
Power is Overrated, Go for Friendliness!
Expressiveness, Faithfulness and Usability in

Modeling - The Actor Experience

Marjan Sirjani1,2

1 School of Innovation, Design and Engineering, Mälardalen University, Sweden
2 School of Computer Science, Reykjavik University - Iceland

Abstract. Expressive power of a language is generally defined as the
breadth of ideas that can be represented and communicated in a lan-
guage. For formal languages, the expressive power has been evaluated
by checking its Turing completeness. In a modeling process, apart from
the modeling language we have two other counterparts, the system being
modeled and the modeler. I argue that faithfulness to the system being
modeled, and usability for the modeler are at least as important as the
expressive power of our modeling language, specially because most of the
modelling languages used today are highly expressive. I call faithfulness
and usability together friendliness. I show how we used the actor-based
language Rebeca in modeling different applications, where it is friendly,
and where it is not; and how the features of the language and its friend-
liness may help in analysis of the model, and synthesis of the system
based on the model.

Foreword

People have different ways of thinking, what seems simple, clear and under-
standable to me may seem highly complicated and convoluted to others. When
we tell a story in our words we make a different model of the same concept,
and this new model may give a better insight to certain audience. That is why
people talk about the same concept again and again in different ways. I see three
counterparts involved when you tell a story, the audience, the way you tell the
story, and the story itself. I got to learn that all the three can be equally im-
portant. Edward has a wealth of knowledge, and a wide range of expertise. One
of his several qualities is the way he tells the stories, he says what I want to
say in a much better way! This gives me more courage to write, even if others
have already told my story, I may say it in a better way, at least for a certain
audience.

1 Introduction

Why yet another modeling language? I’ve seen this question at so many occa-
sions, especially asked by people in the formal methods community. The main

reason that this question is asked is because the tradition in theoretical computer
science is to compare two languages based on their expressive power. Expres-
sive power is generally defined as the breadth of ideas that can be represented
and communicated in a language. One way that has been used for evaluating
the expressive power of a language is checking the Turing-completeness. Turing
completeness was not enough and the community moved towards other ways of
comparing expressiveness, mostly based on mutually encoding the formalisms
into each other. But most of the modeling languages we work with are highly
expressive, and may have equivalent expressive powers. So, why yet another
modeling language?

Turing completeness and most of the other ways of comparing languages
checks computability, and nowadays interaction; the focus here is on the ma-
chines world. I can see two other major counterparts in modeling, the system
that is modeled and the modeler. A modeling language has to be evaluated by
its faithfulness to the system it is modeling, and usability for the modeler. I call
usability and faithfulness together friendliness, friendliness to the system and
friendliness to the modeler. What theoretical computer scientists are missing is
the friendliness of the languages.

Since the main complexity of the modeling job is the computation part, it
is natural to focus on that part. Moreover people tend to focus on parts that
they understand better and are more familiar with. When we are working with
more and more complicated applications with heterogeneous components and
different technologies, then I believe friendliness of our modeling languages will
become at least as important as their expressive power.

We also have to remember that the goal of building a model is usually do-
ing analysis and/or building or synthesizing the system based on the model. So,
analyzability is crucial. Expressive power and friendliness both affect analyzabil-
ity and synthesizability. Sometimes faithfulness criteria may guide us to a less
expressive language, and that may help in improving the analyzability (similar
to domain-specific languages). Moreover, friendliness can give us a good trace-
ability, from the model to the system. If we find a problem in the model, then
we can trace it back into the system more easily. So, apart from expressiveness,
friendliness can be a criterion for choosing the modeling language we want to
use.

I have to add that there are different communities that consider modeling in
all its aspects. For example, modeling is an important part in Software Engineer-
ing. The object-oriented paradigm came with the winning slogan of decreasing
the semantic gap between the real world and the program, i.e., faithfulness. If we
focus on expressive power we would be still programming in assembly languages.

Faithfulness and Usability Faithfulness is about the similarity of the
model and the system. In most places it is defined as the degree of detail in-
corporated in the model [1]. What I mean in this paper by faithfulness of a
modeling language is whether and how the structures and features that are sup-
ported by the modeling language match the needs of the domain of the system
being modeled, and how much this helps in having a more natural mapping

between the model and the system. More precisely, we can define faithfulness
based on the definition of model of computation. A collection of rules that govern
the execution of the [concurrent] components and the communication between
components is called a model of computation (MoC) [2]. We say a modeling
language is faithful to a system if the model of computation supported by the
language matches the model of computation of [the features of interest of] the
system. Faithfulness can be seen as the key motivation behind domain-specific
languages.

Sometimes I use the term “model” when you expect to see “modeling lan-
guage”. This is where I mean the model of computation. The structures, features,
and flow of control provided and imposed by your modeling language can shape
your model. As they say languages can shape your thoughts.

In synthesis, we make a model, prior to building the system itself, to help us
building the system. In the model we incorporate all the properties of interest.
So, faithfulness is defined as how much the system is faithful to the model. This
is what is common in engineering domains. In analysis, if the system already
exists, we make an (abstract) model of the system to help us perform different
kinds of analysis. This is the type of modeling that scientists are more familiar
with. We can look at faithfulness in both directions, faithfulness of the system
towards the model, and the model towards the system.

In ISO 9241 [3], usability is defined as the extent to which a product can
be used by specified users to achieve specified goals with effectiveness, efficiency
and satisfaction in a specified context of use. Effectiveness is accuracy and com-
pleteness with which users achieve specified goals; and efficiency is resources
expended in relation to the accuracy and completeness with which users achieve
goals. Satisfaction is freedom from discomfort and positive attitudes towards the
use of the product. In this paper, I do not discuss usability in an extensive man-
ner. I can only explain my experience through years, as we have not yet run any
scientific experiment for evaluation usability of different modeling languages.

Edward and Modeling. The first time that I have seen a truly convincing
answer for me to “why yet another modeling language?”, was a text by Edward
in the Ptolemy book [2] “An important part of a science, quite complementary
to the scientific method, is the construction of models. Models are abstractions
of the physical reality, and the ability of a model to lend insight and predict
behavior may form the centerpiece of a hypothesis that is to be validated (or
invalidated) by experiment. The construction of models is itself more an engi-
neering discipline than a science. It is not, fundamentally, the study of a system
that preexists in nature; it is instead the human-driven construction of an ar-
tifact that did not previously exist. A model itself must be engineered. Good
models can even reduce the need for measurement, and therefore reduce the de-
pendence on the scientific method.” The keywords for me were “engineering”, a
“human-driven construction” which brings in the modeler and shows its impor-
tance, and “the ability of a model to lend insight” which I think can depend on
the faithfulness as much as the expressiveness of the modeling language.

Actors and Friendliness. In this paper, I will explain how the actor-based
[4] language Rebeca [5–8] is used for modeling and analysis of different domains of
applications, and where and how it has been more faithful and usable, and where
it has multiple shortcomings. I will not cover a comparison between modeling
each of the applications using Rebeca versus modeling the same application
using other modeling languages. The interested reader can find the comparisons
in corresponding papers published on each application. For each application
domain I will explain the mapping between the entities and concepts in the
real world, and the ones in the Rebeca model. The interesting and important
properties that have to be verified or analyzed in each domain is not always
trivial. For each application I will explain the property that is checked, and the
analysis that is done.

In the next section there is a short description of Rebeca and Timed Rebeca.
In Section 3, I will explain how we used Timed Rebeca in modeling Sensor
networks and check the schedulability [9, 10]. In Section 4, I will describe how
extensions of Rebeca is used for analyzing different network protocols [11, 12].
In Section 5, I view Network on Chip (NoC) as an example of track-based traffic
systems and show how we used Timed Rebeca in evaluating different routing
algorithms [13–15]. In Section 6, I will give a short overview of friendliness,
analyzability and other features of Rebeca.

