NA 10.631929 ∼ 1.561 MB
Exp 3-Scenario 2 43290 71106 crashed NA 136.916137 ∼ 4.842 MB

Toxic Gas 1 sensor 506 1170 222.787 + 0.01 NA 0.032514 ∼ 87.383 KB
Sensing System

Table 1: The time and memory needed to evaluate different case studies with PRISM-based and IMCA-based
approaches. NA means not available.

7. Related Work

IMCA. IMCA is a powerful model checker for analyzing interactive Markov chains (IMCs) and Markov
automata (MA). IMCA has a state-based input language and lacks high-level programming constructs.
Expected time and long-run average objectives, time-bounded probabilistic reachability and probabilistic
reachability properties are supported for MA and IMC models [24, 27].

In contrast to IMCA, PTRebeca provides high-level programming constructs and primary data struc-
tures, which makes modeling easier. In modeling we use the capabilities of PTRebeca, and in analysis we
use IMCA for the evaluation of probabilistic timed properties. The semantics of PTRebeca is defined in
TMDP. To be able to use IMCA, the TMDP of a PTRebeca model is converted to a Markov automaton.
This conversion preserves all the above mentioned objectives except time-bounded reachability.

UPPAAL SMC. In [39], authors introduce UPPAAL SMC in which systems are represented via networks
of automata. In UPPAAL SMC, each component of the system is modeled with an automaton whose clocks
can evolve with various rates. To provide efficient analysis of probabilistic properties, statistical model
checking is used as a technique for fully stochastic models. The work supports modeling and performance
analysis of systems with continuous time behaviors and dynamical features.

PTRebeca has a Java-like syntax which makes the language easy to use for practitioners. In PTRebeca
time is discrete and discrete probability distributions are used to model probabilistic behaviors. In this
work, we use the stochastic model checking algorithms for performance evaluation of systems via the IMCA
model checker.

PRISM. PRISM is a well-established and powerful model checker with a state-based input language.
An input model of PRISM is composed of a number of modules which can share variables and interact
with each other. PRISM is well equipped with theories and reduction techniques [23], but lacks high-level
programming constructs like loops, and primary data structures like arrays, which makes modeling hard.

In contrast, PTRebeca provides high-level object-based programming features and asynchronous message
passing, which makes modeling easier. In modeling we benefit from capabilities of PTRebeca, and in analysis
we use the capabilities of the PRISM and the IMCA model checkers. As we showed earlier, using IMCA,
we are able to model check larger PTRebeca models comparing to PRISM as the backend model checker.

Modest. Modest [30] is a high-level and convenient language for describing stochastic timed and hybrid
systems. It supports loop constructs, structs and arrays, exception handling, and other advanced program-
ming constructs. It also supports various model checking approaches. For the probabilistic timed fragment
of Modest, model checking can be performed using a digital time semantics [40] or by a direct mapping to
probabilistic timed automata. Both approaches use PRISM as a backend model checker.
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In contrast to Modest, PTRebeca supports object-based programming features, and follows the asyn-
chronous message passing paradigm of actors, while Modest relies on synchronous message passing. In the
conference paper we used PRISM for the analysis of systems, which is similar to Modest with respect to the
analysis. In this work IMCA is used to overcome the problem of time-consuming model checking of large
PTRebeca models.

ProbMela. ProbMela is a probabilistic version of Promela [41]. The operational semantics of ProbMela
is defined as an MDP [42]. In [43], ProbMela is used as input language for the MDP model checker LiQuor
which provides qualitative and quantitative analysis of LTL properties. There is also a mapping from
ProbMela to the PRISM language, which makes probabilistic analysis possible [44].

PTRebeca is an event-driven and actor-based language whereas ProbMela is process-based. Both lan-
guages are asynchonous in spirit. We proposed a semantics of PTRebeca as TMDP (or PTA with digital
clocks), enabling the analysis of timing and probabilistic behaviors of asynchronous systems via PRISM. In
this work, the TMDP obtained from a PTRebeca model is converted to a Markov automaton and the IMCA
model checker can be used for the performance evaluation analysis.

PMaude. PMaude extends standard rewriting theories of Maude with probability [45]. There is an
actor extension of probabilistic rewriting theories for PMaude which removes non-determinism. A statis-
tical technique is provided to analyze quantitative aspects of systems using discrete-event simulation. In
comparison with PMaude, modeling asynchronous systems is more straightforward in PTRebeca language
as it is an actor-based language. Also PTRebeca supports non-determinism in the model and there is no
need to resolve it by assuming distribution on different choices of non-determinism. It is because of the
probabilistic model checking facilities which are provided by PRISM and IMCA.

