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Abstract. Actor model is a concurrent object-based computational model
in which actors are the units of concurrency and communicate via asyn-
chronous message passing. Timed Rebeca is an actor-based modeling lan-
guage which is designed for modeling and analyzing of event-based and
asynchronous systems with time constraints. Timed Rebeca is equipped
with analysis techniques based on the standard semantics of timed sys-
tems, and also an innovative event-based semantics that is tailored for
timed actor models. The developed techniques are applied on different
applications using Afra toolset, the integrated development environment
of Timed Rebeca. This paper is a survey on the published work on Timed
Rebeca, its semantics, supporting tools, and applications.
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Foreword

Frank is fun and frustration! This is what I told him 13 years ago and I still
can hold to it. He is full of positive energy, and he works hard, although he has
a rule: it’s stupid to work on a sunny day! Frank is always full of great ideas,
half of those I never understood! I listened to his Hoare logic presentation three
times, without much success. He is a fantastic leader. He has the reasoning mind
of a logician, and the wit of a philosopher, while he can understand Java like an
experienced programmer.

We started working on timed actors in 2006, and we had our first paper on
Timed Rebeca at the Nordic Workshop on Programming Theory in 2007. So, ten
years have passed ... but if we look at our relative age, then nothing has changed.
Congratulations Frank! For your 60th birthday! Wish you yet more success and
happiness for the next 60 years to come!

1 Introduction

Modeling is crucial, both in science and engineering. We build models to be
able to do analysis without having to deal with the details of a system’s imple-
mentation. Edward Lee [1] emphasizes on the difference between engineers and
scientists when they build and use a model. Engineers build a model to explore
the design space and construct a system based on the model; and scientists build



a model of an existing system to be able to analyze it. So, engineers do their best
to build the system just like the model, and scientists do their best to build the
model similar to the existing system. No matter we use a model as an engineer or
a scientist, we need to have a faithful model in order to perform a valid analysis
and/or design exploration.

We may hear the following question, mostly in more theoretical communities:
”why yet another modeling language?” This question is usually asked if you
mainly focus on the expressibility of the modeling languages. But usability and
fidelity are also two crucial features of a modeling language, and their importance
is very well acknowledged from a more practical point of view. Models need to be
able to capture the characteristics of the system which affect the properties of our
interest (fidelity), and we need to be able to understand and build a model with
the least possible effort (usability). For example, object-oriented approaches were
introduced with the philosophy of reducing the semantic gap between the real
world problems and the models representing those problems; and their success
is undeniable. With the growing need for various software applications, and
fast changes in hardware and network infrastructures, the answer to the above
question is simple: because we are not there yet! And with ”change” being the
only constant in our software world, we will possibly never be there!

The non-functional properties of different nature are becoming more crucial
in correctness of a software system, demanding for new models and/or extensions
of existing languages. Timing features are no more just performance concerns.
In many software systems, nowadays, timing features are part of correctness
properties. So, the so called non-functional properties are becoming first-class
characteristics of a system like the functional ones.

The modeling language Rebeca (Reactive Objects Language) [2, 3], is an op-
erational interpretation of the actor model [4, 5] provided with formal semantics
and supported by model checking tools [6]. Rebeca is designed to be a usable
and analyzable modeling language to bridge the gap between software engineers
and formal method community. The application domain targeted by Rebeca is
where we have event-driven systems, with asynchronous message passing. In Re-
beca, we have non-blocking sends, no explicit receive, no shared variables, and
non-preemptive method execution.

In this paper, we will provide a brief overview on Time Rebeca [7, 8], the
timed extension of Rebeca which is much praised by Frank de Boer. In the fol-
lowing sections, we will show how Floating Time Transition System is a natural
semantics for event-based actor languages based on the work of [9]. Then we will
have a short survey on state-based model checking of Timed Rebeca based on
[10] and [11]. Finally, we will conclude by showing how Timed Rebeca is used
for analysis and design exploration in real world case studies which were studied
in [12] and [13].



2 Timed Rebeca

Timed Rebeca [8, 7] is an extension of Rebeca [2, 3] with time features for mod-
eling and verification of time-critical systems. These primitives are added to
Rebeca to address computation time, message delivery time, message expiration,
and period of occurrence of events. In a Timed Rebeca model, each actor has its
own local clock. The local clocks can be considered as synchronized distributed
clocks. Methods are still executed atomically like in Rebeca, however passing of
time while executing a method can be modeled. In addition, instead of having
a queue for the messages, there is a bag of messages where messages are stored
together with their time tags. The time tag of a message represents the time
that the message arrived in the bag and can be taken to be served. The model
is based on discrete events and discrete time.

