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NP-hard time complexity of model checking algorithms for TCTL properties in dense time 
is one of the obstacles against using model checking for the analysis of real-time systems. 
Alternatively, a polynomial time algorithm is suggested for model checking of discrete 
time models against TCTL≤,≥ properties (i.e. TCTL properties without U=c modalities). The 
algorithm performs model checking against a given formula ! for a state space with V
states and E transitions in O (V (V + E) · |!|). In this work, we improve the model checking 
algorithm of TCTL≤,≥ properties, obtaining time complexity of O ((V lg V + E) · |!|). We 
tackle the model checking of discrete timed actors as an application of the proposed 
algorithms. We show how the result of the fine-grained semantics of discrete timed 
actors can be model checked efficiently against TCTL≤,≥ properties using the proposed 
algorithm. This is illustrated using the timed actor modeling language Timed Rebeca. In 
addition to introducing a new efficient model checking algorithm, we propose a reduction 
technique which safely eliminates instantaneous transitions of transition systems (i.e. 
transition with zero time duration). We show that the reduction can be applied on-the-
fly during the generation of the original timed transition system without a significant 
cost. We demonstrate the effectiveness of the reduction technique via a set of case studies 
selected from various application domains. Besides, while TCTL≤,≥ can be model checked in 
polynomial time, model checking of TCTL properties with U=c modalities is an NP-complete 
problem. Using the proposed reduction technique, we provide an efficient algorithm for 
model checking of complete TCTL properties over the reduced transition systems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As a basic computational model for modeling of real-time systems, Timed Transition System (TTS) generalizes the basic 
computational model of transition systems by associating an interval with each transition to indicate how long a transition 
takes [1]. TTS is expressive enough for modeling the behavior of the majority of real-time distributed systems; however, 
the formal verification of TTS is PSPACE-complete [1]. Therefore, currently there is no polynomial time algorithm for the 
verification of TTSs. Another option for analysis of real-time systems is to use Alur and Dill’s Timed Automata [2]. There 

* Corresponding authors.

** Principal corresponding author.
E-mail addresses: e.khamespanah@ut.ac.ir, ehsan13@ru.is (E. Khamespanah), r.khosravi@ut.ac.ir (R. Khosravi), marjan.sirjani@mdh.se, marjan@ru.is

(M. Sirjani).

https://doi.org/10.1016/j.scico.2017.11.004
0167-6423/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2017.11.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:e.khamespanah@ut.ac.ir
mailto:ehsan13@ru.is
mailto:r.khosravi@ut.ac.ir
mailto:marjan.sirjani@mdh.se
mailto:marjan@ru.is
https://doi.org/10.1016/j.scico.2017.11.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2017.11.004&domain=pdf


2 E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29

exists a large amount of theoretical knowledge and practical experiences about timed automata which all agree on the main 
drawback of using timed automata being the inefficient analysis techniques which are at least PSPACE-hard [3]. The most 
widely used model checking toolset for timed automata, UPPAAL, only supports a limited subset of Timed Computation Tree 
Logic (TCTL) which can be model checked efficiently [4]. The source of this inefficiency in the analysis of TTS and timed 
automata is in how the passage of time is modeled. The model of time in TTS and timed automata is dense time, i.e. the 
passage of time from a state to another state is a nondeterministically chosen real number from an interval.

On the other hand, a wider range of properties can be analyzed for simpler families of timed models in polynomial 
time. The simplicity of these models lies in the discretization of the passage of time. In these models, the passage of 
time is modeled by a natural number which is chosen nondeterministically from an interval. The basic approach of such 
simplifications is proposed in [5,6] by assuming that each transition takes exactly one time unit. Later, a minor extension 
has been added to this work by allowing existence of instantaneous transitions (zero time transitions) in [7]. Finally, Timed 
Transition Graph (TTG) [8] and Durational Transition Graph (DTG) [9] extended the former works by associating discrete 
time duration with transitions. Although TTG and DTG are less expressive than TTS and timed automata, they can be model 
checked in polynomial time for a wide range of properties. For example, there is a polynomial time algorithm for model 
checking of DTGs against TCTL≤,≥ properties (i.e. TCTL properties without any sub-formula of the form ! U=c "). The 
algorithm performs model checking against formula ! for a transition system with V states and E transitions in time 
O (V · (V + E) · |!|) [9]. The details of these model checking algorithms are reviewed in Section 2. Note that, while TCTL≤,≥
can be model checked for DTGs in polynomial time, the model checking against TCTL= properties (i.e. TCTL properties with 
sub-formulas of the form ! U=c ") is a NP-hard problem. In this work, we improve the running time of the algorithm of 
[9] from O (V · (V + E) · |!|) to O ((V lg V + E) · |!|). The newly proposed algorithm is worst-case optimal for model checking 
of TCTL≤,≥ properties, since its running time is the same as the tight running time of the CTL model checking algorithm [3]. 
This algorithm is presented in detail in Section 3.

In addition to improving the running time of TCTL≤,≥ model checking algorithm, we propose a reduction technique 
which safely eliminates instantaneous transitions of timed transition systems. Applying this technique, a new transition 
system is created, called folded timed transition system (FTS). As discussed in Section 4, in addition to reducing the size 
of transition systems, the algorithm of exact path search in graphs can be used for model checking of FTS against TCTL=
properties. Having instantaneous transitions, the problem of model checking against TCTL= properties is reducible to the 
Subset Sum problem which is well-known to be NP-complete [9]. By eliminating instantaneous transitions, FTS can be model 
checked against TCTL properties efficiently. In the proposed algorithm, for a given TCTL formula, if small values are used as 
timed quantifiers of TCTL modalities, FTS can be model checked in O ((V lg V + E) · |!|).

We tackle the problem of analyzing discrete timed actors1 to illustrate the applicability of the proposed approaches. The 
actor model is a well-established paradigm for modeling the functional behavior of distributed systems with asynchronous 
message passing. This model was originally introduced by Hewitt [10] and then elaborated by Agha [11,12] and Talcott 
[13]. Actors are attracting more and more attention both in academia and industry; whoever, little work has been done 
on timed actors and even less on analyzing timed actor models. To the best of our knowledge, only a few timed actor 
modeling languages such as RT-synchronizer [14], real-time Creol [15], and Timed Rebeca [16] exist. Although there are 
some studies on verification of timed actors [17,18], the lack of efficient model checking algorithms has limited the use 
of model checking for this purpose. As DTG is expressive enough to be used as the semantics of discrete timed actors, 
we show how it can be used for efficient model checking of timed actors. We develop this approach for Timed Rebeca 
models. Timed Rebeca [19] has been proposed as an extension of the Rebeca language [20,21] with time constraints and 
analysis support. Timed Rebeca is an actor-based modeling language which can be used in model-driven methodologies. 
Using Timed Rebeca a designer builds an abstract model in which each component is a reactive object communicating with 
other objects through non-blocking asynchronous message passing. In Section 5, we show how the transition systems which 
are generated based on the fine-grained semantics of Timed Rebeca can be assumed as DTGs to be efficiently model checked 
against TCTL≤,≥ properties. Although we demonstrate our approach on Timed Rebeca, it can be easily generalized to other 
timed actor models.

We also elaborate on the execution cost of generating FTSs from DTGs. Using the approach of this paper, the FTS of a 
Timed Rebeca model is generated without a significant cost, in parallel with the generation of its original transition system 
and checking for Zeno freedom of models. In Section 4 we show how the algorithm of transition system generation and 
checking for Zeno behavior are modified to generate FTSs. We have developed a tool (added to the rich Rebeca toolset [22]), 
to illustrate the impact of using these techniques by applying them on a set of case studies in different application domains 
(Section 6).

This paper is an extended version of the workshop paper [23]. In [23], we showed how the TCTL model checking algo-
rithm of [9] can be used for the model checking of Timed Rebeca models. We also introduced FTS in that paper. Apart from 
adding more detail about the proposed approaches, this paper extends [23] as follows:

• We propose a new model checking algorithm with an asymptotically smaller running time in comparison with the 
existing model checking algorithms of discrete time systems (Sections 3.1 and 3.2).

1 We use “timed actor” and “discrete timed actor” in this paper interchangeably.



E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29 3

Fig. 1. A TTS model of two traffic lights at a crossroad.

• We determine a condition where the newly proposed algorithm is optimal for discrete time systems (Theorem 3 and 
its corresponding discussion).

• We improve the execution time of the reduction technique by combining transition system generation, checking for the 
Zeno freedom, and applying the reduction technique (Section 4.2).

• The experimental results are improved for better illustration of the effectiveness of this work (Section 6).

2. Timed model checking of discrete time systems against TCTL properties

Timed transition system (TTS), as a basic computational model of real-time systems, generalizes the basic computation 
model of transition systems by associating an interval with each transition to indicate how long a transition takes [1]. Fig. 1
illustrates how the behavior of a real-time system is modeled by TTS. The example models the behavior of a controller of 
two traffic lights at a crossroad. Initially, the controller is in state l0. It immediately makes a transition to l1 as the duration 
of its only outgoing transition is [0, 0]. The controller stays in l1 for a duration of [6, 9] units of time. It means that for a 
nondeterministically chosen real number from the interval [6, 9], light1 remains green. Then, the state changes to l2 and for 
two units of time light1 is yellow. Then, both lights are set to red and immediately light2 changes to green, and so on. In 
this example, the dense time model is used to show the passage of time.

Definition 1 (Timed Transition System (TTS)). A timed transition system is defined as a tuple T T S = (S, s0, →, Act, A P , L, T ), 
where S is the set of states, s0 is the initial state, →⊆ S × Act × S is the transition relation, and Act is the set of possible 
actions. Here, for a given set of atomic propositions A P , the labeling function L : S → 2A P relates a set of atomic propositions 
to its given state. Finally, T : S × Act × S →N ×N associates an interval with each transition. ✷

As discussed in [1], TTS is expressive enough for modeling the behavior of the majority of real-time systems. However, 
the verification algorithms of TTSs are PSPACE-complete. In practice, it is hard to use TTS for the efficient analysis of real 
world systems. The same holds for the verification of real-time systems with dense time presented in other semantics 
(region transition system, etc.) [3].

In contrast, there are many timed models for modeling of discrete time systems which can be verified efficiently in 
polynomial time. Discrete time is the time model in which passage of time is modeled by natural numbers. A Durational 
Transition Graph (DTG), as one of these models, is a TTS where the duration intervals of transitions are interpreted in 
the domain of natural numbers [9]. This way, a transition with a bounded duration interval [a, b] between two states s
and s′ can be assumed as b − a + 1 different nondeterministic transitions from s to s′ with different duration values of 
a, a + 1, · · · , b.

Definition 2 (Durational Transition Graph). A durational transition graph is a tuple DT G = (S, s0, →, A P , L) where S is the set 
of states, s0 is the initial state, →⊆ S ×ϒ× S is the transition relation, A P is the set of atomic propositions, and L : S → 2A P

is a labeling function.
Here, ϒ is the set of all the possible finite (υ ∈ ϒ∧υ = [n, m] ·n, m ∈N) or right-open infinite (υ ∈ ϒ∧υ = [n, ∞) ·n ∈N) 

intervals. ✷

DTGs can be model checked against Timed CTL (TCTL) properties [3] efficiently. TCTL is a real-time variant of CTL aimed 
to express properties of timed systems. TCTL is used for model checking of both discrete time and dense time systems. In 
TCTL, the until modality is equipped with a time constraint such that the TCTL formula ! Uρ " holds for the state s if and 
only if " holds in the state s′ while ! holds in all states from s to s′ and the time difference between s and s′ satisfies 
condition ρ . The syntax of TCTL is formally described in the following definition.

Definition 3 (Syntax of TCTL). Any TCTL formula is formed according to the following grammar:

! ::= p | ¬! | !1 ∧ !2 | E ϕ | A ϕ
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where p is an atomic proposition and ϕ is a path formula. A path formula in TCTL is formed according the following 
grammar:

ϕ ::= !1 U∼c !2

where c is a natural number and ∼∈ {<, ≤, =, ≥, >}. In addition to the until modality, the globally and finally path modali-
ties can be equipped with time constants. As in CTL, these modalities can be constructed using the until modality [9], and 
can be safely omitted from the syntax and semantics of (T)CTL. However, in this paper, we use these modalities to make 
formulas easier to read and understand. Also, note that |!| is defined as the size of the formula !, which is the number of 
modalities’ instances in !. For example, for a given TCTL formula ! = E(AG∼c1 !1) U∼c2 E(!2 U∼c3 !3) the value of |!| is 
three as there are two EU s and one AG in the formula. ✷

In the following, we present the semantics of TCTL properties over DTGs based on the work of [9]. The clauses of 
Definition 5 show the conditions when a given TCTL formula ! holds for state s ∈ S of DT G = (S, s0, →, A P , L). Here, we 
assume that Paths(DT G, s) represents the set of all valid timed paths of DT G starting from s ∈ S in the form of s d0→ s1

d1→
· · · , as described below.

Definition 4 (The Set of Timed Paths). In a given durational transition system DT G = (S, s0, →, A P , L), a sequence π =
(s0, d0), (s1, d1), · · · where si ∈ S and di ∈ ϒ is a valid timed path if and only if for any pair of (si , di) there is (si, υ, si+1) ∈→
and di ∈ υ . The set Paths(DT G, s) is defined as the set of all valid timed paths of DT G which are started from the state s. ✷

Definition 5 (Semantics of TCTL). A given TCTL formula ! holds for state s of DT G = (S, s0, →, A P , L) as described by the 
following items.