Actor Languages. Some work has been done on the development of actor frameworks based on familiar
languages such as C/C++, Smalltalk, Python, Ruby, .NET and Java. To mention a few examples, Scala
Actors library [6], Kilim [46], and ActorFoundry [47] are Java implementations of the actor model. More
examples of actor frameworks for the above languages can be found in [48].

Comparing to the above actor-based programming languages, we are using a model-driven development
approach in PTRebeca language. We can start with small models and use model checking and simulation
to find possible correctness problems in our core algorithms, and also find how to improve the performance
by changing some parameters while the code is still small, understandable, and easily manageable.

PCreol. Creol is an object-oriented modeling language based on concurrent objects, communicating
by asynchronous message passing [49]. PCreol is the probabilistic extension of Creol, oriented towards
quantitative analysis [50]. PCreol is integrated with VeStA [51] which enables the statistical model checking
and quantitative analysis of PCreol models. Using VeStA, the full state-space exploration is replaced by
Monte Carlo simulation, controlled by means of statistical hypothesis testing.

To have more accurate results, probabilistic model checking is provided for PTRebeca models via PRISM
and IMCA model checkers, which allows functional correctness and performance evaluation of PTRebeca
models. Both languages are similar with respect to asynchronous message passing among concurrent objects.

Summary. In PMaude, probability distribution functions (rates and stochastic functions) are provided
for modeling probabilistic behaviors. Also, PMaude implements stochastic continuous-time. In ProbMela,
probabilities are drawn from discrete probability distributions, and passage of time can be modeled using
a timer process. Modest enables a direct high-level modelling of PTA and more complex models. In all
aforementioned languages, non-deterministic behavior can be modeled. In analysis, PMaude resolves non-
determinism, and uses statistical model checking to verify properties which results in inaccurate results. In
the analysis of ProbMela and Modest, non-determinism is not resolved. Modest also provides the option
of a digital clock semantics, which, just like we did in the conference paper, is handed over to PRISM for
model checking.

Our focus in designing PTRebeca has been on ease of modeling and efficiency of analysis mainly for
asynchronous applications. To this end, we use discrete time model and discrete probability distributions.
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These decisions showed to be effective in modeling different applications that we have targeted. Moreover,
resolving non-determinism by a discrete probability distribution generates inaccurate estimations, so, we
avoided that by choosing TMDP as the semantics of PTRebeca. We were able to formalize the advance
of time in our model using a single integer-valued variable. The language design of PTRebeca and its
analysis approach when using PRISM, is closest to the Modest approach, apart from the latter not being
object-oriented and not being asynchronous by design.

We also converted the TMDP resulted from a PTRebeca model to a Markov automaton. This way,
we are able to use the IMCA model checker for large PTRebeca models. In Markov automata delays are
governed by exponential distributions while in PTRebeca time is discrete. In the conversion, the rate in a
Markovian transition of the Markov automaton is approximated by the integer value of the corresponding
delay transition in the TMDP. To ensure the approximations are correct, we mathematically proved that
expectation properties are preserved by this conversion.

8. Conclusion

In this paper we introduced the syntax and semantics of Probabilistic Timed Rebeca (PTRebeca) for
modeling and verification of probabilistic real-time actor systems. Semantics of PTRebeca is presented in
SOS rules. As the model of time in PTRebeca is discrete, we decided to use discrete-time MDP with an
integer-valued time variable for the semantics of PTRebeca. PTRebeca models can thus be analyzed against
PCTL, expected reachability, and probabilistic reachability properties.

In the conference paper [18], we used PRISM as the back-end model checker for performance evaluation
of PTRebeca models. As the TMDP of a PTRebeca model is input as one MDP module to PRISM, only
small models like ticket service can be input via PRISM input language. To support the modeling of larger
PTRebeca models, we used the explicit engine of PRISM which works with an intermediate transition matrix
representation. Using this method, we could analyze larger models like sensor network, but PRISM does not
support all the features for this format. So, we could analyze models only against probabilistic reachability
properties. To overcome this shortage, in this paper we examined parallel composition approach in which
each PTRebeca component is converted to a probabilistic timed automaton. The parallel composition of all
PTAs represent the model behavior. The resulting PTA can be input to PRISM for performance analysis.
We showed that this approach creates larger state space comparing to the TMDP semantics. So, it is not
efficient for performance analysis of PTRebeca models.