Model ::= Class∗ Main

Main::= main { InstanceDcl∗ }
InstanceDcl ::= className rebecName(〈rebecName〉∗) : (〈literal〉∗);

Class::= reactiveclass className { KnownRebecs Vars MsgSrv∗ }
KnownRebecs::= knownrebecs { VarDcl∗ }

Vars::= statevars { VarDcl∗ }

VarDcl ::= type 〈v〉+;

MsgSrv ::= msgsrv methodName(〈type v〉∗) { Stmt∗ }

Stmt ::= v = e; | v =?(e, 〈e〉+); | Call; | if (e) { Stmt∗ }[else { Stmt∗ }] |
delay(t);

Call ::= rebecName.methodName(〈e〉∗) [after(t)] [deadline(t)]

Fig. 1. Abstract syntax of Timed Rebeca (from [9]). Angled brackets 〈...〉 are used as
meta parenthesis, superscript + for repetition at least once, superscript ∗ for repeti-
tion zero or more times, whereas using 〈...〉 with repetition denotes a comma separated
list. Brackets [...] indicates that the text within the brackets is optional. Identifiers
className, rebecName, methodName, v, literal, and type denote class name, re-
bec name, method name, variable, literal, and type, respectively; and e denotes an
(arithmetic, boolean or nondetermistic choice) expression.

Two major semantics are considered for Timed Rebeca: Floating Time Tran-
sition System (FTTS) [9] which is a natural event-based semantics for actors, and
Timed Transition System (TTS) which is a standard state-based semantics for
timed models. In the FTTS semantics, in each state, the local time of each actor



can be different from the others, i.e., the execution of actors is not synchronized
over their local times. In the TTS semantics the local time of all actors is the
same. Note that when we talk about synchronized local clocks we are explaining
the concept of time in the model, while TTS semantics respects this synchrony, in
FTTS we relax the time synchronization constraint. Comparing to TTS, FTTS
can be considered as a reduced state transition system where the event-based
properties are preserved. A more detailed description is in Section 3. The syntax
of Timed Rebeca is shown in Figure 1 and we illustrate Timed Rebeca language
constructs using a simple Network on Chip (NoC) example in Figure 2 [12, 14].
NoC is a promising architecture paradigm for many-core systems. As an exam-
ple of a NoC, we modeled and analyzed ASPIN (Asynchronous Scalable Packet
switching Integrated Network), which is a fully asynchronous two-dimensional
NoC design with XY routing algorithm [15]. In the two-dimensional NoC de-
sign, each node has four adjacent nodes and four internal buffers for storing the
incoming packets (one for each direction). Using XY routing algorithm, pack-
ets are moving along X direction first, then along Y direction, to reach their
destination nodes. In ASPIN, packets are transferred through channels, using
four-phase handshake communication protocol. The protocol uses two signals,
namely Req and Ack, to implement four-phase handshaking protocol. This way,
to transfer a packet, first the sender sends a request by raising Req signal, and
waits for an acknowledgment which is the raising of Ack signal by the receiver.
In the third phase, data is sent. Finally, after a successful communication all of
the signals return to zero.

A Timed Rebeca model consists of a number of reactive classes, each describ-
ing the type of a certain number of actors (called rebecs in Timed Rebeca)3. As
shown in Figure 2, two different reactive classes, Manager and Router, are de-
veloped in the NoC model. Manager is the traffic generator of this model and
Router is the model of a node in an ASPIN design. The local state of each actor is
defined by the contents of its message bag and the values of its state variables. A
composite id, using X-Y position (line 12), and buffer variables which show that
the buffers are enable or busy (lines 13 and 14) are state variables of a Router,
defined in a statevars block. Manager does not have any state variables in this
model. The communication in Timed Rebeca takes place by asynchronous mes-
sage passing among actors. Each actor has a set of known rebecs to which it can
send messages. Manager, as the traffic generator of the model, may send message
to any of the nodes; so, all the routers from r00 to r33 are its known rebecs.
Contrarily, a router is only allowed to communicates with its neighbors, named
North, East, South, and West (line 9). The actors instantiation and binding the
known rebecs of actors are in the main block (lines 22-28). In this NoC model, a
mesh of 16 Routers is created and known rebecs are set based on the topology
of the mesh (e.g., as shown in line 25, router r13 is the north neighbor of r10,
router r20 is the east neighbor of r10, router r11 is the south neighbor of r10,
and router r00 is the west neighbor of r10).

3 In this paper we use rebec and actor interchangeably.



The same as other actor models, reactive classes of Timed Rebeca declare
the messages to which they can respond, defining message servers. As shown
in Figure 2, Manager has only generateTraffic message server and Router

has four different message servers, init, getAck, reqSend, and giveAck (lines
17-20). The definition of a message server is the same as the definition of class
methods of Java except that it starts with msgsrv keyword and it does not
have return value. To develop the Timed Rebeca model of ASPIN, four phase
handshaking protocol is modeled using three message servers: reqSend, giveAck,
and getAck. A router calls its reqSend message server to route a packet to its
neighbors. A part of reqSend and giveAck message servers is shown in Figure 3.

1 reactiveclass Manager {

2 knownrebecs {

3 Router r00, r10, ..., r33;

4 }

5 msgsrv generateTraffic() { ... }

6 }

7 reactiveclass Router {

8 knownrebecs {

9 Router North, East, South, West;

10 }

11 statevars {

12 byte Xid, Yid;

13 byte[4] bufNum;

14 boolean[4] full, enable, outMutex;

15 }

16 Router(byte X, byte Y) { ... }

17 msgsrv init() { ... }

18 msgsrv getAck() { ... }

19 msgsrv reqSend(byte Xtarget, byte Ytarget) { ... }

20 msgsrv giveAck(byte Xtarget, byte Ytarget) { ... }

21 }

22 main {

23 Manager m(r00,r10, ... ,r33): ();

24 Router r00(r03,r10,r01,r30): (0,0);

25 Router r10(r13,r20,r11,r00): (1,0);

26 ...