• s ! p if and only if p ∈ L(s)
• s !¬! if and only if s !!
• s !!1 ∧ !2 if and only if s !!1 and s !!2
• s ! E !1U∼c!2 if and only if ∃ π ∈ Paths(DT G, s) ∧ ∃ n ≥ 0 · (sn ! !2) ∧ (

∑
i∈[0,n) di satisfies condition ∼c) ∧ (∀ 0 ≤ j <

n · s j ! !1)
• s ! A !1U∼c!2 if and only if ∀ π ∈ Paths(DT G, s) ∧ ∃ n ≥ 0 · (sn ! !2) ∧ (

∑
i∈[0,n) di satisfies condition ∼c) ∧ (∀ 0 ≤ j <

n · s j ! !1) ✷

Using the above semantics for model checking DTGs against TCTL formulas requires resolving the nondeterminism of 
durations of transitions. The meaning of a duration on a transition between two states can be interpreted in different ways. 
Here, we introduce two interpretations of durations on a transition, called jump semantics and continuous-early semantics [9]. 
In these two TTSs, instead of an interval, only one natural number is associated with each transition as its duration. For a 
given transition (s, [n, m], s′) the mentioned semantics are interpreted as follows.

Jump Semantics. In this semantics, moving from the state s to the state s′ takes an integer time d ∈ [n, m]. Here, before 
starting transition from s to s′ , the value of d is determined, and then the system waits for d units of time and it 
reaches state s′ at time t + d. Fig. 2(b) shows how this semantics works for the DTG of Fig. 2(a). The idea of this 
semantics is the same as the semantics of Timed Transition Graph [8] and the semantics of Timed Rebeca as it 
will be described in Section 5.

Continuous-Early Semantics. In contrast to the jump semantics, in the case of a transition from the state s to the state 
s′ with a duration d ∈ [n, m], the waiting time is not specified at the start time of the transition. Using the 
continuous-early semantics, the system first waits for n units of time in state s, then, at each point in time 
interval [0, m − n] it can leave s and go to s′ . Fig. 2(c) shows how this semantics works for the DTG of Fig. 2(a).

For a given DTG, two TTSs generated based on jump semantics and continuous-early semantics are not bisimilar. This 
can be shown by a TCTL formula which is satisfied by one of them but is violated by the other one. For example, in the 
DTG of Fig. 2(a), TCTL property A(EF(s3) U≤5 (s3 ∨ s2)) is satisfied in the TTS of its jump semantics. As shown in Fig. 2(b) 
state s1 satisfies E F (s3), and after leaving s1, formula s2 ∨ s3 is satisfied in less than 5 units of time. In contrast, as shown 
in Fig. 2(c), after passage of time by one unit, the second s1 in the path to s2 does not satisfy neither E F (s3) nor s2 ∨ s3. 
Therefore, the property is violated in this case.

Using either jump or continuous-early semantics, there are polynomial time model checking algorithms for TCTL≤,≥
properties; however, model checking of TCTL= , TLTL, and TCTL∗ properties remains PSPACE-complete. In the following, we 
review the model checking algorithm of DTGs in jump semantics against TCTL≤,≥ properties according to [9]. As in model 
checking of CTL properties, here, we show how the satisfaction set Sat(!) is computed for a given formula !. The running 
time of the algorithm to find Sat(·) for a DTG with the jump semantics is O (V · (E + V ) · |!|) where V is the number of 
states, E is the number of transitions, and |!| is the size of formula !.
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Fig. 2. An intuitive representation of the TTSs with respect to the jump and continuous-early semantics (it shows the continuous-early semantics as 
nondeterminism is resolved immediately in the first S1) [9].

Let DT GM = (S, s0, →, A P , L) be a DTG of a given model M. The extended version of the standard CTL model checking 
algorithm is used to support EU∼c and AU∼c sub-formulas. The cases for p, ¬!, and !1 ∧ !2 are the same as their 
counterparts in CTL. The following four cases show how the extension works for timed sub-formulas of types E(!U∼c")

and A(!U∼c").

Sat(E(!U≤c")): Assume that DT Gsub
M is the induced subgraph of DT GM over S ′ = Sat(E(!U")), including only the states 

satisfying E(!U"). This can be done using standard CTL model checking in O (V + E). In addition, the weight of 
each transition of DT Gsub

M is set to the lower bound of its corresponding duration interval in DT GM . This way, 
state s ∈ S ′ is in Sat(E(!U≤c")) if and only if running a single source shortest path algorithm from state s ∈ S ′

results in finding a path from s to s′ where s′ |= " and the weight of the path is not bigger than c. So, one round 
of the algorithm (with the running time of O (V + E)) is needed for each state of S ′ . As a result, the total running 
time of this algorithm is O ((V + E) + V · (V + E)) = O (V · (V + E)).

Sat(E(!U≥c")): Assume that a new atomic proposition P SCC+(!) is defined. Each state s is labeled by P SCC+(!) iff s is 
a member of a strongly connected component (SCC), in which all of the states satisfy ! and at least one of the 
transitions inside the SCC results in non-zero progress in time. Labeling S ′ with P SCC+(!) can be done using an 
extension of Tarjan’s algorithm [24] for detecting SCCs in O (V + E), resulting in DT G ′

M .
The induced subgraph DT Gsub

M of DT G ′
M is defined over S ′ = Sat(E(!U")), including only the states satisfying 

E(!U"). This way, s ∈ S ′ is in Sat(E(!U≥c")) if and only if one of the following conditions holds.
• There is an acyclic path from s to a state satisfying " and the overall weight of the path between them is not 

less than c.
• State s satisfies CTL formula E(! U(P SCC+(!) ∧ E(! U "))). Satisfying this formula, there is a path from s to a 

state which satisfies " through some state s′ where s′ |= P SCC+(!) . This way, by cycling in the SCC containing 
s′ , the elapsed time can be increased to more than any constant value c.

For each state, checking for both conditions requires a search algorithm in O (V + E). As a result, the total running 
time of this algorithm is O ((V + E) + V · (V + E)) = O (V · (V + E)).

Sat(A(!U≤c")): using the equivalence relations A(! U≤c") ≡ AF≤c " ∧¬E((¬")U(¬! ∧¬")) and AF≤c " ≡ ¬E(¬" U>c ⊤)

∧ ¬E(¬" U P SCC0(¬")), this case is reduced to a combination of the previous cases. A given state s satisfies propo-
sition P SCC0(¬") if and only if s is in a SCC in which all of the states satisfy ¬", and zero is associated with all 
transitions of the SCC as the progress of time. Using an extension of Tarjan’s algorithm, states with P SCC0(¬") are 
determined in O (V + E); so, the total running time of this algorithm is O ((V + E) + V · (V + E)) = O (V · (V + E)).

Sat(A(!U≥c")): using the equivalence relation A(! U≥c") ≡ AG<c (! ∧ A(! U>0")) and AG<c ! ≡ ¬EF<c ¬!, this case is 
reduced to a combination of the previous cases. So, the total running time of this algorithm is O (V · (V + E)).

As the model checking of DTGs in the continuous-early semantics is out of the scope of this work, it is not described 
here.
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Algorithm 1: Enumerative backward search for computing Sat(E(! U ")) [3].
Input: Finite transition system TS with set of states S and CTL formula E(! U ")
Output: Set of Sat(E(! U ")) = {s ∈ S | s |= E(! U ")}

1 begin
2 T ← Sat(")
3 Q ← T
4 foreach state s ∈ Q do
5 Q ← Q \ {s}
6 foreach state s′ ∈ PREDECESSORS(s) do
7 if s′ /∈ T ∧ s′ |= ! then
8 Q ← Q ∪ {s′}
9 T ← T ∪ {s′}

10 return T

3. Improving the TCTL≤,≥ model checking algorithm

In the previous section, we illustrated how DTGs can be model checked against TCTL≤,≥ properties with running time 
O (V · (V + E) · |!|). In this section, we show how the two phases of the TCTL≤,≥ model checking algorithm are combined 
to develop a new TCTL≤,≥ model checking algorithm with running time O (V lg V + E). Here, we show how the algorithm 
works for calculating Sat(.) for two primitive cases E(! U≤c ") and E(! U≥c "). As shown in the previous section, other 
TCTL formulas can be constructed using EU≤c , EU≥c , and other untimed CTL operators and modalities with the maximum 
overhead of O (V + E). Therefore, the overall cost of the preparation and the model checking is O (V lg V + E) for all cases.

Before describing the new algorithm, we review how the CTL model checking algorithm calculates the value of 
Sat(E(! U ")). One of the implementations of this algorithm is an iterative algorithm, called enumerative backward search 
[3]. As shown in Algorithm 1, in the initial step, T is defined to be the set of states satisfying " (line 2). Based on the se-
mantics of the until modality, these states satisfy E(! U "). Then, iteratively, other states are added to T . In each iteration, 
a state s ∈ S \ T is added to T if and only if s |= ! and at least one of the successors of s is in T (lines 4 to 8). Note that in 
this section, we assume that for a given formula E(!U≤c") or E(!U≥c") the values of Sat(!) and Sat(") are computed 
in advance.

As described in the following sections, some modifications are applied to this algorithm to support the timed until 
modality. The major modification of the algorithm is in the state selection policy (in line 4 of the algorithm). Two different 
policies are required for the timed modalities EU≤c and EU≥c .

3.1. Calculating Sat(E(! U≤c "))

The main idea of the new model checking algorithm is in performing reversed Dijkstra single source shortest path 
(SSSP) instead of using classic Dijkstra SSSP. The extension of reversed Dijkstra SSSP used here traverses a given state space 
from the goal states (which are states of Sat(")) to their ancestors. This way, as both finding states satisfying E(! U ")
and checking the time constraint are started from the goal states, they can be combined together. The details of the new 
algorithm for calculating Sat(E(! U≤c ")) are depicted in Algorithm 2. In the new algorithm, Q is defined as a Fibonacci 
min-heap which stores pairs of (key, value) where key is an integer number and value is a state. The value of a key in Q
is interpreted as the minimum distance to one of the states which satisfies " (denoted by δ) of its paired state. Four functions
EMPTY_HEAP, PUT, EXTRACT_MIN, and DECREASE_KEY are used for creating an empty Fibonacci min-heap, putting a 
pair (key, state) in a heap, extracting the pair with the minimum key, and decreasing the key of a given state, respectively. 
In addition, the function low_time : S × S → N is defined to retrieve the lower bound of the associated progress of time 
with the transition between two given states.

As shown in Algorithm 2, the initialization part of the algorithm is in lines 2 to 10. During the initialization, all of the 
states of Sat(") are added to T (the return value of the algorithm) as they satisfy Sat(E(! U0 ")). The other states of S
are added to Fibonacci min-heap Q . The key of a given state s ∈ S \ T is set to infinity except in case a state s′ ∈ T is an 
immediate successor of s. For such a state the key is set to low_time(s, s′). If s has transitions to more than one state in T , 
the key is the minimum time value of those transitions. The initialization running time is O (V + E) as the vertices and 
edges are visited once.

In addition to some changes in the initialization part, some modifications to the main part of the CTL model checking 
algorithm are required. The main part of the new algorithm is in lines 11 to 19. One of the differences between the main 
part of the new algorithm and the main part of the algorithm of CTL model checking in Algorithm 1 is in the termination 
condition of line 13. The termination condition is required in the new algorithm as the backward search must stop when 
δ is bigger than c. The other difference is in updating δ of states in lines 18 and 19. Intuitively, when a new state s is 
added to T , maybe δ of the predecessors of s is changed as there is a new path via s to the states which satisfy ". 
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Algorithm 2: Enumerative backward search for calculating Sat(E(! U≤c ")).

Input: A DTG with the set of states S and the TCTL≤,≥ formula E(! U≤c ")
Output: Sat(E(! U≤c ")) = {s ∈ S | s |= E(! U≤c ")}

1 begin
2 T ← Sat(")
3 Q ← EMPTY_HEAP
4 foreach state s ∈ S \ T do
5 if s |= ! then
6 δs ← ∞
7 foreach state s′ ∈ SUCCESSORS(s) do
8 if s′ ∈ T then
9 δs ← min{δs, low_time(s, s′)}

10 PUT(Q, δs , s)

11 while Q ≠ ∅ do
12 (δs, s) ← EXTRACT_MIN(Q)
13 if δs > c then
14 break

15 T ← T ∪ {s}
16 foreach state s′ ∈ PREDECESSORS(s) do
17 if s′ /∈ T ∧ s′ |= ! then
18 δs′ ← δs + low_time(s′ ,s)
19 DECREASE_KEY(Q, s′ , δs′)

20 return T

Therefore, δ of PREDECESSORS(s) is decreased in lines 18 and 19. Note that if the newly found value is bigger than the 
previous value, DECREASE_KEY does nothing. The new algorithm requires O (V ) number of extractions from the Fibonacci 
min-heap Q and O (E) number of decreasing keys (in the worst case, extracting a state results in decreasing the keys of all 
of its predecessors). In a Fibonacci min-heap of size n, the amortized running time of extracting an element is O (lg n) and 
decreasing a key is O (1). Hence, the running time of the main part of the algorithm is O (V lg V + E). As a result, the total 
running time of the new algorithm is O (V lg V + E).

Theorem 1. Algorithm 2 computes the set of states of a DTG which satisfy a given TCTL≤ property E(! U≤c ").

