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Abstract. Programmers often use informal worst-case
analysis and debugging to ensure that schedulers satisfy
real-time requirements. Not only can this process be te-
dious and error-prone, it is inherently conservative and
thus likely to lead to an inefficient use of resources. We
propose to use model checking to find a schedule which
optimizes the use of resources while satisfying real-time
requirements. Specifically, we represent a Wireless sen-
sor and actuator network (WSAN) as a collection of ac-
tors whose behaviors are specified using a Java-based
actor language extended with operators for real-time
scheduling and delay representation. We show how the
abstraction mechanism and the compositionality of ac-
tors in the actor model may be used to incrementally
build a model of a WSAN’s behavior from node-level
and network models. We demonstrate the approach with
a case study of a distributed real-time data acquisition
system for high frequency sensing using Timed Rebeca
modeling language and the Afra model checking tool.

Key words: Sensor Network, Schedulability Analysis,
Actor, Timed Rebeca, Model Checking

1 Introduction

Wireless sensor and actuator networks (WSANs) can
provide low-cost continuous monitoring. However, build-
ing WSAN applications is particularly challenging. Be-
cause of the complexity of concurrent and distributed
programming, networking, real-time requirements, and
power constraints, it can be hard to find a configura-
tion that satisfies these constraints while optimizing re-
source use. A common approach to address this prob-
lem is to perform an informal analysis based on conser-
vative worst-case assumptions and empirical measure-

ments. This can lead to schedules that do not utilize re-
sources efficiently. For example, a workload consisting of
two periodic tasks would be guaranteed to be safe only if
the sum of the two worst-case execution times (WCET)
were less than the shorter period, whereas it is possible
in practice to have many safe schedules violating this
restriction.

A second approach is trial and error. For example,
in [21], an empirical test-and-measure approach based
on binary search is used to find configuration param-
eters: worst-case task runtimes, timeslot length of the
communication protocols, etc. Trial and error is a la-
borious process, which nevertheless fails to provide any
safety guarantees for the resulting configuration.

A third possibility is to extend scheduling techniques
that have been developed for real-time systems [22] so
that they can be used in WSAN environments. Unfor-
tunately, this turns out to be difficult in practice. Many
WSAN platforms rely on highly efficient event-driven op-
erating systems such as TinyOS [12]. Unlike a real-time
operating system (RTOS), event-driven operating sys-
tems generally do not provide real-time scheduling guar-
antees, priority-based scheduling, or resource reservation
functionality. Without such support, many schedulabil-
ity analysis techniques cannot be effectively employed.
For example, in the absence of task preemption and
priority-based scheduling, unnecessarily conservative as-
sumptions must be used to guarantee correctness in the
general case.

We propose an actor-based modeling approach that
allows WSAN application programmers to assess the
performance and functional behavior of their developed
codes throughout the design and implementation phases.
The developed models are analyzed using model check-
ing to determine the parameter values resulting in the
highest system efficiency.

We represent a WSAN application as a collection of
actors [2]. The model can be incrementally extended and
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refined during the application design process, adding
new interactions and scheduling constraints to actors.
We use Timed Rebeca [28] as the modeling language and
its model checking tool Afra [1,18] for analysis of WSAN
applications. Timed Rebeca is a high-level actor-based
language capable of representing functionality and tim-
ing behavior at an abstract level. Afra supports mod-
eling and analysis of both Rebeca and Timed Rebeca
models; we use the timed model checking engine. Afra
uses the concept of Floating Time Transition System
(FTTS) [18] for the analysis of Timed Rebeca models.
FTTS significantly reduces the state space that needs to
be searched. The idea is to focus on event-based prop-
erties while relaxing the constraint requiring the gener-
ation of states where all the actors are synchronized. As
the examples in [19] suggest, this approach can reduce
the size of the state spaces by 50 to 90% in compari-
son with the state spaces which are generated based on
the concept of timed transition system. Using FTTS fits
with the analyzing the schedulability of events that we
are interested in WSAN applications.

In addition to the schedulability analysis, Timed Re-
beca provides TCTL model checking facilities for ana-
lyzing timed actors against more complicated properties.
Later, we will show how TCTL model checking can be
used to guaranty the minimum utilization of resources of
WSAN applications. In the developed case study, figur-
ing out the minimum utilization of the communication
medium (Ether) was the property we were interested in.

We present a case study involving real-time contin-
uous data acquisition for structural health monitoring
and control (SHMC) of civil infrastructure [21]. This sys-
tem has been implemented on the Imote2 wireless sensor
platform, and used in several long-term development of
several highway and railroad bridges [35]. SHMC appli-
cation development has proven to be particularly chal-
lenging: it has the complexity of a large-scale distributed
system with real-time requirements, while having the re-
source limitations of low-power embedded WSAN plat-
forms. Ensuring safe execution requires modeling the in-
teractions between the CPU, sensor and radio within
each node, as well as interactions among the nodes. More-
over, the application tasks are not isolated from other as-
pects of the system: they execute alongside tasks belong-
ing to other applications, middleware services, and oper-
ating system components. In the application we consider,
all periodic tasks (sample acquisition, data processing,
and radio packet transmission) are required to complete
before the next iteration starts. Our results show that a
guaranteed-safe application configuration can be found
using the Afra model checking tool. Moreover, this con-
figuration improves resource utilization compared to the
previous informal schedulability analysis used in [21],
supporting a higher sampling rate or a larger number
of nodes without violating schedulability constraints.

Contributions. This paper is an extended version of
the workshop paper [17]. In [17], we presented our pre-

liminary results on modeling and analyzing WSAN ap-
plications using model checking toolset of Timed Rebeca.
Apart from adding more detail about the proposed ap-
proaches, this paper extends [17] as follows:

– We show how WSAN applications can be modeled
by event graphs and how the elements of an event
graph are associated with actors (Sections 2.2).

