
AdaptiveFlow: An Actor-based Eulerian Framework for
Track-based Flow Management
No author info because of double-blind review

ABSTRACT
In this paper, we present AdaptiveFlow as a framework for model-
ing and analysis of track-based flow management systems. Typical
examples for track-based systems are train systems, bus transporta-
tion systems, air traffic control systems and automatic transporta-
tion systems in warehouses. We use Hewitt actors as the model
of computation and an Eulerian view for flow management. In
AdaptiveFlow, we model tracks as actors, and moving objects as
messages. The framework is equipped with adaptation policies to
react to dynamic changes in the system. Timed Rebeca is used for
system modeling, and Rebeca Model Checker is used for safety and
performance analyses.

In order to investigate the applicability of the developed frame-
work, we considered the Electric Site Research Project of Volvo
Construction Equipment as a case study. In this project, a fleet of
autonomous haulers is utilized to tra nsport materials in a quarry
site. We performed two sets of experiments varying input parame-
ters and analyzing their effects on safety and performance of the
fleet.

CCS CONCEPTS
• Computing methodologies → Model verification and vali-
dation; Modeling and simulation; Modeling methodologies; • Soft-
ware and its engineering→Model checking;

KEYWORDS
Actormodel, Track-based flowmanagement, Model checking, Adap-
tive model, Performance evaluation

ACM Reference Format:
No author info because of double-blind review. 2019. AdaptiveFlow: An
Actor-based Eulerian Framework for Track-based Flow Management. In
Proceedings of ACM SAC Conference (SAC’19). ACM, New York, NY, USA,
Article 4, 8 pages. https://doi.org/xx.xxx/xxx_x

1 INTRODUCTION
Nowadays, flow management is an essential part of a wide vari-
ety of systems. In many of these systems, objects are moving on
predefined tracks. For example, we have trains on rails, cars on
roads, automated vehicles in aisles of warehouses, airplanes in the
airspace, or even packets in wired networks. We need to assure
safety and optimal performance of these systems.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC’19, April 8-12, 2019, Limassol, Cyprus
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5933-7/19/04.
https://doi.org/xx.xxx/xxx_x

In Fluid Mechanics, two specifications are widely used for flow
analysis: Eulerian and Lagrangian. Considering a river, and a boat
floating on the river, in a Lagrangian model the observer is sitting
on the boat and drifting down the river. However, in an Eulerian
model, the observer is sitting on the bank of the river and watching
the boat passing through different locations in the river.

In this paper, we propose AdaptiveFlow, as a framework that
allows to model and analyze track-based flow management sys-
tems based on an Eulerian model. In AdaptiveFlow, the system
specification consists of the following three elements:

• environment which provides a basis for object movement
(e.g. urban roads for the public transportation system, or
railway network for the train system),

• topology of the network of the points of interest (PoIs). Fuel
stations for the airport system, or the loading/unloading
points in a quarry, are examples of PoIs, and

• configuration of each moving object (including features
like loading capacity, fuel consumption rate, and moving
velocity).

This specification is translated to a Timed Rebeca (TRebeca) [12]
model. TRebeca is an actor-based modeling language supported
by Rebeca Model Checker (RMC) [6–8]. RMC can be used for both
verifying the correctness of TRebeca models, and their performance
evaluation (Section 2). RMC automatically checks deadlock free-
dom and deadline misses for any TRebeca model. Moreover, using
assertions in the model, we can check several properties e.g. if the
moving objects are moving correctly, if they collide with each other
or obstacles, and if the current configuration may lead to a starving
situation.

In AdaptiveFlow, particular attention is paid to the unpredictabil-
ity of changes to the system environment. Bad weather conditions
or unexpected obstacles may affect the efficiency and safety of the
analyzed system. To adapt with these changes, the framework is
equipped with three different adaptation policies (Section 4), which
allow the moving objects to avoid collisions against all possible
types of obstacles, whether they are static or dynamic.