To provide probabilistic reachability and expected reachability properties for larger models, we proposed
an approach in which the TMDP of a PTRebeca model is converted to one Markov automaton. The MA is
input to IMCA model checker for performance evaluation. We developed a toolset for automatic mapping of
the TMDP to one MA. We examined two case studies to show the applicability of our approach. The toxic
gas sensing system, called sensor network previously, was examined in the conference paper using explicit
engine of PRISM. Here, we obtained the identical results via mapping the TMDP to one MA and using
IMCA model checker, but in less amount of time. We also modeled a case study of NoC network using
PTRebeca, and evaluated the expected time properties by using the developed toolset.

In addition to the benefits of using TMDP semantics for analysis of PTRebeca models, our technique
is based on the actor model of computation where the interaction is solely based on asynchronous message
passing between the components. Hence, the proposed semantics is general enough to be applied to similar
computation models where there is message-driven communication and autonomous objects as units of
concurrency, and there exists discrete probabilistic behaviors in the model such as agent-based systems.
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Appendix A. Proof of Theorem 1

We show that
L(eTmin(s,3G)) = eTmin(s,3G) (A.1)

for all s ∈ S. To this aim, we distinguish three cases which are s ∈ DS \G, s ∈ PS \G, and s ∈ G.

� in case of s ∈ DS \G, the left-hand side of (A.1) is:

L(eTmin(s,3G)) = ds + eTmin(t,3G), (A.2)

where ds is delay time reaching state t from state s. This delay time is deterministic. On the other
hand,

eTmin(t,3G) = inf
D
Et,D(VG) = inf

D

∑
Paths

VG(π) · Prt,D(π) (A.3)

Combining (A.2) and (A.3), we have

L(eTmin(s,3G)) = ds + inf
D

∑
Paths

VG(π) · Prt,D(π)

= inf
D

∑
Paths

(VG(π) + ds) · Prt,D(π)

= inf
D

∑
Paths

(VG(π)) · Prs,D(π)

= eTmin(s,3G)

(A.4)

Note that in (A.4), in the second line, paths, start from t, whereas, in the third line, paths start from
s.

� in case of s ∈ PS \G there is:

eTmin(s,3G) = inf
D
Es,D(VG) = inf

D

∑
Paths

VG(π) · Prs,D(π)

= inf
D

∑
s

α,µ,0−−−→ t

D(s)(α) · E
t,D(s

α,µ,0−−−→ ·)
(VG)

= inf
D

min
s
α→µsα

∑
t∈S

µsα(t) · E
t,D(s

α,µ,0−−−→ ·)
(VG)

= min
s
α→µsα

inf
D

∑
t∈S

µsα(t) · E
t,D(s

α,µ,0−−−→ ·)
(VG)

= min
s
α→µsα

inf
D

∑
t∈S

µsα(t) · Et,D(VG)

= min
s
α→µsα

∑
t∈S

µsα(t) · eTmin(s,3G)

= min
α∈Act(s)

∑
t∈S

µsα(t) · eTmin(s,3G)

= L(eTmin(s,3G))

� in case of s ∈ G, based on the definition there is eTmin(s,3G) = inf
D

∑
Paths

VG(π) ·Prs,D(π) = 0, which

is the same as the value of the Bellman operator for goal states.

Appendix B. Proof of Theorem 2

From [33], cRmin(s,3G) is the unique fixpoint of the bellman operator L
′

defined as

[L
′
(v)](s) = min

α∈Act(s)

c(s, α) +
∑

s′∈S\G

P(s, α, s
′
).v(s

′
) +

∑
s′∈G

P(s, α, s
′
).g(s

′
)

 . (B.1)
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Now we show that the Bellman operator L defined in Theorem 1, and the Bellman operator L
′

defined in
(B.1) for sspet(M) are the same. By Definition 8, for each s ∈ S, g(s) = 0, therefore

[L
′
(v)](s) = min

α∈Act(s)

c(s, α) +
∑

s′∈S\G

P(s, α, s
′
).v(s

′
)

 . (B.2)

Consider three cases, s ∈ DS \G, s ∈ PS \G and s ∈ G.