– We use TCTL model checking engine of Timed Re-
beca for the analysis of WSAN applications (Sec-
tion 6.2).

– We demonstrate the detailed Timed Rebeca source
code of B-MAC protocol to illustrate how naturally
communication protocols can be modeled using our
approach (Section 4).

– We show how the approach can be generalized to
support modeling and analysis of a wide range of
WSAN applications (Section 5).

2 Preliminaries

A WSAN application is a distributed system with multi-
ple sensor nodes, each comprised of the independent con-
current entities: CPU, sensor, radio system, and bridged
together via a wireless communication device which uses
a transmission control protocol. Interactions between en-
tities, both within a node and across nodes, are concur-
rent and asynchronous. Moreover, WSAN applications
are sensitive to timing, with soft deadlines at each step
of the process that are required to ensure correct and
efficient operation.

Due to the performance requirements and latencies
of operations on sensor nodes, coordination among sens-
ing, data processing, and communication activities is re-
quired. In particular, once a sample is acquired from
a sensor, its corresponding radio transmission activities
must be performed. At the same time, data processing
tasks–such as compensating sensor data for the effects
of changes in the temperature–must be executed. More-
over, the timing of radio transmissions from different
nodes must be coordinated using a communication pro-
tocol.

Although schedulability analysis of WSAN applica-
tions can be challenging in the absence of a real-time
scheduler, we reduce the problem of checking for dead-
line violations to the problem of reachability from a rel-
atively small set of possible initial configurations. Model
checking is the natural approach for this class of prob-
lems, and it is the approach we explore in this paper.

2.1 Event Graph

At the first step of modeling WSAN applications, we
need to explain event graphs in which a highly abstracted
view of scheduling events can be depicted. Event graphs
have a single type of node and two types of edges, i.e.
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Fig. 1. An example of an event graph

jagged and ordinary edges. The nodes represent events
in a system. Edges correspond to the scheduling of other
events [4]. In this graph, the initial event is shown by
jagged edges. Edges can optionally be associated with
a boolean condition for scheduling an event and/or a
time delay which means that an event will be scheduled
after the delay. Figure 1 shows an example of an event
graph where the event B is scheduled by the event A if
condition (i) is evaluated to true, at t units of time later
than the current time.

Event graphs are widely used in the engineering com-
munity for simulation and analysis of complex systems.
More specifically, they are used to graphically represent
discrete-event simulation models. We use event graphs in
this paper only to give a highly abstracted view of how
events are scheduled in our case studies. We adopt an
alternative notation where conditional edges are thicker,
even if the conditions are not specified.

2.2 The Actor Model of WSAN Applications

The Actor model is a well-established paradigm for mod-
eling distributed and asynchronous component-based sys-
tems. This model was originally introduced by Hewitt as
an agent-based language where goal directed agents did
logical reasoning [11]. Subsequently, the actor model de-
veloped as a model of concurrent computation for open
distributed systems where actors are the concurrently
executing entities [2]. One way to think of actors is as a
service oriented framework: each actor provides services
that may be requested via messages from other actors.
A message is buffered until the provider is ready to ex-
ecute the message. As a result of processing a message,
an actor may send messages to other actors, and to it-
self. Extensions of the actor model have been used for
real-time systems, in particular: RT-synchronizer [27],
real-time Creol [7], and Timed Rebeca [28].

The characteristics of real-time variants of the ac-
tor model make them useful for modeling WSAN appli-
cations: many concurrent processes and interdependent
real-time deadlines. Observe that common tasks such as
sample acquisition, sample processing, and radio trans-
mission are periodic and have well-known or easily mea-
surable periods. This makes analysis of worst-case ex-
ecution times feasible. However, because of the event-
triggered nature of applications, initial offsets between
the tasks are variable.

At the first step of proposing an actor model for the
WSAN applications, we need to have a look into the
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Fig. 2. The event graph of a WSAN sensor behavior
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Fig. 3. How events of a WSAN sensor are associated with actors

interaction of the components and the events which are
triggered and served by them. Based on the specification
of the WSAN applications, there are many nodes which
have the role of data acquisition and data transmission.
For data acquisition, a node has a set of sensors which
periodically acquire data from the environment and send
the data to the processing unit of the node. The process-
ing unit is responsible for validating the data and storing
it into an internal buffer. Upon receiving enough data,
the processor unit sends the data to the radio communi-
cation unit. The radio communication unit tries to send
data via wireless medium, considering a predefined com-
munication protocol. The event graph of this model is
depicted in Figure 2. The majority of WSAN applica-
tions can be modeled using this graph; although, minor
modifications maybe needed.

We split up the event handlers of the events of Fig-
ure 2 into three different actors, depicted in Figure 3 and
add one additional actor for carrying out miscellaneous
tasks unrelated to sensing or communication. This addi-
tional actor is necessary for making the model close to
its real configuration. The three actors are called Sensor

(for the data acquisition), CPU (processing unit), RCD (a
radio communication device) and the additional actor is
called Misc. Sensor collects data and send it to CPU for
further data processing. Meanwhile, CPU may respond to
messages from Misc by carrying out other computations.
The processed data is sent to RCD to forward it to a data
collector node actor.

Composing the collection of sensor nodes to develop
a complete WSAN application requires that the wire-
less communication medium be specified and a commu-
nication protocol is implemented in radio communica-
tion devices. Note that the process of sending a packet
is controlled by a wireless network communication pro-
tocol. We model the communication medium as an actor
(Ether) and the receiver node also by the actor RCD. Us-
ing the actor Ether facilitates modularity: specifically,
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Fig. 4. How events of wireless communication mechanism are as-
sociated with actors

implementation of the Media Access Control (MAC) level
details of communication protocols is localized. As a re-
sult, different implementation of communication proto-
cols can be replaced without significantly impacting the
remainder of the model. As shown in Figure 4, Ether
serves events for receiving the status of the medium and
broadcasting data. For the development of different com-
munication protocols, different combination of these two
events can be triggered to model the behavior of the pro-
tocols.