We investigate the efficiency of our approach and the applicabil-
ity of the AdaptiveFlow framework by doing a set of experiments.
As a case study, we consider the Electric Site Research Project that
Volvo Construction Equipment (VCE) is working on [3]. In this
project, a fleet of autonomous machines (haulers) are utilized to
transport materials in the quarry site. The detailed description of
this scenario is presented in Section 3 and the corresponding TRe-
beca model is presented in Section 5. To illustrate the applicability
of AdaptiveFlow for the Volvo Construction Equipment use case, in
Section 6, we analyze different configurations for an outdoor site.
Finally, in Section 7 we present the outcomes of the experiments,
showing that performing many comparative experiments with dif-
ferent configurations, will lead users to select the one that is more
in line with their expectations.

https://doi.org/xx.xxx/xxx_x
https://doi.org/xx.xxx/xxx_x


SAC’19, April 8-12, 2019, Limassol, Cyprus No author info because of double-blind review

2 REBECA AND TREBECA
Rebeca [16, 17] is an actor-based modeling language with formal
semantics and a rich tool support and an active community. A Re-
beca model consists of two parts: a set of reactive class declarations
and a main method. Each reactive class defines the properties and
behavior of an actor (or rebec), and comprises three parts:

• knownrebecs which declares the set of rebecs that this
rebec knows and may communicate with,

• statevarswhich defines the state variables of this rebec, and
• a set of msgsrv definitions each acting as a message server,
and processing the messages received from the known re-
becs.

In Rebeca, each rebec takes a message from its message queue
and executes the corresponding message server. Execution of a
message server takes place atomically and asynchronously, which
is non-blocking for both sender and receiver.

The internal state of a rebec is represented by the valuation of
its state variables, and the messages in its queue. The behavior of a
Rebeca model is defined in terms of the concurrent processing of the
messages passed between the rebecs. In Timed Rebeca (TRebeca)
[12] some timing primitives are added to the Rebeca syntax to cover
timing features that a modeler might need to address in a message-
based, asynchronous and distributed setting. These features are:

• Computation time: the time needed for a computation.
• Message delivery time: the time needed for a message to
travel between two objects (network delay).

• Message expiration: the time within which a message is
still valid.

• Periods of occurrences of events: elapsed time between
two consecutive occurrences of periodic events.

In TRebeca, each rebec has its own local clock, but there is also
a notion of global time based on synchronizing the clocks of all
the rebecs. Messages that are sent to a rebec are put in its message
queue together with their arrival time, and their deadline. Message
servers are executed atomically, but the duration of executing each
message server is modeled. In addition, communication delay and
deadline for execution of messages can be defined in the model. The
timing primitives that are added to the Rebeca syntax to support
these features are:

• Delay: delay(t), increases the value of the local clock of the
respective rebec by the amount t.

• Deadline: r.m() deadline(t), after t units of time, the message
is not valid any more and is purged from the queue (timeout).

• After: r.m() after(t), the message cannot be taken from the
queue before t time units have passed.

3 THE ELECTRIC QUARRY SITE CASE
In this section we describe a use case from the construction equip-
ment industry. Construction equipmentmachines aremulti-purpose
machines which can be applied for different tasks and in different
environments. One such an environment is a quarry site which is a
typical open site, where rocks are extracted from the ground and
processed to meet customer needs. Depending on the type of rocks
(e.g. marble or granite), different products are created as an output.

In the context of this research, we consider a quarry site, where
gravel of different granularity is produced for building construction,
roadwork or railway beds. The rocks in such an application scenario
are blasted in one area of the quarry and the big blocks are crushed
into smaller transportable rocks using a movable crusher (primary
crusher). The crushed material is then transported to a stationary
crusher (secondary crusher) where the material is crushed into
the targeted granularity. In today’s applications, human operated
machines are used to transport the material from the movable
crusher to the stationary crusher.

In the electric site research project at Volvo Construction Equip-
ment, the material transportation from the primary crusher to the
secondary crusher is realized by a fleet of autonomous haulers
(called HX).

Figure 1: Schema of the VCE Electric Site

Figure 1 shows the tracks for the HX. They are loaded at the
Primary Crusher (PCR) or by a human operated wheel loader (WL).
The primary crusher is fed by a human operated excavator (EXC).
Once the HX are loaded, they travel to the secondary crusher (SCR)
where they dump the load. Since theHX are electrified and equipped
with batteries, they need to be charged at the chargers (CH). Since
the missions are set by a central site control unit, which is super-
vising all activities, different queuing points are necessary where
the HX receive their next mission. In order to make decisions for
optimal production, the HX are queuing at the main decision point
(MDP) and once a loading mission is assigned, the HX will move
to the assigned loading position. The fleet of HX can be parked or
maintained at the parking area (PA).

Compared to automated guided vehicle (AGV) applications in
predefined environments like warehouses, the AGVs in the quarry
site scenario are exposed to harsh environmental conditions, which
can change rapidly. Based on the changed conditions, the site con-
trol system must be able to adjust the fleet of HX by e.g. adding or
removing loading spots, changing missions, routes or the number
of HX. In summary, a new optimal setup of the fleet needs to be
identified and rolled out on the site.