� Case (I): Assume s ∈ DS \G, by Definition 8, c(s, α) = ds and

P(s, α, s
′
) =

{
1 s

′
is reaching state from s by delay ds and α = ⊥,

0 otherwise

Only action belongs to Act(s) is ⊥, furthermore only state after s is state s
′
, thus, from (B.2),

[L
′
(v)](s) = min

α∈Act(s)

c(s, α) +
∑

s′∈S\G

P(s, α, s
′
).v(s

′
)

 = ds + v(s
′
),

where s
′

is deterministic reaching state from s by delay time ds. However from Theorem 1, ds+v(s
′
) =

[L(v)](s), for each s ∈ DS \G, so in this case, theorem is proved.

� Case (II): Assume s ∈ PS \G. By Definition 8, P(s, α, s
′
) = µsα(s

′
) and c(s, α) = 0. Therefore,

[L
′
(v)](s) = min

α∈Act(s)

c(s, α) +
∑
s′∈S

P(s, α, s
′
).v(s

′
)

 = min

∑
s′∈S

µsα(s
′
).v(s

′
)


However in this case

[L(v)](s) = min

∑
s′∈S

µsα(s
′
).v(s

′
)

 ,

Therefore [L
′
(v)](s) = [L(v)](s), and the proof of the theorem in this case is complete.

� Case (III): Assume s ∈ G. Here in addition to g(s) = 0, we have c(s, α) = 0, for each action α, and
P(s, α, s

′
) = 0, for each α ∈ Act(s) and s

′ ∈ S. Therefore

[L
′
(v)](s) = min

α∈Act(s)

c(s, α) +
∑

s′∈S\G

P(s, α, s
′
).v(s

′
)

 = 0 = [L(v)](s).

Now the proof is complete.

Appendix C. Proof of Theorem 3

We show that
L(eRmin(s,3G)) = eRmin(s,3G) (C.1)

for all s ∈ S. To this aim, we distinguish three cases which are s ∈ DS \G, s ∈ PS \G, and s ∈ G.
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� in case of s ∈ DS \G, the left-hand side of (C.1) is:

L(eRmin(s,3G)) = ρ(s)× ds + eRmin(t,3G), (C.2)

where ρ(s) is the reward of staying in s. This reward is deterministic. On the other hand,

eRmin(t,3G) = inf
D
Et,D(RG) = inf

D

∑
Paths

RG(π) · Prt,D(π) (C.3)

Combining (C.2) and (C.3), we have

L(eRmin(s,3G)) = ρ(s)× ds + inf
D

∑
Paths

RG(π) · Prt,D(π)

= inf
D

∑
Paths

(RG(π) + ρ(s)× ds) · Prt,D(π)

= inf
D

∑
Paths

(RG(π)) · Prs,D(π)

= eRmin(s,3G)

(C.4)

Note that in (C.4), in the second line, paths, start from t, whereas, in the third line, paths start from
s.

� in case of s ∈ PS \G there is:

eRmin(s,3G) = inf
D
Es,D(RG) = inf

D

∑
Paths

RG(π) · Prs,D(π)

= inf
D

∑
s

α,µ,0−−−→ t

D(s)(α) · E
t,D(s

α,µ,0−−−→ ·)
(RG) + r(s, α)

= inf
D

min
s
α→µsα

∑
t∈S

µsα(t) · E
t,D(s

α,µ,0−−−→ ·)
(RG) + r(s, α)

= inf
D

min
s
α→µsα

r(s, α) +
∑
t∈S

µsα(t) · E
t,D(s

α,µ,0−−−→ ·)
(RG)

= min
s
α→µsα

inf
D

r(s, α) +
∑
t∈S

µsα(t) · E
t,D(s

α,µ,0−−−→ ·)
(RG)

= min
s
α→µsα

inf
D

r(s, α) +
∑
t∈S

µsα(t) · Et,D(RG)

= min
s
α→µsα

r(s, α) +
∑
t∈S

µsα(t) · eRmin(s,3G)

= min
α∈Act(s)

r(s, α) +
∑
t∈S

µsα(t) · eRmin(s,3G)

= L(eRmin(s,3G))

� in case of s ∈ G, based on the definition there is eRmin(s,3G) = inf
D

∑
Paths

RG(π) ·Prs,D(π) = 0, which

is the same as the value of the Bellman operator for goal states.
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