During the application design phase, different com-
ponents, services, and protocols may be considered. For
example, TDMA [8] as a MAC-level communication pro-
tocol may be replaced by B-MAC [26] with minimal
changes. In a nutshell, using the mentioned association
of events with actors, a given WSAN application is mod-
eled by actors as shown in Figure 5.

2.3 Timed Rebeca and the Model Checking Toolset

A Timed Rebeca [28] model (as the real-time extension
of the Rebeca modeling language [34,33,32]) consists of
a number of reactive classes, each describing the type of
a certain number of actors (called rebecs)1. Each reac-
tive class declares the size of its message bag and a set
of state variables. The local state of each actor is defined
by the values of its state variables and the contents of
its message bag. Following the actor model, communica-
tion in the Timed Rebeca models takes place by asyn-
chronous message passing among actors. Each actor has
a set of known rebecs to which it can send messages. Re-
active classes of a Timed Rebeca model may have some
constructors. Constructors have the same name as the
declaring reactive class and do not have a return value.
They are responsible for initializing the actor’s state
variables and putting initially needed messages in the
bag of that actor. A properly written constructor leaves
the resulting actor in a valid state. Reactive classes de-
clare the messages to which they can respond. The way
an actor responds to a message is specified in a message

1 In this paper we use rebec and actor interchangeably.

server. The state of an actor can change during the ex-
ecuting of its message servers through assignment state-
ments, makes decisions through conditional statements,
communicates with other actors by sending messages,
and performs periodic behavior by sending messages to
itself. Since communication is asynchronous, each actor
has a message bag from which it takes the next incoming
message. The ordering of the messages in a message bag
is based on the arrival times of messages. An actor takes
the first message from its message bag, executes its cor-
responding message server in an isolated environment,
takes the next message (or waits for the next message to
arrive) and so on. A message server may have a nonde-
terministic assignment statement which is used to model
the nondeterminism in the behavior of a message server.
Finally, the main block is used to instantiate the actors
of the model. Note that Timed Rebeca does not support
dynamic actor creation, so all the actors of a model must
be defined in the main block.

Timed Rebeca adds three primitives to Rebeca to
address timing issues: delay, deadline and after. A delay
statement models the passage of time for an actor dur-
ing execution of a message server. Note that all other
statements of Timed Rebeca are assumed to execute in-
stantaneously. The keywords after and deadline are used
in conjunction with a method call. The term after(n)
indicates that it takes n units of time for a message to
be delivered to its receiver. The term deadline(n) ex-
presses that if the message is not taken in n units of
time, it will be purged from the receiver’s message bag
automatically.

A Rebeca model may contain some private methods.
These methods can not be called from the other actors
and used to make the model of a reactive class more
modular. The definition of a method starts with the type
of its return value (instead of the msgsrv keyword) and
its body is the same as the body of a message server.

The model checking toolset of Timed Rebeca models
is called Afra. Afra 1.0 supports model checking of Re-
beca models against LTL and CTL properties. Afra 2.0
supports deadlock detection and schedulability analysis
of Timed Rebeca models; we use Afra 2.0 in this work
for the schedulability analysis of WSAN applications.
We also benefit from TCTL model checking toolset of
Timed Rebeca, which will be integrated to Afra. Timed
Rebeca and Afra toolset have previously been used to
model and analyze realtime actor based models such as
routing algorithms and scheduling policies in NoC (Net-
work on Chip) designs [30,29].

3 Schedulability Analysis of a Stand-Alone
Node

We now illustrate our approach using a node-level Timed
Rebeca model of a WSAN application to check for pos-
sible deadline violations. Specifically, by changing the
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Fig. 5. Modeling the behavior of a WSAN application in its real-world installation in the actor model

timing parameters of our model, we find the maximum
safe sampling rate in the presence of other (miscella-
neous) tasks in the node. Then, we show how the speci-
fication of a node-level model can be naturally extended
to network-wide specifications.

Following the mapping of Figure 5, the Timed Re-
beca model for the four different reactive classes is pre-
sented in Listing 1 through Listing 3. As shown in List-
ing 1, the maximum capacity of the message bag of
Sensor is set to 10, the only actor which Sensor knows
about is of type CPU (line 4), and Sensor does not have
any state variables. The behavior of Sensor is to acquire
data and send it to CPU periodically. Sensor is imple-
mented using a message server sensorLoop (lines 10-14)
which sends the acquired data to CPU (line 12). The sent
data must be served before the start time of the next
period, specified by the value of period as the parame-
ter of deadline. Recall that there is a nondeterministic
initial offset after which the data acquisition becomes a
periodic task. To represent this property, Sensor which
sends a sendLoop message to itself; the message is non-
deterministically delivered after one of 10, 20, and 30
(line 8).

Listing 1. The Timed Rebeca implementation of Sensor reactive
class

1 env int samplingRate = 25; // Hz

2
3 reactiveclass Sensor(10) {

4 knownrebecs { CPU cpu; }

5
6 Sensor() { self.sensorFirst(); }

7 msgsrv sensorFirst() {

8 self.sensorLoop() after(?(10, 20, 30)); // ms

9 }

10 msgsrv sensorLoop() {

11 int period = 1000 / samplingRate;

12 cpu.sensorEvent() deadline(period);

13 self.sensorLoop() after(period);

14 }

15 }

After this random offset, the sensor’s periodic behavior
is initiated. Note that in line 1, the sampling rate is
defined as a constant. A similar approach is used in the
implementation of the Misc reactive class.