4 ADAPTIVEFLOW DESCRIPTION
In this section, we provide the reader with the detailed description
of AdaptiveFlow, and its usage. The architecture of AdaptiveFlow is
shown in Figure 2. It is composed of 3 modules which, in sequence,
starting from the initial input files, process the outputs produced



AdaptiveFlow: An Actor-based Eulerian Framework for Track-based Flow Management SAC’19, April 8-12, 2019, Limassol, Cyprus

by the preceding module and generate the final outcomes. The
modules are: Pre-Processing: Model Generation, Model-Run: State-
Space Generation, and Post-Processing: State-Space Analysis. The
detailed description of these modules is provided in the following
section.

Figure 2: AdaptiveFlow architecture

4.1 The Pre-Processing Module
In the pre-processing module, AdaptiveFlow generates the TRebeca
model based on the input specifications provided by the user. In
detail, the user provides three input files in the Extensible Markup
Language (xml) format, namely environment, topology, and con-
figuration. A Python script processes these files and generates a
TRebeca model and sends it as an input to the next module.

The environment input file contains the description of the base
layer in which the movements of the transporting machines take
place (Listing 1). Abstracting from many details, the environment
can be seen as a collection of squared areas (segments) each charac-
terized by a unique identifier (i.e. id) and coordinates (i.e. x and y).
Each segment knows its neighboring segments and may differ from
other segments in terms of length, traversing speed, and capacity.
At any moment of time, each segment may be either available (i.e,
it can be traversed), or unavailable (i.e. there is a static impediment
e.g. a hole, a building, etc. in the segment). The maximum number
of each segment’s neighbors is equal to 8, one for each cardinal
position (i.e. north, north-east, east, east-south, south, south-west,
west, west-north).

<segment id="seg_0_0" N="null" NE="null" E="seg_0_1" ES="seg_1_1" S="seg_1_0" SW="null"
W="null" WN="null" available ="false " x="0" y="0" capacity ="1"

length="200" freespeed="6"/>
<segment id="seg_1_1" N="seg_0_1" NE="null" E="null " ES="null" S="null " SW="null"

W="seg_1_0" WN="seg_0_0" available="true" x="1" y="1" capacity ="1" length="200"
freespeed="6"/>

Listing 1: Example of environment specification

By means of the topology input file, the user specifies the loca-
tions within the environment in which the machines can perform
their tasks (e.g. pick up passengers at a bus station, loading stones
in a quarry, charging fuel, etc.), namely Points of Interest (PoI).
Each PoI is characterized by its unique identifier (i.e. id), its posi-
tion on the map (i.e. x and y), its type (i.e. the tasks it can process)
and eventually its operating time. This latter represents the time
needed for performing the specific task at the PoI. An example
of the structure of the topology.xml file is provided in Listing 2.
Currently, AdaptiveFlow supports only the most significant PoIs:
ParkingStation, where machines are parked, ChargingStation, where
machines can recharge their fuel, and LoadUnloadingPoint, where
machines can load/unload materials.

<topology>
<POIs>

<poi id="0" x="1" y="3" type="ParkingStation " />
<poi id="1" x="3" y="3" type="ChargingStation" chargingTime="0.1"/>
<poi id="5" x="6" y="7" type="LoadUnloadingPoint" loadTime="0.5"/>

</POIs>
</topology>

Listing 2: Example of topology specification

The configuration input file includes information about the
configuration of the whole system. This information includes the
following:

• resendingPeriod: the time for re-sending a segment request
in case of a negative response (i.e. unavailability of the target
segment),

• numberMachines: the number of operating machines,
• safeDistance: the safe distance between two machines to
avoid collision,

• fuelReserve: the amount of fuel reserved by each machine,
• policy: the adaptation policy used to bypass dynamic obsta-
cles,

• maxAttempts: number of attempts to send request to an
unavailable segment before re-planning the path.

Furthermore, AdaptiveFlow allows users to specify the frequency
of obstacle injection in the configuration file. In detail, the Python
script that generates the TRebecamodel, will inject random segment
disruptions based on the values in the configuration file (see Listing
3). The aim is to emulate the concept of dynamic obstacles or bad
weather conditions.