Proof. Assume that there is a state s ∈ S which satisfies the TCTL≤ formula E(! U≤c "). As s satisfies E(! U≤c "); there is 
a state s′ ∈ S such that s′ satisfies ", there is a path between s and s′ where the length of the path is less than c, and all of 
the states between s and s′ satisfy !. Using the new algorithm, reversed Dijkstra starts from s′ as it satisfies " (lines 2 to 
10). Using reversed Dijkstra (ignoring the modifications which are made to support property satisfaction in lines 13 and 17), 
starting from s′ , the algorithm visits s and associates a value which is less than c with s (as there is a path between s and s′

with the length of less than c). Reversed Dijkstra is not terminated before reaching s because of the conditional statement of 
line 13 as the length of the path is less than c. Also, as all of the states between s and s′ satisfy !, the algorithm does not 
miss the states of the path between s and s′ because of the conditional statement of line 17. Therefore, s ∈ Sat(E(! U≤c "))
which is computed by the new algorithm. The same argument is valid for proving that if the new algorithm puts a state s
in Sat(E(! U≤c ")), the state s satisfies the formula E(! U≤c "). ✷

3.2. Calculating Sat(E(! U≥c "))

As described in Section 2, the algorithm for finding Sat(E(! U≥c ")) is reduced to two cases. A given state s ∈ S is in 
Sat(E(! U≥c ")) if and only if there exists a simple path from s to one of the states of Sat(") and the duration of the path 
is at least c, or there exists a path with at least one non-zero cycle from s to one of the states of Sat(") (the elapse of time 
can be increased to more than c by traversing the cycle). Note that all the states on the mentioned paths satisfy !.

The new approach to calculate Sat(E(! U≥c ")) is like the approach of calculating Sat(E(! U≤c ")). In this case, enumer-
ative backward search starts from a state which has the maximum level in BFS traverse of DTG, called the deepest state. This 
state is selected because of the fact that before starting the process of a state, all of its successor states must be processed, 
which is guaranteed by selecting the deepest state. This way, the states conforming to the first case are calculated. To handle 
the second case, during the backward search, if the search reaches a state which is marked by the label P SCC+ (!) , the state 
is put in Sat(E(! U≥c ")).
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For the efficient implementation of this algorithm, we define Q as an ordinary max-heap. Three functions EMPTY_HEAP,
PUT, and EXTRACT_MAX are used for creating an empty heap, putting a pair (key, value) in a heap, and extracting the pair 
with the maximum key, respectively. The function level : S → N is defined to retrieve the levels of states in BFS traverse of 
transition systems (i.e. distance of a given state from the initial state in the BFS traversal). Note that the value of level can be 
associated with states during the generation of transition systems without additional cost or after that by time complexity 
of O (V + E). In addition, the function up_time : S × S → N is defined to retrieve the upper bound of the associated progress 
of time with the transition between two given states. We also assume that each state has an additional field which shows 
the maximum distance from this state to one of the states which satisfy " (denoted by )). The details of the new algorithm 
are depicted in Algorithm 3.

The initialization part of Algorithm 3 is in lines 2 to 7. During the initialization, ) of all the states are set to zero and 
any state s ∈ Sat(") is added to Q in the form of a pair (level(s), s). As none of the states in this step satisfies the timing 
constraint of the formula, T has no member and it is set to the empty set. The initialization part running time is O (V lg V )
as all of the vertices must be visited once and in the worst case Q is built by calling PUT for V times.

The main part of the algorithm is in lines 8 to 19. One of the differences between the main part of this algorithm and 
the standard CTL algorithm’s main part (Algorithm 1) is in the policy of adding elements to T . Here, instead of adding s′

to T immediately after extracting it, s′ is added to T when it satisfies a timing constraint, as shown in line 19. The other 
difference is in lines 12 to 16 where ) of states are updated. Normally, ) of a state s is set based on the value of )
of its successors. But, in case s is a member of SCC , there is the possibility of increasing ) to an arbitrarily large value 
by cycling from s to itself. So, ) of s is set to infinity to address this fact. The new algorithm requires O (V ) number of 
extractions from heap Q and O (E) number of processing the predecessors of states (i.e. the maximum number of edges). 
As the running time of extracting from a heap of n elements is O (lg n), the running time of the main part of the algorithm 
is O (V lg V + (V + E)) = O (V lg V + E). As a result, the total running time of the algorithm is O (V lg V + E).

Theorem 2. Algorithm 3 computes the set of states of a DTG which satisfy a given TCTL≥ property E(! U≥c ").

Proof. As this algorithm finds Sat(.) in two different cases, we split the proof into the following two cases.

1. Assume that s ∈ S satisfies E(! U≥c ") and s′ ∈ S is a state where s′ satisfies " and there is a path between s and s′

such that all of the states in the path satisfy !. Also, assume that there is a state s′′ ∈ S in the path between s and s′

such that the label P SCC+(!) is associated with s′′ . In this case, as the algorithm is developed based on Algorithm 1, all 
of the states in the path between s and s′ are explored as they satisfy E(! U "). During this exploration, upon visiting 
s′′ the value of ) is set to the infinity, and it is added to Sat(E(! U≥c ")). The same procedure happens for all of the 
ancestors of s′′ too, because of the statement of line 16. Therefore, all of the ancestors of s′′ are put in Sat(E(! U≥c ")), 
including s.

2. Assume that s ∈ S satisfies E(! U≥c ") and s′ ∈ S is a state where s′ satisfies " and there is a path between s and s′

such that all of the states in the path satisfy !. Also, assume that this path is the longest acyclic path between s and 
other states which satisfy ". In this case, upon extracting s′ from Q , the value of ) of its predecessors is overwritten 
as the longest path ends to s′ (lines 15 and 16 of Algorithm 3). The same argument is valid for the predecessor of s′

and the other predecessors in the path from s to s′ . As a result, reaching s results in setting the value of ) to the 
length of the maximum acyclic path between s and s′ and adding s to Sat(E(! U≥c ")).

The same argument is valid for proving that if the new algorithm puts a state s in Sat(E(! U≥c ")), the state s satisfies the 
formula E(! U≥c "). ✷

Combining the above two algorithms, we have the following result.

Theorem 3. There is an O ((V lg V + E) · |!|) algorithm for model checking of DTGs with V states and E transitions against a TCTL≤,≥
property !. ✷

Note that for the dense transition systems where the number of transitions is asymptotically larger than V lg V (i.e., 
E = *(V lg V )), this algorithm is the most efficient algorithm for model checking against TCTL≤,≥ properties. This is because 
the running time of the algorithm is O (E · |!|), which is the same as the running time of the optimal CTL model checking 
algorithm [3].

Corollary 1. The TCTL≤,≥ model checking algorithm which is defined in Algorithm 2 and Algorithm 3 is the asymptotically optimal 
algorithm for dense transition systems.

4. A reduction technique based on folding instantaneous transitions

In this section, we propose a reduction technique, called “Folding Instantaneous Transitions”, to make the model checking 
of object based models against TCTL≤,≥ cheaper. Using this reduction technique, in Section 4.2, we will propose an approach 
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Algorithm 3: Enumerative backward search for computing Sat(E(! U≥c ")).

Input: A DTG with the set of states S , the TCTL≤,≥ formula E(! U≥c "), and the set of states SCC as the states in 
cycles of which all members are in Sat(!)

Output: Sat(E(! U≥c ")) = {s ∈ S | s |= E(! U≥c ")}
1 begin
2 T ← ∅
3 Q ← EMPTY_HEAP()
4 foreach state s ∈ S do
5 )s ← 0
6 if s |= " then
7 PUT(Q, level(s), s)

8 while Q ≠ ∅ do
9 (levels, s) ← EXTRACT_MAX(Q)

10 foreach state s′ ∈ PREDECESSORS(s) do
11 if s′ /∈ T ∧ s′ |= ! then
12 if s′ ∈ SCC then
13 ) ← ∞
14 else
15 ) ← )s + up_time(s′ ,s)

16 )s′ ← max{), )s′ }
17 PUT(Q, level(s′), s′)
18 if )s′ ≥ c then
19 T ← T ∪ {s′}

20 return T

for the model checking of TCTL= properties in polynomial time. This approach is developed based on the fact that after 
folding instantaneous transitions, there is no transition with zero time in the transition system. So, an efficient algorithm 
can be used for the model checking of TCTL= properties.

The idea of folding instantaneous transitions is developed based on the fact that the instantaneous transitions take no 
time to execute; so, the system cannot “stay” in the states whose outgoing transitions are all instantaneous. Hence, these 
states are not observable to the verifier (as an external observer). As generally assumed in modeling timed systems, instan-
taneous transitions take priority over non-instantaneous ones. So, any state which has an instantaneous outgoing transition 
cannot have non-instantaneous transitions. Hence, there are two types of states: the ones whose outgoing transitions are all 
instantaneous (called transient states), and the ones which have no outgoing instantaneous transition (called progress-of-time 
states as in Section 5.3).

4.1. Folding instantaneous transitions

Folding instantaneous transitions is a reduction technique that eliminates all instantaneous transitions as well as all 
transient states from DTGs. There is a transition between two states of an FTS if and only if the two states are consecutive 
progress-of-time states its corresponding DTG. Fig. 3 illustrates how a DTG (at the left side) is transformed to its corre-
sponding FTS (at the right side). In the figure, the dotted states are the initial states and the states with thick borders are 
the progress-of-time states. Note that the result of folding instantaneous transitions is not in the bisimulation relation with 
its corresponding DTG; so, there is no guarantee for preserving the result of model checking against all properties on FTSs. 
This is because of the fact that this approach eliminates transient states from the transition system regardless of the val-
ues of their atomic propositions and branching points. But, when modelers prefer to model check properties based on the 
observable behaviors of systems, folding instantaneous transitions technique can be used safely. This preference is widely 
considered in the object-oriented paradigm. Meyer in [25] said that object instances satisfy properties in all “stable” times. 
Then he defined it as “Stable times are those in which the instance is in an observable state”. He mentioned that the time 
of the instance creation and after/before method calls are observable states of objects. Considering observable states in the 
verification of Timed Rebeca models conforms to this preference in the object-oriented paradigm; however, the definition of 
observable states in Timed Rebeca is different from Meyer’s definition. In Timed Rebeca, observable states are progress-of-
time states as they are the only states in which systems are allowed to stay. So, although folding instantaneous transitions 
eliminates some transient states, it can be used for the analysis of Timed Rebeca models which considers the observable 
behaviors of actors.
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Fig. 3. Example of how folding instantaneous transitions reduction works.

To present the formal definition of FTS, at the first step, we need to define npts : S → 2S which finds the set of the 
nearest progress-of-time states from a given state. For a given state s ∈ S , all states in npts(s) are progress-of-time states 
and there is no progress-of-time state in the paths from s to the states of npts(s).

Definition 6 (Nearest Progress-of-Time States). For a given DT GM = (S, s0, →, A P , L) and two states s, s′ ∈ S , s′ is 
in npts(s) if and only if s′ is a progress-of-time state and for all valid paths between s and s′ such as π =
(s, d), (s1, d1), (s2, d2), · · · , (sn, dn), (s′, d′), none of s1, s2, · · · , sn are progress-of-time states. ✷

Using the definition of the nearest progress-of-time state, the definition of FTS is straightforward as below.

Definition 7 (Folded Transition System). For a given DT GM = (S, s0, →, A P , L), its corresponding folded transition system is 
defined as the tuple F T S(DT GM) = (S ′, s0, ↪→, A P , L), where:

• S ′ ⊆ S which contains all progress-of-time states, and the initial state.
• For all s′

1, s
′
2 ∈ S ′ , there exists (s′

1, d, s′
2) ∈↪→ if and only if s′

2 ∈ npts(s′
1). The value of d is the value of the time elapse 

associated with the outgoing transition of s′
1 (which is a progress-of-time transition). For the initial state, d is set to 

zero. ✷

As the states and transitions of a FTS can be assumed as the subset of its corresponding DTG, a FTS can be model 
checked against TCTL≤,≥ properties using the previously described algorithm.

Corollary 2. The FTS of a given DTG can be model checked against TCTL≤,≥ property ! in O ((V lg V + E) · |!|).

4.2. Complete TCTL model checking of DTGs

The model checking algorithms presented so far work for FTSs of DTGs with running time O ((V lg V + E) · |!|). Here, 
we show that the approach of [26] can be used for efficient model checking of TCTL= properties respect to FTSs in pseudo-
polynomial time. Then, we discuss that for a wide range of complete TCTL properties, the running time of model checking 
algorithm for a DTG is reduced to O ((V lg V + E) · |!|) for TCTL property !.

As known in graph theory, the problem of finding a path between two vertices in a weighted graph of which the weight 
equals to a given number (called finding the exact path length (EPL) problem), is an NP-complete problem (using a reduction 
from finding the EPL between two states to the subset-sum problem [27]); so, there is no known polynomial time algorithm 
for solving the EPL problem. In the same way, the authors in [9] showed that the problem of model checking for the exact 
time condition is an NP-complete problem. Therefore, there is no known polynomial time algorithm for model checking of 
TCTL properties; however, the TCTL≤,≥ subset can be model checked in polynomial time.
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On the other hand, as discussed in [26], there is a pseudo-polynomial algorithm for finding the EPL between two vertices 
in a weighted graph. The running time of this algorithm is O (W 2 V 3 +|k| · min{|k|, W } · (V + E)), where V is the number of 
vertices, E is the number of edges, k is the value which EPL looks for, and W is the biggest number in the set of absolute 
values of weights of edges. This algorithm works in the following two phases.

• Preprocessing: In this phase, the given graph is processed with a relaxation algorithm. As a result, the weights of the 
edges are updated such that the signs of the weights are the same in different paths (this algorithm works for graphs 
with positive, negative, and zero weight edges). The running time of this phase is O (W 2 V 3).

• Finding-Path: In the second phase, the EPL between the two input vertices is found in the relaxed graph. The running 
time of this phase is O (|k| · min{|k|, W } · (V + E)).

