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Abstract. Programmers often use informal worst-case analysis and de-
bugging to ensure schedules that satisfy real-time requirements. Not only
can this process be tedious and error-prone, it is inherently conservative
and thus likely to lead to an inefficient use of resources. We propose to use
model checking to find a schedule which optimizes the use of resources
while satisfying real-time requirements. Specifically, we represent a Wire-
less sensor and actuator network (WSAN) as a collection of actors whose
behavior is specified using a C-based actor language extended with op-
erators for real-time scheduling and delay representation. We show how
the abstraction and compositionality properties of the actor model may
be used to incrementally build a model of a WSAN’s behavior from
node-level and network models. We demonstrate the approach with a
case study of a distributed real-time data acquisition system for high
frequency sensing using Timed Rebeca modeling language and the Afra
model checking tool.

Keywords: Sensor Network, Schedulability Analysis, Actor, Timed Re-
beca, Model Checking

1 Introduction

Wireless sensor and actuator networks (WSANs) can provide low-cost continuous
monitoring. However, building WSAN applications is particularly challenging.
Because of the complexity of concurrent and distributed programming, network-
ing, real-time requirements, and power constraints, it can be hard to find a
configuration that satisfies these constraints while optimizing resource use. A
common approach to address this problem is to perform an informal analy-
sis based on conservative worst-case assumptions and empirical measurements.
This can lead to schedules that do not utilize resources efficiently. For example,
a workload consisting of two periodic tasks would be guaranteed to be safe only
if the sum of the two worst-case execution times (WCET) were less than the
shorter period, whereas it is possible in practice to have many safe schedules
violating this restriction.
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A second approach is trial and error. For example, in [18], an empirical test-
and-measure approach based on binary search is used to find configuration pa-
rameters: worst-case task runtimes, timeslot length of the communication pro-
tocols, etc. Trial and error is a laborious process, which nevertheless fails to
provide any safety guarantees for the resulting configuration.

A third possibility is to extend scheduling techniques that have been devel-
oped for real-time systems [19] so that they can be used in WSAN environments.
Unfortunately, this turns out to be difficult in practice. Many WSAN platforms
rely on highly efficient event-driven operating systems such as TinyOS [12]. Un-
like a real-time operating system (RTOS), event-driven operating systems gen-
erally do not provide real-time scheduling guarantees, priority-based scheduling,
or resource reservation functionality. Without such support, many schedulability
analysis techniques cannot be effectively employed. For example, in the absence
of task preemption and priority-based scheduling, unnecessarily conservative as-
sumptions must be used to guarantee correctness in the general case.

We propose an actor-based modeling approach that allows WSAN application
programmers to assess the performance and functional behavior of their code
throughout the design and implementation phases. The developed models are
analyzed using model checking to determine the parameter values resulting in
the highest system efficiency. Note that our use of model checking is similar to
the work of Jorgerden et al. who use it to maximize the life-time of batteries in
embedded systems [14].

We represent a WSAN application as a collection of actors [2]. The model
can be incrementally extended and refined during the application design process,
adding new interactions and scheduling constraints. We use Timed Rebeca [25]
as the modeling language and its model checking tool Afra [1, 15] for analysis of
WSAN applications. Timed Rebeca is a high-level actor-based language capable
of representing functionality and timing behavior at an abstract level. Afra sup-
ports modeling and analysis of both of Rebeca and Timed Rebeca models; we
use the timed model checking engine. Afra uses the concept of Floating Time
Transition System (FTTS) [15] for the analysis of Timed Rebeca models. FTTS
significantly reduces the state space that needs to be searched. The idea is to
focus on event-based properties while relaxing the constraint requiring the gen-
eration of states where all the actors are synchronized. As the examples in [16]
suggest, this approach can reduce the size of the state space by 50 to 90%. Using
FTTS fits with the computation model of WSAN applications and the properties
that we are interested in.