The behavior of CPU as the target of Sensor and Misc

events is more complicated (Listing 2). Upon receiving a
miscEvent, CPU waits for miscTaskDelay units of time;
this represents computation cycles consumed by miscel-
laneous tasks. Similarly, after receiving the sensorEvent
message from Sensor, CPU waits for sensorTaskDelay

units of time; this represents cycles required for intra-
node data processing. Data must be packed in a packet
of a specified bufferSize. The number of collected sam-
ples + 1 is computed (line 16) and when the threshold
is reached (line 17), CPU asks senderDevice, to send the
collected data in one packet (line 18).

Listing 2. The Timed Rebeca implementation of CPU reactive
class

1 env int sensorTaskDelay = 2; // ms

2 env int miscTaskDelay = 10; // ms

3 env int bufferSize = 3; // samples

4
5 reactiveclass CPU(10) {

6 knownrebecs {RCD senderDevice, receiverDevice;}

7 statevars { int collectedSamplesCounter; }

8
9 CPU() { collectedSamplesCounter = 0; }

10
11 msgsrv miscEvent() {

12 delay(miscTaskDelay);

13 }

14 msgsrv sensorEvent() {

15 delay(sensorTaskDelay);

16 collectedSamplesCounter += 1;

17 if (collectedSamplesCounter == bufferSize) {

18 senderDevice.send(receiverDevice, 1);

19 collectedSamplesCounter = 0;

20 }

21 }

22 }
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As this is a node-level model, communication be-
tween nodes is omitted and the behavior of RCD is limited
to waiting for some amount of time (line 6 of Listing 3);
this represents the sending time of a packet.

Listing 3. The node-level implementation of RCD

1 env int OnePacketTT = 7; // ms(transmission time)

2
3 reactiveclass RCD (2) {

4 RCD() { }

5 msgsrv send(RCD receiver, byte numOfPackets) {

6 delay(OnePacketTT * numOfPackets);

7 }

8 }

Note that computation times (delay’s) depend on
the low-level aspects of the system and are application-
independent; they can be measured before the appli-
cation design. For schedulability analysis, we set the
deadline for messages in a way that any scheduling vi-
olations are caught by the model checker.

4 Schedulability Analysis of Multi-Node Model
with a Distributed Communication Protocol

Composing the models of stand-alone nodes to have a
multi-node model requires that the wireless communi-
cation medium Ether be specified and a communica-
tion protocol is implemented for radio communication
devices. Recall that nodes in the multi-node model pe-
riodically send their data to an aggregator node (List-
ing 5). The sending process is controlled by a wireless
network communication protocol. The reactive class of
Ether (Listing 4) has three message servers: these are
responsible for sending the status of the medium, broad-
casting data, and resetting the condition of the medium
after a successful transmission.

Broadcasting data takes place by sending data to a
RCD which results in setting the values of senderDevice
and receiverDevice to their corresponding actors. So,
the status of the Ether can be easily examined by the
value of receiverDevice (i.e., using null as the value
of receiverDevice is interpreted as medium is free, line
13). This way, upon sending data successfully, the value
of receiverDevice and senderDevice must be set to
null to show that the transmission is completed (lines
30 and 31). Data broadcasting is the main behavior of
Ether (lines 16 to 28). Before the start of broadcasting,
the Ether status is checked (line 17) and data-collision
error is raised in the case of two simultaneous broadcasts
(line 26). With a successful data broadcast, Ether sends
an acknowledgment to itself (line 20) and the sender (line
22), and informs the receiver of the number of packets
sent to it (line 24). In addition to the functional require-
ments of Ether, there may be non-functional require-
ments. For example, the Imote2 radio offers a theoretical
maximum transfer speed of 250 kbps. When considering

only the useful data payload (goodput), this is reduced
to about 125 kbps.

Listing 4. The Timed Rebeca implementation of Ether reactive
class

1 env int OnePacketTT = 7; // ms(transmission time)

2
3 reactiveclass Ether(5) {

4 statevars {

5 RCD senderDevice, receiverDevice;

6 }

7
8 Ether() {

9 senderDevice = null;

10 receiverDevice = null;

11 }

12 msgsrv getStatus() {

13 ((RCD)sender).receiveStatus(

14 receiverDevice != null);

15 }

16 msgsrv broadcast(RCD receiver, int packets) {

17 if(senderDevice == null) {

18 senderDevice = (RCD)sender;

19 receiverDevice = receiver;

20 self.broadcastingIsCompleted()

21 after(packets * OnePacketTT);

22 ((RCD)sender).receiveResult(true)

23 after(packets * OnePacketTT);

24 receiver.receiveData(receiver, packets);

25 } else {

26 ((RCD)sender).receiveResult(false);

27 }

28 }

29 msgsrv broadcastingIsCompleted() {

30 senderDevice = null;

31 receiverDevice = null;

32 }

33 }

We now extend RCD to support communication pro-
tocols. Listing 5 shows the Timed Rebeca implementa-
tion model of TDMA protocol. TDMA protocol defines
a cycle, over which each node in the network has one or
more chances to transmit a packet or a series of pack-
ets. If a node has data available to transmit during its
alloted time slot, it may be sent immediately. Other-
wise, packet sending is delayed until its next transmis-
sion slot. The periodic behavior of TDMA slot is handled
by handleTDMASlot message server which sets and un-
sets inActivePeriod to show that whether the node is
in its alloted time slot. Upon entering into it’s slot, a de-
vice checks for pending data to send (line 32) and sched-
ules handleTDMASlot message to leave the slot (line 31).
On the other hand, when CPU sends a packet (message)
to a RCD, the message is added to the other pending
packets which are waiting for the next alloted time slot.
tdmaSlotSize is the predefined size of the TDMA slots,
and currentMessageWaitingTime is the waiting time of
this message in the bag of its receiver.