In the case of finding the EPL in the FTS of a DTG, W is the biggest time elapse of the FTS transitions. The value of k is 
the time quantifier of the given TCTL= formula (e.g., for TCTL= formula ∃ !U=5" the value of k is five). This way, finding 
the EPL is possible in polynomial time as for a wide range of TCTL formulas, the time quantifiers are small constant values 
(in comparison to the size of the transition system). However, there is no limitation on the value of W .

Lemma 1. There is an O ((V + E) · |!|) algorithm for model checking of FTSs against TCTL= property ! with a small constant time 
quantifier k.

Proof. As the FTS of a DTG has only progress-of-time states and transitions, the weights of all of the transitions are positive 
integer numbers (assume that the biggest weight is W ) and there is no need for a relaxation phase with cost O (W 2 V 3). 
Therefore, the running time of the model checking algorithm is reduced to O (|k| · min{|k|, W } · (V + E)).

On the other hand, the time quantifier is assumed to be a small constant integer number. Hence, k is a constant number 
in finding its corresponding EPL. Having a constant value for k, the value of min{|k|, W } is at most k. As a result, the running 
time of finding the EPL in a state space is reduced from O (|k| · min{|k|, W } · (V + E)) to O (|k|2 · (V + E)) = O (V + E). ✷

Theorem 4. An FTS can be model checked against a TCTL property ! with small constant time quantifiers in the time complexity order 
of O ((V lg V + E) · |!|).

Proof. This follows directly from Corollary 2 and Lemma 1. ✷

5. Efficient TCTL≤,≥ model checking of Timed Rebeca models

In the previous section, we showed how DTGs could be model checked efficiently against TCTL properties. But, the DTG 
formalism does not support compositional modeling; so, it is hard to use it for modeling of complex real-time systems. 
Contrarily, high-level modeling languages support compositional modeling; however, the existing techniques for analyzing 
those models are inefficient. In this section, we show how the efficient model checking algorithm of DTGs can be used for 
the model checking of higher-level modeling languages, using automatic generation of DTGs for higher-level models. To this 
aim, we consider actor models, a well-established paradigm for modeling the functional behavior of distributed systems 
with asynchronous message passing. This model was originally introduced by Hewitt [10] and then elaborated by Agha [12,
11] and Talcott [13]. We develop a toolset based on this approach for the model checking of Timed Rebeca models [19,16], 
an actor-based language for modeling concurrent and time-critical reactive systems. Later in this section, we will show how 
the proposed approach can be used for the model checking of the transition systems of Timed Rebeca model against TCTL 
properties. Also, we will show how the FTS of a Timed Rebeca model can be generated on-the-fly, using well-known graph 
search algorithms (DFS or BFS) in O (V + E). In practice, the runtime overhead of on-the-fly generation of FTSs is negligible 
for the Timed Rebeca models.

5.1. A Timed Rebeca model

In this section, we introduce Timed Rebeca using the example of a simple ticket service system. In this system, a client 
asks a ticket from an agent and the agent tries to issue a ticket by interacting with a ticket service server. A Timed Rebeca 
model (as the real-time extension of the Rebeca modeling language [28–30]) consists of a number of reactive classes, each 
describing the type of a certain number of actors (called rebecs in Timed Rebeca).2 There are three reactive classes Tick-
etService, Agent, and Customer, in the ticket service system (Listing 1). The size of the message bags of these reactive 
classes are set to two, two, and one respectively (lines 1, 21, and 30). Each reactive class declares a set of state variables. 
The local state of each actor is defined by the values of its state variables and the contents of its message bag. Following 
the actor model, communication in the Timed Rebeca models takes place by asynchronous message passing among actors. 

2 In this paper we use rebec and actor interchangeably.
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Listing 1: The Timed Rebeca model of the ticket service system.
1 reactiveclass Customer(2) {
2 knownrebecs { Agent a; }
3 statevars {
4 byte id;
5 boolean sent;
6 }
7 Customer(byte myId) {
8 id = myId;
9 sent = false;

10 self.try();
11 }
12 msgsrv try() {
13 a.requestTicket();
14 sent = true;
15 }
16 msgsrv ticketIssued() {
17 sent = false;
18 self.try() after(30);
19 }
20 }
21 reactiveclass Agent(2) {
22 knownrebecs { TicketService ts; }
23 msgsrv requestTicket() {

24 ts.requestTicket((Customer)sender)
deadline(10);

25 }
26 msgsrv ticketIssued(Customer customer) {
27 customer.ticketIssued();
28 }
29 }
30 reactiveclass TicketService(1) {
31 knownrebecs { Agent a; }
32 statevars { int issueDelay; }
33 TicketService(int myIssueDelay) {
34 issueDelay = myIssueDelay;
35 }
36 msgsrv requestTicket(Customer customer) {
37 delay(issueDelay);
38 a.ticketIssued(customer);
39 }
40 }
41 main {
42 Agent a(ts):();
43 TicketService ts(a):(2);
44 Customer c1(a):(1);
45 }

Each actor has a set of known rebecs to which it can send messages. For example, an actor of type TicketService knows 
an actor of type Agent (line 31), to which it can send ticketIssued message (line 12). Each reactive class of a Timed 
Rebeca model may have some constructors. Constructors have the same name as the declaring reactive class and do not 
have a return value (line 7). They have the task of initializing the actor’s state variables (lines 7 and 8) and putting initially 
needed messages in the bag of that actor (line 33). A properly written constructor leaves the resulting actor in a valid state. 
Reactive classes declare the messages to which they can respond. The way an actor responds to a message is specified 
in a message server. An actor can change its state variables through assignment statements (e.g., line 13), makes decisions 
through conditional statements (not appearing in our example), communicates with other actors by sending messages (e.g., 
line 12), and performs periodic behavior by sending messages to itself (e.g., line 39). Since communication is asynchronous, 
each actor has a message bag from which it takes the next incoming message. The ordering of the messages in a message 
bag is based on the arrival times of messages. An actor takes the first message from its message bag, executes its corre-
sponding message server in an isolated environment, takes the next message (or waits for the next message to arrive) and 
so on. A message server may have a nondeterministic assignment statement which is used to model the nondeterminism in 
the behavior of a message server.

Finally, the main block is used to instantiate the actors of the model. In the ticket service model, three actors are created 
receiving their known rebecs and the parameter values of their constructors upon instantiation (lines 44-46).

Timed Rebeca adds three primitives to Rebeca to address timing issues: delay, deadline and after. A delay statement 
models the passage of time for an actor during execution of a message server (line 11). Note that all other statements 
of Timed Rebeca are assumed to execute instantaneously. The keywords after and deadline are used in conjunction with a 
method call. The term after(n) indicates that it takes n units of time for a message to be delivered to its receiver. For 
example, the periodic task of requesting a new ticket is modeled in line 39 by the customer sending a try message to 
itself and allowing the receiver (itself) to take it from its message bag only after 30 units of time. The term deadline(n)
expresses that if the message is not taken in n units of time, it will be purged from the receiver’s message bag automatically. 
For example, line 24 indicates that a requestTicket message must be started to execute before the passage of 10 units 
from the sending time of the message.

Note that a Rebeca model may contain some private methods. These methods cannot be called from the other actors 
and used to make the model of a reactive class more modular. The definition of a method starts with the type of its return 
value (instead of the msgsrv keyword) and its body is the same as the body of a message server.

5.2. Property specification for Timed Rebeca models

After introducing Timed Rebeca, we have to show how property specifications can be implemented for Timed Rebeca 
models. Here, we show how a property specification is developed for the example of ticket service system of Listing 1. For 
this example, we want to make sure that responses to requests of the client are received in less than 10 units of time. To 
this end, the property specification of Listing 2 is implemented. Atomic propositions are defined at the beginning of property 
specification (line 3). Atomic propositions are implemented in the form of apLabel = expression such that their associated 
expressions have to be evaluable to true or false. In the property specification of Listing 2, only one atomic proposition 
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Listing 2: A property specification for the example of ticket service system.

1 property{
2 define {
3 c1Sent = c1.sent;
4 }
5 TCTL {
6 responseTime : AG(time <= 10, (!c1Sent || (c1Sent -> AF(time <= 10, !c1Sent))));
7 }
8 }

is defined. Its associated expression examines if the first client sent a request or not. At the second part of a property 
specification, TCTL formulas are specified (line 6). As shown in Listing 2, time constraints which should be associated with 
TCTL modalities are specified as the first parameter of modalities, e.g. time <= 10 in the TCTL formula of line 6.

5.3. The fine-grained semantics of Timed Rebeca

In this section, we present the fine-grained semantics of Timed Rebeca based on the work of [31]. In the first step, we 
present the notations used in the rest of the article.

We use the following notations for working with sets and sequences. Given a set A, the set A∗ is the set of all finite 
sequences over elements of A, the set P(A) is the power set of A, and the set PN(A) is the power multiset of A. For a 
sequence a ∈ A∗ of length n, the symbol ai denotes the ith element of the sequence, where 1 ≤ i ≤ n. Using this notation, we 
may also write the sequence a as ⟨a1, a2, · · · , an⟩. The empty sequence is represented by ϵ , and ⟨h|T ⟩ denotes a sequence 
whose first element is h ∈ A and T ∈ A∗ is the sequence comprising the elements in the rest of the sequence. For two 
sequences σ and σ ′ over A, the operator ⊕ is defined as ⊕ : A∗ × A∗ → A∗ for the concatenation of two sequences such 
that σ ⊕ σ ′ is a sequence obtained by appending σ ′ to the end of σ .

For a function f : X → Y , we use the notation f [x → y] to denote the function {(a, b) ∈ f |a ̸= x} ∪ {(x, y)}. We also use 
the notation x → y as an alternative to (x, y). For X ′ ⊆ X , we write f |X ′ as the restriction of f to X ′ , i.e., {(x, y) ∈ f |x ∈ X ′}. 
Having two sequences a and b of the same size n, the function map(a, b) returns the mapping of the elements of a into b
such that map(a, b) = {ai → bi |1 ≤ i ≤ n}, assuming that the elements of a are distinct.

5.3.1. Abstract syntax of Timed Rebeca
To enable the formal description of the fine-grained semantics of Timed Rebeca, we have to provide an abstract speci-

fication for the syntax of Timed Rebeca models. A Timed Rebeca model consists of a number of reactive class declarations 
and a main block specifying actors which are instantiated from the reactive classes.

A reactive class is defined as an instance of type RClass = CID × P(Mtds) × P(Knowns) × P(Vars) × P(Mtds) such that:

• CID is the set of all reactive class identifiers in the model.
• Mtds is the set of all method declarations.
• Knowns is the set of all the identifiers of known actors.
• Vars is the set of all variable names.

A reactive class (cid, consts, knowns, vars, mtds) has the identifier cid, the constructor methods consts, the set of known 
actors knowns, the set of state variables vars, and the set of methods mtds. Each method (and constructor methods) is 
defined as the triple (m, p, b) ∈ MName × Var∗ × Stat∗ , where m is the name of the message the method is used to serve, p
is the sequence of the names of the formal parameters, and b contains the sequence of statements comprising the body of 
the method.

The set of statements is defined as Stat = Assign ∪ Cond ∪ Delay ∪ Send ∪ {skip}, where different types of statements are 
defined as below.

• Assign = Var × Expr is the set of assignment statements. We use the notation var := expr as an alternative to (var, expr).
• Cond = BExpr ×Stat∗ ×Stat∗ is the set of conditional statements. We use the notation if exprthenσ elseσ ′ as an alternative 

to (expr, σ , σ ′).
• Delay = Expr is the set of delay statements. We use the notation delay(expr) as an alternative to (expr).
• Send = (ID ∪ {self }) × MName × Expr∗ × Expr × Expr is the set of send statements. We use the notation

x.m(e) after(ea) deadline(ed) as alternative to (x, m, e, ea, ed) to show that message m is sent from actor x with the 
set of parameters e after ea units of time and its serving must be started before ed units of time from now. Note that 
after and deadline specifiers are optional and their default values are zero and infinity, respectively.

• Nondet − Assign = Var × Expr∗ is the set of nondeterministic assignment statements. We use the notation var :=
?(expr1, expr2, · · · , exprn) as an alternative to (var, ⟨expr1, expr2, · · · , exprn⟩).

• skip is a predefined statement that has no effect.



14 E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29

The meaning of the above statements is straightforward. Expr denotes the set of integer expressions defined over usual 
arithmetic operators (with no side effects). BExpr denotes the set of Boolean expressions defined over usual relational and 
logic operators. We do not dig into the details of the expressions here.

In the main part of a model, actors are defined as instances of reactive classes. The set of actors is defined as Actor =
CID × AID × AID∗ × Expr∗ such that (c, a, k, p) ∈ Actor defines an actor instantiated from reactive class c, with identifier a, 
the set of known actors k, and the set of parameters of its appropriate constructor p. Having the above definitions, the 
set of Timed Rebeca models is specified by P(RClass) ∪ P(Actor), where the first component contains the specification of 
reactive classes and the second component corresponds to the main block consisting of a sequence of actor instantiations.

Using the same approach, we also have to provide an abstract specification for the syntax of Timed Rebeca property 
specifications. At the first step, we define AP as the set of names of atomic propositions which are defined in the “define” 
part of property specifications. We also define PR as the set of names of TCTL properties which are define in the “TCTL” 
part of property specifications. Using these sets, a property specification is defined as pair of two functions Prop = AP →
Expr × PR → Expr such that for property specification prop = (atps, prs) function atps maps names of atomic propositions 
to their corresponding boolean expression and prs maps names of TCTL formulas to their corresponding TCTL expression.