The contribution of this paper is not presenting a novel technique or a new
model, it is telling an already told story in a different way. The message is where
and how friendliness of a language can help in modeling and analysis, and the
target audience are mainly those who are looking for a modeling language for
analyzing their application.
Disclaimer: Most of the technical material in this paper is taken from published
or draft papers, in some places the sentences are copied without using quotes.

2 The Actor-based Language, Rebeca

Rebeca (Reactive Object Language) [5, 7] is an actor-based language based on
Hewitt and Agha’s actors [16, 4]. Actors are units of concurrency, with no shared
variables, communicating by asynchronous messages. There is no explicit receive
statement, and send statements are non-blocking. Rebeca is an imperative lan-
guage, with Java-like syntax. There is only one single thread of execution in
each actor and one message queue. The actor takes a message from top of its
message queue, and executes the corresponding method (called message server)
non-preemptively. If you see messages as events, then Rebeca model can be seen
as an event-driven model. The execution of message servers is also similar to
atomic asynchronous call-backs in the context of Java Script.

In Timed Rebeca (the real-time extension of Rebeca) [17, 18, 8], instead of
a message queue we have a message bag where messages are tagged with their
time-stamps (sometimes I use message buffer as a more general term instead of
message queue or bag). We consider synchronized local clocks throughout the
model for all the actors (you can read it as a global time). The sender tags a

message with its own local time, at the time of sending. This can be seen as
model time in Ptolemy.

A Rebeca model consists of a number of reactive classes, each describing the
type of a certain number of actors (called rebecs, we use both terms rebec and
actor interchangeably in the Rebeca context). Each reactive class declares the
size of its message buffer, a set of state variables, and the messages to which
it can respond. The local state of each actor is defined by the values of its
state variables and the contents of its message buffer. Each actor has a set of
known rebecs to which it can send messages. Reactive classes have constructors,
with the same name as their reactive class. They are responsible for initializing
the actor’s state variables and putting initially needed messages in the message
buffer of that actor. See Figure 1 for an abstract syntax of Timed Rebeca.

Model ::= Class∗ Main

Main ::= main { InstanceDcl∗ }
InstanceDcl ::= className rebecName(〈rebecName〉∗) : (〈literal〉∗);

Class ::= reactiveclass className { KnownRebecs V ars MsgSrv∗ }
KnownRebecs ::= knownrebecs { V arDcl∗ }

V ars ::= statevars { V arDcl∗ }

V arDcl ::= type 〈v〉+;

MsgSrv ::= msgsrv methodName(〈type v〉∗) { Stmt∗ }

Stmt ::= v = e; | v =?(e, 〈e〉+); | Call; | delay(t); | if (e) { Stmt∗ }[else { Stmt∗ }]
Call ::= rebecName.methodName(〈e〉∗) [after(t)] [deadline(t)]

Fig. 1. Abstract syntax of Timed Rebeca (from [19]). Angled brackets 〈...〉 are used as
meta parenthesis, superscript + for repetition at least once, superscript ∗ for repeti-
tion zero or more times, whereas using 〈...〉 with repetition denotes a comma separated
list. Brackets [...] indicates that the text within the brackets is optional. Identifiers
className, rebecName, methodName, v, literal, and type denote class name, re-
bec name, method name, variable, literal, and type, respectively; and e denotes an
(arithmetic, boolean or nondetermistic choice) expression.

The way an actor responds to a message is specified in a message server.
The state of an actor can change during the executing of its message servers
through assignment statements. An actor makes decisions through conditional
statements, communicates with other actors by sending messages, and performs
periodic behavior by sending messages to itself. Since communication is asyn-
chronous, each actor has a message buffer from which it takes the next incoming

message. An actor takes the first message from its message buffer, executes its
corresponding message server in an isolated environment, takes the next message
(or waits for the next message to arrive) and so on. A message server may have
a nondeterministic assignment statement which is used to model the nondeter-
minism in the behavior of a message server. Finally, the main block is used to
instantiate the actors of the model. Note that Rebeca does not support dynamic
actor creation, and all the actors of a model must be defined in the main block.

Timed Rebeca adds three primitives to Rebeca to address timing issues:
delay, deadline and after. A delay statement models the passage of time for an
actor during execution of a message server. Note that all other statements of
Timed Rebeca are assumed to execute instantaneously. The keywords after and
deadline are used in conjunction with a method call. The term after(n) indicates
that it takes n units of time for a message to be delivered to its receiver. The
term deadline(n) expresses that if the message is not taken in n units of time,
it will be purged from the receiver’s message bag automatically.

Actors in Ptolemy and Rebeca. Actors in Ptolemy are more like components
in a Software Engineering terminology. In Ptolemy, actors have ports, they read
and write to and from their ports, while in Rebeca actors send messages to each
other knowing each others names (like objects in object-oriented languages).
Ptolemy actors may have more than one port, while in Rebeca there is only one
message buffer.

Note that in Ptolemy you have directors that coordinate the behavior of ac-
tors. Through that coordination you are able to impose an order on the execution
of actors and make the model deterministic. You can also make different models
of computation. Rebeca and Timed Rebeca can be seen as specific models of
computation in Ptolemy.

Rebeca is initially designed for analysis, and hence supports features for
making a model of an existing system. The language allows non-deterministic
assignments, and the model checking tools consider non-deterministic order of
execution (or an interleaved model of concurrency). Ptolemy is initially designed
for synthesis, and hence there are powerful techniques to avoid non-determinism.
When synthesizing, you desire, and you do your best to make your model func-
tions deterministically, no matter how the environment (and the underlying tech-
nology on which your system will be built on) is non-deterministic. Despite of all,
both languages can be used in different ways, you are able to make a determin-
istic model in Rebeca, and a non-deterministic one in Ptolemy. Rebeca models
can be and are used for synthesizing (after analyzing your abstract designs), and
Ptolemy models are analyzed (before synthesizing your system).

3 Wireless Sensor Network Applications and
Schedulability

Wireless sensor and actuator networks (WSANs) are built from a collection of
nodes that collect the data from the surroundings to achieve specific application
objectives. A WSAN application is a distributed system where multiple nodes

are used to monitor the surroundings like temperature, humidity, pressure, or
position, and perform various tasks like smart detecting, and target tracking.

WSANs can provide low-cost continuous monitoring. However, building WSAN
applications is particularly challenging because of the complexity of concurrent
and distributed programming, networking, real-time requirements, and power
constraints. It can be hard to find a configuration that satisfies these constraints
while optimizing resource use [9]. WSAN applications are sensitive to timing,
with soft deadlines at each step of the process that are required to ensure cor-
rect and efficient operation.

Several software platforms have been developed specifically for WSANs [20].
Among these, the most accepted platform is the TinyOS [21], which is an open-
source operating system designed for wireless embedded sensor networks. TinyOs
is based on an event-driven execution model that enables fine-grained power
management strategies.

A sensor node, is a node in a wireless sensor network that is capable of
performing some processing, gathering sensory information and communicating
with other connected nodes in the network. Each sensor node consists of in-
dependent concurrent entities, including CPU, sensor, and radio system. These
sensor nodes are connected via a wireless communication device which uses a
transmission control protocol. Interactions between entities, both within a node
and across nodes, are concurrent and asynchronous.

Modeling Sensor Nodes and Communication Medium in Rebeca3. We
consider sensor nodes in WSAN applications, and we also model the network
between these nodes. A sensor node is responsible for monitoring, it collects
data, perform necessary processing, and then send the data to another node
via network. A sender node has concurrent components performing the sensing,
data processing and transmitting the data. In addition to processing the data
provided by the sensor component, there are also miscellaneous tasks that the
processing unit in a node has to handle. So, we have four actors (concurrent and
asynchronously executing objects) which all are located in a sensor node (see
Figure 2 for a visual mapping of real world entities and actors in the Rebeca
model, and see Figure 3 for the Rebeca code):

– Sensor actor for sensing,
– CPU actor for processing,
– Communication Device actor for transmitting (CD), and
– Misc actor for performing miscellaneous tasks.