<system>
<obstacleOccurences value="5"/>
<obstacleNumber value="4"/>
<obstacleMaxTime value="1000"/>
<obstacleMaxDuration value="100"/>

</system>

Listing 3: Example of random obstacle generation

For what concerns the configuration of the machines (Listing 4),
the user can specify:

• id: the unique identifier of the machine,
• type: the type of the simulated machine,
• leavingTime: the time in which the machine leaves the park-
ing station and gets operational,

• fuelCapacity: the capacity of the machine’s fuel tank,
• fuelConsumption: the fuel consumption rate of the machine,
• speed: the average speed of the machine,
• emission: the CO2 emissions,
• capacity: the loading capacity of the machine,
• unloadTime: the time for unloading the materials.

Moreover, each machine comes with a sequence of tasks to per-
form in order to complete its daily operating cycle e.g., moving
from the parking slot to the loading station.

<machines>
<machine id="0" type="hauler" leavingTime="10" fuelCapacity ="7000"

fuelConsumption="1" speed="6" emission="6" capacity ="100" unloadTime="0.1">
<tasks>5,3,2,4,5,3,0 </tasks >

</machine> <\machines>

Listing 4: Example of machine configuration



SAC’19, April 8-12, 2019, Limassol, Cyprus No author info because of double-blind review

4.2 The Model-Run Module
The so-generated TRebeca model is run with RMC for direct model
checking the generated model. In detail, RMC converts the input
(T)Rebeca model to a set of C++ files. These files are then com-
piled to an executable file. Running the executable file applies the
model checking algorithm to the input model, and generates the
verification results.

In addition to typical properties (e.g. safety, deadlock-freedom,
etc.), AdaptiveFlow checks the following properties on the TRebeca
model:

• if the machines are out of fuel,
• if the machines are moving correctly,
• if the machines collide with an obstacle or another machine,
• if the current configuration may lead to a starving situation.

Moreover, running RMC results in the generation of the whole
state-space of the model, which can be used to evaluate different
quantitative measures.

4.3 The Post-Processing Module
This module includes a Python script, which analyzes the state-
space of the TRebeca model. In particular, each state of the system
is analyzed and those measures that are meaningful for the analysis
of the system are evaluated. These measures include the amount of
consumed fuel, moved material, operating time and emitted CO2.

Figure 3: The VCE electric quarry site environment

4.4 Adaptation Policies
One of the most valuable features of the AdaptiveFlow framework
is its support for the adaptation of the path plans to environment
changes. As mentioned above, the framework is equipped with
three policies to handle temporary unavailability of segments. The
policies currently supported by AdaptiveFlow are:

• postpone, which allows the machine to postpone its planned
movement by an amount of time that is equal to the resend-
ingPeriod value specified in the configuration file. In case,
the segment is unavailable for a number of attempts greater
than the maxAttempts value, the re-route policy is applied.

• passby, which lets themachine to pass by the segment through
its surrounding segments.

• re-route which exploits the Dijkstra shortest path algorithm
[2] to find an alternative path between the current position
and the destination PoI.

It is worth noting that, the aim of developing multiple policies is
not to prove the effectiveness of a policy against the others, but to
show that in AdaptiveFlow, it is possible to design and implement
different adaptation policies based on the simulated context or user
needs.

5 THE TREBECA MODEL
In this section, we describe the TRebeca model generated by Adap-
tiveFlow for the VCE quarry site case. As shown in Figure 3, the
operational environment can be considered as a collection of seg-
ments. accordingly, the model consists of one reactive class named
Segment representing the minimal portion of the environment in
which machines can move. The behavior of each segment may differ
from others depending on the input specifications. In particular, the
topology of the PoIs within the environment affects how each Seg-
ment will behave when an event occurs. In case a Segment position
corresponds to a PoI position, a machine that requires to perform
a task at that PoI, needs to reach the corresponding Segment. For
instance, considering the parking station located at (1, 3) in Figure 3,
the Segment at this location is in charge of managing the machines
at the parking station (i.e. machines waiting for task assignment).
For the sake of completeness, the Segment in which the charging
station is located (i.e. coordinate (3, 3) in Figure 3) represents the
refueling station, and the load/unload PoI (e.g. coordinate (3, 1) in
Figure 3) corresponds to the Segment in which machines can either
load or unload materials.