5.3.2. Operational semantics of Timed Rebeca
In this section, we describe the fine-grained formal semantics of Timed Rebeca in terms of transition systems. But 

before that, we make a few definitions and assumptions. We assumed that the Timed Rebeca models are well-formed. The 
following rules define the well-formedness of a Timed Rebeca model which is hard to (or cannot be) described in the Timed 
Rebeca grammar, but may be statically checked.

• Unique Identifiers. The actor identifiers are unique within a Timed Rebeca model.
• Unique Variables. The names of the state variables of an actor are unique.
• Unique Methods. The names of the methods of an actor are unique.
• Unique Parameters. The names of the formal parameters of a method are unique and different from the state variables 

of the enclosing actor.
• Type Safety. The model is well typed, i.e.,

– the expressions are well-typed,
– both sides of an assignment are of the same type,
– the conditions of the conditional statements are of type Boolean, and
– the receiver of a message has a method with the same name as the message.

• Well-Formed Arguments. The list of actual arguments passed to a message send statement conforms to the list of 
formal parameters of the corresponding method, in both length and type.

We also define the following auxiliary functions to be used in defining the formal semantics:

• body : AID × MName → Stat∗ , in which body(x, m) returns the body of the method m of the reactive class such that 
actor x is one of its instances, appended by the special element endm, which denotes the end of the method.

• params : AID × MName → Var∗ , in which params(x, m) returns the list of formal parameters of the method m of the 
reactive class which the actor identified by x is instantiated from.

• svars : AID → P(Var), where svars(x) returns the names of the state variables of the reactive class which actor identified 
by x is instantiated from.

• evalv : Expr → Val abstracts away the semantics of expressions by evaluating an expression within the specific context 
v : V ar → V al. Note that Val contains all possible values that can be assigned to the state variables or to be used 
within the expressions. Here, we have Val = Z ∪ {True, False}. We assume evalv is overloaded to evaluate a sequence of 
expressions: evalv(⟨e1, e2, · · · , en⟩) = ⟨evalv(e1), evalv(e2), · · · , evalv(en)⟩. Note that evalv (e1), evalv(e2), · · · , evalv(en)
are evaluated sequentially not in parallel.

Now, the fine-grained semantics of Timed Rebeca can be defined in terms of transition systems as the following. In the 
following, Msg = AID×MName× (Var → Val) ×N ×N is used as the type for the messages which are passed among actors. In 
a message (i, m, r, a, d) ∈ Msg, i is the identifier of the sender of this message, m is the name of its corresponding method, 
r is a function mapping argument names to their values, a is its arrival time, and d is its deadline.

Definition 8. For a given Timed Rebeca model M and property specification PM the fine-grained semantics is a tuple of 
T S = (S, s0, Act, →, A P , L) where S is the set of states, s0 is the initial state, Act is the set of actions, →⊆ S × Act × S
is the transition relation, A P is the set of atomic propositions, and L : S → 2A P is the labeling function, described as the 
following.

• The global state of a Timed Rebeca model is represented by a function s : AID → (Var → Val) ×PN(Msg) ×Stat∗ ×N ×N ∪
{ϵ}, which maps an actor’s identifier to the local state of the actor. The local state of an actor is defined by a tuple like 
(v, q, σ , t, r), where v : Var → Val gives the values of the state variables of the actor, q : PN(Msg) is the message bag of 
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the actor, σ : Stat∗ contains the sequence of statements the actor is going to execute to finish the service to the message 
currently being processed, t is the actor local time, and r is the time when the actor resumes executing remained 
statements. Note that we assume that actors communicate via message passing and put their incoming messages into 
message bags.

• In the initial state of the model, for all of the actors, the values of state variables and content of the actor’s message 
bag is set based on the statements of its constructor method, and the remaining statements is set to ϵ . The local times 
of the actors are set to zero and their resuming times are set to ϵ .

• The set of actions is defined as Act = MName ∪ N ∪ {τ }.
• The transition relation →⊆ S × Act × S defines the transitions between states that occur as the results of actors’ 

activities including: taking a message from the mailbox, continuing the execution of statements, and progress in time. 
The latter is only enabled when the others are disabled for all of the actors. This rule performs the minimum required 
progress of time to make one of the other rules enabled. As a result, model of progress of time in the fine-grained 
semantics of Timed Rebeca is deterministic. The following SOS rules define these transitions. Note that the method 
effect contains the effect of the execution of Timed Rebeca statements, defined in Appendix A.

(take-message)
s(x) = (v, ⟨(ac, mg, pr, ar, dl)|T ⟩, ϵ, t, ϵ) ∧ ar ≤ t ∧ dl ≥ t

s 
mg−→ s[x 9→ (v ∪ pr ∪ {(self , x)} ∪ {(sender, ac)}, T , body(x, mg), t, t)]

(internal)
s(x) = (v, q, ⟨st, σ ⟩, t, r) ∧ t = r

s τ−→ s[effect(s, x)]

(time-progress)

s mg" ∧ s τ" ∧ n1 = minx∈AID{ar|s(x) = (v, q, σ , t, r) ·σ = ϵ ∧ q = ⟨(ac, mg, pr, ar, dl)|T ⟩} ∧
n2 = minx∈AID{r′|s(x) = (v ′, q′, σ ′, t′, r′) · σ ′ ≠ ϵ} ∧ tp = min{n1, n2}

s t−→ {(x, (v, q, σ , tp, r)) | (x, (v, q, σ , t, r)) ∈ s}

• A P contains the name of all of atomic propositions of PM .
• Function L : S → 2A P associates a set of atomic propositions with each state, shown by L(s) for a given state s. 

The atomic proposition atp is associated with state s if and only if its corresponding boolean expression, defined in 
PM , is evaluated to true in s. In other words, for a give state s and property specification PM = (atps, prs), there 
is L(s) = atpss such that for atp ∈ atpss there is ∃ (atp, expr) ∈ atps · evalV (expr) = True where V = ⋃

x∈AID{v|s(x) =
(v, q, σ , t, r)}. ✷

There is no explicit time reset operator in Timed Rebeca; so, progress of time results in an infinite number of states in 
transition systems of Timed Rebeca models. However, reactive systems which generally show periodic or recurrent behaviors 
are modeled using Timed Rebeca; in other words, they perform periodic behaviors over infinite time. Based on this fact, in 
[32] we presented a new notion for equivalence relation between two states to make the transition systems finite, called 
shift equivalence relation. In shift equivalence relation two states are equivalent if and only if they are the same except for the 
parts related to the time and shifting the times of those parts in one state makes it the same as the other one, as defined 
bellow.

Definition 9 (Shift-Equivalence Relation between States). Assume that S is a set of state of a given fine-grained semantics 
T S = (S, s0, Act, →, A P , L). Two states s1 ∈ S and s2 ∈ S are in shift-equivalence relation if and only if for all x ∈ AID where 
s1(x) = (v1, q1, σ1, t1, r1) and s2(x) = (v2, q2, σ2, t2, r2), there exists ) ∈ N such that the following conditions hold:

• v1 = v2
• σ1 = σ2
• t1 = t2 + )
• r1 = r2 + ) ∨ r1 = r2 = ϵ
• for σ1 = ⟨(ac1, mg1, pr1, ar1, dl1)|T1⟩ and σ2 = ⟨(ac2, mg2, pr2, ar2, dl2)|T2⟩ there are ac1 = ac2, mg1 = mg2, pr1 = pr2, 

ar1 = ar2 + ), and dl1 = dl2 + ) and this rule is valid for the other elements of T1 and T2. ✷

This way, instead of preserving the absolute value of time, only the relative difference of timing parts of states is pre-
served. As a result, in [32] we showed that shift equivalence relation makes transition systems of the majority of Timed 
Rebeca models finite. Note that the domain of integer variables in Timed Rebeca is finite which is a necessary property for 
having finite transition systems.
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Algorithm 4: ZenoF ree(s) analyzes the state space of a model for Zeno-freedom.
Input: State s of a fine-grained transition system T
Output: The part of T reachable from s is Zeno-free or not

1 begin
2 visited ← ∅
3 foreach state s′ ∈ SUCCESSORS(s) do
4 if s′ /∈ visited then
5 visited ← visited ∪ {s′}
6 recStack(s′)← true
7 if ZenoFree(s′)=false then
8 return false

9 recStack(s′)← false

10 else
11 if recStack(s′)= true ∧ now(s′)= now(s) then
12 return false

13 return true

Having the fine-grained transition system of a Timed Rebeca model, we can show that this transition system is a DTG as 
the following.

Lemma 2. The fine-grained transition system of a Timed Rebeca model is a DTG.

Proof. For a given Timed Rebeca model M, T SM is transformed to its equivalent DTG (DT GM) using mapping of actions. 
This mapping function associates zero with taking-event and internal transitions and associates one interval with each 
progress-of-time transition. Note that as one value is associated with each progress-of-time transition of T SM , the time 
interval which is associated with its corresponding transition in DT GM has tight bounds which are the same as the value 
of the progress-of-time transition. ✷

5.4. Model checking of Timed Rebeca models

Prior to proposing model checking for Timed Rebeca models, given Timed Rebeca models must be analyzed to be Zeno-
free [3], as the prerequisite of any further timed analysis.

As the model of time in Timed Rebeca is discrete, the execution of an infinite number of message servers in zero time 
is the only scenario of exhibiting Zeno behavior, since the minimum elapse of time in Timed Rebeca is one unit. Therefore, 
if there is a cycle in the state space of a Timed Rebeca model which does not contain progress-of-time states, the model 
exhibits Zeno behavior. This can be detected by a depth-first-search (DFS) in O (V + E), as shown in Algorithm 4. In this 
algorithm, we assume that a Boolean variable is associated with each state indicating whether the state is in the search 
stack, called recStack. The condition in line 11 of the algorithm checks if the state s′ is re-visited in zero time. In 
Algorithm 4 we used function now to access to the time of its given state which is the same as the local time of actors.

In line 3 of Algorithm 4, the foreach statement traverses all transitions of the transition system. As the processing 
time of each transition is constant, the overall running time of the algorithm is O (V + E).

Based on the fact that a given Timed Rebeca model is Zeno-free and its fine-grained transition system is a DTG 
(Lemma 2), the newly proposed TCTL≤,≥ model checking algorithm in Section 3 can be used for the model checking of 
Timed Rebeca models. As a result, for a given TCTL≤,≥ formula !, the polynomial time algorithm of DTG model checking 
can be used for model checking the fine-grained transition systems of Timed Rebeca models.

Corollary 3. There is an O ((V lg V + E) · |!|) algorithm for model checking Timed Rebeca models against TCTL≤,≥ property !. ✷

5.5. Model checking of the FTSs of Timed Rebeca models

As the second step for the efficient model checking of Timed Rebeca models, we will show how the FTSs of Timed 
Rebeca models are generated without a significant runtime overhead. As the following lemma (together with Algorithm 5) 
illustrates, we can combine generating the state space, checking for Zeno behavior, and generating the FTS to decrease the 
execution cost of the generation of FTSs. In this algorithm, transition systems are generated using Bounded-DFS.

Starting from the initial state s0, the set of the nearest progress of time states of the initial state (npts(s0)) are generated 
(in the first iteration of the while loop in lines 10 to 20). At the next iteration, for each state of npts(s0), its set of the 
nearest progress of time states are found, and so on. As in each iteration only states between consecutive progress-of-time 
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Algorithm 5: The state space is generated for the given Timed Rebeca model or null is returned in the case of Zeno 
behavior in the model.

Input: A Timed Rebeca model M, a property specification PM
Output: The result FTS or null if the model has Zeno behavior

1 s0 ← GENERATE_INITIAL_STATE(M) " Generating the initial state
2 V ← {s0} " The set of all of the states
3 L ← ∅ " The labeling function of states
4 A P ← ∅ " The set of atomic propositions
5 hasZeno ← false " Flag for Zeno behavior detection
6 begin
7 S ← {s0} " The set of the states of the result FTS
8 N ← ENQUEUE(s0) " The set of the next level states
9 ↪→← ∅ " The set of the transitions of FTS

10 while HAS_ELEMENTS(N)∧ ¬hasZeno do
11 s ← DEQUEUE(N)
12 N ′ ← Bounded_DFS(s)
13 foreach state s′ ∈ N do
14 time ← PROGRESS_OF_TIME(s)
15 S ← S ∪ {s′}
16 ↪→←↪→ ∪{(s, time, s′)}
17 atps ← ATOMIC_PROPOSITIONS(s′ , PM)
18 A P ← A P ∪ atps
19 L ← L ∪ {(s′, atps)}
20 N ← ENQUEUE_ALL(N ′)

21 if hasZeno = true then
22 return null

23 else
24 return (S, s0, ↪→, A P , L)

25 Procedure Bounded_DFS(s)
26 Q ← GENERATE_SUCCESSOR_STATES(s)
27 R ← ∅ " The set of states of npts(s)
28 foreach state s′ ∈ Q do
29 if IS_PROGRESS_OF_TIME(s′) then
30 R ← R ∪ {s′}
31 continue

32 else
33 if s′ /∈ V then
34 V ← V ∪ {s′}
35 recStack(s′)← true
36 R ← R ∪ Bounded_DFS(s′)
37 recStack(s′)← false

38 else
39 if recStack(s′)= true ∧ now(s′)= now(s) then
40 hasZeno ← true

41 return R

states are generated in a DFS manner, the algorithm is called Bounded-DFS state space generation. Like ordinary DFS, 
Bounded-DFS is a recursive procedure, defined in lines 25 to 41. In each round, if a progress-of-time state is found, it is put 
in set R as the return value (line 30).

Otherwise, Bounded-DFS is invoked to explore the successor states of the newly generated state (lines 32 to 40); mean-
while, the existence of a cycle without an elapse of time is checked to detect Zeno behavior (line 39). This way, as each 
state is visited at most twice (at the generation time and when DFS continues exploration through its successors) and each 
transition is traversed once (at the generation time), the overall running time of checking for Zeno behavior and generating 
the FTS is O (V + E).