27 Router r33(r32,r03,r30,r23): (3,3);

28 }

Fig. 2. The Timed Rebeca model of ASPIN Network on Chip

As shown in Figure 3, an actor can change its state variables through assign-
ment statements (lines 6 and 7), make decisions through conditional statements



(line 2), and communicate with other actor by sending messages (line 5). Re-
current and periodic behavior can be modeled by actors sending messages to
themselves (line 9). Timed Rebeca adds three primitives to Rebeca to address
timing issues: delay, deadline and after. A delay statement models the passing
of time of an actor during the execution of a message server (line 12). Note that
all other statements are assumed to execute instantaneously. The keywords after
and deadline can be used in conjunction with a method call. The term after

n indicates that it takes n units of time for the message to be delivered to its
receiver (line 5). The ordering of messages in a message bag is based on the
delivery times of messages. Each actor takes the first message from its message
bag (the message with the earliest time tag), executes the corresponding mes-
sage server, and then takes the next message (or waits for the next message to
arrive), and so on. Messages are executed in a non-preemptive way (atomically).
The term deadline n is used to show that if its related message is not taken in
n units of time, it will be purged from the receiver’s message bag automatically
(line 21).

1 msgsrv reqSend(byte Xtarget, byte Ytarget) {

2 if(Xtarget > Xid) {

3 byte leavingDirection = ...;

4 if(outMutex[leavingDirection]) {

5 East.giveAck(Xtarget, Ytarget) after(50);

6 outMutex[leavingDirection] = false;

7 enable[leavingDirection] = false;

8 } else

9 self.reqSend(Xtarget, Ytarget) after(100);

10 } else if(Xtarget < Xid) { ... }

11 ...

12 delay(50);

13 }

14
15 msgsrv giveAck(byte Xtarget, byte Ytarget) {

16 if(Xtarget == Xid && Ytarget == Yid) {

17 //Consume the packet

18 } else if(!(Xtarget == Xid && Ytarget == Yid)) {

19 byte enteranceDirection = ...;

20 bufNum[enteranceDirection]++;

21 ((Router)sender).getAck() deadline (50);

22 self.reqSend(Xtarget, Ytarget) after(100);

23 }

24 }

Fig. 3. The body of two message servers of ASPIN model



The XY-routing algorithm is implemented inside reqSend (lines 1-13). lines
2 to 9 shows that how a packet is routed to its east neighbor. If the packet
must be sent to the router’s east neighbor (line 3) and its east outgoing buffer
is free (line 4), message giveAck is sent to the east neighbor and the internal
state of the sender router is changed to the condition after sending a message.
Upon processing giveAck, first the destination address of the newly received
packet is checked and the packet is consumed if its target address is set to that
node. Otherwise, the packet is stored in the buffer of the receiver (line 20),
acknowledgment is sent to the sender router by sending getAck message (line
21), and message reqSend is sent to itself to route the newly received packet
toward its destination (line 22).

3 Event-based Semantics: Floating Time Transition
System

FTTS is defined in [16] as the natural semantics of Timed Rebeca. FTTS ex-
ploits the key features of actor models to generate very compact state transition
systems. Having single threaded actors, with no shared variables, and no block-
ing send or receive, along with non-preemptive execution of each message server,
ensures that the execution of a message server does not interfere with the execu-
tion of message servers of other actors. Therefore, all the statements of a given
message server of an actor can be executed in isolation (even delay statements)
during a single transition without considering the behavior of the other actors.
This way, after performing a transition from one state to another state, different
actors may be in different local times. The way the states of FTTS are generated
handles the differences between the local times of actors. Such a semantics is rea-
sonable when one is only interested in the order of the events of a model. FTTS
may not be appropriate for reasoning about the synchronized global states of an
actor model [9].

The operational semantics of a Timed Rebeca modelM with the set of actors
I is defined as Floating Time Transition System FTTS = (S, s0, Act , ↪→) where
S is the set of states, s0 is the initial state, Act is the set of actions, and ↪→ is
the transition relation, as described below (from [17]).

States. A state s ∈ S of the Timed Rebeca modelM consists of the local states
of actors plus their current time. The local state of an actor i in (the global)
state s is the pair of the valuation of its state variables (shown by Vs,i) and the
bag of its received messages (shown by Bs,i). The local time of the actor i is
denoted as nows,i. So, the state s ∈ S is defined as s =

∏
i∈I (Vs,i, Bs,i, nows,i).

Initial State. In the initial state s0 of the Timed Rebeca model M, the state
variables of the actors are set to their initial values (according to their types),
the initial message is put in the bag of actors (their arrival times are set to
zero), and the current times of all the actors are set to zero.

Actions. There is only one kind of action in FTTS, which is taking a message
from the message bag and executing the corresponding message server entirely.



The message tmsg is denoted by a tuple ((sid, rid,mid), ar, dl) where sid is the
id of its sender actor, rid is the id of the receiver actor, mid is the id of its
corresponding message server, ar is its arrival time, and dl is its deadline. This
way, the set of actions, Act, is defined as Act =

⋃
i∈I ((I × {i} ×Mi)× N× N)

where Mi is the set of message servers of actor i.