In the TRebeca model, the state of each Segment is defined
through the following state variables:

• neighborSegments, a list containing the 8 neighbor segments,
• coord, the coordinate of the segment within the environment,
• currCapacity, number of machines that can be in the segment
simultaneously,

• isParkingStation, a Boolean variable indicating if the PoI is a
parking station,

• isCharginStation, a Boolean variable indicating if the PoI is a
charging station,

• isLoadUnloadPoint, a Boolean variable indicating if the PoI
is a load/unload point.

The Segment class includes the following message servers:

• initRoute, finds the initial route (i.e. sequence of segments to
traverse) from a machine position to a PoI by means of the
Dijkstra shortest path algorithm [2],

• moveToNext, asks the next segment in the route for a permis-
sion to enter,

• allowEntrance,the Segment is informed that the machine is
allowed to enter the next Segment,

• inhibitEntrance, the Segment is informed that the next posi-
tion is currently out of capacity or temporally unavailable,

• doMove, moves the machine to the next segment in the route,
• changeRoute, applies an adaptation policy to change the cur-
rent route,



AdaptiveFlow: An Actor-based Eulerian Framework for Track-based Flow Management SAC’19, April 8-12, 2019, Limassol, Cyprus

Figure 4 illustrates the flow of events during the model execution
using a flowchart. At start, the initial route is determined for each
machine by the initRoute message server of the corresponding
segment. Then, each machine follows its route by moving to the
next segment in each time step. In case, the next segment was
not available, the machine may change its route using one of the
adaptation policies.

Figure 4: Event flow in the TRebeca model.

6 EXPERIMENTAL SETUP
In order to demonstrate the applicability of AdaptiveFlow, we de-
scribe the experimental setups for the VCE quarry site case in the
following. Figure 3 is the graphical representation of the scenario
we are interested to model and analyze. The environment is com-
posed of 100 segments, 10 rows (i.e. x coordinate), and 10 columns
(i.e. y coordinate). There are six PoIs, including one parking station
(PS, id:0), four loading/unloading points (LUP with id: 2, 3, 4 and 5),
and one fuel charging station (CS, id: 1).

We performed two sets of experiments. In the first set, the goal
was to evaluate how the position of a PoI, as well as the adaptation
policies may affect the performance of the machines. We varied the
positions of the charging and parking stations, while all the other
parameters remained unchanged. Dynamic obstacles were gener-
ated randomly during the pre-processing phase, and the model was
executed 45 times. Certainly, the output measures evaluated by the
post-processing module would help users to easily select the con-
figuration that best suits their needs (e.g. minimizing operational
times, reducing fuel consumption, etc.).

In the second set of experiments, we considered two types of
machines working in the quarry. They differed in terms of speed,
fuel consumption rate, load capacity, fuel capacity, and CO2 emis-
sions. Table 1 shows the characteristics of these types of machines.
The aim was to evaluate how incrementally replacing machines of
type A with machines of type B, would affect the throughput of

Table 1: Characteristics of machines A and B

Type Fuel Capacity Fuel Consumption Rate CO2 Emission Rate Speed Load Capacity
A 7000 W 1 W/m 60 g/km 6 m/s 100 ql.
B 10000 W 2 W/m 120 g/km 8 m/s 150 ql.

the Volvo quarry site. Moreover, we gradually increased the per-
mitted traversing speed on segments from 6m/s up to 8 m/s, so that
machines of type B could exploit their higher velocity. All these
configurations were evaluated with the three adaptation policies
and the model was executed 54 times.

7 ANALYSIS RESULTS
In this section, we discuss the results of the two sets of experiments
presented in the previous section. For clarity, values shown in the
figures refer to the fuel consumed, the CO2 emitted and the time
needed for executing all the given tasks. Moreover, the configura-
tions are compared with respect to the adaptation policies.

For what concerns model checking, in all the experiments the
properties mentioned in Section 4 were satisfied, confirming that
the models with the given configurations did not violate the re-
quirements. It is worth saying that the first three properties were
satisfied by model design, i.e. the behavior of the Segment rebec was
defined such that these crucial needs were respected. Regarding
the last property, (i.e. no starvation), we noticed that the current
design of the model did not support configurations in which two
PoIs were adjacent, unless they could provide service to multiple
machines at once.

An example of this situation is shown in Figure 5. The red ma-
chine has just finished charging fuel at (0, 0) and it is approaching
the loading point at (1, 1). Vice versa, the blue machine needs to
reach the gasoline charging station, since it almost ran out of fuel
after having loaded materials at (1, 1). These two machines want
to move to the same PoI simultaneously, and in this case, the first
adaptation policy (i.e. postpone) is applied by both of them. There-
fore, they will wait until the PoI becomes available again, which
will never happen since both of them are waiting for each other.