18 E. Khamespanah et al. / Science of Computer Programming 153 (2018) 1–29

Fig. 4. How TCTL model checker of Afra works.

Note that in Algorithm 5, the function PROGRESS_OF_TIME maps its given progress-of-time state to the value of its 
only outgoing timed transition. Also, the function ATOMIC_PROPOSITIONS maps its given state to the set of atomic 
propositions which can be associated with it based on its given property specification.

Lemma 3. The FTS of a given Timed Rebeca model M can be generated in O (V + E). ✷

Corollary 4. The FTS of a given Timed Rebeca model can be generated and model checked against TCTL property ! in O ((V lg V + E) ·
|!|).

6. Case studies and experimental results

We perform four different case studies in different sizes to illustrate how efficiently the improved algorithm and the 
reduction technique work. The host computer of the model checking toolset was a desktop computer with 1 CPU (2 cores) 
and 8 GB of RAM storage, running El Capitan OS X 10.11.5. The selected case studies are a simplified version of a NoC system 
with 16 cores, a simplified version of the Scheduler of Hadoop, a Ticket Service system, and an application of Wireless Sensor 
and Actuator Networks (WSAN). The Timed Rebeca source codes of these case studies and the model checking toolset (Afra) 
are accessible from the Rebeca home page.3 As shown in Fig. 4, the Timed Rebeca source codes and their corresponding 
TCTL properties are transformed to some C++ files using RMC component and executing the C++ files results in generating 
state spaces of the models in the XML format. Afra benefits from another component, state space analyzer component, 
for analyzing the generated state spaces. We developed the proposed TCTL model checking algorithm as a part of this 
component. We also developed the old TCTL model checking algorithm in this component to be able to measure how 
efficient is the work of this paper.

For each case study, we provide both an intuitive and a detailed description of the model, and then discuss the gained 
reduction. We also present the TCTL formula against which the model is checked. In the presented TCTL formulas, atomic 
propositions are defined as boolean expressions based on the values of the state variables of actors. For example, the atomic 
proposition which shows the equality of the state variable x of actor a to 3 is shown by a.x == 3. We choose the state 
space size and the model checking time consumptions as the performance metrics of the model checking algorithms. The 
values of these metrics are compared in a table for each case study. In the tables, ORG is used to refer to the original state 
spaces and RED is used to refer to the reduced state space (i.e., FTSs). We also use OLD to refer to the old TCTL model 
checking algorithm and NEW to refer to the proposed TCTL model checking algorithm of this paper. In the case of having 
both RED and NEW, we address the cases where reduced state spaces are model checked using the TCTL model checking 
algorithm of this paper. We also reported the spent time for the state space generation. As mentioned before, there is no 
difference between the spent times for the generation of the original state spaces and the reduced state spaces, so only one 
number is reported as the spent times.

Note that the simplified source codes of the examples are shown in the figures of this section and many parts of them 
are eliminated (they are replaced by dots). As mentioned before, the complete source codes of the models are in the Rebeca 
home page.

3 http :/ /www.rebeca-lang .org /wiki /pmwiki .php /Examples /Examples.

http://www.rebeca-lang.org/wiki/pmwiki.php/Examples/Examples
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6.1. Network on chip (NoC)

Our first example is a model of a network on chip (NoC), a promising architecture paradigm for many-core systems. In 
NoC designs, functional verification and performance evaluation in the early stages of the design process are suggested as 
ways to reduce the fabrication cost. As an example of a NoC, we modeled and analyzed ASPIN (Asynchronous Scalable Packet 
switching Integrated Network), which is a fully asynchronous two-dimensional NoC design [33]. In a two-dimensional NoC 
design, each core is placed in a 2D mesh and has four adjacent cores and four internal buffers for storing the incoming 
packets (one for each direction). Different routing algorithms have been proposed for the two-dimensional NoC design, 
including XY, OE, and DYAD routing algorithms. In the following example, we consider the XY routing algorithm. Using 
the XY routing algorithm, packets are moving along the X direction first, and then along the Y direction, to reach their 
destination cores. In ASPIN, packets are transferred through channels, using a four-phase handshake communication protocol. 
The protocol uses two signals, namely Req and Ack, to implement this four-phase handshaking protocol. This way, to transfer 
a packet, first the sender sends a request by raising the Req signal, and waits for an acknowledgment which is the raising 
of the Ack signal by the receiver. In the third phase, the data is sent. Finally, after a successful communication all of the 
signals return to zero.

The timed version of ASPIN was investigated in [34] using simulation and model checking against deadlock freedom and 
schedulability properties. In addition to the functional correctness, the Afra toolset was used for estimating the maximum 
end-to-end latency of the model.

Timed Rebeca model. The simplified version of the Timed Rebeca model of ASPIN is shown in Listing 3, which contains 
two different reactive classes: Manager and Router. The Manager does not exist in real NoC systems. Here, it is used 
as the starter of the model. It sends the combination of inReq and inReqMinus messages to a router to ask for packet 
generation. This way, different traffic scenarios are generated by modifying the code of Manager. In the example of List-
ing 3, one packet is generated in the router r00 which must be routed to the router r11 (Lines 19 and 20). To make sure 
successful delivery of this packet, two other messages are sent in lines 21 and 22. Using this pattern, different traffics can 
be generated easily. Router is the model of a core in an ASPIN design. Its specification contains four known rebecs which 
are its neighbor cores (line 29), a composite id which includes its X–Y position (line 32), buffer variables which show that 
the buffers are enabled or busy (line 33), a variable which counts the number of received packets (received in line 32), 
and many other control variables. The communication channel between neighbors is modeled by the message passing of 
Rebeca. Trying for the delivery of a packet is started by sending an inReq message to a router. The receiver router accepts 
the packet if its input buffer is free (line 48).

Upon accepting a packet, an acknowledgment is sent to its sender and an internal message is scheduled to process this 
packet (lines 49 and 50). Processing of a packet takes place in message server process. If there is a packet for processing 
(line 58), one of the routing algorithms is selected to send the packet to the appropriate neighbor (lines 59 to 64). As 
shown the details of routing by XY algorithm in line 60, the output port of a packet is computed by the private method
XYrouting. As shown in lines 75 to 79 the destination port of a packet is computed based on the value of X and Y of 
both the source router and the destination router. The 2D mesh of this model is formed in the main block of the model by 
setting known rebecs based on the locations of the routers.

Gained reduction. We model checked this model against E(r11.received <= 2)U≤250(r11.received > 2) formula. This for-
mula makes sure that there is a path in which before passing 250 time units more than two packets are received by the 
router r11. As shown in Table 1, sending 7 or 8 packets results in passing the time limit of the model checking (we set it 
to 5 hours) in the case of using the old model checking algorithm. However, the new algorithm computes the results in a 
reasonable time.

The effect of applying the reduction technique is shown in Table 1 too. In the NoC model, increasing the number of sent 
packets results in a light increment in the gained reduction, which is because of the increment of the concurrency level 
of the model. In other words, increasing the number of packets results in interleaving of transitions which correspond to 
routing the packets. The interleaving of these transitions are omitted in the FTS of the model and as there is no conflict 
between the routes of the packets (it is because of the traffic pattern we have chosen for this model), eliminating the effect 
of the interleaving of transitions results in FTSs which have approximately the same sizes.

Table 1 also shows that using the new model checking algorithm together with the FTS reduction technique results in 
the model checking of the models in less than a second.

6.2. Hadoop YARN scheduler

Hadoop [35] is a framework for MapReduce, a programming model for generating and processing large data sets [36]. 
MapReduce has undergone a complete overhaul in its latest release, called MapReduce 2.0 (MRv2) or YARN [37]. The funda-
mental idea of YARN is to split up the major functionalities of the framework into two modules, a global ResourceManager 
(RM) and per-application ApplicationMaster (AM). RM arbitrates resources among all of the applications in the system. AM 
negotiates with RM for the resources to manage the life cycle of its running applications. So, on a Hadoop cluster, there is 
a single RM and for every job there is a single AM. It is possible to set different policies in YARN for dispatching jobs and 
resources to AMs based on the deadlines, the jobs priorities, the arrival times of jobs, etc.
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Listing 3: The model of an ASPIN NoC.
1 env short maxTime = 28000;
2 env short rAlg = 1;
3 env byte writeD = 2;
4 ...
5 reactiveclass Manager(60){
6 knownrebecs{
7 Router r00, r10, r20, r30,
8 r01, r11, r21, r31,
9 r02, r12, r22, r32,

10 r03, r13, r23, r33;
11 }
12 Manager(){
13 generate();
14 }
15 msgsrv reset(){ ... }
16 void generate(){
17 r01.reStart()after(wholeCycle);
18 r11.checkRecieved(2) after(maxTime);
19 r00.inReq(4,1,1,1) after (18);
20 r00.inReqMinus(4) after (18 + prodD);
21 r00.inReq(4,1,1,2) after (110);
22 r00.inReqMinus(4) after (110 + prodD);
23 ...
24 }
25 }
26 reactiveclass Router(80) {
27 knownrebecs {
28 Manager manager;
29 Router N, E, S, W;
30 }
31 statevars {
32 byte Xid, Yid, received;
33 bboolean[5] inBufFull, outBufFull
34 byte[5][2] outPortPtr;
35 ...
36 }
37 Router(byte X, byte Y){
38 Xid = X;
39 Yid = Y;
40 for(byte i=0;i<5;i++){
41 waitedOutReq[i] = 5;
42 outReqEnable[i] = true;
43 outPortPtr [i][0]= -1;
44 }
45 ...
46 }
47 msgsrv inReq (byte inPort, byte Xtarget,

byte Ytarget,byte id){
48 if (inBufFull[inPort] == false ){
49 sendInAck((byte)(inPort + 2)% 4, inAD);
50 self.process(inPort, Xtarget,

Ytarget,id, false,
false)after((writeD *
inBufSizeTest)+ readD);

51 ...
52 } else { ... }
53 }

54 msgsrv process(byte inPort, byte Xtarget,
byte Ytarget,byte id, boolean
isPushed, boolean justPush) {

55 byte routeD;
56 ...
57 if ((inBufID[inPort][0] == id) ||

isPushed == true){
58 if(passedFlit == 0) {
59 if (rAlg == 1) {
60 outPort = XYrouting(Xtarget,

Ytarget);
61 routeD = routeXYD;
62 }
63 else if (rAlg == 2){ ... }
64 else if (rAlg == 3){ ... }
65 } else { ... }
66
67 if(outReqEnable[inPort] == true){
68 waitedOutReq[inPort] = outPort;
69 self.portSchedule(outPort, inPort)

after(routeD + schdD + outRD);
70 }
71 }
72 }
73 byte XYrouting(byte Xtarget, byte Ytarget)

{
74 byte outPort = 0;
75 if(Xtarget > Xid) outPort = 1;
76 else if(Xtarget < Xid) outPort = 3;
77 else if(Ytarget > Yid) outPort = 2;
78 else if(Ytarget < Yid) outPort = 0;
79 else outPort = 4;
80 return outPort;
81 }
82 ...
83 }
84 main {
85 Manager m(r00, r10, ..., r33):();
86 Router r00(m,r03,r10,r01,r30):(0,0);
87 Router r10(m,r13,r20,r11,r00):(1,0);
88 Router r20(m,r23,r30,r21,r10):(2,0);
89 Router r30(m,r33,r00,r31,r20):(3,0);
90
91 Router r01(m,r00,r11,r02,r31):(0,1);
92 Router r11(m,r10,r21,r12,r01):(1,1);
93 Router r21(m,r20,r31,r22,r11):(2,1);
94 Router r31(m,r30,r01,r32,r21):(3,1);
95
96 Router r02(m,r01,r12,r03,r32):(0,2);
97 Router r12(m,r11,r22,r13,r02):(1,2);
98 Router r22(m,r21,r32,r23,r12):(2,2);
99 Router r32(m,r31,r02,r33,r22):(3,2);

100
101 Router r03(m,r02,r13,r00,r33):(0,3);
102 Router r13(m,r12,r23,r10,r03):(1,3);
103 Router r23(m,r22,r33,r20,r13):(2,3);
104 Router r33(m,r32,r03,r30,r23):(3,3);
105 }

Timed Rebeca model. In the Timed Rebeca model of Listing 4, the YARN system is modeled using two different reactive 
classes: ResourceManager, ApplicationMaster. Message server checkQueue models the main behavior of RM by 
looking for a free AM and assigning a job to it. Lines 34 to 43 of checkQueue illustrate how a job is assigned to am1 (the 
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Table 1
The size of the state spaces and the gained reductions in the NoC example in different scenarios. The † sign on the reported times 
shows that the model checking passed the time limit (5 hours).

Configuration State space generation Model checking time

States ORG States RED Gain Time ORG, OLD ORG, NEW RED, NEW

3 Packets 442 68 84% 1 s <1 s <1 s <1 s
4 Packets 1,239 122 91% 2 s 6 s <1 s <1 s
5 Packets 3,117 126 96% 7 s 2.8 m <1 s <1 s
6 Packets 9,907 129 98% 35 s 40 m 1 s <1 s
7 Packets 35,746 102 99% 6.8 m >5 h† 5 s <1 s
8 Packets 136,666 117 99% 1.4 h >5 h† 16 s <1 s

Table 2
The size of the state spaces and the gained reductions in the Hadoop Yarn example with default configuration. The † sign on the 
reported times shows that the model checking passed the time limit (5 hours).