Transition Relations. We first define the notion of release time of a message.
An actor ai in a state s ∈ S has a number of timed messages in its bag. The
release time of the message tmsg = ((sid, rid,mid), ar, dl) ∈ Bs,i is defined as
rttmsg = max(nows,i, ar) (Note that ar < nows,i means that tmsg has arrived at
some time when ai has been busy executing another message server. Hence, tmsg
is ready to be processed at nows,i). Consequently, the set of enabled messages of
actor ai in state s is Es,i = {tmsg ∈ Bs,i | ∀tmsg′ ∈ Bs,i ·rttmsg ≤ rttmsg′} which
are the messages with the minimal release time. For a set of enabled messages
Es,i, enabling time ETs,i is defined as the release time of members of Es,i.

Now we define the transition relation ↪→⊂ S × Act × S such that for every
pair of states s, t ∈ S, we have (s, tmsg, t) ∈↪→ for every tmsg ∈ Es,i ∧ (∀j ∈
I ·ETs,i ≤ ETs,j). All the transitions of FTTS are called taking-event transitions
and as a result of a taking-event transition labeled with tmsg, tmsg is extracted
from the bag of ai, the local time of ai is set to ETs,i, and all the statements
in the message server corresponding to tmsg are executed sequentially. Here, ai
is called enabled actor. The effect of executing non-delay statements is changing
the state variables of ai and sending some messages to ai or other actors. The
effect of executing a delay statement with parameter d ∈ N is increasing the
local time of ai by d units of time.

1 reactiveclass Ping(3) {

2 knownrebecs { Pong po; }

3 Ping() {

4 self.ping();

5 }

6 msgsrv ping() {

7 po.pong() after(1);

8 delay(2);

9 }

10 }

11

12 reactiveclass Pong(3) {

13 knownrebecs { Ping pi; }

14 msgsrv pong() {

15 pi.ping() after (1);

16 delay(1);

17 }

18 }

19 main {

20 Ping ping(pong):();

21 Pong pong(ping):();

22 }

Fig. 4. The Timed Rebeca model of ping pong example

To illustrate how FTTS is created for a Timed Rebeca model, we prepared
a very simple model in Figure 4, the ping pong example. In this example, there
are two actors, Ping and Pong, which send messages to each other periodically.
Without loss of generality, we assumed that the actors of this model do not



have state variables. Figure 5 shows the beginning part of the FTTS of the ping
pong example. The first enabled actor of the model is Ping (its constructor puts
message ping in its bag, line 4), so the first executed message is ping. As shown
in the detailed contents of the second state (the gray block), execution of the
message ping, actor Ping is at time 2 (because of executing the delay statement
in line 8); however, actor Pong is at time 0 as it does not execute any messages.
Also, message pong is put in the bag of actor Pong which its release time is 1
(because of the value of after in line 7). The deadline of this message is ∞ as
no specific value is set as the deadline of this message in line 7.

ping time+1 pong time+1 ping

Time = 1

Ping

Pong

ping pong ping

Ping

Pong

Time = 2

Time = 0

Bag = 

Bag = 𝑝𝑜𝑛𝑔, 𝑃𝑖𝑛𝑔, 1,∞

Bag = 𝑝𝑖𝑛𝑔, 𝑃𝑜𝑛𝑔, 2,∞

Bag = 

Resuming Time = 2

Resuming Time = 2
PC = 𝑝𝑜𝑛𝑔, 2

PC = 𝑝𝑖𝑛𝑔, 2

Fig. 5. The beginning part of the FTTS of ping pong example

There is no explicit reset operator for the time in Timed Rebeca; so, progress
of time results in an infinite number of states in FTTS. However, Timed Rebeca
models are models of reactive systems which generally show periodic or recurrent
behaviors. It means that, if the absolute time of the states are ignored, usually
finite number of untimed traces are generated for Timed Rebeca models. Based
on this fact, in [9] we presented a new notion for equivalence relation between
two states to make FTTS finite, called shift equivalence relation. In the shift
equivalence relation two states are equivalent if and only if they are the same
except for the value of parts which are related to the time (i.e. the local times of
actors, the arrival times of messages, and the deadlines of messages) and shifting
the value of parts which are related to the time in one state makes it the same
as the other one. This way, instead of preserving absolute value of time, only
the relative difference of timing parts of states are preserved. As discussed in [9],
for most systems of interest, shift equivalence relation succeeds to make their
transition systems finite.



In FTTS, we have to make sure that the models are Zeno-free because a
timed system with Zeno behavior does not exist in the real-world. As the model
of time in Timed Rebeca is discrete, the execution of an infinite number of
message servers in zero time is the only scenario resulting in Zeno behavior.
So, the Zeno behavior happens if and only if there is a cycle of message server
invocations among different actors without progress of time. This can be detected
by static analysis of the Timed Rebeca model.

