
Safe and Efficient Fleet Operation for Autonomous Machines:
An Actor-based Approach

Ali Jafari
School of Computer Science
Reykjavik University, Iceland

ali@ru.is

Jayasoorya Jayanthi Surendran Nair
School of Innovation Design and Engineering

Mälardalen University, Sweden
jjr15001@student.mdh.se

Stephan Baumgart
System Architecture Department

Volvo Construction Equipment, Sweden
stephan.baumgart@volvo.com

Marjan Sirjani
School of Innovation Design and Engineering

Mälardalen University, Sweden
School of Computer Science
Reykjavik University, Iceland

marjan.sirjani@mdh.se

ABSTRACT
In this paper, we formally model and verify run-time requirements
of an application consisting of complex electrified machines called
HX autonomous haulers, developed by Volvo Construction Equip-
ment. To model the fleet control, we use Timed Rebeca, an actor-
based modeling language, and to analyze the system performance,
we use Afra, an integrated environment for modeling and verifying
distributed systems modeled by Rebeca or Timed Rebeca language.
We run a set of experiments to find the improved configuration in
which the total time for machines to complete one operating cycle
is minimized.

CCS CONCEPTS
• Computing methodologies → Model verification and val-
idation; • Computer systems organization → Embedded soft-
ware;

KEYWORDS
Actor model, Embedded system, Timed Rebeca, Model checking,
Performance evaluation, Autonomous machine

ACM Reference Format:
Ali Jafari, Jayasoorya Jayanthi Surendran Nair, Stephan Baumgart, and Mar-
jan Sirjani. 2018. Safe and Efficient Fleet Operation for Autonomous Ma-
chines: An Actor-based Approach. In SAC 2018: SAC 2018: Symposium on
Applied Computing , April 9–13, 2018, Pau, France. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3167132.3167382

1 INTRODUCTION
Modern construction equipment machines include embedded soft-
ware, which makes these systems highly sophisticated. Many new
functions implemented in the embedded systems are safety critical

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC 2018, April 9–13, 2018, Pau, France
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5191-1/18/04.
https://doi.org/10.1145/3167132.3167382

and functional safety standard compliance need to be ensured. Us-
ing Autonomous Guided Vehicles (AGVs) is a recent trend in many
domains where parts of the workflow can be automated. Here, we
consider the Electric Site Research Project that Volvo Construction
Equipment is working on [8]. In this project, the transporting of
material in a quarry site is automated using a fleet of autonomous
haulers (HX). The path between loading, unloading and charging
positions is subdivided into tracks for controlling the distribution
of machines and realizing different driving characteristics.

Generally, there are two approaches of centralized and decen-
tralized control for realizing this application. In the case of AGVs,
the autonomous machines get the needed information about the
path from a centralized controller in a specified time interval. Ac-
cording to missions assigned to machines, they are updated by the
controller about the location of other machines to avoid collisions.

An alternative to using a centralized server is that AGVs are
controlled in a decentralized manner [9]. In this paper, we design
a fleet operation model for autonomous machines, in which the
machines and tracks are equipped with sensors and communication
equipments to send data to each other. Accordingly, this design is
based on the sensor networks that guarantee the safety property of
“no-collision” using a distributed approach instead of a centralized
controller.

To show the applicability of the proposed distributed fleet op-
eration model, we consider the quarry site described above as the
case study. Timed Rebeca [1], an actor-based modeling language, is
used to model the quarry site including the operational behaviors
of machines at the fleet level. We employ Afra [2], an IDE with a
dedicated model checker, for both functional verification and per-
formance evaluation of the model. We show that the critical safety
property of “no-collision” is guaranteed in the proposed distributed
approach. For performance evaluation, we run experiments to find
an improved values for the parameters of the system, for which the
total time needed by machines to complete one operating cycle is
minimized.

This paper is structured as follows. Section 2 describes the related
works. Rebeca and its timed extension, namely Timed Rebeca, are
described in section 3. Section 4 explains the case study which is
inspired by the electrified quarry site at Volvo. In section 5, the

https://doi.org/10.1145/3167132.3167382
https://doi.org/10.1145/3167132.3167382


SAC 2018, April 9–13, 2018, Pau, France A.Jafari et al.

modeling approach and the Timed Rebeca model are presented.
Section 6 reports the analysis results for different experiments.