In some applications a sensor node works as a router and passes the data that
it has received, this is done by the Communication Device.

We have a fifth actor named Wireless Medium that models the communica-
tion medium. Wireless Medium informs the Communication Device of the status

3 In some places I say Rebeca when I mean Timed Rebeca

Fig. 2. Modeling the behavior of a WSAN application in its real-world installation in
the actor model (from [9])

of the network and performs broadcasting of the data. Each of these two tasks
are modeled as a message server (i.e. event handler) in Rebeca. The details of the
communication protocol, like the implementation of the Media Access Control
(MAC) level, is modeled in the Communication Device actor. Different protocols
that are modeled in the Communication Device actor basically trigger the two
events of the Wireless Medium (asking for the status of the network, and asking
for broadcasting the data) in different ways. As a result, different implementa-
tions of communication protocols can be replaced without significantly impacting
the remainder of the model. During the application design phase, different com-
ponents, services, and protocols may be considered. For example, TDMA [23]
as a MAC-level communication protocol may be replaced by B-MAC [24] with
minimal changes.

Timed Rebeca code. Figure 3 shows an abstract version of the Timed Rebeca
code of the WSAN application. The main activity of this model is started by
executing sensorLoop (line 16) of the Sensor actor (line 10). In this loop, based
on the specified sampling rate, data is acquired by Sensor and it is sent to CPU

(line 18). There is the same behavior in Misc (line 21). These two actors send
messages to CPU (line 22). The actor CPU handles the messages received from
Sensor and Misc by the sensorEvent and miscEvent message servers respec-
tively (lines 28 and 40). The message server sensorEvent starts the processing
of the acquired data by sending a sensorTask message (line 29). In sensorTask

(line 31), the schedulability of processing of acquired data is checked, it is packed
into one packet, and the packed data is sent by the communication device of this
node if it reaches the limit which is specified by bufferSize (lines 36-37).

The communication protocol between nodes is implemented in the actor
CommunicationDevice (line 41). The Rebeca model for TDMA and B-MAC
communication protocols can be found in [9]. In the current implementation
shown in Figure 3, before sending data, the freedom of the communication de-
vice is checked, then the needed messages are scheduled for sending data.

The effect of the wireless communication and transmission conflict is modeled
by the actor WirelessMedium (line 62). Communication devices send broadcast

1 env int samplingRate = 25;

2 env int numberOfNodes = 6;

3 env int bufferSize = 2;

4 env int sensorTaskDelay = 2;

5 env int OnePacketTransmissionTime = 7;

6 env int miscTaskDelay = 10;

7 env int tmdaSlotSize = 10;

8 env int miscPeriod = 120;

9 env int packetMaximumSize = 112;

10 reactiveclass Sensor(10) {

11 knownrebecs { CPU cpu; }

12 Sensor() { self.sensorFirst(); }

13 msgsrv sensorFirst() {

14 self.sensorLoop() after(?(10,

20, 30));

15 }

16 msgsrv sensorLoop() {

17 int period = 1000 /

samplingRate;

18 cpu.sensorEvent(period);

19 self.sensorLoop()

after(period);

20 } }

21 reactiveclass Misc(10) { ... }

22 reactiveclass CPU(10) {

23 knownrebecs {

24 CommunicationDevice senderDev,

receiverDev;

25 Sensor sensor;}

26 statevars { int

collectedSamplesCounter; }

27 CPU() { collectedSamplesCounter =

0; }

28 msgsrv sensorEvent(int period) {

29 self.sensorTask(period,

currentMessageWaitingTime);

30 }

31 msgsrv sensorTask(int period, int

lag) {

32 int tmp = period - lag -

currentMessageWaitingTime;

33 assertion(tmp >= 0);

34 delay(sensorTaskDelay);

35 collectedSamplesCounter += 1;

36 if (collectedSamplesCounter ==

bufferSize){

37 senderDev.send(receiverDev,

0, 1);

38 collectedSamplesCounter =

0;

39 } }

40 msgsrv miscEvent() {

delay(miscTaskDelay); }

41 reactiveclass CommunicationDevice

(10) {

42 knownrebecs { WirelessMedium

medium; }

43 statevars {

44 byte id;

45 int sendingData;

46 int sendingPacketsNumber;

47 CommunicationDevice

receiverDev;}

48 CommunicationDevice(byte myId) {

49 id = myId;

50 sendingData = 0;

51 sendingPacketsNumber = 0;

52 receiverDev = null;}

53 msgsrv send(CommunicationDevice

receiver, int data, int

packetsNumber) {

54 assertion(receiverDev == null);

55 sendingPacketsNumber =

packetsNumber;

56 receiverDev = receiver;

57 sendingData = data;

58 medium.getStatus();}

59 msgsrv receiveStatus(boolean

result) { ... }

60 msgsrv receiveResult(boolean

result) { ... }

61 msgsrv

receiveData(CommunicationDevice

receiver, int data, int

receivingPacketsNumber) { ...

}

62 reactiveclass WirelessMedium(5) {

63 statevars {

64 CommunicationDevice senderDev;

65 CommunicationDevice

receiverDev;

66 int maxTraffic;}

67 WirelessMedium() {

68 senderDev = null;

69 receiverDev = null;

70 maxTraffic = (125 * 1024) / 8;

71 }

72 msgsrv getStatus() { ... }

73 msgsrv

broadcast(CommunicationDevice

receiver, int data, int

packetsNumber){ ... }

74 msgsrv broadcastingIsCompleted() {

75 senderDev = null;

76 receiverDev = null;

77 } }

78 main {

79 WirelessMedium medium():();

80 CPU cpu (sensorNodeSenderDevice,

receiver, sensor):();

81 Sensor sensor(cpu):();

82 Misc misc(cpu):();

83 CommunicationDevice

sensorNodeSenderDevice(medium):((byte)1);

84 CommunicationDevice

receiver(medium):((byte)0);}

Fig. 3. The Rebeca model of a WSAN application (based on the code in [22])

messages (line 73) to the wireless medium to send data to other communication
devices and the receivers of broadcast data send broadcastingIsCompleted

(line 74) to inform receiving of the data successfully.

Faithfulness. In the WSAN example, all the counter-parts that are running
concurrently in the system are modeled as actors: sensor, CPU, communication
device, Misc, and wireless medium. The focus is on the schedulability of tasks.
Each actor asks the CPU for execution of some tasks and the question is if the
CPU can handle all the tasks without missing any deadlines. So, what has been
modeled accurately are different services that are requested from CPU, and their
timing. We also had to model the communication medium as an actor because
the status of the network affects the overall behavior. TinyOS and Rebeca match
perfectly in their MoC. There are no wait or receive statements, event-handlers
are executed non-preemptively, and there are no priority queues.

Usability. As for usability of Rebeca in modeling WSAN applications, we can
claim effectiveness, efficiency and satisfaction. Users can achieve their goal of
schedulability analysis in a complete and accurate way (effectiveness). The model
can capture all the necessary details, and the model checking tool provides nec-
essary information more accurately than alternative techniques of simulation
or mathematical analysis. Efficiency relates to the time that modeler needs to
achieve her goals. For a software engineer or a computer scientist, writing Java-
or C-like codes is simpler and takes less time comparing to writing mathemat-
ical formulas. Also, comparing to simulation tools, by using Rebeca we build
more abstract models, and hence we spend less time. Based on our experience,
the majority of software engineers and computer scientists prefer program-like
syntax, and hence Rebeca brings in positive attitude and satisfaction. Moreover,
Faithfulness brings in usability, a natural, and in most cases one-to-one map-
ping of the constructs in WSAN applications into the Rebeca model makes the
process effective, efficient, and with least hassle.

Reusability, and Modeling Different Protocols. For modeling different
protocols, we only need to change the code of actor Communication Device. By
using Rebeca, we preserve the modular design of the protocol, so, we improve
reusability. When we use other paradigms for modeling network protocols, like
process algebra or automata, we usually need to spread out the functionality of
one module of the system throughout different modules of the model. This will
jeopardize reusability.