FTTS can be used for reasoning about event-based properties, i.e., the rela-
tions among actions of systems and the time where they are triggered (messages
are taken from bags). The most expressive action-based logic which can be eval-
uated using FTTS is defined in [17]. As proved in [17], FTTS can be used for
verification of properties in a form of the modal µ-calculus with weak modalities
(a superset of event-based LTL properties). The weak modal µ-calculus has the
same syntax as the modal µ-calculus, where we assume that the diamond (〈a〉ϕ)
and box ([a]ϕ) modalities are restricted to observable transitions, i.e., action a
must be a taking-event transition. The semantics of this logic is identical to that
of the µ-calculus, except for the semantics of the diamond and box operators —
a state s satisfies 〈a〉ϕ if there is an execution starting from state s to t, such
that a is the only visible action, and t satisfies (inductively) ϕ. The semantics
of box is defined dually.

4 The Standard Semantics: Time Transition System

FTTS can be used for efficient event-based analysis of Timed Rebeca models;
however, it can not be used for the analysis against timed state-based prop-
erties. To be able to analyze Timed Rebeca models against timed state-based
properties, a few mappings and techniques are developed based on TTS.

4.1 Time Transition System of Timed Rebeca

Time Transition System (TTS) of a Timed Rebeca model M is defined as a
tuple TTS = (S, s0, Act,→) where S is the set of states, s0 is the initial state,
Act is the set of actions, and → is the transition relation as described below
(from [17]).

States. A state s ∈ S of the Timed Rebeca modelM consists of the local states
of the actors, together with the current time of the state. The local state of
actor ai in (the global) state s is defined as the tuple (Vs,i, Bs,i, pcs,i, ress,i),
where Vs,i and Bs,i are defined as the valuation of state variables and the bag
of messages respectively (the same as in FTTS), pcs,i ∈ {null} ∪ (Mi × N) is
the program counter, and ress,i ∈ N0 is the resuming time for actor ai which
executes a delay in s. The program counter tracks the execution of the current
message server and is null if actor i is idle in s. So, state s ∈ S can be defined as(∏

i∈I (Vs,i, Bs,i, pcs,i, ress,i) , nows
)

where nows ∈ N is the global current time
of s.



Initial State. s0 is the initial state of the Timed Rebeca model M where
the state variables of the actors are set to their initial values (according to their
types), the initial message is put in the bag of all actors having such a message
server, the program counters of all actors are set to null, and the time of the
state is set to zero.

Actions. There are three possible types of actions: taking a message tmsg =
((sid, rid,mid), ar, dl), executing a statement by an actor (which we consider as
an internal transition τ), and progress of n ∈ N units of time. Hence, the set of
actions is Act =

⋃
i∈I ((I × i×Mi)× N× N) ∪ {τ} ∪ N.

Transition Relations. Before defining the transition relation, we introduce the
notation Es,i which denotes the set of enabled messages of actor ai in state s
which contains the messages whose arrival time is less than or equal to nows.
The transition relation→⊂ S×Act×S is defined such that (s, act, t) ∈→ if and
only if one of the following conditions holds.

1. (Taking a message for execution) In state s, there exists actor ai such
that pcs,i = null and there exists tmsg ∈ Es,i. Here, we have a transition

of the form s
tmsg−→ t. This transition results in extracting tmsg from the

message bag of ri, setting pct,i to the first statement of the message server
corresponding to tmsg, and setting rest,i to nowt (which is the same as
nows). Note that Vt,i remains the same as Vs,i. These transitions are called
taking-event transitions and ai is called enabled actor.

2. (Internal action) In state s, there exist ai such that pcs,i 6= null and
ress,i = nows. The statement of message server of ai specified by pcs,i is
executed and one of the following cases occurs based on the type of the
statement. Here, we have a transition of the form s

τ→ t.

(a) Non-delay statements: the execution of such a statement may change
the value of a state variable of actor ai or send a message to another
actor. Here, pct,i is set to the next statement (or null if there is no more
statements). All other elements of t are the same as those of s.

(b) The statement is a non-deterministic assignment: the execution of a non-
deterministic assignment a =?(e1, ..., en) results in n different transitions
from s to states sv1 , sv2 , ..., svn , where a = ei in state svi . The action is
τ , and the execution of τ results in svi (1 ≤ i ≤ n).

(c) Delay statement with parameter d ∈ N: the execution of a delay state-
ment sets rest,i to nows + d. All other elements of the state remain
unchanged. Particularly, pct,i = pcs,i because the execution of delay
statement is not yet complete. The value of the program counter will be
set to the next statement after completing the execution of delay (as will
be shown in the third case).

These transitions are called internal transitions.
3. (Progress of time) If in state s none of the conditions in cases 1 and 2 hold,

meaning that @ai ·((pcs,i = null∧Es,i 6= ∅)∨(pcs,i 6= null ∧ ress,i = nows)),
the only possible transition is progress of time. In this case, nowt is set
to nows + d where d ∈ N is the minimum value which makes one of the



aforementioned conditions become true. The transition is of the form s
d→ t.

For any actor ai, if pcs,i 6= null and ress,i = nowt (the current value of pcs,i
points to a delay statement), pct,i is set to the next statement (or to null if
there are no more statements). These transitions are called time transitions.
Note that when such a transition exists, there is no other outgoing transition
from s.