2 RELATEDWORK
The quarry site use case we analyze in this paper requires planning
of machines and their distribution on the tracks. As an input to
this analysis, the speed requirements and spend time at different
positions at the site need to be provided. Tasks need to be scheduled
and synchronized. Generally, schedules can be planned on-line or
off-line. Off-line approaches have the possibility to analyze different
potential configurations without being dependent on finding a
solution within a limited time. Calculating routes and distributions
assumes a constant environment with low probability for changes.
On-line scheduling algorithms for AGVs have the advantage to
react on unforeseen situations, but require a higher computational
power and efficient algorithms to provide answers in time.

Different approaches are proposed for planning routes and avoid
collision. Secchi et al. [5] use an automated warehouse case for
their studies. The authors assume that routes are specified and the
autonomous vehicles are distributed across the warehouse. In this
work, a new approach is proposed to make decisions at real-time
which agent should receive the mission and which routes should be
taken based on the current traffic situation. This examples assumes
that vehicles are idling andwaiting for receiving a newmission. This
is different from our case, where the fleet of autonomous haulers is
working in a cyclic manner. Another approach for real-time sched-
uling of AGVs in an industrial context is described by Erol et al. [3].
The authors propose an agent-based scheduling algorithm applying
negotiation/bidding concepts for choosing the mission assignment
to a specific AGV. When the environment becomes dynamic, routes
may change or unknown objects need to be identified and avoided.
Zhang et al. [10] use a tool to formally verify an algorithm for safe
navigation of robots.

In our use case, we assume that the workflows are to be designed
and assurance of the safety of routing is required. Therefore, on-line
approaches are not feasible at this stage.

3 REBECA AND TIMED REBECA MODELING
LANGUAGES

In this section, we briefly explain the Rebeca language [6, 7], and
then we present its extension with timing features to build Timed
Rebeca [1].

Rebeca. Rebeca is an actor-based modeling language with for-
mal semantics that is supported by model checking tools. A Rebeca
model consists of the definition of reactive classes and the instanti-
ation part which is called main. The main part defines instances of
reactive classes, called rebecs. The behavior of a rebec is determined
by its message servers.

In Rebeca, computation is event-driven, where messages can
be seen as events. Each rebec takes a message from its message
queue and executes the corresponding message server. Commu-
nication takes place by asynchronous message passing, which is
non-blocking for both sender and receiver. The behavior of a Rebeca
model is defined as the parallel execution of the released messages
of the rebecs.

Timed Rebeca. The timing primitives are added to the Rebeca
syntax to cover timing features that amodeler might need to address
in a message-based, asynchronous and distributed setting. The
timing primitives added to the Rebeca syntax are as follows.

• Delay: delay(t), where t is a positive natural number, in-
creases the value of the local clock of the respective rebec
by the amount t.

• Deadline: r.m() deadline(t), means that the message m is sent
to the rebec r and it is put in the message bag. After t units
of time the message is not valid any more and is purged from
the bag. Deadlines are used to model message expirations
(timeouts).

• After: r.m() after(t), the message cannot be taken from the
bag before t time units have passed. The after primitive is
used to model network delays in delivering a message to
its destination. Note that after primitive can also be used to
model periodic events. If we send a message in a loop with
after(t), this will cause having the message in the message
queue every t units of time. In Timed Rebeca, loops are
modeled by sending a message to itself.

In Timed Rebeca, each rebec has its own local clock, but there
is also a notion of global time based on synchronized distributed
clocks of all the rebecs. Messages that are sent to a rebec are put in
its message bag together with their arrival time, and their deadline.
Methods are executed atomically, but the passing of time during
the execution of methods can be modeled.

4 CASE STUDY
Our case study is inspired by the quarry site used in the electrified
site project at Volvo Construction Equipment, where autonomous
haulers (HX) are used for transporting material in the site. HX
machines are intended to perform tasks such as material transport,
loading, unloading, and charging in a cyclic manner with predefined
timing constraints and task priorities.