TDMA protocol defines a cycle, over which each node in the network has one
or more chances to transmit a packet or a series of packets. If a node has data
available to transmit during its allotted time-slot, it may be sent immediately.
Otherwise, packet sending is delayed until its next transmission slot.

The periodic behavior of TDMA slot is handled by a message server which
sets and unsets a flag to show that whether the node is in its allotted time-slot
or not. Upon entering into it’s slot, a device checks for pending data to send and
schedules a message to be sent at the end of the time-slot. On the other hand,
when CPU sends a packet (message) to a Communication Device, the message is

added to the other pending packets which are waiting for the next allotted time
slot.

In contrast to TDMA, in B-MAC, RCD tries to detect free channel status
and send data upon receiving a request from CPU. In the case of detecting
free channel, the data is sent immediately. This way, collision may occurs; so,
Communication Device has to wait for some amount of time and resend data. B-
MAC protocol does not need complicated and expensive synchronization meth-
ods. It also avoids data fragmentation. So, it would be more complicated to
coordinate long messages and B-MAC expects short messages, which is common
for information of WSAN nodes.

Schedulability Analysis. In the application we require that all the periodic
tasks (sample acquisition, data processing, and radio packet transmission) are
completed before the next iteration starts. So, this defines the deadline for each
task. The goal is to have a higher sampling rate or a larger number of nodes
without violating schedulability constraints.

The configuration of this model is specified by the values of the environment
variables (lines 1 to 7 in Figure 3). Based on these values, there are six nodes in
the environment (line 2) and the sampling rate of the nodes is 25 samples per
1000 units of time (line 1). Each node packs two acquired data elements in one
packet (line 3). The time spent for the internal activities of a node is specified
in lines 4 to 6.

The Afra model checking tool verifies whether the schedulability properties
hold in all reachable states of the system. If there are any deadline violations, a
counterexample will be produced. A counterexample shows the sequence of states
from an initial configuration that results in the violation. This information can
be used to change the system parameters in order to avoid such situations, for
example by increasing the TDMA time slot length or reducing the sampling rate.

TCTL model checking can be used to check the utilization of resources, for
example we can check the utilization of the communication medium.

Scalability Challenges. One way of modeling WSAN using actor model is to
instantiate actors for each node in the network. That may cause state explosion
when doing the model checking. So, a main challenge is to find an effective and
correct abstraction technique. In TDMA, the packet transmission of one sensor
node does not interfere with the other sensor nodes. Having more sensor nodes
only results in having shorter time slots, so the presence of sensor nodes can be
abstracted and modeled by making time slots shorter. Using this abstraction,
we only have to model one node which is in communication with the central
node. So, verification of WSAN applications against schedulability and deadlock-
freedom properties become feasible for networks in any size [10].

In B-MAC, the presence of sensor nodes can be abstracted and modeled
as the possible number of collisions before a data communication is performed
successfully [10]. Using this abstraction, only one sensor node which is in com-
munication with the central node has to be considered for networks in any size.
Any data transmission of this sensor node may encounter a collision. The max-
imum number of the collisions is the number of sensor nodes in the model. So,

in the Rebeca code for Communication Device, for each data transmission we
have a non-deterministic choice between a successful transmission or a collision.
During model checking, in the case of collision, data transmission with zero, one,
..., up to n collisions are considered where n is the number of sensor nodes.

4 Mobile Ad-hoc Network Protocols and Finding
Possible Faults

A Mobile Ad-hoc Network (MANET) is a wireless network consisting of mobile
routers (and associated hosts) connected by wireless links, the union of which
forms an arbitrary topology. The routers are free to move randomly and organize
themselves arbitrarily, so, the network’s wireless topology may change rapidly
and unpredictably.

MANETs have different applications from military to managing disastrous
situations where there is no network infrastructure and nodes can freely change
their locations. Mobility is the main feature of MANETs which makes them
powerful and at the same time error prone in practice. The process of protocol
design is not straightforward. Since there is no base station or fixed network
infrastructure, every node acts as a router and keeps the track of the previously
seen packets to efficiently forward the received messages to desired destinations.
In essence, MANETs need routing protocols in order to provide a way of commu-
nication between two indirectly-connected nodes. In the protocol, there has to
be an algorithm for each node to continuously maintain the information required
to properly route traffic.

MANETs are wireless sensor networks; but the differences between WSANs,
discussed in Section 3, and MANETs are that in WSANs there is usually one
sink (or base station) which collects the data, and there are fixed routes in
the network (except when we have failures of nodes). In MANETs, nodes are
continuously moving in any direction, and there is no fixed route between two
nodes.

Routing protocols for MANETs are devised in a completely distributed man-
ner and adaptive to topology changes, so, building reliable and efficient routing
protocols is complicated and also crucial. The Ad-hoc On Demand Distance Vec-
tor (AODV) protocol is one of the most prominent routing protocol in MANETs.
The AODV protocol has been evolved as new failure scenarios were experienced
or errors were found in the protocol design.

Modeling MANETs in Rebeca. One of the challenges in modeling MANETs
is representing the connectivity of pairs of nodes in the network. Two nodes are
connected if they are within the wireless communication range. As the nodes are
moving the network topology is changing all the time. Rebeca is extended in [12]
to wRebeca, to address local broadcast and dynamically changing topology. In
order to abstract the data link layer services, the wireless communications in the
framework, namely local broadcast, multicast, and unicast, are considered to be
reliable. So, a node can broadcast/multicast/unicast a message successfully to

the nodes within its communication range, and the message delivery is guaran-
teed for the connected nodes to the sender. In the case of unicast, if the sender
is located in the receiver communication range, it will be notified, otherwise it
assumes that the transmission was unsuccessful so it can react appropriately.

Each node in the network is modeled as an actor, and the routing protocol
is represented through the message servers of the actor. The network topology
and its mobility are captured while analyzing the model, and are not explicitly
modeled in the Rebeca code.

Rebeca Code. The wRebeca model of an abstract version of AODV is given in
Figure 4. There is one reactive class, Node, representing the nodes in the network.
In this protocol, routes are built upon route discovery requests and maintained
in nodes routing tables for further use. In message server rec-newpkt (line 14),
whenever a node intends to send a data packet, it looks up in its routing table to
see if it has a valid route to the intended destination. In case it finds a route, it
sends the data packet through the next-hop specified in that route (line 16-17),
otherwise it starts a route discovery by broadcasting a route request, rec-rreq,
after increasing its sequence number (line 18-21).

In message server rec-rreq (line 23), whenever a node receives a new routing
packet, it updates its routing table with new information to keep it up-to-date.
The forward messages contain the route back to the source, while the backward
messages carry the route information towards a destination. While the forward
packet proceeds towards the destination, a backward path, a path to source from
destination, is constructed. In message server rec-rreq, every node upon receiv-
ing a packet looks up its routing table and if it has a route to the requested
destination it would reply by sending a rec-rrep message (line 31). Otherwise,
it continues route discovery by re-sending the rec-rreq message, after increasing
the hop-count. There is an upper limit for the hop-count, after that the algo-
rithm gives up on that route. The unicast message (line 31) will be delivered
successfully (succ in line 32) if the receiver node is in the access range, or the
delivery can fail (unsucc in line 36) if the receiver node is not in the access range.

In message server rec-rrep (line 48), whenever a node receives a message it
updates its routing table accordingly to construct the backward path. When it
reaches the source, a bidirectional route has been formed and the data packet
can be sent towards the destination through the next-hops in the routing tables.
In addition to the above message servers, there is message server rec-rerr (line
70) that is called whenever a node fails to send a packet through a valid route,
in order to inform other interested nodes in the broken route about the failure.
Due to the mobility of the nodes this may happen often.