We reuse ping pong example of Figure 4 to illustrate how TTS is generated
and be able to compare the FTTS and the TTS of this example. Figure 6 presents
the beginning part of the TTS of the ping pong example. In this figure, the details
of the fourth state is shown. As only one timed transition is in the path to the
fourth state, the global time of the state is 1. Also, the execution of both Ping

and Pong actors are suspended by delay statements until reaching time 2 (based
on the value of the program counters and the resuming times). Executing the
first statement of pong message server, a message is scheduled for Ping actor
(line 15), shown as the only content of the bag of Ping.

ping time+1 pong time+1 ping

Time = 1

Ping

Pong

ping pong ping

Ping

Pong

Time = 2

Time = 0

Bag = 

Bag = 𝑝𝑜𝑛𝑔, 𝑃𝑖𝑛𝑔, 1,∞

Bag = 𝑝𝑖𝑛𝑔, 𝑃𝑜𝑛𝑔, 2,∞

Bag = 

Resuming Time = 2

Resuming Time = 2
PC = 𝑝𝑜𝑛𝑔, 2

PC = 𝑝𝑖𝑛𝑔, 2

Fig. 6. The beginning part of the TTS of ping pong example

Based on TTS semantics, different mappings to existing languages and tools
are created for Timed Rebeca. Recently a dedicated efficient tool is developed
for TCTL model checking of Timed Rebeca.

4.2 Mapping Timed Rebeca to Timed Automata

We developed a mapping technique from Timed Rebeca models into timed au-
tomata [18, 9] for generating the TTS of Timed Rebeca models and supporting



state-based model checking. Timed automata [19] model is one of the most widely
used modeling languages for modeling of realtime systems. UPPAAL toolset sup-
ports TCTL model checking of timed automata. In the proposed mapping, each
actor is mapped into two timed automata, called actor-behavior automaton and
actor-bag automaton. Additionally, one time automaton is defined to handle the
behavior of after primitive for all actors, called after-handler automaton.

The actor-behavior automaton models the behavior of an actor according to
the statements of its message servers and valuations of state variables. The state
variables of each actor are mapped into variables of its corresponding actor-
behavior automaton. The actor-behavior automaton, after receiving a message,
moves to a state which represents the beginning of the corresponding message
server. To model the behavior of a message server, its statements are mapped to
the transitions of timed automata. The details of this mapping are presented in
[9]. The actor-bag automaton handles the behavior of the message bag of each
actor using an internal buffer called messageQ. The actor-bag accepts messages
which are sent to its corresponding actor asynchronously, regardless of the state
of the corresponding actor-behavior automaton. Then, actor-bag automaton de-
livers received messages upon the requests of its corresponding actor-behavior
automaton. The after-handler automaton handles the messages which should
be delivered to the actor-bag automata in the future (messages which are sent
by the after primitive). The after-handler automaton accepts messages and put
them into its buffer until the release time of the messages. When a message in
the buffer of after-handler is released, it is sent to its corresponding actor-bag
automaton.

The parallel composition of the resulting timed automata and the schedu-
lability analysis of the model is done using UPPAAL [20]. Modeling of asyn-
chronous message passing between actors using synchronous communication of
timed automata increases the number of states dramatically [21]. We can apply
some techniques, like using committed states and techniques that are presented
in [22–24], to reduce the number of states of the resulting region transition
system. However, as shown in [9], the technique stays inefficient for modeling
asynchronous communication.

4.3 Mapping Timed Rebeca to Realtime Maude

Timed Rebeca is mapped into Realtime Maude [25, 26] to support timed analysis
of Timed Rebeca models with dynamic actor creation. Realtime Maude is a
specification formalism and analysis tool for realtime systems based on rewriting
logic [27]. Realtime Maude is highly expressive and is particularly suitable for
formally specifying distributed realtime systems in an object-oriented way.

In the Realtime Maude model, a multiset of actor objects and messages rep-
resents the state of a Timed Rebeca model, where each actor object represents
a rebec and each message in the multiset represents a message in the set of un-
delivered messages of the Timed Rebeca model. Communication between actors
takes place by putting a message into the multiset of undelivered messages. This
message is remained in the undelivered messages until its message delivery delay



ends (i.e. the parameter specified by after keyword). The instantaneous actions
of a rebec are formalized using rewrite rules, as shown in [10].

The “standard” object-oriented tick rule [25] is used to model time advance
until the next time when something must “happen”. The effect of time elapse on
an actor is that the remaining time for a delay statement is decreased according
to the elapsed time. For messages traveling between actors, their remaining de-
livery delays and deadline are decreased according to the elapsed time. In both
cases, if the deadline expires before the message is served, the message is purged.

Using this mapping, we analyzed several Timed Rebeca models using the
bounded-TCTL model checker engine of Realtime Maude. This mapping sup-
ports dynamic actor creation in the model, which is not supported by other
approaches. Realtime Maude performs bounded model checking and needs high
expertise to work with.

4.4 Direct TCTL Model Checking of Timed Rebeca Models

To overcome the inefficiencies of using back-end model checkers, we developed a
dedicated TCTL model checking toolset for Timed Rebeca models. To this end,
we directly generated the TTS of Timed Rebeca models and applied a modified
version of the model checking algorithm of [28] for analysis against TCTL≤,≥
properties. As shown in [11], the modified version of the algorithm analyzes a
TTS with V states and E transitions against property Φ in O((V lg V + E)|Φ|)
which is the best possible TCTL≤,≥ model checking algorithm for dense transi-
tion systems.