Figure 1 shows an exemplified generic workflow. In order to be
generic, we call different possible tasks or resources in the quarry
as events. Loading an autonomous machine, unloading or charging
are examples of different events. The workflow, type of loading
equipment, unloading procedures or charging stations may differ
as well as the number of autonomous machines, when different
sites are considered.

We explain the operational behavior of HX machines in the site,
for which a TRebeca model is developed and performance analysis
is carried out and presented in the next sections. The entire path to
be traveled by HX machines is composed of several tracks which
are named from S1 to S7 in Figure 1. Each track is divided into
an arbitrary number of sub-tracks for which speed profiles are
defined. The machines traveling in a sub-track have to comply the
corresponding speed profile.

The workflow can start with Event 4, where the autonomous
machines receive a task to either travel to Event 1 or to Event 2. Event
1 can be loading the machines with a wheel loader (WL). Event 2 can
be a direct loading of the machines from a stone crusher (SC). Track
S4 requires reduced speed to maneuver towards the branching
point. Tracks S5 and S6 are high speed tracks, where the machines
can travel in maximum speed. When loaded, the machines shall



Safe and Efficient Fleet Operation for Autonomous Machines: An Actor-based Approach SAC 2018, April 9–13, 2018, Pau, France

transport the material to the dumping spot (DS) at Event 3. Tracks
S1 and S7 are slow driving areas, because of approaching the point
where both tracks join again to travel with high speed on track S2.
Electric autonomous machines need to recharge the battery, which
may be done during each cycle for simplicity. Nonetheless, more
complex scenarios can be modeled by the abstraction presented
above.

Figure 1: An abstract presentation of tracks and events in a
Fleet Operation Site

5 FORMAL MODELING OF FLEET
OPERATION

In this section, we first describe the proposed modeling approach
of track-based applications. According to this approach, we model
the case study explained in Section 4 using the TRebeca language.

To model the case study shown in Figure 1 in TRebeca, we con-
sider tracks and events as rebecs (actors), and machines as messages
being sent among rebecs. To be able to assure safety of the site,
and control the distance of machines from each other, we further
refine this modeling approach by dividing each track to sub-tracks.
Each sub-track is dealt with as a critical section, only one machine
can be on a sub-track at the same time. Sub-tracks and machines
are equipped with sensors and communication devices. A machine
traveling in a sub-track sends a request to the next sub-track when
approaching it. If the next sub-track is free, i.e., if it is not occupied
by another machine, the machine gets a permission signal and is
able to exit the current sub-track and enter the next one. Otherwise,
the machine stops in a “safe distance” from the next sub-track (or
slow down) until it gets the permission. Since we assure the exis-
tence of only one machine inside a sub-track, collision avoidance is
guaranteed by design. Therefore, there is no need to calculate the
distance of machines from each other to avoid collisions.

This design decision has other advantages too. Each sub-track
has its own speed profile and length. We are able to model different
physical situations in some part of the site. For example, if a part
of track S7 is icy in winter and the machines must keep their speed
below 20 km/h, this can be modeled by specifying this part as a
sub-track with predefined length and permitted speed.

More importantly, as we are able to set the length and the per-
mitted speed for every sub-track as well as the safe distance from

the next sub-track, this approach can be generalized and used for
modeling any other track-based fleet control applications.

Timed Rebeca Model. The TRebeca model consists of seven
different reactive classes: StoneCrusher, DumpingSpot,WheelLoader,
StartingPoint, SubTrack, PrePoint, and CrossController.

The first four reactive classes model the resources (events) in
the site. The SubTrack is used to model sub-tracks. As previously
explained, a sequence of sub-tracks constructs a track in Figure 1,
which is used to connect resources to each other. Tracks are used
by machines to navigate in the site. Track S5 has three sub-tracks;
the remaining tracks have 5 sub-tracks.

The StartingPoint (Event 4) sends machines to PrePoint, where
sub-track S4 is forked into S5 and S6. PrePoint manages the ma-
chines and sends them towards either StoneCrusher (Event 2) or
WheelLoader (Event 1). The machines are sent to these two Events
alternatingly. If the sub-track next to PrePoint and towards the cho-
sen target is occupied then PrePoint chooses the alternate target.
These policies can easily be changed in the TRebeca model.