E. Khamespanah, M. Sirjani, K. Mechitov, G. Agha: Modeling and Analysing using Actors 7

For the sake of simplicity, some details of RCD are
omitted in Listing 5. The complete source code (which
implements the B-MAC protocol) is available on the Re-
beca web page [1].

Listing 5. The Timed Rebeca implementation of TDMA protocol
in RCD

1 env int OnePacketTT = 7; ms (transmission time)

2
3 reactiveclass RCD (10) {

4 knownrebecs { WirelessMedium medium; }

5 statevars {

6 byte id;

7 int slotSize, sendingData;

8 boolean busyWithSending, inActivePeriod;

9 RCD receiverDevice;

10 }

11
12 RCD(byte myId) {

13 id = myId;

14 inActivePeriod = false;

15 sendingData = 0;

16 busyWithSending = false;

17 receiverDevice = null;

18 ...

19 }

20 msgsrv send(RCD receiver, int data, int

packetsNumber) {

21 assertion(receiverDevice == null);

22 receiverDevice = receiver;

23 sendingData = data;

24 self.checkPendingData();

25 }

26 msgsrv handleTDMASlot() {

27 inActivePeriod = !inActivePeriod;

28 if(inActivePeriod) {

29 int remainedTime = tmdaSlotSize -

currentMessageWaitingTime;

30 assertion(remainedTime > 0);

31 self.handleTDMASlot() after(remainedTime);

32 self.checkPendingData();

33 } else {

34 self.handleTDMASlot() after((tmdaSlotSize *

(numberOfNodes - 1))-

currentMessageWaitingTime);

35 }

36 }

37 msgsrv checkPendingData() { ... }

38 msgsrv receiveStatus(boolean result) { ... }

39 msgsrv receiveResult(boolean result) { ... }

40 msgsrv receiveData(RCD receiver, int data, int

receivingPacketsNumber) {

41 if (receiver == self) {

42 delay(receivingPacketsNumber *

OnePacketTransmissionTime);

43 }

44 }

45 }

Using TDMA, an execution period is defined and
each node in the network has one or more time slots

to transmit a packet or a series of packets in an exe-
cution period. If a node has data available to transmit
during its allotted time slot, it may be sent immedi-
ately. Otherwise, packet sending is delayed until its next
allotted time slot. This way, the packet transmission of
one sensor node does not interfere with the other sensor
nodes. Having more sensor nodes only results in hav-
ing shorter time slots, so the presence of sensor nodes
can be abstracted and modeled as making time slots
shorter. Using this abstraction, compositional verifica-
tion of WSAN applications against schedulability and
deadlock-freedom properties become feasible as only one
node which is in communication with the central node
has to be considered for networks in any size.

B-MAC protocol is designed for low power Ad-Hoc
networks in which some sender nodes send data to a re-
ceiver. Like the other low power protocols, B-MAC uses
periodically sleep/wakeup cycles. During wakeup times,
the node listens for incoming data transmissions. If there
is no data received, the listen state is interrupted after
passing a predefined duration. Otherwise, the node stays
in listen state for complete data transmission. The sleep
periods of nodes may differ, makes B-MAC an asyn-
chronous communication protocol. When a node wants
to send, it turns on the radio and starts sending an an-
nouncement. This announcement is long enough to make
sure that it has overlap with the wakeup time of the
data receiver. Afterwards the sender transmits data to
the target address and starts sending data. In order to
reduce the amount of needed energy, clear channel as-
sessment is used with the aim of better separation be-
tween signals and noise on the channel. B-MAC has an
application interface for flexible configuring parameters.
A good value for this sometimes depends on the use case,
so, this can be adjusted by a higher layer application.

We now extend RCD to implement B-MAC protocols,
depicted in Listing 6. In contrast to TDMA, in B-MAC
RCD tries to detect free channel status and send data
upon receiving a request from CPU (line 20). In the case
of detecting free channel, the data is sent immediately
(line 24). This way, collision may occurs; so, RCD has to
wait for some amount of time and resend data (line 23).
B-MAC protocol does not need complicated and expen-
sive synchronization methods. It also avoids data frag-
mentation. So, it would be more complicated to coordi-
nate long messages and B-MAC expects short messages,
which is common for informations of WSAN nodes.

Based on this fact, the presence of sensor nodes can
be abstracted and modeled as the possible number of
collisions before a data communication is performed suc-
cessfully. Using this abstraction, efficient verification of
WSAN applications become feasible as only one sensor
node which is in communication with the central node
has to be considered for networks in any size. Any data
transmission of this sensor node may encounter a col-
lision. The maximum number of the collisions is the
number of sensor nodes in the model. So, in the Re-



8 E. Khamespanah, M. Sirjani, K. Mechitov, G. Agha: Modeling and Analysing using Actors

beca code for RCD, for each data transmission we have a
non-deterministic choice between a successful transmis-
sion or a collision. During model checking, in the case of
collision, data transmission with zero, one, ..., up to n
collisions are considered where n is the number of sen-
sor nodes. The Timed Rebeca model of this protocol is
available on the Rebeca web page [1].

Listing 6. The Timed Rebeca implementation of B-MAC protocol
in RCD

1 env int OnePacketTT = 7; ms (transmission time)

2
3 reactiveclass RCD (10) {

4 knownrebecs { WirelessMedium medium; }

5 statevars {

6 byte id;

7 int sendingData;

8 RCD receiverDevice;

9 }

10
11 RCD(byte myId) {

12 id = myId;

13 sendingData = 0;

14 receiverDevice = null;

15 }

16 msgsrv send(RCD receiver, int data, int

packetsNumber) {

17 assertion(receiverDevice == null);

18 receiverDevice = receiver;

19 sendingData = data;

20 medium.getStatus();

21 }

22 msgsrv receiveStatus(boolean result) {

23 delay((numberOfNodes/2) * (OnePacketTT + 1));

24 medium.broadcast(receiverDevice,sendingData,

packetsNumber);

25 delay(OnePacketTT * packetsNumber);

26 }

27 msgsrv receiveResult(boolean result) { ... }

28 msgsrv receiveData(RCD receiver, int data, int

receivingPacketsNumber) { ... }

29 }

Once a complete model of the distributed application
has been created, the Afra model checking tool can verify
whether the schedulability properties hold in all reach-
able states of the system. If there are any deadline viola-
tions, a counterexample will be produced, indicating the
path—sequence of states from an initial configuration—
that results in the violation. This information can be
helpful with changing the system parameters, such as
increasing the TDMA time slot length or reducing the
sampling rate, to prevent such situations.