In [11] we also showed that for the majority of the timed actors, the pro-
posed algorithm cover model checking against complete TCTL properties in
pseudo polynomial time. However, UPPAAL only supports model checking for
a fragment of TCTL and realtime Maude supports bounded-model checking of
TCTL properties.

5 Timed Rebeca in Practice

Timed Rebeca is used in several applications such as modeling and analysis of
routing algorithms for Network on Chips (NOCs) [12, 14], and schedulability
analysis of wireless sensor and actuator network applications (specifically, real-
time continuous sensing application for structural health monitoring) [29]. Our
NoC example is the basis and the reference model of the work of Din et al. in
[30] which proposes a scalable verification technique for generic NoC models.

5.1 Analyzing NoCs

As mentioned in details in Section 2, Network on Chip (NoC) has emerged as a
promising architecture paradigm for many-core systems. Asynchronous commu-
nication has become conspicuous in NoC design to overcome problems of clock
skew and clock tree distribution of fully synchronous design. Thereby Globally



Asynchronous Locally Synchronous (GALS) NoC has gained attention in design
of such systems. In GALS NoCs, a sent packet might be delayed by a num-
ber of disrupting packets, which creates various end-to-end latencies. Thus, for
analysis of such systems it is essential to consider all possible behaviors of the
systems (at least for specific scenarios) and consider the whole state spaces. Sim-
ulation techniques cannot be applied to exhaustive search. As complexity grows
in NoCs, functional verification and performance prediction in the early stages
of the design process are suggested as ways to reduce the fabrication cost. For-
mal methods have gained more attention as alternative ways for analyzing NoC
designs. Timed Rebeca is used in [12] to model two-dimensional mesh GALS
NoCs with a four-phase handshake communication protocol, and functional and
timing behaviors, the routing algorithm and communication protocol are cap-
tured in the model. Deadlock freedom, message arrival, and end-to-end packet
latency are checked and the verification results are compared and matched to the
simulation results of HSPICE4 using 32nm technology. This work is extended in
[14] for comparing different routing algorithms in GALS NoCs.

Comparing Routing Algorithms in NOC. In [14], Timed Rebeca models
for the three following routing algorithms on GALS NoCs are developed: XY,
Odd-Even, and Dynamic Adaptive Deterministic (DyAD). In XY routing algo-
rithm, as the first step, packets move along the X direction until they reach the
column of the destination. Then they move along the Y direction to reach their
destinations. The Odd-Even routing algorithm works based on the Odd-Even
turn model [31]; north-to-west and south-to-west turns are prohibited in routers
located in an odd column, and east-to-south and east-to-north turns are prohib-
ited in routers located in an even column. The odd-Even turn model restricts the
turns in the packet path to ensure deadlock freedom. Finally, DyAD routing is a
dynamic algorithm that uses a deterministic or adaptive routing based on differ-
ent network congestion conditions. Each router monitors the occupation ratio of
its input buffers; whenever one of the buffers passes the congestion threshold the
corresponding neighboring routers are informed about the congestion. Routers
priodically check their neighbors to change their routing algorithm into adaptive
routing in case of congestion.

FTTS-based model checking of Timed Rebeca is used for comparing the
performance of XY, Odd-Even, and DyAD algorithms. The NoC size in these
comparisons is set to 4x4. The size of input buffers is set to 3 packets and
congestion threshold is set to %33. To compare the three algorithms, six different
scenarios describing different network traffics, are used. The selected scenarios
are representers of widely occurring traffic patterns. As illustrated in Figure 7
in the first three scenarios, DyAD and Odd-Even show less end-to-end packet
latency as these algorithms are designed to avoid congestion. In the second three
scenarios, there are disrupting packets in all possible directions. These scenarios
investigate the impact of low latency of XY and Odd-Even algorithms which is

4 HSPICE provides the lowest level simulation for hardware designs. All the details of
transistors and wires of hardware designs are considered in HSPICE simulator.



the result of their simplicity in contrast to DyAD. As shown in Figure 7, XY
shows the best performance indicating that it works better in a fully chaotic
situation.
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Fig. 7. Comparison among latencies of routing algorithms in six different scenarios

Design Exploration for ASPIN Architecture on GALS NoC. ASPIN
is a fully asynchronous two-dimensional mesh NoC with physically distributed
routers in each core. ASPIN uses the storage strategy of input buffering, and
each input port is provided by an independent FIFO buffer. Packets arrived
from different sides (from neighboring routers on four sides and the local core),
are stored in the FIFO buffer of the input port. If there is more than one request
for an output port, a round robin policy is used for the arbitration. ASPIN uses
XY routing algorithm to route packets from output port of the source router to
the input port of the destination router. Communications between routers are
established using four-phase handshake protocol. The protocol uses two signals
namely Req and Ack. To transfer a packet, first, the sender sends a request by
rising the Req signal, and waits for an acknowledgment from the receiver. All
signals must return to zero before the next packet could be sent.