The reactive class CrossController is responsible for controlling
the critical section created in the crossing point of tracks S6 and S7.
The crossing point is the common part of two sub-tracks belonging
to tracks S6 and S7. The CrossController allows only one machine
to pass the crossing at a given time. After getting unloaded at the
DumpingSpot (Event 3), a machine moves towards the starting point
where it completes one operating cycle. The complete TRebeca
model can be found in [4].

6 ANALYSIS RESULTS
In this section, we use the Afra tool for functional verification and
performance evaluation of the Timed Rebeca model explained in
Section 4. The model checker of Afra checks “deadlock-freedom”
and “no deadline-miss” properties for the model automatically.

For performance evaluation, the state space (in the form of timed
transition system) generated by the model checker of Afra is fed
into an script to calculate the spent time, which is the total time
needed for all machines to complete one operating cycle. For each
machine, the operating cycle starts from a parking slot at the start-
ing point, continues by loading, unloading tasks, and finishes when
the machine gets back to the starting point again.

We run some experiments, each of which consisting of different
configurations, in order to understand the effect of the system
parameters on the spent time. The goal is to find the improved
configuration in which the spent time is minimized.

The following parameters are considered in the TRebeca model,
and specify different characteristics of the system. The value of
these parameters can affect the value of the spent time: PERIOD,
NORMAL_SPEED, REDUCED_SPEED, SAFE_DISTANCE, SUB_
TRACK_LENGTH, LOADING_TIME_SC, LOADING_TIME_WL, UN-
LOADING_TIME_DS, NUMBER_VEHICLES.

Some of these parameters are defined. 1) PERIOD: the machine
waiting behind the next sub-track to get entrance permission re-
sends its request again after a specified time, which is called pe-
riod. 2) NORMAL_SPEED: in most sub-tracks, machines are trav-
eling with a normal and predefined speed. 3) REDUCED_SPEED:
in a few sub-tracks, machines must travel with a lower speed. 4)



SAC 2018, April 9–13, 2018, Pau, France A.Jafari et al.

SAFE_DISTANCE: when a machine wants to exit its current sub-
track, it must stop in a safe distance from the next sub-track as there
may be another machine at the beginning of the next sub-track.

Tracks S1, S4 and S7 have five sub-tracks. Considering Figure 1,
in all experiments the last three sub-tracks of S1 and S4, and the
last two sub-tracks of S7 have the speed limit of REDUCED_SPEED.
This way, we can model areas in which machines should be driven
slowly for some reason.

The value of the following parameters are fixed in all experi-
ments.

– SUB_TRACK_LENGTH = 200 meters
– SAFE_DISTANCE = 20 meters
– LOADING_TIME_SC = 60 seconds
– LOADING_TIME_WL = 60 seconds
– UNLOADING_TIME_DS = 30 seconds
– REDUCED_SPEED = NORMAL_SPEED /2

In the first experiment, we examine the effect of changing the
“normal speed” and “period” on the spent time. To this end, the
normal speed changes from 10 to 20 m/s and the period varies from
15 to 25 seconds. More specifically, we run the TRebeca model with
121 different values for the normal speed and the period, and keep
the value of other parameters fixed. The spent time is calculated
for each setting. The results are shown in Figure 2 for the system
with six machines traveling in the site. The minimum value of the
spent time is 561 seconds when the normal speed is 20 m/s and the
period equals to 22 seconds.

Figure 2: The effect of “speed” and “period” on the spent
time with six machines in the system

In the second experiment, we investigate the effect of period
and the number of machines on the spent time. To this end, the
values of the normal speed and the reduced speed are set to 18
m/s and 9 m/s, respectively. The value of period is chosen from
integer interval [15, 25], and the number of machines varies from 3
to 6. The experiment includes running the TRebeca model with 44
different settings. The analysis results are shown in Figure 3.

To decrease the total spent time, The machines can increase their
speed. But, higher speed uses more energy in machines. Using our
methodology, we are able to find a setting in which the total spent
time is below a desired threshold, and the energy consumption is
minimized. As an example, in the first experiment, it’s enough to
find the minimum speed while the time threshold is preserved.