We present a case study involving real-time continuous data acquisition for
structural health monitoring and control (SHMC) of civil infrastructure [18].
This system has been implemented on the Imote2 wireless sensor platform,
and used in several long-term development of several highway and railroad
bridges [29]. SHMC application development has proven to be particularly chal-
lenging: it has the complexity of a large-scale distributed system with real-
time requirements, while having the resource limitations of low-power embedded
WSAN platforms. Ensuring safe execution requires modeling the interactions be-
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tween the CPU, sensor and radio within each node, as well as interactions among
the nodes. Moreover, the application tasks are not isolated from other aspects of
the system: they execute alongside tasks belonging to other applications, middle-
ware services, and operating system components. In the application we consider,
all periodic tasks (sample acquisition, data processing, and radio packet trans-
mission) are required to complete before the next iteration starts. Our results
show that a guaranteed-safe application configuration can be found using the
Afra model checking tool. Moreover, this configuration improves resource uti-
lization compared to the previous informal schedulability analysis used in [18],
supporting a higher sampling rate or a larger number of nodes without violating
schedulability constraints.
Contributions. This paper makes the following contributions:

– We show how a WSAN application may be modeled naturally as a system
of actors. The abstraction and modularity of the actor model makes the
approach scalable.

– We present a real-world case study that illustrates the effectiveness of our
approach for a real WSAN application.

– We show how model checking toolsets can be used for an efficient schedula-
bility analysis of WSAN application. Our case study shows we can compare
the effects of different communication protocols on system performance.

2 Preliminaries

A WSAN application is a distributed system with multiple sensor nodes, each
comprised of the independent concurrent entities: CPU, sensor, radio system, and
bridged together via a wireless communication device which uses a transmission
control protocol. Interactions between these components, both within a node and
across nodes, are concurrent and asynchronous. Moreover, WSAN applications
are sensitive to timing, with soft deadlines at each step of the process needed to
ensure correct and efficient operation.

Due to performance requirements, and latencies of operations on sensor
nodes, sensing, data processing, and communication processes must be coordi-
nated. In particular, once a sample is acquired from a sensor, its corresponding
radio transmission activities must be performed. Concurrently, data processing
tasks–such as compensating sensor data for the effects of temperature changes–
must be executed. Moreover, the timing of radio transmissions from different
nodes must be coordinated using a communication protocol.

2.1 The Actor Model of WSAN Applications

The Actor model is a well-established paradigm for modeling distributed and
asynchronous component-based systems. This model was originally introduced
by Hewitt as an agent-based language where goal directed agents did logical rea-
soning [11]. Subsequently, the actor model developed as a model of concurrent
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computation for open distributed systems where actors are the concurrently ex-
ecuting entities [2]. One way to think of actors is as a service oriented framework:
each actor provides services that may be requested via messages from other ac-
tors. A message is buffered until the provider is ready to execute the message.
As a result of processing a message, an actor may send messages to other actors,
and to itself. Extensions of the actor model have been used for real-time systems,
in particular: RT-synchronizer [24], real-time Creol [6], and Timed Rebeca [25].

The characteristics of real-time variants of the actor model make them use-
ful for modeling WSAN applications: many concurrent processes and interdepen-
dent real-time deadlines. Observe that common tasks such as sample acquisition,
sample processing, and radio transmission are periodic and have well-known or
easily measurable periods. This makes analysis of worst-case execution times
feasible. However, because of the event-triggered nature of applications, initial
offsets between the tasks are variable.

An Imote2 device
running TinyOS

A Monitored
Structure

Ether

Misc.

Radio Comm. 
Device (RCD)Sensor

CPU

Radio Comm. 
Device (RCD)

The Actor Model

Fig. 1. Modeling the behavior of a WSAN application in its real-world installation in
the actor model