5 Generalization of the Approach for Any
WSAN Application

Here, we summarize the modeling approach and describe
the way of extending it to make the approach applicable

for the other WSAN applications. It is noteworthy that
the actor-based approach is aligned with the structure
of WSAN applications with different types of behaviors.
Loosely coupled actors as the units of concurrency, with
asynchronous message passing, and event-driven compu-
tation, are natural candidates for modeling such systems.
The semantic gap between the model and the real-world
system that has to be modeled is small, this so-called fi-
delity of the model to the system makes modeling easier
and also makes the model easy to understand. Also, the
possibility of building an understandable model with the
least needed effort shows the usability of the model.

There is a simple rule for mapping a WSAN applica-
tion to the actor model. Each entity in the WSAN ap-
plication that is running concurrently, and is serving or
creating events, has to be mapped into an actor. There-
fore, two events which are served concurrently will be
served by two different actors. In contrast, if there are
two triggered events which are sent to the same entity
and are served sequentially, then this entity is mapped
to an actor which serves both events.

The simplest scenario is when there is no concurrent
activity within each node in a WSAN application. In this
scenario, the network communication among nodes are
directly mapped to asynchronous communication among
actors, and intra-node activities of each node are mapped
into the event handlers of the corresponding actor. In
a more general case, we recognize five different actors
in a WSAN application, Sensor, CPU, Misc, RCD, and
Ether. Here, the events created by sensors and miscella-
neous activities have to be served by CPU and then sent
to other nodes in the network.

One may want to make the model even more gen-
eral as there may be more than one sensor in each node
(e.g. one for humidity and one for temperature mea-
surements). In this case, two different actors are needed
to model the concurrent (data acquisition and) event
creation of sensors. Also, in the case of using multi-
core CPUs inside a node, more than one CPU actors
have to be associated with a node and the incoming
tasks from sensors and miscellaneous activities have to
be dispatched among them. Note that handling a multi-
core CPU in a node requires developing a task scheduler
which must be run on one of the cores and dispatches
the incoming tasks to appropriate CPUs. A modeler may
perform these activities using event graphs or associat-
ing events with actors directly.

In addition to the mapping of entities to actors, we
also need to model different communication protocols
among nodes. The current implementation of Ether, ex-
plained in Section 4, serves two events which facilitates
modeling of any wireless node-to-node communication
protocol. Basically, no modification is needed in this code
for supporting other node-to-node communications pro-
tocols. However, one may want to develop a WSAN ap-
plication in which a node broadcasts data to some other
nodes. In this case, Ether must be extended to support
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multi-node data broadcasting, multicasting, or anycast-
ing.

6 Experimental Results and a Real-World Case
Study

We examined the applicability of our approach using a
WSAN model intended for use in structural health mon-
itoring and control (SHMC) applications.2 Wireless sen-
sors deployed on civil structures for SHMC collect high-
fidelity data such as acceleration and strain. Structural
health monitoring (SHM) involves identifying and de-
tecting potential damages to the structure by measuring
changes in strain and vibration response. SHM can also
be employed with structural control, where it is fed into
algorithms that control centralized or distributed control
elements such as active and semi-active dampers. The
control algorithms attempt to minimize vibration and
maintain stability in response to excitations from rare
events such as earthquakes, or more mundane sources
such as wind and traffic. The system we examine has
been implemented on the Imote2 wireless sensor plat-
form [21], which features a powerful embedded processor,
sufficient memory size, and a high-fidelity sensor suite re-
quired to collect data of sufficient quality for SHMC pur-
poses. These nodes run the TinyOS operating system,
supported by middleware services of the Illinois SHM
Services Toolsuite [13].

This flexible data acquisition system can be config-
ured to support real-time collection of high-frequency,
multi-channel sensor data from up to 30 wireless smart
sensors at frequencies up to 250 Hz. As it is designed
for high-throughput sensing tasks that necessitate larger
networks sizes with relatively high sampling rates, it falls
into the class of data-intensive sensor network applica-
tions, where efficient resource utilization is critical, since
it directly determines the achievable scalability (number
of nodes) and fidelity (sampling frequency) of the data
acquisition process. Configured on the basis of network
size, associated sampling rate, and desired data deliv-
ery reliability, it allows for near-real-time acquisition of
108 data channels on up to 30 nodes—where each node
may provide multiple sensor channels, such as 3-axis ac-
celeration, temperature, or strain—with minimal data
loss. In practice, these limits are determined primarily
by the available bandwidth of the IEEE 802.15.4 wireless
network and sample acquisition latency of the sensors.
The accuracy of estimating safe limits for sampling and
data transmission delays directly impacts the system’s
efficiency.

2 The Timed Rebeca code of this case study, some complimen-
tary shell scripts, the model checking toolset, and the details of
the specifications of the state spaces in different configurations are
accessible from the Rebeca homepage [1].