Configuration State space generation Model checking time

States ORG States RED Gain Time ORG, OLD ORG, NEW RED, NEW

1 AMs 180 56 69% <1 s <1 s <1 s <1 s
2 AMs 5,506 1,283 77% 1 s 16 s <1 s <1 s
3 AMs 177,989 24,639 86% 14.5 m >5 h† 18.8 m <1 s

first Application Master) if the status of am1 is FREE. The specification of the job which is sent to am1 is in the head of 
the queue of jobs (line 9). After sending the specification, the job is removed from the queue of jobs (lines 38 to 41) and 
another job is generated and added to the queue of jobs to model the arrival of a new job (line 42). The same behavior is 
implemented for the other AMs. In ResourceManager, state variable fifoQueue, as the queue of jobs, keeps track of 
the deadlines of jobs. In lines 48 to 58 of checkQueue, the deadlines of jobs are decreased by one unit to model the time 
elapse for waiting jobs.

In this model we simplified the behavior of application masters to perform their assigned jobs successfully. This takes 
place by setting 2 as the completion time of all jobs (line 90). Setting this value to more than the value of dline results 
in missing the deadline and non-successful termination of the job. As shown in line 98, each application master keeps 
the number of the performed jobs. To avoid state space explosion, the value of this counter is set to 0 after performing 5 
successful jobs (line 99).
Gained reduction. We used E(am2.done Jobs <= 4)U≤10(am2.done Jobs > 4) formula for the model checking of the Yarn 
model. This formula makes sure that there is a path in which before passing 10 time units the second application master 
finishes five jobs (the same property can be checked for the other application masters). As shown in Table 2, having 3 ap-
plication masters results in passing the time limit of the model checking in case of using the old model checking algorithm. 
However, the new algorithm terminates in 18 minutes. Although the model checking time of the new algorithm is reason-
able even for the case of three application masters, the time is reduced to less than one second when the new algorithm 
and FTS technique work together, as shown in Table 2.

The same as the model of NoC applying FTS technique reduces the size of the state spaces significantly. Also, increasing 
the number of the application masters increases the gained reduction. It is because of the fact that the application masters 
are working in parallel and the interleaving of their parallel activities is eliminated by FTS.

6.3. Ticket service

Our third example is the model of a Ticket Service system. The overview of this example is presented in Section 5. We 
created the extended version of this model and varying in the number of customers.
Timed Rebeca model. The Timed Rebeca model of this system for the case of five customers, shown in Listing 5, contains 
three different reactive classes: Customer, Agent, and TicketService. Customers periodically ask for tickets by send-
ing requestTicket to the agent in message server try (line 13). Upon sending requestTicket, the customer sets 
its state variable sent to true to show that it sends a ticket request. This variable will be used in a TCTL formula which 
measures the service time of the system. Agent forwards the received requests immediately to TicketService. As spec-
ified by the deadline primitive (line 24), the forwarded request must be served before the passage of 24 units of time. 
The ticket service system issues a ticket and informs Agent about the issued ticket (line 38). This process takes 2 units of 
time, which is specified in line 37. Agent sends the issued ticket to its corresponding customer (line 27) and the customer 
unsets its state variable sent.
Gained Reduction. Making sure about the upper bound of the response time to the customers’ requests is the property we 
checked for this model. We have to make sure that in all states, the time elapse between sending a request and receiving a 
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Listing 4: The model of a Hadoop YARN system with three application masters.
1 reactiveclass ResourceManager(5) {
2 knownrebecs {
3 AppMaster am1, am2, am3;
4 }
5 statevars {
6 int FREE, BUSY;
7 int appMaster1, appMaster2, appMaster3;
8 int m_queue_misses, m_update_miss,

m_job_complete, DEFAULT_DEADLINE,
QUEUE_SIZE;

9 int[4] fifo_queue;
10 }
11
12 ResourceManager() {
13 FREE = 1;
14 BUSY = 0;
15 appMaster1 = FREE;
16 appMaster2 = FREE;
17 appMaster3 = FREE;
18 m_queue_misses = 0;
19 m_update_miss = 0;
20 m_job_complete = 0;
21 DEFAULT_DEADLINE = 3;
22 fifo_queue[0] = DEFAULT_DEADLINE;
23 fifo_queue[1] = DEFAULT_DEADLINE;
24 fifo_queue[2] = DEFAULT_DEADLINE;
25 fifo_queue[3] = DEFAULT_DEADLINE;
26 QUEUE_SIZE = 4;
27 self.checkQueue();
28 }
29 msgsrv checkQueue() {
30 m_queue_misses = 0;
31 m_update_miss = 0;
32 m_job_complete = 0;
33 int I = 0;
34 if(appMaster1 == FREE) {
35 appMaster1 = BUSY;
36 am1.runJob(fifo_queue[0]);
37 I = 0;
38 while(I < QUEUE_SIZE - 1) {
39 fifo_queue[I] = fifo_queue[I + 1];
40 I++;
41 }
42 fifo_queue[QUEUE_SIZE - 1] =

DEFAULT_DEADLINE;
43 }
44 if(appMaster2 == FREE) { ... }
45 if(appMaster3 == FREE) { ... }
46 I = 0;
47 int J = 0;
48 while(I < QUEUE_SIZE) {
49 fifo_queue[I]--;
50 if(fifo_queue[I] == 0) {
51 m_queue_misses++;
52 J = I;
53 while(J < QUEUE_SIZE - 1) {
54 fifo_queue[J] = fifo_queue[J + 1];

55 J++;
56 }
57 fifo_queue[QUEUE_SIZE - 1] =

DEFAULT_DEADLINE;
58 }
59 I++;
60 }
61 self.checkQueue() after(1);
62 }
63 msgsrv update(boolean deadline_miss) {
64 m_queue_misses = 0;
65 m_update_miss = 0;
66 m_job_complete = 0;
67 if(deadline_miss == true) {
68 m_update_miss = 1;
69 } else {
70 m_job_complete = 1;
71 }
72 if(sender == am1) {
73 appMaster1 = FREE;
74 } else if(sender == am2) {
75 appMaster2 = FREE;
76 } else if(sender == am3) {
77 appMaster3 = FREE;
78 }
79 }
80 }
81
82 reactiveclass AppMaster(5) {
83 knownrebecs {
84 ResourceManager rm;
85 }
86 statevars { int doneJobs; }
87
88 AppMaster() { doneJobs = 0; }
89 msgsrv runJob(int dline) {
90 int completion = 2;
91 boolean deadline_miss;
92 if(completion > dline) {
93 deadline_miss = true;
94 rm.update(deadline_miss) after(dline);
95 } else {
96 deadline_miss = false;
97 rm.update(deadline_miss)

after(completion);
98 doneJobs++;
99 if (doneJobs > 5) doneJobs = 1;

100 }
101 }
102 }
103 main {
104 ResourceManager rm(am1, am2, am3):();
105 AppMaster am1(rm):();
106 AppMaster am2(rm):();
107 AppMaster am3(rm):();
108 }

ticket is less than a specific number. In the following formula, we ensure that in case of five customers, there is an upper 
bound of 16 time units for the response time of the system.

AG≤50((c1.sent → AF≤16¬c1.sent ) ∧ · · · ∧ (c5.sent → AF≤16¬c5.sent ))
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Listing 5: The model of a ticket service system with five customers.
1 reactiveclass Customer(3) {
2 knownrebecs { Agent a; }
3 statevars {
4 byte id;
5 boolean sent;
6 }
7 Customer(byte myId) {
8 id = myId;
9 sent = false;

10 self.try();
11 }
12 msgsrv try() {
13 a.requestTicket();
14 sent = true;
15 }
16 msgsrv ticketIssued() {
17 sent = false;
18 self.try() after(30);
19 }
20 }
21 reactiveclass Agent(10) {
22 knownrebecs { TicketService ts; }
23 msgsrv requestTicket() {
24 ts.requestTicket((Customer)sender)

deadline(24);

25 }
26 msgsrv ticketIssued(Customer customer) {
27 customer.ticketIssued();
28 }
29 }
30 reactiveclass TicketService(10) {
31 knownrebecs { Agent a; }
32 statevars { int issueDelay; }
33 TicketService(int myIssueDelay) {
34 issueDelay = myIssueDelay;
35 }
36 msgsrv requestTicket(Customer customer) {
37 delay(issueDelay);
38 a.ticketIssued(customer);
39 }
40 }
41 main {
42 Agent a(ts):();
43 TicketService ts(a):(2);
44 Customer c1(a):(1);
45 Customer c2(a):(2);
46 Customer c3(a):(3);
47 Customer c4(a):(4);
48 Customer c5(a):(5);
49 }

Table 3
The size of the state spaces and the gained reductions in the Ticket Service example with different numbers of customers.

Configuration State space generation Model checking time

States ORG States RED Gain Time ORG, OLD ORG, NEW RED, NEW

2 customers 77 10 87% <1 s <1 s <1 s <1 s
3 customers 360 40 89% <1 s <1 s <1 s <1 s
4 customers 1,825 184 90% <1 s 1 s 1 s <1 s
5 customers 10,708 1,047 90% 6 s 2 s 1 s <1 s
6 customers 73,461 6,997 91% 3.4 m 2.2 m 1.7 m 1 s

Note than this formula has to be transformed into the base form which only contains existential until modalities using 
AG≤cφ ≡ ¬ EF≤c¬φ ≡ ¬ E true U≤c¬φ and AF≤cφ ≡ ¬ E¬φ U≥ctrue ∧ ¬ E¬φ U P scc0(¬φ) . As the state spaces are checked to 
be Zeno free prior to start the TCTL model checking, E¬φ U P scc0(¬φ) is empty and there is AF≤cφ ≡ ¬ E¬φ U≥c true .

The numbers of Table 3 show that both of the algorithms perform model checking in a reasonable time. However, the 
algorithm of this paper is less than two times better than the old one. The gained performance of the new TCTL model 
checking algorithm in this example is not as significant as the aforementioned two examples because of the fact that a 
limited number of states pass the first phase of the old algorithm. Therefore, there are few states which have to pass the 
second phase of the algorithm, which is a costly algorithm. In the previous examples, all of the states pass the first phase, 
result in executing the second phase algorithm over all of the states. Table 3 shows that combining the new algorithm and 
FTS improves the performance of the model checking. The same as the previous examples, applying FTS technique reduces 
the size of the state spaces significantly and increasing the number of the customers increases the gained reduction.

6.4. WSAN applications

As the fourth example, we present a real-time data acquisition system for structural health monitoring and control 
(SHMC) of civil infrastructures [38]. This system has been implemented on top of the Imote2 [39] wireless sensor platform, 
and has been deployed for long-term monitoring of several highway and railroad bridges. The SHMC application develop-
ment has proven to be particularly challenging: it has the complexity of a large-scale distributed system with real-time 
requirements, while having the resource limitations of low-power embedded WSAN platforms. Ensuring the safe execution 
of a SHMC requires modeling the interactions between the components of the data acquisition nodes, which are CPU, sensor, 
and radio transmission components, as well as interactions between the nodes. In this application, all periodic tasks (sample 
acquisition, data processing, and radio transmission) are required to be completed before the start of their next period. In 
addition, each node has to send its processed data to a central station. To handle the communication between the nodes 
and the central station, a communication protocol is required. The schedulability of the models of this application using 
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Table 4
The size of the state spaces and the gained reductions in WSAN example with different configuration.

Configuration State space generation Model checking time

States ORG States RED Gain Time ORG, OLD ORG, NEW RED, NEW

25-5-3-10 1,741 402 77% <1 s <1 s <1 s <1 s
33-6-4-2 1,934 451 77% <1 s <1 s <1 s <1 s
25-5-4-10 3,718 945 75% 1 s <1 s <1 s <1 s
30-6-4-2 9,353 2,774 71% 1 s <1 s <1 s <1 s
25-6-4-2 34,503 10,368 70% 2 s <1 s <1 s <1 s
20-6-4-2 57,621 17,714 69% 3 s <1 s <1 s <1 s

Timed Rebeca is investigated in [40]. Here, we showed how other properties can be model checked using the TCTL model 
checking of Timed Rebeca.

Timed Rebeca model. The simplified version of the Timed Rebeca model of WSAN, shown in Listing 6, contains five different 
reactive classes: Sensor, CPU, Misc (for miscellaneous tasks unrelated to sensing or communication), Communica-
tionDevice, and WirelessMedium. The model of a WSAN node concerns the data acquisition, processing, and radio 
transmission primarily. Having Sensor, CPU, and CommunicationDevice for a WSAN node, the developed Timed Re-
beca model closely mimics the structure of the real application. The configuration of this model is specified by the values 
of the environment variables in lines 1 to 7. Based on these values, there are six nodes in the environment (line 2) and the 
sampling rate of the nodes is 25 samples per 1000 units of time (line 1). Each node packs two acquired data elements in 
one packet (line 3). The time spent for the internal activities of a node is specified in lines 4 to 6.