We represent components of each WSAN node capable of independent action
as an actor. Specifically, as shown in Figure 1, a sensor node is modeled using four
actors: Sensor (for the data acquisition) CPU (processor), RCD (a radio communi-
cation device) and Misc (carrying out miscellaneous tasks unrelated to sensing
or communication). Sensor collects data and send it to CPU for further data
processing. Meanwhile, CPU may respond to messages from Misc by carrying out
other computations. The processed data is sent to RCD to forward it to a data
collector node actor. We model the communication medium as an actor (Ether)
and the receiver node also by the actor RCD. Using the actor Ether facilitates
modularity: specifically, implementation of the Media Access Control (MAC)
level details of communication protocols is localized, making it is easy to replace
component sub-models for modeling different communication protocols without
significantly impacting the remainder of the model. During the application de-
sign phase, different components, services, and protocols may be considered. For
example, TDMA [8] as a MAC-level communication protocol may be replaced
by B-MAC [23] with minimal changes.
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Although schedulability analysis of WSAN applications can be challenging
in the absence of a real-time scheduler, we reduce the problem of checking for
deadline violations to the problem of reachability from a relatively small set of
possible initial configurations. Model checking is the natural approach to this
class of problems, and it is the approach we explore in this paper.

2.2 Timed Rebeca and the Model Checking Toolset

A Timed Rebecca (TR) model consists of reactive classes and a main program
which instantiates actors (called rebecs in TR). As usual, actors have an encap-
sulated state, a local time, and their own thread of control. Each actor contains
a set of state variables, methods and a set of actors it knows. An actor may
only send messages to actor that it knows. Message passing is implemented by
method calls: calling a method of an actor (target) results in sending a message
to the target. Each actor has a message bag in which arriving messages may be
buffered; the maximum capacity of the bag is defined by the modeler.

Timing behavior in TR is represented using three timing primitives: delay,
after, and deadline. A delay term models the passing of time for an actor.
The primitives after and deadline can be used in conjunction with a message
send: after n indicates it takes n time units for the message to be delivered
to its receiver; deadline n indicates that if the message is not taken in n time
units, it should be purged from the receiver’s bag.

Afra 1.0 supports model checking of Rebeca models against LTL and CTL
properties. Afra 2.0 supports deadlock detection and schedulability analysis of
TR models; we use Afra 2.0 in this work. TR and Afra toolset have previously
been used to model and analyze realtime actor based models such as routing
algorithms and scheduling policies in NoC (Network on Chip) designs [27, 26].

3 Schedulability Analysis of a Stand-Alone Node

We now illustrate our approach using a node-level TR model of a WSAN ap-
plication to check for possible deadline violations. Specifically, by changing the
timing parameters of our model, we find the maximum safe sampling rate in
the presence of other (miscellaneous) tasks in the node. Then, we show how the
specification of a node-level model can be naturally extended to network-wide
specifications.

Following the mapping in Figure 1, the TR model for the four different re-
active classes in Fig. 2 through Fig. 4.

As shown in Fig. 2, the maximum capacity of the message bag of Sensor is set
to 10, the only actor Sensor knows about is of type CPU (line 4), and Sensor does
not have any state variables (line 5). The behavior of Sensor is to periodically
acquire data and send it to CPU. Sensor is implemented using a message server
sensorLoop (lines 13-17) which sends the acquired data to CPU (line 15). The
sent data must be serviced before the start time of the next period, specified
by the value of period as the parameter of deadline. Recall that there is a
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1 env int samplingRate = 25; // Hz

2
3 reactiveclass Sensor(10) {

4 knownrebecs { CPU cpu; }

5 statevars { }

6
7 Sensor() {

8 self.sensorFirst();

9 }

10 msgsrv sensorFirst() {

11 self.sensorLoop() after(?(10, 20, 30)); // ms

12 }

13 msgsrv sensorLoop() {

14 int period = 1000 / samplingRate;

15 cpu.sensorEvent() deadline(period);

16 self.sensorLoop() after(period);

17 }

18 }

Fig. 2. Reactive class of the Sensor

1 env int sensorTaskDelay = 2; // ms

2 env int miscTaskDelay = 10; // ms

3 env int bufferSize = 3; // samples

4
5 reactiveclass CPU(10) {

6 knownrebecs { RCD senderDevice, receiverDevice; }

7 statevars { int collectedSamplesCounter; }

8
9 CPU() { collectedSamplesCounter = 0; }

10
11 msgsrv miscEvent() {

12 delay(miscTaskDelay);

13 }

14 msgsrv sensorEvent() {

15 delay(sensorTaskDelay);

16 collectedSamplesCounter += 1;