Figure 5: Example of a configuration which leads to starva-
tion

Changing PoI positions. Figures 6, 7, and 8 show the outcomes
of the first set of experiments. Accordingly, the positions that op-
timize all the evaluated measures are those located in the center
of the site (i.e. x and y are between 4 and 5). Considering the role
played by the adaptation policies, the one that minimizes the oper-
ating time is the third policy. With this policy, a machine’s route is
re-computed whenever it reaches an obstacle. This means that it
will follow the shortest path from the current position to the PoI,



SAC’19, April 8-12, 2019, Limassol, Cyprus No author info because of double-blind review

avoiding the obstacle. As expected, the first policy (i.e. postpone)
imposes the highest operating time. However, the fuel consumption
is the lowest, since machines do not consume fuel when they are
waiting. This is not the case for CO2 emissions, since we assume
that waiting machines produce a little amount of pollution. It is
worth saying that these assumptions can be changed without much
effort and in accordance with the system to be simulated.

Figure 6: Exp.1-Fuel consumption comparison

Figure 7: Exp.1-CO2 emissions comparison

Figure 8: Exp.1-Operating time comparison

Using different types of machines. In the second set of exper-
iments, considering the results shown in Figures 9, 10, and 11, we
can notice that replacing machines of type A with type B would
increase both fuel consumption and CO2 emissions. On the other
hand, the operating time decreases with the increase in the number
of machines of type B. This is true only when the maximum speed
for each segment is greater than 6 m/s allowing machines of type
B to exploit their greater velocity. It is also worth remarking that,
differently from the first set of experiments, in which all the runs
ended with a total amount of transported material that is equal
to 1500 quintals, employing machines with higher transportation
capacity led the system to be more productive. Indeed, the more
is the number of type B machines, the higher is the amount of
moved material, i.e., 1500, 1650, 1800, 1950, 2100, and 2250 quin-
tals for configurations with 0, 1, 2, 3, 4, and 5 machines of type B,
respectively.

From the adaptation policy point of view, the results indicate that
fuel consumption is almost the same for all the three adaptation
policies, and using either policy 2 or 3 instead of policy 1 would
significantly reduce both CO2 emissions and operating time.

Figure 9: Exp.2-Consumption comparison

Figure 10: Exp.2-CO2 Emissions comparison

8 RELATEDWORK
The closest work to this paper is presented by Bagheri et al. in [1].
They have targeted track-based traffic control systems in which
the traffic flows through pre-specified sub-tracks and is coordi-
nated by a traffic controller. They introduced a coordinated actor



AdaptiveFlow: An Actor-based Eulerian Framework for Track-based Flow Management SAC’19, April 8-12, 2019, Limassol, Cyprus

Figure 11: Exp.2-Operating time comparison

model and showed how to use it for simulating and analysis of self-
adaptive systems. In comparison to this work, our work supports
the decentralized implementation of control systems and there is
no need for a centralized coordinator. In addition, we use model
checking instead of simulation, which would lead to more accurate
evaluations.

In [14], the authors proposed a model checking approach to
path finding for mobile robots. They modeled the environment of
a robot as a grid of cells. Starting from an initial cell, the robot
was supposed to find a path to its destination performing a specific
task at each cell on its way. The authors used timed automata to
model the robot’s behavior and analyzed reachability and safety
properties using UppAal. Smith et al. [18] addressed the same prob-
lem using weighted transition systems and generalized LTL. They
demonstrate that how in every environment model, and for every
formula, a robot trajectory which minimizes the cost function is
computed. It is clear that modeling in this approach is harder than
that of [14] as it is in the lower level of abstraction. Authors in [11]
did the same for the analysis of A∗ algorithm using Z modeling
language and its corresponding tool-set. In comparison to these
works, AdaptiveFlow is capable of modelling and analyzing the con-
current behaviors of multiple agents. This way, not only it is easier
to model complex behaviors with TRebeca than automata, but also
we can address the interference between different activities.

Authors in [13] addressed the safe path planning problem in a
multi-robot configuration. They used mCRL2 to specify robots and
the environment and examined that the collective behavior of a
group of robots satisfied certain desired properties or not. They
illustrated the applicability of their approach using a simple path
planning algorithm which conducts a set of robots from their initial
positions to their destinations on a planar surface. In comparison to
our work, the authors in [13] use the Lagrangian model instead of
Eulerian which may require more message passing between robots.
More message passing may increase the probability of state-space
explosion. Similarly, the authors of [9, 10] used the Lagrangian
model to address multi-robot path planing. However, they utilized
timed and hybrid automata for model checking.