6.1 Finding the Maximum Sampling Rate

To illustrate the applicability of this work, we considered
applications where achieving the highest possible sam-
pling rate that does not result in any missed deadline is
desired. This is a very common requirement in WSAN
applications in the SHMC domain in particular. We be-
gin by setting the value of OnePacketTT to 7ms (i.e., the
maximum transmission time of this type of applications)
and fixed the value of sensorTaskDelay, miscPeriod,
and miscTaskDelay to some predefined values. In ad-
dition to the sampling rate, the number of nodes in
the network and the packet size remain variable. By
assuming different values for the number of nodes and
the packet size, different maximum sampling rates are
achieved, shown as a 3D surface in Figure 6. As shown
in the figure, higher sampling rates are possible when the
buffer size is set to a larger number (there is more space
for data in each packet). Similarly, increasing the num-
ber of nodes decreases the sampling rate: in competition
among three different parameters of Figure 6, the cases
with the maximum buffer size (i.e., 9 data points) and
minimum number of nodes (i.e., 1 node) results in the
highest possible maximum sampling rates. Decreasing
the buffer size or increasing the number of nodes, non-
linearly reduces the maximum possible sampling rate.

A server with Intel Xeon E5645 @ 2.40GHz CPUs
and 50GB of RAM, running Red Hat 4.4.6-4 as the op-
erating system was used as the model-checking host.
We varied the size of the state space from < 500 to
> 140K states, resulting in model checking times rang-
ing from 0 to 6 seconds. Analyzing the specifications of
the state spaces, some relations between the size of the
state spaces and the configurations of the models are ob-
served. For example, the largest state spaces correspond
to configurations where sensorTaskDelay, bufferSize,
and numberOfNodes are set to large values.

We also wanted to compare the effect of the commu-
nication protocol and the value of sensorTaskDelay in
the supported maximum sampling rate, considering 648
different configurations. The maximum sampling rates
found for each configuration is depicted in Figure 8;
they show that increasing the value of sensorTaskDelay
as the representor of intra-node activities, decreases the
sampling rate dramatically. They also show that using B-
MAC results in achieving higher sampling rates in com-
parison to TDMA.

The parameters used in our analysis of configurations
were determined through a real-world installation of an
SHMC application. Our results show that the current
manually-optimized installation can be tuned to an even
more optimized one: by changing the configuration, the
performance of the system can be safely improved by
another 7% percent.



10 E. Khamespanah, M. Sirjani, K. Mechitov, G. Agha: Modeling and Analysing using Actors

Fig. 6. The maximum sampling rate in case of using TDMA protocol and setting the value of sensorTaskDelay to 2ms

Configuration
State Space Generation Model Checking Time

states ORG states RED Gain Time ORG RED

25-5-3-10 1,741 402 77% <1s <1s <1s
33-6-4-2 1,934 451 77% <1s <1s <1s
25-5-4-10 3,718 945 75% 1s <1s <1s
30-6-4-2 9,353 2,774 71% 1s <1s <1s
25-6-4-2 34,503 10,368 70% 2s <1s <1s
20-6-4-2 57,621 17,714 69% 3s <1s <1s

Table 1. The size of the state spaces, the gained reductions, and the time consumption of TCTL model checking of a WSAN model with
different configuration.

6.2 TCTL Model Checking of WSAN Applications

In addition to the schedulability analysis of Timed Re-
beca models, they can be model checked against TCTL
properties. In case of the WSAN model, checking for
utilizing the communication medium in at least each 50
time units is the sample property we examined. This
property can be formulated like:

AG≤50(A(freeChannel)U≤50(¬freeChannel) )

We verified the WSAN application in a limited number
of configurations, varying the value of the sampling rate,
the number of nodes, the packet size, and the sensor task
delay.

We also applied “Folding Instantaneous Transitions”
reduction technique, to make the model checking of WSAN
applications against TCTL more efficient. The idea of
folding instantaneous transitions is developed based on
the fact that the instantaneous transitions take no time
to execute; so, the system cannot “stay” in the states

whose outgoing transitions are instantaneous. Hence, these
states are not observable to the verifier (as an external
observer). Note that as generally assumed in the model-
ing of timed systems, instantaneous transitions take pri-
ority over non-instantaneous ones. So, any state which
has an instantaneous outgoing transition cannot have
non-instantaneous transitions. Hence, there are two types
of states: the ones whose outgoing transitions are all in-
stantaneous (called transient states), and the ones which
have no outgoing instantaneous transition (called progress-
of-time states). Folding instantaneous transitions elimi-
nates all instantaneous transitions as well as all transient
states from state spaces. Therefore, there is a transition
between two states of the resulted transition systems if
and only if the two states are consecutive progress-of-
time states in the original transition system.

The results of these experiments are depicted in Ta-
ble 1. In each row, the configuration (the numbers which
are separated by a dash) is a combination of the sam-
pling rate, the number of nodes, the packet size, and
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(a) TDMA, Sensor task delay is 5ms

(b) TDMA, Sensor task delay is 10ms

(c) TDMA, Sensor task delay is 20ms

(d) TDMA, Sensor task delay is 30ms

Fig. 7. Maximum possible sampling rate in case of different com-
munication protocols, number of nodes, sensor internal task delays,
and radio packet size

(a) B-MAC, Sensor task delay is 5ms

(b) B-MAC, Sensor task delay is 10ms

(c) B-MAC, Sensor task delay is 20ms

(d) B-MAC, Sensor task delay is 30ms

Fig. 8. Maximum possible sampling rate in case of different com-
munication protocols, number of nodes, sensor internal task delays,
and radio packet size
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the sensor task delay of the experiment, respectively. We
choose the state space size and the model checking time
consumptions as the performance metrics of the model
checking. The values of these metrics are depicted in a
table for each case study. In the tables, ORG is used
to refer to the original state spaces and RED is used
to refer to the reduced state space (i.e., Folding Instan-
taneous Transitions). We also reported the spent times
for the state space generation. There is no difference be-
tween the spent times for the generation of the original
state spaces and the reduced state spaces as the reduc-
tion technique is applied during state space generation
with a very small footprint, so only one number is re-
ported as the spent times.