17 if (collectedSamplesCounter == bufferSize) {

18 senderDevice.send(receiverDevice, 1);

19 collectedSamplesCounter = 0;

20 }

21 }

22 }

Fig. 3. Reactive class of the CPU
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nondeterministic initial offset after which the data acquisition becomes a periodic
task. To represent this property, Sensor which sends a sendLoop message to
itself; the message is nondeterministically delivered after one of 10, 20, and 30
(line 11). After this random offset, a sensor’s periodic behavior is initiated (line
13). Note that in line 1, the sampling rate is defined as a constant. A similar
approach is used in the implementation of the Misc reactive class.

The behavior of CPU as the target of Sensor and Misc events is more com-
plicated (Figure 3). Upon receiving a miscEvent, CPU waits for miscTaskDelay
units of time; this represents computation cycles consumed by miscellaneous
tasks. Similarly, after receiving the sensorEvent message from Sensor, CPU waits
for sensorTaskDelay units of time; this represents cycles required for intra-node
data processing. Data must be packed in a packet of a specified bufferSize. The
number of collected samples + 1 is computed (line 16) and when the threshold
is reached (line 17), CPU asks senderDevice, to send the collected data in one
packet (line 18). As this is a node-level model, communication between nodes
is omitted. The behavior of RCD is limited to waiting for some amount of time
(line 6); this represents the sending time of a packet.

1 env int OnePacketTransmissionTime = 7; // ms

2
3 reactiveclass RCD (2) {

4 RCD() { }

5 msgsrv send(RCD receiverDevice, byte numberOfPackets) {

6 delay(OnePacketTransmissionTime);

7 }

8 }

Fig. 4. The node-level implementation of RCD

Note that computation times (delay’s) depend on the low-level aspects of
the system and are application-independent; they can be measured before the
application design. For schedulability analysis, we set the deadline for messages
in a way that any scheduling violations are caught by the model checker.

4 Schedulability Analysis of Multi-Node Model with a
Distributed Communication Protocol

Transitioning from a stand-alone node model a network model requires that
the wireless communication medium Ether to be specified in order to model
the communication protocol it supports. Then both the node-level and multi-
node models must be considered. Recall that nodes in the multi-node model
periodically send their data to an aggregator node (Fig. 1). The sending process
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is controlled by a wireless network communication protocol. The reactive class
of Ether (Fig. 5) has three message servers: these are responsible for sending
the status of the medium, broadcasting data, and resetting the condition of the
medium after a successful transmission. Broadcasting data takes place by sending
data to a RCD which is addressed by the receiverDevice variable. So, we can
easily examine the status of the Ether using the value of receiverDevice (i.e.,
medium is free if receiverDevice is not null, line 13). This way, after sending
data, the value of receiverDevice and senderDevice must be set to null to
show that the transmission is completed (lines 28 and 29). Data broadcasting is
the main behavior of Ether (lines 15 to 26). Before the start of broadcasting, the
Ether status is checked (line 16) and data-collision error is raised in case of two
simultaneous broadcasts (line 24). With a successful data broadcast, Ether sends
an acknowledgment to itself (line 19) and the sender (line 20), and informs the
receiver of the number of packets sent to it (line 21). In addition to the functional
requirements of Ether, there may be non-functional requirements. For example,
the Imote2 radio offers a theoretical maximum transfer speed of 250 kbps. When
considering only the useful data payload (goodput), this is reduced to about 125
kbps.

We now extend RCD to support communication protocols. Fig. 6 shows the
model of TDMA protocol implementation. TDMA protocol defines a cycle, over
which each node in the network has one or more chances to transmit a packet
or a series of packets. If a node has data available to transmit during its alloted
time slot, it may be sent immediately. Otherwise, packet sending is delayed until
its next transmission slot. The periodic behavior of TDMA slot is handled by
handleTDMASlot message server which sets and unsets inActivePeriod to show
that whether the node is in its alloted time slot. Upon entering into it’s slot, a
device checks for pending data to send (line 31) and schedules handleTDMASlot
message to leave the slot (line 30). On the other hand, when CPU sends a packet
(message) to a RCD, the message is added to the other pending packets which
are waiting for the next alloted time slot. tdmaSlotSize is the predefined size
of the tdma slots, and currentMessageWaitingTime is the waiting time of this
message in the bag of its receiver.