The main activity of this model is started by executing sensorLoop of Sensor. In this loop, based on the specified 
sampling rate, data is acquired by Sensor and it is sent to CPU (lines 17–21). There is the same behavior in Misc. These 
two actors send messages to CPU, which are handled by the sensorEvent and miscEvent message servers respectively 
(lines 33–35 and line 46). The message server sensorEvent starts the processing of the acquired data by sending a sen-
sorTask message. In sensorTask, the schedulability of the processing of the acquired data is checked (lines 37 and 38), 
it is packed into one packet (line 40), and the packed data is sent by the communication device of this node if it reaches 
the limit which is specified by bufferSize. The communication protocol between nodes is implemented in the method
send of Communication Device (We developed TDAM and MACB communication protocols in [40]). In the current 
implementation, before sending data, the freedom of the communication device is checked (line 64) then the needed mes-
sages are scheduled for sending data (line 68). To model the effect of Ether is the wireless communication and transmission 
conflict, we developed WirelessMedium. Communication devices send broadcast messages to the wireless medium 
to send data to other communication devices and the receivers of broadcast data send broadcastingIsCompleted to 
inform it received the data successfully.
Gained Reduction. Checking for utilizing the communication channel in each 50 units of time is the property
we used for the model checking of this example with different configurations. This property is shown by
AG≤50(A(freeChannel)U≤50(¬freeChannel) ) which has to be transformed to the base forms, as we did in the previous 
example. We verified the WSAN application in different configurations, varying the value of the sampling rate, the number 
of nodes, the packet size, and the sensor task delay. The results of these experiments are depicted in Table 4. In each row, 
the configuration (the numbers which are separated by a dash) is a combination of the sampling rate, the number of nodes, 
the packet size, and the sensor task delay of the experiment, respectively. As shown in Table 4, the time consumption of 
the model checking is less than one second for all cases and changing the configuration of the model does not end in 
large state spaces. However, the effectiveness of the reduction technique is reduced in configurations which result in bigger 
state spaces. This is because of the fact that changing the configuration of WSAN in this way does not increase the number 
of messages which are sent at the same time. So, the chance of finding transient transitions is decreased as there is no 
increment in the number of simultaneously executing instantaneous transitions.

7. Related work

The model checking against TCTL properties. The decidability of model-checking TCTL has been shown by Alur, Courcou-
betis, and Dill [41], using clock equivalence and region transition systems. They proposed the first model checking algorithm 
for timed automata against TCTL properties. A variation of this algorithm is used in many model checking algorithms, includ-
ing UPPAAL [4]. To over come the inefficiencies of this model checking algorithm, some reduction techniques are proposed 
for verification of timed automata models, instead of proposing a new model checking algorithm. Bengtsson et al. in [42]
proved that allowing clock of timed automata to increase independently and synchronize clocks when two timed automata 
want to communicate, is an effective way for improving the time consumption of the TCTL model checking. This idea is 
close to the inter-process atomic blocks of SPIN. This work is continued by Minea in [43] by applying the proposed reduc-
tion technique in model checking of timed extension of LTL. In comparison to these works, our algorithm performs model 
checking in polynomial time; however, it supports a limited subsystem of the real-time systems, i.e. discrete time systems.
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Listing 6: The model of a WSAN application.
1 env int samplingRate = 25;
2 env int numberOfNodes = 6;
3 env int bufferSize = 2;
4 env int sensorTaskDelay = 2;
5 env int OnePacketTransmissionTime = 7;
6 env int miscTaskDelay = 10;
7 env int tmdaSlotSize = 10;
8 env int miscPeriod = 120;
9 env int packetMaximumSize = 112;

10
11 reactiveclass Sensor(10) {
12 knownrebecs { CPU cpu; }
13 Sensor() { self.sensorFirst(); }
14 msgsrv sensorFirst() {
15 self.sensorLoop() after(?(10, 20, 30));
16 }
17 msgsrv sensorLoop() {
18 int period = 1000 / samplingRate;
19 cpu.sensorEvent(period);
20 self.sensorLoop() after(period);
21 }
22 }
23
24 reactiveclass Misc(10) { ... }
25
26 reactiveclass CPU(10) {
27 knownrebecs {
28 CommunicationDevice senderDevice,

receiverDevice;
29 Sensor sensor;
30 }
31 statevars { int collectedSamplesCounter; }
32 CPU() { collectedSamplesCounter = 0; }
33 msgsrv sensorEvent(int period) {
34 self.sensorTask(period,

currentMessageWaitingTime);
35 }
36 msgsrv sensorTask(int period, int lag) {
37 int tmp = period - lag -

currentMessageWaitingTime;
38 assertion(tmp >= 0);
39 delay(sensorTaskDelay);
40 collectedSamplesCounter += 1;
41 if (collectedSamplesCounter ==

bufferSize){
42 senderDevice.send(receiverDevice,

0, 1);
43 collectedSamplesCounter = 0;
44 }
45 }
46 msgsrv miscEvent() {

delay(miscTaskDelay); }
47 }
48
49 reactiveclass CommunicationDevice (10) {
50 knownrebecs { WirelessMedium medium; }
51 statevars {
52 byte id;
53 int sendingData;

54 int sendingPacketsNumber;
55 CommunicationDevice receiverDevice;
56 }
57 CommunicationDevice(byte myId) {
58 id = myId;
59 sendingData = 0;
60 sendingPacketsNumber = 0;
61 receiverDevice = null;
62 }
63 msgsrv send(CommunicationDevice receiver,

int data, int packetsNumber) {
64 assertion(receiverDevice == null);
65 sendingPacketsNumber = packetsNumber;
66 receiverDevice = receiver;
67 sendingData = data;
68 medium.getStatus();
69 }
70 msgsrv receiveStatus(boolean result) {

... }
71 msgsrv receiveResult(boolean result) {

... }
72 msgsrv receiveData(CommunicationDevice

receiver, int data, int
receivingPacketsNumber) { ... }

73 }
74
75 reactiveclass WirelessMedium(5) {
76 statevars {
77 CommunicationDevice senderDevice;
78 CommunicationDevice receiverDevice;
79 int maxTraffic;
80 }
81 WirelessMedium() {
82 senderDevice = null;
83 receiverDevice = null;
84 maxTraffic = (125 * 1024) / 8;
85 }
86 msgsrv getStatus() { ... }
87 msgsrv broadcast(CommunicationDevice

receiver, int data, int
packetsNumber) { ... }

88 msgsrv broadcastingIsCompleted() {
89 senderDevice = null;
90 receiverDevice = null;
91 }
92 }
93
94 main {
95 WirelessMedium medium():();
96 CPU cpu (sensorNodeSenderDevice,

receiver, sensor):();
97 Sensor sensor(cpu):();
98 Misc misc(cpu):();
99 CommunicationDevice

sensorNodeSenderDevice(medium):
((byte)1);

100 CommunicationDevice
receiver(medium):((byte)0);

101 }
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In another attempt, Campos et al. in [8] addressed discrete-time systems and introduced timed transition graph (TTG) 
as the underlying semantics of this type of systems. TTGs are transition graphs in which an interval is associated with 
each transition. Passing such a transition results in progress in time with a value which is chosen nondeterministically 
from the associated interval. They proposed a polynomial time symbolic model checking algorithm for TTGs in [8]. Later, 
Laroussinie et al. in [44] addressed a subset of timed automata which can be model checked easier. They gave a polynomial 
time algorithm for the model checking of TCTL≤,≥ over the class of timed automata with one or two clocks. They showed 
that the model checking of full TCTL over one clock timed automata is PSPACE-complete. In comparison to the work of 
this paper, our TCTL model checking algorithm outperforms all of the aforementioned works regarding to the algorithm 
complexity point of view, without need of any limitation on the number or types of clocks.

Model checking of timed actors. As one of the earliest attempts for model checking timed actors, a tool is developed for 
model checking of Timed Rebeca models using a transformation from Timed Rebeca to timed automata. The resulting timed 
automata are model checked against TCTL properties using the UPPAAL toolset. Using this transformation, the most efficient 
network of timed automata is generated for Timed Rebeca models (having as much as possible committed states and as few 
as possible number of clocks). But, because of the inefficiency of modeling asynchronous communication among actors by 
synchronized communication of timed automata, model checking results in state space explosion even for middle-sized case 
studies [45]. A similar approach of transforming timed actor models into timed automata is taken by de Boer et al. in [15], 
where timed actor models in Creol language are analyzed for schedulability. This work also suffers from a lack of scalability 
for the same reason.

In other work, Floating Time Transition System (FTTS) is introduced as a natural semantics of timed actors in [32]. 
Focusing on the analysis of timed actors based on the key features of actors, being event-driven and isolated, results in a 
significant amount of state space reduction in FTTSs. Actors in a state of a FTTS can be in different local times, so, there 
is no unique value for the time of a state. Such time skew among actors is only admissible where we are not interested 
in the state of all the actors at a specific point of time, e.g. checking for deadlock freedom and schedulability, or any other 
event-based property. As a result, although FTTS works efficiently for deadlock freedom and schedulability analysis of timed 
actors, it cannot be used for the model checking of timed actors against TCTL properties.

Another work on model checking of timed actors is based on mapping timed actors to Real-Time Maude. This enables 
a formal model-based methodology which combines the convenience of intuitive modeling in timed actors with formal 
verification of Real-Time Maude. Real-Time Maude is supported by a high-performance toolset providing a spectrum of 
analysis methods, including simulation through timed rewriting, reachability analysis, and (untimed) linear temporal logic 
(LTL) model checking as well as timed CTL model checking. As described in [46], all the possible reduction techniques are 
applied to the generated Real-Time Maude models to avoid state space explosion. Mainly, a number of statements (which 
are related to the instantaneous statements of Timed Rebeca except sending messages) are grouped together to be executed 
in one atomic rewrite step. The experimental results, reported in [46], show that the generate state spaces using Real-time 
Maude is significantly bigger than the state spaces which are generated by the fine-grained semantics of Timed Rebeca. So, 
although Real-time Maude provides us with a wide range of analysis tools, using transition systems which are generated 
based on the fine-grained semantics together with the algorithm of this paper outperforms it.

There is also an analysis toolset for simulating Timed Rebeca models. In [47], the simulation engine of Erlang [48] is used 
to generate a number of traces and verify them. Using this approach, state space explosion is avoided; however, it does not 
guarantee the correctness of models.

8. Summary and conclusion

In this paper, we proposed techniques for improving the model checking of discrete time actors. At the first step, we 
introduced a new model checking algorithm, which is an optimal TCTL≤,≥ model checking algorithm for discrete time 
actors with dense transition systems. So, discrete time actors can be model checked faster than before. In addition to this 
improvement, we have proposed a reduction technique which works based on the fact that the instantaneous transitions 
take no time to execute; so, the system cannot stay in the states whose outgoing transitions are all instantaneous. These 
states are not observable to the verifier so they can be eliminated from the transition systems. Beside reducing the size of 
the transition system, applying the reduction technique enables efficient TCTL= model checking of timed actors.

Experimental evidence supports our theoretical observation that the new model checking algorithm works efficiently 
and the reduction technique results in smaller transition systems in general. In the case of models with many concurrently 
executing actors, the time consumption of the model checking increased rapidly for the old TCTL model checking algorithm; 
however, using the new algorithm avoids it. Although the new TCTL model algorithm works more efficient in comparison 
with the old one, its time consumption is high for big transition system. For these cases, using the FTS reduction technique 
results in up to 95% reduction in the size of the transition systems. Therefore, we can efficiently model check more compli-
cated models against complete TCTL properties under certain conditions. Although we have used Timed Rebeca to illustrate 
the techniques presented in this paper, our results are not limited to this language and can be applied to any modeling for-
malism with a discrete notion of time. Note that before the work of this paper, timed actor models have to be transformed 
to Realtime Maude or timed automata for TCTL model checking, which do not give acceptable execution performances even 
for middle-sized models. But, using the work of this paper, both of the old and improved TCTL model checking algorithms 
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outperforms time and memory consumption of TCTL model checking in comparison to using transformation to Realtime 
Maude or timed automata. This way, model checking of bigger transition systems is possible.

The work reported in this paper paves the way to several interesting avenues for the future works. In particular, we 
have already started defining a special kind of DTGs for the continuous time which conforms the requirements of dense 
time actors and can be model checked in polynomial time, using the same algorithm. It is also possible to work on the 
categorization of TCTL properties to illustrate which category of TCTL properties benefits more from the provided efficiency 
of the proposed algorithm.
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Appendix A. The SOS rules of the effect method

(assignment)
s(x) = (v, q, ⟨var := expr|σ ⟩, t, r) ∧ r = t

s τ−→ s[x 9→ (v[var 9→ evalv(expr)], q, σ , t, r)]

(ConditionalT)
s(x) = (v, q, ⟨if expr then σ else σ ′|σ ′′⟩, t, r) ∧ r = t ∧ evalv(expr) = True

s τ−→ s[x 9→ (v, q, σ ⊕ σ ′′, t, r)]

(ConditionalF)
s(x) = (v, q, ⟨if expr then σ else σ ′|σ ′′⟩, t, r) ∧ r = t ∧ evalv(expr) = False

s τ−→ s[x 9→ (v, q, σ ′ ⊕ σ ′′, t, r)]

(nondet-assign)
s(x) = (v, q, ⟨var :=?(expr1, expr2, · · · , exprn)|σ ⟩, t, r) ∧ r = t

s τ−→ s[x 9→ (v[var 9→ evalv(expri)], q, σ , t, r)]
1 ≤ i ≤ n

(send)

s(x) = (v, q, ⟨y.m(e1) after(e2) deadline(e3)|σ ⟩, t, r) ∧ r = t ∧ s(y) = (v ′, q′, σ ′, t′, r′) ∧ p =
params(y,m)

s τ−→ s[x 9→ (v, q, σ , t, r) ∧ y 9→ (v ′, q′ ∪ {(m, (map(p, evalv(e1))), e2, e3)}, σ ′, t′, r′]

(delay)
s(x) = (v, q, ⟨delay(e)|σ ⟩, t, r) ∧ r = t

s τ−→ s[x 9→ (v, q, σ , t, r + evalv(e))]

(skip)
s(x) = (v, q, ⟨skip|σ ⟩, t, r) ∧ r = t

s τ−→ s[x 9→ (v, q, σ , t, r)]

(end-method)
s(x) = (v, q, ⟨endm⟩, t, r)

s τ−→ s[x 9→ (v|svars(x), q, ϵ, t, r)]
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