Faithfulness. For MANETs, we modeled the network nodes as actors. Nodes
send asynchronous messages to each other, and the protocol is modeled by mes-
sage servers. The MoCs match perfectly, except that Rebeca in its core form,
does not support broadcast or multicast. But broadcast and multicast are both
asynchronous, and non-blocking from the sender side; and we do not need any
explicit receive statement in the receiver side. So, the crucial rules of the MoC
stay unchanged, i.e., in the semantics the main transition rule which is taking

1 reactiveclass Node()

2 {

3 statevars

4 {

5 int sn, ip;

6 int[] dip, dsn, route_state,

hops, nhops,

7 }

8 Node(int i, boolean starter)

9 {

10 /* initializing the route table

variables*/

11 if(starter==true) {

12 unicast(self,rec-newpkt(7,2));

13 } }

14 msgsrv rec-newpkt(int data ,int

dip_)

15 {

16 if(route_state[dip_]==1) {

17 /* valid route to dip forward

packet */

18 } else {

19 /* no valid route to dip send a

new rout discovery request

*/

20 sn++;

21 rec-rreq(0, dip_, dsn[dip_],

self, sn, self, 5);

22 } }

23 msgsrv rec-rreq (int hops_, int

dip_ , int dsn_ , int oip_ ,

int osn_ , int sip_, int

maxHop)

24 {

25 boolean gen_msg = false;

26 /* evaluate and update the routing

table, decide whether a new

rreq should be generated */

27 if (gen_msg == true) {

28 if (ip == dip_) {

29 sn = sn+1;

30 /* unicast the RREP towards

oip of the RREQ */

31 unicast(nhop[oip_],rec-rrep(0

, dip_ , sn , oip_ ,

self))

32 succ:

33 {

34 route_state[oip_] = 1; break;

35 }

36 unsucc:

37 {

38 if(route_state[oip_] == 1) {

39 /* error recovery procedure

*/

40 }

41 route_state[oip_] = 2;

42 }

43 } else {

44 hops_ = hops_ + 1;

45 if(hops_<maxHop) {

46 rec-rreq(hops_, dip_, dsn_,

oip_, osn_, self,

maxHop);

47 } } }}

48 msgsrv rec-rrep(int hops_ ,int dip_

,int dsn_ ,int oip_ ,int sip_)

49 {

50 boolean gen_msg = false;

51 /* evaluate and update the routing

table, decide whether a new

rreq should be generated */

52 if(gen_msg == true)

53 { if(ip == oip_)

54 { /* this node is the originator

of the corresponding RREQ,

a data packet may now be

sent */ }

55 else {

56 hops_= hops_+1;

57 unicast(nhop[oip_],

rec-rrep(hops_, dip_,

dsn_, oip_, self))

58 succ:

59 {

60 route_state[oip_]=1;

61 break;

62 }

63 unsucc:

64 {

65 if(route_state[oip_] == 1) {

66 /* error recovery procedure

*/

67 }

68 route_state[oip_] = 2;

69 } } } }

70 msgsrv rec-rerr(int source_ ,int

sip_, int[] rip_rsn)

71 {

72 /* regenerate rrer for invalidated

routes */

73 } }

74 main

75 {

76 Node node0(node1,node3):(0,true);

77 Node node1(node0,node3):(1,false);

78 Node node2(node3):(2,false);

79 Node

node3(node2,node0,node1):(3,false);

80 constraints

81 { and(con(node0,node1),

con(node2,node3)) }

82 }

Fig. 4. The AODV specification given in wRebeca (based on the code in [25])

a message and executing the message server is not changed. Moreover, mobility
of the nodes is captured at the level of state transition system at the time of
analysis. This keeps the model simple. Different properties of the protocols can
be checked using the model checking tool.

Usability. Usability of Rebeca in modeling network protocols depends on the
goal. The modeling process can be performed efficiently and with satisfaction,
each node is running concurrently and generally there are asynchronous commu-
nication. So, each node can be mapped to an actor. Communication protocols
are usually written as algorithms or pseudo-codes in an imperative form, and
can be naturally mapped to message servers in Rebeca. The effectiveness of the
modeling depends on the goal: what kind of analysis has to be done, and what
properties must be checked. Based on the properties we need to check we have to
model different features of the system. We need reduction techniques to tackle
state space explosion in the analysis phase. Comparing to alternative modeling
paradigms, faithfulness of the model brings in usability.

Reusability and Modeling Different Network Protocols. Different ver-
sions of the AODV are modeled in wRebeca. For each version, the parts of the
message servers related to updating the routing table is revised. The local data
in the routing table must be adjusted based on the information that should be
maintained for each version. Most of the code can remain unchanged.

Analyzing Wireless Ad-hoc Networks protocols. The goal in [12] is to find
the conceptual mistakes in the protocol design, rather than the problems caused
by an unreliable communication. A customized model checking tool is devel-
oped [26], and the loop-freedom property is checked while generating the state
space. The reason for violating the property was maintaining multiple uncon-
firmed next hops for a route without checking them to be loop-free. Furthermore,
the monotonic increase of sequence numbers and packet delivery properties are
checked via model checking. The wRebeca team found a loop creation scenario
in AODVv2 protocol (version 11) in 2016, and reported it to the AODV group.
The AODV group confirmed the possibility of loop creation and released a new
revised version of the protocol, and the authors are acknowledged 4. Since then
the new versions of the protocol are verified using wRebeca.

Scalability Challenges. While building the state space for analyzing a MANET
protocol a few abstraction techniques are used. The first technique considers the
network with a fix topology, ignoring the mobility of nodes. Then the actors that
have the same neighbors and local states are considered identical. This way many
states can be merged as the actors are no more distinguished by their identifiers.
It is shown in [12] that the reduced transition system is strongly bisimilar to
the original one, and the state space reduction is considerable. This technique is
beneficial for finding an error during the design of a new version of a protocol.
If we know that a certain topology leads to malfunctioning of a previous version

4 The acknowledgment is at https://tools.ietf.org/html/draft-ietf-manet-aodvv2-16

of the protocol, we can check the new version of the protocol using that certain
topology.

The above technique ignores the mobility of nodes and will not work if we
have a dynamic topology. As an example of an effective design decision, in [12],
changes in the topology are not captured at the level of wRebeca model. Instead,
for analyzing the protocols, arbitrary changes in the underlying topology is con-
sidered while generating the state space. These random changes make the state
space grow exponentially. To tackle the state space explosion, the states which
are only different in their topologies are combined, and the topology-sensitive
behaviors are captured by adding appropriate labels on the transitions. It is
proved in [12] that the reduced transition system is branching bisimilar to the
original one, and consequently a set of properties such as ACTL-X are preserved.
Another way used to restrict the random changes in the topology, is allowing
the modeler to specify constraints over the topology in the model.

5 Network on Chips and Routing

System-on-chip (SoC) designs provide integrated solutions to challenging design
problems in the telecommunications, multimedia, and home electronics domains
[27]. An SoC can be viewed as a micronetwork of components. The network is the
abstraction of the communication among components and must satisfy quality-
of-service requirements - such as reliability, performance, and energy bounds.
Network on Chip (NoC) (an SoC paradigm) is a network of computational,
storage and I/O resources, interconnected by a network of switches. Computing
resources communicate with each other using addressed data packets routed to
their destination [28]. In NoC designs, functional verification and performance
evaluation in the early stages of the design process are suggested as ways to
reduce the fabrication cost.

Modeling NoC in Rebeca. As an example of a NoC, we modeled and analyzed
ASPIN (Asynchronous Scalable Packet switching Integrated Network), which is
a fully asynchronous two-dimensional NoC design [29]. In an ASPIN design,
each core is placed in a two-dimensional mesh and has (at most) four adjacent
cores and four internal buffers for storing the incoming packets (one for each
direction). Figure 5 shows the 2D mesh consisting of nine clusters (on the left),
and a zoom-in picture of each cluster (on the right). The four (pairs of input
and output) internal buffers are shown in the Figure.