For the sake of simplicity, the details of RCD are omitted in Fig. 6. The
complete source code (which implements the B-MAC protocol) is available on
the Rebeca web page [1].

Once a complete model of the distributed application has been created, the
Afra model checking tool can verify whether the schedulability properties hold
in all reachable states of the system. If there are any deadline violations, a
counterexample will be produced, indicating the path—sequence of states from
an initial configuration—that results in the violation. This information can be
helpful with changing the system parameters, such as increasing the TDMA time
slot length, to prevent such situations.
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1 env int OnePacketTT = 7; // ms (transmission time)

2
3 reactiveclass Ether(5) {

4 statevars {

5 RCD senderDevice, receiverDevice;

6 }

7
8 Ether() {

9 senderDevice = null;

10 receiverDevice = null;

11 }

12 msgsrv getStatus() {

13 ((RCD)sender).receiveStatus(receiverDevice != null);

14 }

15 msgsrv broadcast(RCD receiver, int packetsNumber) {

16 if(senderDevice == null) {

17 senderDevice = (RCD)sender;

18 receiverDevice = receiver;

19 self.broadcastingIsCompleted() after(packetsNumber * OnePacketTT);

20 ((RCD)sender).receiveResult(true) after(packetsNumber * OnePacketTT);

21 receiver.receiveData(receiver, packetsNumber);

22 } else {

23 ((RCD)sender).receiveResult(false);

24 }

25 }

26 msgsrv broadcastingIsCompleted() {

27 senderDevice = null;

28 receiverDevice = null;

29 }

30 }

Fig. 5. Reactive class of the Ether

5 Experimental Results and a Real-World Case Study

We examined the applicability of our approach using a WSAN model intended
for use in structural health monitoring and control (SHMC) applications.1 Wire-
less sensors deployed on civil structures for SHMC collect high-fidelity data such
as acceleration and strain. Structural health monitoring (SHM) involves identi-
fying and detecting potential damages to the structure by measuring changes in
strain and vibration response. SHM can also be employed with structural control,
where it is fed into algorithms that control centralized or distributed control el-

1 The TR code of this case study, some complimentary shell scripts, the model checking
toolset, and the details of the specifications of the state spaces in different configu-
rations are accessible from the Rebeca homepage [1].
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1 env int OnePacketTT = 7; ms (transmission time)

2
3 reactiveclass RCD (3) {

4
5 knownrebecs { Ether ether; }

6
7 statevars {

8 byte id;

9 int slotSize;

10 boolean inActivePeriod;

11
12 int sendingPacketsNumber;

13 RCD receiverDevice;

14 boolean busyWithSending;

15 }

16
17 RCD(byte myId) {

18 id = myId;

19 inActivePeriod = false;

20 busyWithSending = false;

21 sendingPacketsNumber = 0;

22 receiverDevice = null;

23
24 if (id != 0) { handleTDMASlot(); }

25 }

26 msgsrv handleTDMASlot() {

27 inActivePeriod = !inActivePeriod;

28 if(inActivePeriod) {

29 assertion(tmdaSlotSize - currentMessageWaitingTime > 0);

30 self.handleTDMASlot() after(tmdaSlotSize -

currentMessageWaitingTime);

31 self.checkPendingData();

32 } else {

33 self.handleTDMASlot() after((tmdaSlotSize * (numberOfNodes - 1))-

currentMessageWaitingTime);

34 }

35 }

36
37 msgsrv send(RCD receiver, int packetsNumber) {

38 assertion(receiverDevice == null);

39 sendingPacketsNumber = packetsNumber;

40 receiverDevice = receiver;

41 self.checkPendingData();

42 }

43 msgsrv checkPendingData() { ... }

44
45 msgsrv receiveResult(boolean result) { ... }

46 }

Fig. 6. Reactive class of the RCD
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ements such as active and semi-active dampers. The control algorithms attempt
to minimize vibration and maintain stability in response to excitations from rare
events such as earthquakes, or more mundane sources such as wind and traffic.
The system we examine has been implemented on the Imote2 wireless sensor
platform [18], which features a powerful embedded processor, sufficient memory
size, and a high-fidelity sensor suite required to collect data of sufficient quality
for SHMC purposes. These nodes run the TinyOS operating system, supported
by middleware services of the Illinois SHM Services Toolsuite [13].