Figure 3: The effect of “period” and “number of machines”
on the spent time.

Acknowledgments. The work of the first author, and a fraction
of work of the forth author are supported by the project “Self-
Adaptive Actors: SEADA” (163205-051) of the Icelandic Research
Fund. Work of the forth author is also supported in part by DPAC
Project (Dependable Platforms for Autonomous Systems and Con-
trol) at Mälardalen University, Sweden. The third author acknowl-
edges the funding support received for this research from the KKS-
funded ITS- EASY Post Graduate School for Embedded Software
and Systems and the Electric Site Project funded by the Swedish
Energy Agency.

REFERENCES
[1] Luca Aceto, Matteo Cimini, Anna Ingólfsdóttir, Arni Hermann Reynisson,

Steinar Hugi Sigurdarson, and Marjan Sirjani. 2011. Modelling and Simula-
tion of Asynchronous Real-Time Systems using Timed Rebeca. In FOCLASA’11.
1–19.

[2] Afra. 2017. Afra: an integrated environment for modeling and verifying Rebeca
family designs. (2017). Retrieved 2017-12-09 from https://rebeca-lang.github.io/
alltools/Afra

[3] Rizvan Erol, Cenk Sahin, Adil Baykasoglu, and Vahit Kaplanoglu. 2012. A multi-
agent based approach to dynamic scheduling of machines and automated guided
vehicles in manufacturing systems. Applied Soft Computing 12, 6 (2012), 1720 –
1732. https://doi.org/10.1016/j.asoc.2012.02.001

[4] Rebeca. 2017. Rebeca Homepage. (2017). Retrieved 2017-12-09 from http:
//www.rebeca-lang.org

[5] C. Secchi, R. Olmi, F. Rocchi, and C. Fantuzzi. 2015. A dynamic routing strategy
for the traffic control of AGVs in automatic warehouses. In 2015 IEEE International
Conference on Robotics and Automation (ICRA). 3292–3297. https://doi.org/10.
1109/ICRA.2015.7139653

[6] M. Sirjani and A. Movaghar. 2001. An Actor-Based Model for Formal Modelling of
Reactive Systems: Rebeca. Technical Report CS-TR-80-01. Tehran, Iran.

[7] M. Sirjani, A. Movaghar, A. Shali, and F.S. de Boer. Dec. 2004. Modeling and
Verification of Reactive Systems using Rebeca. Fundamenta Informatica 63, 4
(Dec. 2004), 385–410.

[8] Volvo Construction Equipment. 2017. Innovation at Volvo Construction Equip-
ment. https://www.volvoce.com/global/en/this-is-volvo-ce/what-we-believe-
in/innovation/. (2017). [Online; accessed 24-August-2017].

[9] Danny Weyns, Tom Holvoet, Kurt Schelfthout, and Jan Wielemans. 2008. Decen-
tralized Control of Automatic Guided Vehicles: Applying Multi-agent Systems in
Practice. In Companion to the 23rd ACM SIGPLAN Conference on Object-oriented
Programming Systems Languages and Applications (OOPSLA Companion ’08).
ACM, New York, NY, USA, 663–674. https://doi.org/10.1145/1449814.1449819

[10] M. Zhang and X. Zhang. 2016. Formally verifying navigation safety for ground
robots. In 2016 IEEE International Conference on Mechatronics and Automation.

1000–1005. https://doi.org/10.1109/ICMA.2016.7558699

https://rebeca-lang.github.io/alltools/Afra
https://rebeca-lang.github.io/alltools/Afra
https://doi.org/10.1016/j.asoc.2012.02.001
http://www.rebeca-lang.org
http://www.rebeca-lang.org
https://doi.org/10.1109/ICRA.2015.7139653
https://doi.org/10.1109/ICRA.2015.7139653
https://doi.org/10.1145/1449814.1449819
https://doi.org/10.1109/ICMA.2016.7558699

	Abstract
	1 Introduction
	2 Related Work
	3 Rebeca and Timed Rebeca Modeling Languages
	4 Case Study
	5 Formal Modeling of Fleet Operation
	6 Analysis Results
	References