Different routing algorithms have been proposed for the two-dimensional NoC
design. Here, we consider the XY routing algorithm. Using the XY routing al-
gorithm, packets are moving along the X direction first, and then along the Y
direction, to reach their destination cores. In ASPIN, packets are transferred
through channels, using a four-phase handshake communication protocol. The
protocol uses two signals, namely Req and Ack, to implement this four-phase
handshaking protocol. This way, to transfer a packet, first the sender sends a
request by raising the Req signal along with the data, and waits for an acknowl-
edgment which is the raising of the Ack signal by the receiver. In the third

!

Fig. 5. A 2D mesh NoC (on the left), and a router in ASPIN [29] (on the right)

phase, when the sender gets the Ack from the receiver it will lower down the
Req signal. Finally, in the fourth phase. when the receiver notices that the Req
signal is lowered down it will lower down the Ack signal. So, after a successful
communication all of the signals return to zero.

Timed Rebeca Code. The simplified version of the Timed Rebeca model
of ASPIN is shown in Figure 6, which contains two different reactive classes:
Manager and Router. The Manager (line 11) does not exist in real NoC systems,
it is used here to model different scenarios of packet generation. In Figure 6, in
function testScenario, two packets are generated, each contains two flits (lines
13-14 and 15-16). One packet is sent from the r00 router to r11 at the time 184
(the first flit), and 274 (the second flit), and the other packet is sent from r01
router to r11 at the time 18 (the first flit), and 110 (the second flit).

Each Router has four known rebecs which are its four neighbors (line 21). Its
state variables include a composite id which is its X-Y position, buffer variables
which show that the buffers are enabled or full, and a counter for the number
of received packets (lines 24-25). Packets move through channels according to
the four phase handshake communication protocol. Trying for the delivery of
a packet started by sending an inReq message to a router. The receiver router
accepts the packet if its input buffer is free. Upon accepting a packet, an acknowl-
edgment is sent to its sender and an internal message is scheduled to process
this packet. The time needed to do some of the processing or routing is modeled
using delay or after constructs in the code. Processing of a packet takes place
in message server process (line 35). If there is a packet for processing, based on

1 env byte inBufSize = 2;

2 env byte writeT = 2;

3 env byte readT = 6;

4 env byte flitNum = 2;

5 ...

6 reactiveclass Manager(60){

7 knownrebecs{

8 Router r00, r10, r01, r11;

9 }

10 statevars{}

11 Manager(){testScenario(); }

12 void testScenario(){

13 r00.inReq(4,1,1,1) after (184);

14 r00.inReq(4,1,1,1) after (274);

15 r01.inReq(4,1,1,2) after (18);

16 r01.inReq(4,1,1,2) after (110);

17 }

18 }

19 reactiveclass Router(60) {

20 knownrebecs {

21 Router N, E, S, W;

22 }

23 statevars {

24 byte Xid, Yid, received;

25 boolean[5] inBufFull,

outBufFull;

26 }

27 //---Comunication---

28 msgsrv inReq (byte inPort, byte

Xtarget, byte Ytarget, byte

id){

29 if (inBufFull[inPort] == false){

30 sendInAck((byte)(inPort + 2)%4,

inAD);

31 self.process(inPort, Xtarget,

Ytarget,id, false,

false)after((writeD *

inBufSizeTest)+ readD);

32 ...

33 } else { ... }

34 }

35 msgsrv process(byte inPort, byte

Xtarget, byte Ytarget,byte id,

boolean isPushed, boolean

justPush) { ...}

36 ...

37 //---Routing Algorithm---

38 byte XYrouting(byte Xtarget, byte

Ytarget){

39 if (Xtarget > Xid) //East

40 else if (Xtarget < Xid) //west

41 else if (Ytarget > Yid) //South

42 else if (Ytarget < Yid) //North

43 else outPort = 4; //the local

buffer, arrived at destination

44 return outPort;

45 }

46 //---Scheduling Algorithm---

47 byte RRSched(byte outPort){

48 byte[5] priorities = {4, 3, 1, 0,

2};

49 //turn = Number of the last input

port which was its turn

50 //passedFlit = Number of passed

flits which was sent from

"turn" to outPort

51 if(BufFull[outPort]) return;

52 if (passedFlit == 0){ // this

flit is the header

53 for(byte i=0 ; i<5 ; i++){

54 //turn= according to priorities,

choose next input port

which is waiting for outPort

55 outReqEnable[turn] = false;

56 //Save turn for outPort

57 passedFlit ++;

58 if(passedFlit == flitNum){

59 passedFlit = 0;

60 }

61 //save passedFlit for outPort

62 }

63 }else{// body of the packet

64 outReqEnable[turn] = false;

65 passedFlit ++;

66 if(passedFlit == flitNum){

67 passedFlit = 0;

68 }

69 //save passedFlit for outPort

70 }

71 }

72 -------------------------------------

73 //Other auxiliary Functions &

Message Servers

74 }

75 main {

76 Manager m(r00,r01,r10,r11):();

77 Router

r00(m,r01,r10,r01,r10):(0,0);

78 Router

r10(m,r11,r00,r11,r00):(1,0);

79 Router

r01(m,r00,r11,r00,r11):(0,1);

80 Router

r11(m,r10,r01,r10,r01):(1,1);

81 }

Fig. 6. The Rebeca model of an ASPIN NoC (based on the code in [14])

the routing algorithm one of the outPorts is selected to send the packet to the
appropriate neighbor. Routing is based on the XY algorithm, and the output
port for routing a packet is computed by the function XYrouting (line 38). The
scheduling algorithm is captured in the function RRSched (line 47). The 2D mesh
of this model is formed in the main block of the model by setting known rebecs
based on the locations of the routers (lines 77-80).

Faithfulness. ASPIN is a GALS NoC design, with synchronous behavior within
each node and asynchronous message passing between nodes. So, we model each
node (router and the core) as an actor, and the MoCs of ASPIN and Rebeca
match, and a faithful model of NoC can be built. One can observe that within
a router different ports can be running concurrently, but we did not model each
port as an actor to avoid state space explosion. Reading from each input port
and putting the packet into the correct output port is done using a round-robin
scheduling policy which is modeled in the code. We do not lose any interesting
property with this abstraction.

Usability. In a high level of abstraction NoC can be mapped to Rebeca ef-
ficiently. We showed that despite the high level of abstraction the results are
consistent with hardware simulation results in the literature, so, the approach
is effective. In the NoC project, extended versions of the model including the
communication protocol and more detailed versions of the scheduling algorithm
are developed in later phases. Adding more details (like buffer length, packet
length and flit number, packet generation delay, more precise communication
protocol) results in more precise measurements, showing effectiveness. Natu-
rally, debugging the Rebeca code becomes more difficult when the code becomes
more detailed. On the positive side, more details can be added to the model
in an iterative and incremental way which is not a capability supported by all
available hardware simulation tools. Our analysis technique is based on model-
checking, it captures the simultaneity of the events (which is modeled using
interleaving), while hardware simulation tools are not capable of that. As for
satisfaction, a hardware designer may not be comfortable with programming in
a C- or Java-like language.

Reusability and Modeling Different Routing Algorithms. Modeling dif-
ferent routing algorithms in Rebeca can be done efficiently; we have to change
the routing function in the code. The rest of the code can be reused. Routing
algorithms can be classified into deterministic and adaptive routings. In a deter-
ministic routing there can only be one path between a source and a destination,
whereas in an adaptive routing more than one possible path may exist and the
algorithm considers the conditions of the dynamic network to decide in which
direction a packet should be transferred. The XY algorithm is a deterministic
algorithm, Odd-Even routing is an adaptive one, and DyAD routing chooses
dynamically between a deterministic or an adaptive algorithm, based on the
different network congestion conditions.