This flexible data acquisition system can be configured to support real-time
collection of high-frequency, multi-channel sensor data from up to 30 wireless
smart sensors at frequencies up to 250 Hz. As it is designed for high-throughput
sensing tasks that necessitate larger networks sizes with relatively high sampling
rates, it falls into the class of data-intensive sensor network applications, where
efficient resource utilization is critical, since it directly determines the achievable
scalability (number of nodes) and fidelity (sampling frequency) of the data ac-
quisition process. Configured on the basis of network size, associated sampling
rate, and desired data delivery reliability, it allows for near-real-time acquisition
of 108 data channels on up to 30 nodes—where each node may provide mul-
tiple sensor channels, such as 3-axis acceleration, temperature, or strain—with
minimal data loss. In practice, these limits are determined primarily by the avail-
able bandwidth of the IEEE 802.15.4 wireless network and sample acquisition
latency of the sensors. The accuracy of estimating safe limits for sampling and
data transmission delays directly impacts the system’s efficiency.

To illustrate the applicability of this work, we considered applications where
achieving the highest possible sampling rate that does not result in any missed
deadline is desired. This is a very common requirement in WSAN applications in
the SHMC domain in particular. We begin by setting the value of OnePacketTT
to 7ms (i.e., the maximum transmission time of this type of applications) and
fixed the value of sensorTaskDelay, miscPeriod, and miscTaskDelay to some
predefined values. In addition to the sampling rate, the number of nodes in the
network and the packet size remain variable. By assuming different values for
the number of nodes and the packet size, different maximum sampling rates are
achieved, shown as a 3D surface in Figure 7. As shown in the figure, higher
sampling rates are possible when the buffer size is set to a larger number (there
is more space for data in each packet). Similarly, increasing the number of nodes
decreases the sampling rate: in competition among three different parameters
of Figure 7, the cases with the maximum buffer size (i.e., 9 data points) and
minimum number of nodes (i.e., 1 node) results in the highest possible maximum
sampling rates. Decreasing the buffer size or increasing the number of nodes,
non-linearly reduces the maximum possible sampling rate.

A server with Intel Xeon E5645 @ 2.40GHz CPUs and 50GB of RAM, running
Red Hat 4.4.6-4 as the operating system was used as the model-checking host.
We varied the size of the state space from < 500 to > 140K states, resulting in
model checking times ranging from 0 to 6 seconds. Analyzing the specifications
of the state spaces, some relations between the size of the state spaces and
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the configurations of the models are observed. For example, the largest state
spaces correspond to configurations where sensorTaskDelay, bufferSize, and
numberOfNodes are set to large values.

Fig. 7. The maximum sampling rate in case of using TDMA protocol and setting the
value of sensorTaskDelay to 2ms

We also wanted to compare the effect of the communication protocol and
the value of sensorTaskDelay in the supported maximum sampling rate, con-
sidering 648 different configurations. The maximum sampling rates found for
each configuration is depicted in Figure 8; they show that increasing the value of
sensorTaskDelay as the representor of intra-node activities, decreases the sam-
pling rate dramatically. They also show that using B-MAC results in achieving
higher sampling rates in comparison to TDMA.

The parameters used in our analysis of configurations were determined through
a real-world installation of an SHMC application. Our results show that the cur-
rent manually-optimized installation can be tuned to an even more optimized
one: by changing the configuration, the performance of the system can be safely
improved by another 7% percent.