There are also some other contributions that use formal methods
to synthesize safe paths for moving objects (e.g. [4, 15]). However,
the main concern of the authors is only ensuring the safety of move-
ments rather than choosing the optimal path in case of dynamic
obstacles.

9 CONCLUSION AND FUTUREWORKS
In this paper, we presented AdaptiveFlow, as a general framework
for modeling and analyzing track-based flow management. The
framework is completely decentralized and generalized to support
any track-based system that has the following characteristics: mov-
ing objects that transport an asset (e.g. passenger, material, etc.)
among a number of dedicated locations (e.g. train station, airports,
loading stations, etc.), and refuel at some charging stations.

In AdaptiveFlow TRebeca is used for modelling the moving ob-
jects and the Rebeca model checker is used to analyze the desired
properties. AdaptiveFlow allows users to easily personalize the
system by means of user-friendly input files, and to evaluate how
their decisions can affect the throughput of the simulated system.
Furthermore, the framework is designed in such a way that the
objects can adapt their path plans to the unexpected changes in
the environment. Currently, several cost functions such as fuel
consumption and CO2 emissions are supported by the framework.

As a future work, we will enrich AdaptiveFlowwith more adapta-
tion policies to handle unexpected changes in the environment. As
an example, we are interested to implement the adaptation policy
named Dipole flow field [5, 19] in our framework.

REFERENCES
[1] M. Bagheri, M. Sirjani, E. Khamespanah, N. Khakpour, I. Akkaya, A. Movaghar,

and E.A. Lee. 2018. Coordinated actor model of self-adaptive track-based traffic
control systems. Journal of Systems and Software 143 (2018), 116–139. https:
//doi.org/10.1016/j.jss.2018.05.034

[2] Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs.
Numerische mathematik 1, 1 (1959), 269–271.

[3] Volvo Construction Equipment. 2018. Innovation at Volvo construction
equipment. Retrieved 2018-09-20 from https://www.volvoce.com/global/en/
this-is-volvo-ce/what-we-believe-in/innovation/

[4] Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas. 2005. Tempo-
ral Logic Motion Planning for Mobile Robots. In Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, ICRA 2005, April 18-22, 2005,
Barcelona, Spain. IEEE, 2020–2025. https://doi.org/10.1109/ROBOT.2005.1570410

[5] R. Gu, R. Marinescu, C. Seceleanu, and K. Lundqvist. 2018. Formal verification
of an autonomous wheel loader by model checking. In Proceedings of the 6th
Conference on Formal Methods in Software Engineering, FormaliSE 2018, collocated
with ICSE 2018, Gothenburg, Sweden, June 2, 2018. 74–83.

[6] A. Jafari, E. Khamespanah, M. Sirjani, H. Hermanns, and M. Cimini. 2016. PTRe-
beca: Modeling and analysis of distributed and asynchronous systems. Sci.
Comput. Program. 128 (2016), 22–50. https://doi.org/10.1016/j.scico.2016.03.004

[7] E. Khamespanah, R. Khosravi, and M. Sirjani. 2018. An efficient TCTL model
checking algorithm and a reduction technique for verification of timed actor
models. SCP 153 (2018), 1–29. https://doi.org/10.1016/j.scico.2017.11.004

[8] E. Khamespanah, M. Sirjani, M. Viswanathan, and R. Khosravi. 2016. Floating
Time Transition System: More Efficient Analysis of Timed Actors. In Formal
Aspects of Component Software - 12th International Symposium, FACS 2015, Rio de
Janeiro, Brazil, October 14-16, 2015.

[9] T. John Koo, Rongqing Li, Michael Melholt Quottrup, Charles A. Clifton, Roozbeh
Izadi-Zamanabadi, and Thomas Bak. 2012. A framework for multi-robot mo-
tion planning from temporal logic specifications. SCIENCE CHINA Information
Sciences 55, 7 (2012), 1675–1692. https://doi.org/10.1007/s11432-012-4605-8

[10] M. Melholt Quottrup, T. Bak, and R. Izadi-Zamanabadi. 2004. Multi-robot Plan-
ning: a Timed Automata Approach. In Proceedings of the 2004 IEEE International
Conference on Robotics and Automation, ICRA 2004, April 26 - May 1, 2004, New
Orleans, LA, USA. IEEE, 4417–4422. https://doi.org/10.1109/ROBOT.2004.1302413

[11] E. Rabiah and B. Belkhouche. 2016. Formal Specification, Refinement, and Imple-
mentation of Path Planning. In 12th International Conference on Innovations in
Information Technology, IIT 2016, Al Ain, UAE, November 28-30, Proceeding.