Odd-Even routing algorithm is based on Odd-Even turn model [30]. Accord-
ing to Odd-Even turn model north-to-west and south-to-west turns are prohib-

ited in routers located in an odd column and east-to-south and east-to-north
turns are prohibited in routers located in an even column. The restrictions are
enforced to ensure deadlock freedom. For routing a packet, each router decides
between two legitimate downstream neighbors based on the number of the empty
slots in their input buffer. The neighbor with more empty slots will be selected.
In this algorithm, each router keeps track of the number of packets in input
buffer of each of its neighbors. In the Rebeca model [15], whenever the size of an
input buffer of a router changes, it informs its corresponding upstream neighbor
by sending a message.

In DyAD routing, each router monitors the occupation ratio of its input
buffers (except for the local buffer). Whenever one of the buffers reaches a pre-
defined congestion threshold a mode flag is set to inform the corresponding
neighboring about the congestion. On the other hand, each router periodically
checks mode flag of its neighbors to decide whether to work with deterministic
or adaptive routing. According to [31] if at least one of the neighboring routers
were congested the router would decide to work with adaptive routing; otherwise
it would work with deterministic routing. To model a DyAD router in Rebeca
we add a mode flag to our model [15] . The mode flag becomes true if the size
of the corresponding input buffer reaches the congestion threshold.

Analyzing NoC Design, and Evaluating Different Routing Algorithms.
Timing analysis of NoCs is required to discover possible deadline misses for pack-
ets traveling through the network. Based on the results of such analysis, suitable
design decisions can be made. In asynchronous systems, lack of a reference clock
leads to an interleaved execution of processes. Therefore, in GALS NoCs, a sent
packet might be delayed by different numbers of disrupting packets and may
have various end-to-end latencies. For analysis of such systems, it is essential to
consider all possible behaviors of the system rather than specific traces.

The timed version of ASPIN is modeled and analyzed in [13] using simulation
and model checking. Afra toolset was used for checking deadlock freedom, and
message arrival, and for estimating the maximum end-to-end packet latency in
the model. In the Rebeca model, we considered hardware features like switching
strategy, communication protocols, and buffer and link delays. Packet latencies
are computed with different design parameters, specially buffer sizes. Different
routing algorithms are analyzed and compared.

The model is validated through comparing the extracted results to that of
HSPICE [32], under both manual and real traffics [13]. Note that in HSPICE
simulator, the lowest level of simulation in hardware domain is performed, and
all the details of transistors and wires are considered.

Scalability Challenges. Clearly we cannot generate all the possible scenarios
of packet injection in the network. We use PARSEC benchmarks [33] for choosing
our scenarios. PARSEC is a well-known set of scenarios for packet generation in
network on chip. For performance estimation, the Black-Scholes scenario from
this benchmark has been selected.

For estimating maximum end-to-end packet latency, in order to analyze large
NoCs, an scalable approach is proposed based on compositional verification

[13]. The compositional approach is specific for the XY-routing algorithm. The
method computes the maximum end-to-end latency in GALS NoCs with XY
routing algorithm in two steps. It breaks the path of a packet to its destination
into horizontal and vertical sub-paths and then performs latency estimation in
each sub-path separately. At the end, the results for each sub-path are combined
to get latency estimation of the whole path. To do so, possible paths for each
packet should be investigated precisely to find out which packets may make dis-
ruption for the transferring packet. To check the correctness of the method, these
disruptions are considered in the scenarios and then the results are compared to
that of HSPICE.

6 Discussion

Here we discuss the points raised in the introduction section, mainly faithfulness,
usability, and analyzability.

Faithfulness. When we make a Rebeca model of a given system (or based
on a given specification), first we want to know the set of actors that build the
model. We start by finding the modules that are running concurrently in the
system and communicate asynchronously via message passing. Each of these
modules will be represented by an actor in the model. Each actor may represent
a module that may contain different sub-modules that are not executed con-
currently, or are communicating synchronously (like in Globally Asynchronous,
Locally Synchronous systems). Networks of nodes which communicate through
asynchronous messages build systems with a model of computation perfectly
matching Rebeca. This is the case for all the three examples provided in Sec-
tions 3 to 5.

The level of abstraction in modeling depends on the properties of the model
we are interested in. For different aspects to be checked we have to model different
features of the system.

Usability. As for usability, we focused on effectiveness, efficiency, and sat-
isfaction. Rebeca is Usable for software engineers and programmers. They are
familiar with the Java-like syntax of Rebeca, and with the object-oriented style
of programming. For concurrent programming, programmers are mostly using
thread-based programming, and the event-based model of computation may not
be as widely used by all the programmers. Usually it would be enough to tell
them that each actors is one thread of execution, and message servers run atom-
ically with no preemption. To be completely fair, it is worth mentioning that
designing the code with an event-driven style may not be straight forward for
all the programmers, but it is learned fairly quickly. Hardware and electrical
engineers are more familiar with event-driven computation. But based on our
observation, electrical engineers prefer a component-based system, like what they
get with Simulink.

Reusability and Design Patterns. In Sections 3, 4, and 5 we have subsec-
tions on how the Rebeca code can be reused or extended for similar applications
in the same domain. Based on our experience on the NoC design, we proposed

a generic pattern for track-based traffic control systems and used it for building
a coordinated actor model for adaptive air traffic control systems [34]. We used
Timed Rebeca in modeling mobile agents, using this pattern, but different in
the analysis part. We came up with a light-weight approach in planning using
this model [35].

Analyzability and Synthesis. Based on the asynchrony and isolation of
actors, we designed specialized reduction techniques in model checking Rebeca
and Timed Rebeca. In some cases, like for analyzing SystemC codes, we needed
to extend Rebeca to have wait statements and global variables [36]. In these
cases the MoC is no more the same, and most of our reduction techniques will
no more work.

So far, synthesis has not been the focus of our research. But in the cases that
Rebeca models represent the network protocol, then the implementation of the
protocol can be just a refinement of the Rebeca code.

Traceability and Compositionality. Isolated units of concurrency makes
the model modular, also effective compositional verification techniques are in-
troduced. But there is no compositional semantics for Rebeca, mainly because
of the message buffers. Traceability is high between the model and the system,
but at the level of semantics and transition systems, we are dealing with similar
problems like for other modeling languages.

Expressiveness and Rebeca Extensions. The discussion in this paper
is based on the assumption that we have a language that is expressive enough
for the domain of our interest. We had to extend Rebeca to increase its expres-
siveness where necessary. Timed and probabilistic extensions of Rebeca were
introduced because the expressive power of Rebeca was not enough to capture
the notions of time and probability. An ongoing project is extending Rebeca
to model cyber-physical systems by supporting actors with continuous behav-
ior, and for that we need the capability of defining linear differential equations.
Different extensions of Rebeca build an actor family of languages [37].

Future Trends. Modeling cyber-physical systems using an extension of
Rebeca, and building analysis techniques for this domain is a current ongo-
ing project. Rebeca supports dynamic creation and topology in theory, but in
none of the techniques we have carefully considered this dynamicity. Recently,
the possibility of passing rebec names and hence having dynamic topology is
added to the Rebeca tools. This is mostly necessary for modeling and analyz-
ing autonomous and self-adaptive systems which are another domain of interest.
For the techniques, in the future, we plan to focus more on synthesis, and also
testing.

Acknowledgements

My work is supported in part by DPAC Project (Dependable Platforms for
Autonomous Systems and Control) at Mälardalen University, Sweden, and by the
project Self-Adaptive Actors: SEADA (nr 163205-051) of the Icelandic Research
Fund.