As shown in Table 1, the time consumption of the
model checking is less than one for all cases and changing
the configuration of the model does not end in large state
spaces. However, the effectiveness of the reduction tech-
nique is reduced in configurations which result in bigger
state spaces. This is because of the fact that changing the
configuration of WSAN in this way does not increase the
number of messages which are sent at the same time. So,
the chance of finding transient transitions is decreased
as there is no increment in the number of simultaneously
executing instantaneous transitions.

7 Related Work

Three different approaches have been used for analysis
of WSANs: system simulation, analytical approach, and
formal verification.

System Simulation. Simulation of WSAN applications
is useful for their early design exploration. Simulation
toolsets for WSANs provide modeling and analysis of
networks [20], power consumption [31], and deployment
environment [37]. Simulators can adequately estimate
performance of systems and sometimes detect conditions
which lead to deadline violations. But even extensive
simulation does not guarantee that deadline misses will
never occur in the future [6]. For WSAN applications
with hard real-time requirements this is not satisfactory.
Moroever, none of available simulators is suitable for the
analysis WSAN application software.

Analytical Approach. A number of algorithms and heuris-
tics have been suggested for schedulability analysis of
real-time systems with periodic tasks and sporadic tasks
with constraints, e.g. [23]. Although these classic tech-
niques are efficient in analyzing schedulability of real-
time systems with periodic tasks and sporadic tasks,
their lack of ability to model random tasks make them
inappropriate for WSAN applications.

Formal Verification. Real-time model checking is an at-
tractive approach for schedulability analysis of models

with guarantees [6]. Model checking tools systematically
check whether a model satisfies a given property [5]. The
strength of model checking is not only in providing a
rigorous correctness proof, but also in the ability to gen-
erate counter-examples, as diagnostic feedback in case a
property is not satisfied. This information can be help-
ful to find flaws in the system. Norström et al. suggest
an extension of timed automata to support schedulabil-
ity analysis of real-time systems with random tasks [24].
Feresman et al. studied an extension of timed automata
which its main idea is to associate each location of timed
automata with tasks, called task automata [10].

TIMES [3] is a toolset which is implemented based on
the approach of Feresman et al. [9] for analysis of task
automata using UPPAAL as back-end model checker.
TIMES assumes that tasks are executed on a single pro-
cessor. This assumption is the main obstacle against
using TIMES for schedulability analysis of WSAN ap-
plications, which are real-time distributed applications.
Jaghoori et al. in [15] and [16] presented a framework for
schedulability analysis of real-time concurrent objects.
The proposed approach supports both multi-processor
systems and random task definition, which are required
for schedulability analysis of WSAN applications. But
asynchronous communication among concurrent elements
of WSAN application results in generation of complex
behavioral interfaces which lead to a state space explo-
sion even for small size examples.

Real-Time Maude is used in [25] for performance
estimation and model checking of WSAN algorithms.
The approach supports modeling of many details such
as communication range and energy use. The approach
requires some knowledge of rewrite logic. Our tool may
be easier to use by engineers unfamiliar with rewriting
logic: our language extends straight-forward C-like syn-
tax with actor concurrency constructs and primitives
for sensing and radio communication. This requires no
formal methods experience from the WSAN application
programmer, as the language and structure of the model
closely mirror those of the real application.

8 Conclusion and Future Work

We have shown one of the applications of real-time model
checking method in analyzing schedulability and resource
utilization of WSAN applications. WSAN applications
are very sensitive to their configurations: the effects of
even minor modifications to configurations must be ana-
lyzed. With little additional effort required on behalf of
the application developer, our approach provides a much
more accurate view of an WSAN application’s behavior
and its interaction with the operating system and dis-
tributed middle-ware services than can be obtained by
the sort of informal analysis or trial-and-error methods
commonly in use today. Our realistic—but admittedly
limited—experimental results support the idea that the
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use of formal tools may result in more robust WSAN ap-
plications. This would greatly reduce development time
as many potential problems with scheduling and resource
utilization may be identified early.

In this paper, we only addressed the schedulability
analysis of WSAN components and did not consider the
interference on the wireless channel issues (the details of
communication protocols). We assumed that there is a
reliable wireless infrastructure in the application which
provides guaranteed delivery of messages, which is a rea-
sonable assumption for a wide range of deployments of
structural health monitoring and control systems. How-
ever, this work can be extended by taking the details
of communication protocols into account together with
noises and unreliability of wireless communication which
results in errors. This way, only Ether and RCD actors
have to be modified to contain the details of the proto-
cols. Note that the implementation of the chosen MAC
protocol as well as the interaction of the processing hard-
ware with the transmitter has to be added to RCD to
take hardware and software into account and provide
combined analysis of the underlying hardware infrastruc-
ture as well as the application software. Other differ-
ent assumptions, including fairness in access to B-MAC,
time drift of actors, and uncertainties, can be added.
Note that extending the number of modeled MAC layer
protocols also can be performed as a future work of this
paper. Comparing the efficiency of MAC protocols in dif-
ferent cases to study their characteristics will be one of
the outcomes of this extension.

On the other hand, some WSAN applications also
exhibit probabilistic behaviors which are not discussed
in this paper. Also, in many soft real-time systems it
is desirable to know whether the application does not
violate any deadlines with at least a given probabil-
ity. This is particularly important when deadline vio-
lation probability is very small, but requires significant
extra resource allocation to be avoided completely. In
resource-constrained WSAN environments, the price of
such safety guarantee may be too high. To address these
cases, we are going to extend this work by using Proba-
bilistic Timed Rebeca [14] for modeling WSAN applica-
tion and benefiting from combining performance evalua-
tion with functional verification of models. This way, we
develop one model for the purposes of model checking,
performance evaluation, and probabilistic model check-
ing.
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