Traditionally, simulating the ASPIN design using HSPICE is used for the
analysis of these systems. HSPICE provides precise simulation results, and for
that all the details of an ASPIN design must be specified prior to performing
simulation. In addition, the time consumption of HSPICE simulation of ASPIN
is very high. In [12], Timed Rebeca is used for modeling and Afra is used for the
analysis of ASPIN designs. The comparison among the latencies which are mea-
sured using HSPICE simulation and Afra model checker is shown in Figure 8.
As shown in Figure 8, three different packet generation scenarios (i.e., different
traffics) are used in this comparison. As a result, having similar trends show that
despite the fact that we captured much less details in Timed Rebeca comparing
to HSPICE, Timed Rebeca analysis provides the same results in design explo-
ration, and hence can be used for the required measurements. This comparison



shows that using Timed Rebeca in the early stages of design helps designers in
making suitable architectural decisions according to the desired performance of
the systems.
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HSPICE simulation, and Timed Rebeca model checking

To compare the new approaches with the simulation technique using HSPICE,
the model of ASPIN for 32nm CMOS technology was considered. Running each
scenario in HSPICE for the analysis of one path took more than 24 hours on a
system with Core i7, 2.6 GHz processor and 24GB of memory. In contrast run-
ning the scenarios and analyzing all the paths using the new approaches took
less than 5 seconds.

5.2 Analyzing WSAN Applications

Distributed Wireless Sensor and Actuator Networks (WSANs) have become an
attractive method of providing low-cost continuous monitoring in different ap-
plications. However, because of the complexity of concurrent and distributed
programming, networking, and real-time and embedded requirements, building
WSAN applications can be particularly challenging. In WSAN applications, co-
ordination among distributed sensors must be well configured to achieve the op-
timum point which satisfies several constraints, including low power constraints,
realtime deadlines of physical processes, and constraints on scheduling and re-
source utilization. Programmers often use informal worst-case analysis and de-
bugging to ensure schedules that satisfy these requirements. Not only can this
process be tedious and error-prone, it is inherently conservative and thus likely
to lead to an inefficient use of resources. Moreover, the process fails to provide
any safety guarantees for the resulting configuration.

Timed Rebeca is used to model a case study involving real-time continu-
ous data acquisition for structural health monitoring and control (SHMC) of



civil infrastructure [29]. This system has been implemented on the Imote2 wire-
less sensor platform, and has been deployed for long-term monitoring of several
highway and railroad bridges [32]. Ensuring safe execution requires modeling the
interactions between the CPU, sensor and radio within each node, as well as in-
teractions between nodes. Moreover, the application tasks are not isolated from
other aspects of the system: they execute alongside tasks belonging to other
applications, middleware services, and operating system components. In this
application, all periodic tasks (sample acquisition, data processing, and radio
packet transmission) are required to complete before the next iteration starts.
The results show that a safe configuration can be found which improves resource
utilization compared to the previous informal schedulability analysis used in [32].
The sampling rate of the system can be increased by 7% without encountering
safety hazards.

6 Discussion and Related Work

Different approaches have been proposed for modeling and analysis of realtime
systems. Timed automata [19], realtime Maude [25], and TCCS [33] are examples
of modeling formalisms for design and analysis of realtime systems. For designing
Timed Rebeca we looked into all the above languages and used the same basic
ideas and concepts, we also have mappings to and extensive comparisons with
timed automata [18] and realtime Maude [10].

Apart from these well-known and general purpose modeling formalisms, high
level modeling languages are adopted for the realtime requirements. Actor model
as an example of such languages is extended with timing features to address the
functional behaviors of actors and the timing constraints on patterns of actor
invocations. A realtime actor model, RT-synchronizer, is proposed in [34] as an
example of actor model which enforces realtime relations between events. While
RT-synchronizer is an abstraction mechanism for the declarative specification
of timing constraints over groups of actors, Timed Rebeca allows us to work at
a lower level of abstraction. Using Timed Rebeca, a modeler can easily capture
the functional features of a system, together with the timing constraints for both
computation and network latencies, and analyze the model from various points
of view.

Creol [35] is a concurrent object based language which is designed in parallel
with Rebeca. Concurrent objects of Creol can be checked for schedulability using
the approach of [35], which is developed based on the same idea presented for
Timed Rebeca in [36]. ABS [37] is an extension of Creol in multiple ways. While
in Creol and its descendent, ABS, the focus has been on different modeling
features, for Rebeca we kept the core of the language simple and avoided adding
any complexity. Our focus has been on analysis and formal verification of Rebeca
and its extension. Recently, Timed Rebeca is extended to capture probabilistic
behaviour, the language is presented in [38].
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8. Aceto, L., Cimini, M., Ingólfsdóttir, A., Reynisson, A.H., Sigurdarson, S.H., Sirjani,
M.: Modelling and Simulation of Asynchronous Real-Time Systems using Timed
Rebeca. In Mousavi, M.R., Ravara, A., eds.: FOCLASA. Volume 58 of EPTCS.
(2011) 1–19

9. Khamespanah, E., Sirjani, M., Sabahi-Kaviani, Z., Khosravi, R., Izadi, M.: Timed
Rebeca Schedulability and Deadlock Freedom Analysis using Bounded Floating
Time Transition System. Sci. Comput. Program. 98 (2015) 184–204

10. Sabahi-Kaviani, Z., Khosravi, R., Sirjani, M., Ölveczky, P.C., Khamespanah, E.:
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