I would like to thank the Rebeca team, everyone who worked in the team
since 2001, and helped us to gain the insight and the experience, and be where
we are now. Special thanks go to Ehsan Khamespanah for refactoring the model
checking tool of Rebeca and extending and maintaining it for years. For writing
this paper I had to bug the leaders of the three projects explained in the three
sections, 3, 4, and 5; many thanks to Ehsan Khamespanah, Fatemeh Ghassemi,
and Zeinab Sharifi. I would also like to thank Reinhard Wilhelm for challeng-
ing me on the explanation of the main concepts discussed in this paper. The
discussion significantly improved the paper. Thanks to Hossein Hojjat for his
careful comments throughout the paper, thanks to Paolo Masci for reading the
paper and giving me the right pointers for the standard definitions of usability,
thanks to Mohammad Reza Mousavi who kept me on my toes when talking
about expressiveness, thanks to Tom Henzinger for his reassuring words, thanks
to Alessandro Papadopoulos whose comments made me add some final notes
to the paper, and thanks to Hans Hansson, Jan Friso Groot, Mohsen Vakilian
and Amin Shali for finding the paper thought provoking and enjoyable. Last but
not least thanks to Edward for inspiring me and being the drive and support to
finally write this paper.

References

1. Manna, Z., Pnueli, A. In: On the faithfulness of formal models. Springer Berlin
Heidelberg, Berlin, Heidelberg (1991) 28–42

2. Ptolemaeus, C., ed.: System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org (2014)

3. ISO: Ergonomics of human-system interaction part 210: Human-centred design
for interactive systems. Technical Report ISO 9241-210:2010, International Orga-
nization for Standardization (2010)

4. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, USA (1990)

5. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.: Modeling and verification of
reactive systems using Rebeca. Fundamenta Informatica 63(4) (Dec. 2004) 385–
410

6. Sirjani, M.: Rebeca: Theory, Applications, and Tools. In: Formal Methods for
Components and Objects, FMCO 2006, LNCS 4709, Springer (2006) 102–126

7. Sirjani, M., Jaghoori, M.M.: Ten years of analyzing actors: Rebeca experience. In:
Formal Modeling: Actors, Open Systems, Biological Systems, LNCS 7000, Springer
(2011) 20–56

8. Sirjani, M., Khamespanah, E.: On time actors. In: Essays Dedicated to Frank De
Boer on Theory and Practice of Formal Methods - LNCS 9660, Springer (2016)
373–392

9. Khamespanah, E., Mechitov, K., Sirjani, M., Agha, G.A.: Schedulability Analysis
of Distributed Real-Time Sensor Network Applications Using Actor-Based Model
Checking. In: 23rd International Symposium on Model Checking Software, SPIN
2016, LNCS 9641, Springer (2016) 165–181

10. Khamespanah, E., Mechitov, K., Sirjani, M., Agha, G.A.: Modeling and Analyz-
ing Real-Time Wireless Sensor and Actuator Networks Using Actors and Model
Checking. In: Software Tools for Technology Transfer. (2017)

11. Yousefi, B., Ghassemi, F., Khosravi, R.: Modeling and Efficient Verification of
Broadcasting Actors. In: 6th International Conference Fundamentals of Software
Engineering, FSEN 2015, LNCS 9392, Springer (2015) 69–83

12. Yousefi, B., Ghassemi, F., Khosravi, R.: Modeling and Efficient Verification of
Wireless Ad-hoc Networks. Formal Aspects of Computing (6) (2017) 1051–1086

13. Sharifi, Z., Mosaffa, M., Mohammadi, S., Sirjani, M.: Functional and performance
analysis of network-on-chips using actor-based modeling and formal verification.
ECEASST, AVoCS 2013 Proceedings 66 (2013)

14. Sharifi, Z., Mosaffa, M., Mohammadi, S., Sirjani, M.: Performance analysis of gals
noc using actor models. Draft (2017)

15. Sharifi, Z., Mohammadi, S., Sirjani, M.: Comparison of NoC routing algorithms
using formal methods. In: Proceedings of PDPTA 2013. (2013)

16. Hewitt, C.: Description and theoretical analysis (using schemata) of PLANNER: A
language for proving theorems and manipulating models in a robot. MIT artificial
intelligence technical report (1972)

17. Aceto, L., Cimini, M., Ingólfsdóttir, A., Reynisson, A.H., Sigurdarson, S.H., Sirjani,
M.: Modelling and simulation of asynchronous real-time systems using Timed
Rebeca. In: FOCLASA. (2011) 1–19

18. Reynisson, A.H., Sirjani, M., Aceto, L., Cimini, M., Jafari, A., Ingólfsdóttir, A.,
Sigurdarson, S.H.: Modelling and simulation of asynchronous real-time systems
using Timed Rebeca. Sci. Comput. Program. 89 (2014) 41–68

19. Khamespanah, E., Sirjani, M., Sabahi-Kaviani, Z., Khosravi, R., Izadi, M.: Timed
rebeca schedulability and deadlock freedom analysis using bounded floating time
transition system. Science of Computer Programming 98 (2015) 184–204

20. Akyildiz, I., Vuran, M.C.: Wireless Sensor Networks. John Wiley & Sons, Inc.,
New York, NY, USA (2010)

21. TinyOS: TinyOS community forum: An open-source OS for the networked sensor
regime Available through http://www.tinyos.net.

22. Khamespanah, E., Khosravi, R., Sirjani, M.: An efficient tctl model checking
algorithm and a reduction technique for verification of timed actor models. In:
Science of Computer Programming. (2017)

23. El-Hoiydi, A.: Spatial TDMA and CSMA with preamble sampling for low power
ad hoc wireless sensor networks. In: Proceedings of the Seventh IEEE Symposium
on Computers and Communications (ISCC 2002). (2002) 685–692

24. Polastre, J., Hill, J.L., Culler, D.E.: Versatile low power media access for wireless
sensor networks. In: Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems, SenSys 2004. (2004) 95–107

25. Yousefi, B., Ghassemi, F.: An efficient loop-free version of aodvv2. CoRR
abs/1709.01786v2 (2017)

26. Ghassemi, F., Fokkink, W.: Model Checking Mobile Ad-Hoc Networks. Formal
Methods in System Design 49(3) (2016) 159–189

27. Benini, L., Micheli, G.D.: Networks on Chips: A New SoC Paradigm. IEEE
Computer 35(1) (2002) 70–78

28. Guerrier, P., Greiner, A.: A Generic Architecture for On-Chip Packet-Switched
Interconnections. In: 2000 Design, Automation and Test in Europe (DATE 2000).
(2000) 250–256

29. Sheibanyrad, A., Greiner, A., Panades, I.M.: Multisynchronous and Fully Asyn-
chronous NoCs for GALS Architectures. IEEE Design & Test of Computers 25(6)
(2008) 572–580

30. Chiu, G.M.: The Odd-Even Turn Model for Adaptive Routing. IEEE Trans.
Parallel Distrib. Syst. 11(7) (July 2000) 729–738

31. Hu, J., Marculescu, R.: DyAD: Smart Routing for Networks-on-chip. In: Proceed-
ings of the 41st Annual Design Automation Conference. DAC ’04 (2004)

32. HSPICE: HSPICE Homepage: https://www.synopsys.com/verification/ams-
verification/circuit-simulation/hspice.html

33. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC Benchmark Suite: Char-
acterization and Architectural Implications. In: Proceedings of the 17th Interna-
tional Conference on Parallel Architectures and Compilation Techniques. PACT
’08 (2008)

34. Bagheri, M., Akkaya, I., Khamespanah, E., Khakpour, N., Sirjani, M., Movaghar,
A., Lee, E.A.: Coordinated actors for reliable self-adaptive systems. In: 13th
International Conference on Formal Aspects of Component Software, FACS 2016.
(2016)

35. Castagnari, C., de Berardinis, J., Forcina, G., Jafari, A., Sirjani, M.: Lightweight
preprocessing for agent-based simulation of smart mobility initiatives. In: FO-
CLASA 2017 Proceedings. (2017)

36. Razavi, N., Behjati, R., Sabouri, H., Khamespanah, E., Shali, A., Sirjani, M.: Sys-
fier: Actor-based formal verification of SystemC. ACM Transactions on Embedded
Computing Systems (2009)

37. de Boer, F.S., et al: A survey of active object languages. ACM Comput. Surv.
50(5) (2017) 76:1–76:39