[12] A.H. Reynisson, M. Sirjani, L. Aceto, M. Cimini, A. Jafari, A. Ingólfsdóttir, and
S.H. Sigurdarson. 2014. Modelling and Simulation of Asynchronous Real-Time
Systems using Timed Rebeca. SCP 89 (2014), 41–68.

[13] Arash Khabbaz Saberi, Jan Friso Groote, and Sarmen Keshishzadeh. 2013. Analysis
of Path Planning Algorithms: a Formal Verification-based Approach. In Proceed-
ings of the Twelfth European Conference on the Synthesis and Simulation of Living
Systems: Advances in Artificial Life, ECAL 2013, Sicily, Italy, September 2-6, 2013,
Pietro Liò, Orazio Miglino, Giuseppe Nicosia, Stefano Nolfi, and Mario Pavone

https://doi.org/10.1016/j.jss.2018.05.034
https://doi.org/10.1016/j.jss.2018.05.034
https://www.volvoce.com/global/en/this-is-volvo-ce/what-we-believe-in/innovation/
https://www.volvoce.com/global/en/this-is-volvo-ce/what-we-believe-in/innovation/
https://doi.org/10.1109/ROBOT.2005.1570410
https://doi.org/10.1016/j.scico.2016.03.004
https://doi.org/10.1016/j.scico.2017.11.004
https://doi.org/10.1007/s11432-012-4605-8
https://doi.org/10.1109/ROBOT.2004.1302413


SAC’19, April 8-12, 2019, Limassol, Cyprus No author info because of double-blind review

(Eds.). MIT Press, 232–239. https://doi.org/10.7551/978-0-262-31709-2-ch035
[14] Rim Saddem, Olivier Naud, Karen Godary-Dejean, and Didier Crestani. 2017.

Decomposing the Model-Checking of Mobile Robotics Actions on a Grid. In 20th
World Congress of the International Federation of Automatic Control, IFAC WC
2017, Toulouse, France, July 9-14, Proceeding.

[15] Ali Narenji Sheshkalani and Ramtin Khosravi. 2018. Verification of
visibility-based properties on multiple moving robots in an environment
with obstacles. International Journal of Advanced Robotic Systems 15,
4 (2018), 1729881418786657. https://doi.org/10.1177/1729881418786657
arXiv:https://doi.org/10.1177/1729881418786657

[16] M. Sirjani and A. Movaghar. 2001. An Actor-Based Model for Formal Modelling of
Reactive Systems: Rebeca. Technical Report CS-TR-80-01. Tehran, Iran.

[17] M. Sirjani, A. Movaghar, A. Shali, and F.S. de Boer. Dec. 2004. Modeling and
Verification of Reactive Systems using Rebeca. Fundamenta Informatica 63, 4
(Dec. 2004), 385–410.

[18] Stephen L. Smith, Jana Tumova, Calin Belta, and Daniela Rus. 2010. Optimal
path planning under temporal logic constraints. In 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, October 18-22, 2010, Taipei, Taiwan.
IEEE, 3288–3293. https://doi.org/10.1109/IROS.2010.5650896

[19] Lan Anh Trinh, Mikael Ekström, and Baran Cürüklü. 2017. Dipole Flow Field
for Dependable Path Planning of Multiple Agents. In IEEE/RSJ International
Conference on Intelligent Robots and Systems IROS, 24 Sep 2017, Vancouver, Canada.

https://doi.org/10.7551/978-0-262-31709-2-ch035
https://doi.org/10.1177/1729881418786657
http://arxiv.org/abs/https://doi.org/10.1177/1729881418786657
https://doi.org/10.1109/IROS.2010.5650896

	Abstract
	1 Introduction
	2 Rebeca and TRebeca
	3 The Electric Quarry Site Case
	4 AdaptiveFlow description
	4.1 The Pre-Processing Module
	4.2 The Model-Run Module
	4.3 The Post-Processing Module
	4.4 Adaptation Policies

	5 The TRebeca Model
	6 Experimental Setup
	7 analysis Results
	8 Related Work
	9 Conclusion and Future Works
	References