6 Related Work

Three different approaches have been used for analysis of WSANs: system sim-
ulation, analytical approach, and formal verification.
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(a) TDMA, Sensor task delay is 5ms (b) B-MAC, Sensor task delay is 5ms

(c) TDMA, Sensor task delay is 10ms (d) B-MAC, Sensor task delay is 10ms

(e) TDMA, Sensor task delay is 20ms (f) B-MAC, Sensor task delay is 20ms

(g) TDMA, Sensor task delay is 30ms (h) B-MAC, Sensor task delay is 30ms

Fig. 8. Maximum possible sampling rate in case of different communication protocols,
number of nodes, sensor internal task delays, and radio packet size



14 E. Khamespanah, K. Mechitov, M. Sirjani, G. Agha

System Simulation. Simulation of WSAN applications is useful for their early
design exploration. Simulation toolsets for WSANs have enabled modeling of
networks [17], power consumption [28], and deployment environment [31]. Sim-
ulators can adequately estimate performance of systems and sometimes detect
conditions which lead to deadline violations. But even extensive simulation does
not guarantee that deadline misses will never occur in the future [5]. For WSAN
applications with hard real-time requirements this is not satisfactory. Moroever,
none of available simulators is suitable for the analysis WSAN application soft-
ware.

Analytical Approach. A number of algorithms and heuristics have been suggested
for schedulability analysis of real-time systems with periodic tasks and sporadic
tasks with constraints, e.g. [20]. Although these classic techniques are efficient
in analyzing schedulability of real-time systems with periodic tasks and sporadic
tasks, their lack of ability to model random tasks make them inappropriate for
WSAN applications.

Formal Verification. Real-time model checking is an attractive approach for
schedulability analysis with guarantees [5]. Model checking tools systematically
check whether a model satisfies a given property [4]. The strength of model
checking is not only in providing a rigorous correctness proof, but also in the
ability to generate counter-examples, as diagnostic feedback in case a property
is not satisfied. This information can be helpful to find flaws in the system.
Norström et al. suggest an extension of timed automata to support schedulability
analysis of real-time systems with random tasks [21]. Feresman et al. studied an
extension of timed automata which its main idea is to associate each location of
timed automata with tasks, called task automata [10].

TIMES [3] is a toolset which is implemented based on the approach of Feres-
man et al. [9] for analysis of task automata using UPPAAL as back-end model
checker. TIMES assumes that tasks are executed on a single processor. This as-
sumption is the main obstacle against using TIMES for schedulability analysis
of WSAN applications, which are real-time distributed applications. De Boer et
al. in [7] presented a framework for schedulability analysis of real-time concur-
rent objects. This approach supports both multi-processor systems and random
task definition, which are required for schedulability analysis of WSAN applica-
tions. But asynchronous communication among concurrent elements of WSAN
application results in generation of complex behavioral interfaces which lead to
a state space explosion even for small size examples.

Real-Time Maude is used in [22] for performance estimation and model check-
ing of WSAN algorithms. The approach supports modeling of many details such
as communication range and energy use. The approach requires some knowl-
edge of rewrite logic. Our tool may be easier to use by engineers unfamiliar
with rewriting logic: our language extends straight-forward C-like syntax with
actor concurrency constructs and primitives for sensing and radio communica-
tion. This requires no formal methods experience from the WSAN application
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programmer, as the language and structure of the model closely mirror those of
the real application.

7 Conclusion

We have shown one of the applications of real-time model checking method in
analyzing schedulability and resource utilization of WSAN applications. WSAN
applications are very sensitive to their configurations: the effects of even minor
modifications to configurations must be analyzed. With little additional effort
required on behalf of the application developer, our approach provides a much
more accurate view of an WSAN application’s behavior and its interaction with
the operating system and distributed middle-ware services than can be obtained
by the sort of informal analysis or trial-and-error methods commonly in use
today.

Our realistic—but admittedly limited—experimental results support the idea
that the use of formal tools may result in more robust WSAN applications.
This would greatly reduce development time as many potential problems with
scheduling and resource utilization may be identified early.

An important direction for future research is the addition of probabilistic be-
havior analysis support to the tool. In many non-critical applications, infrequent
scheduling violations may be considered a reasonable trade-off for increased ef-
ficiency in the more common cases. Development of a probabilistic extension is
currently underway.
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