
Reactive Actors: Isolation for Efficient Analysis of
Distributed Systems

Marjan Sirjani
School of Innovation, Design and Engineering

Mälardalen University
Västerås, Sweden

School of Computer Science
Reykjavik University
Reykjavik, Iceland

marjan.sirjani@mdh.se

Ehsan Khamespanah
School of Computer Science

Reykjavik University
Reykjavik, Iceland

School of ECE
University of Tehran

Tehran, Iran
ehsank@ru.is

Fatemeh Ghassemi
School of ECE

University of Tehran
Tehran, Iran

fghassemi@ut.ac.ir

Abstract—In this paper we explain how the isolation or
decoupling of actors can help in developing efficient analysis
techniques. The Reactive Object Language, Rebeca, and its timed
extension are introduced as actor-based languages for modeling
and analyzing distributed systems. We show how floating-time
transition system can be used for model checking of timed actor
models when we are interested in event-based properties, and
how it helps in state space reduction. We explain how the model
of computation of actors helps in devising an efficient state
distribution policy in distributed model checking. We show how
we use Rebeca to verify the routing algorithms of mobile ad-
hoc networks. The paper is written in a way to make the ideas
behind each technique clear such that it can be reused in similar
domains.

Index Terms—Actors, real-time systems, distributed systems,
model checking

I. INTRODUCTION

Distributed systems consist of software components exe-
cuted on different computers that are linked together by a
network. The software components communicate with each
other in order to achieve the goal of the distributed system.
Nowadays distributed systems are everywhere providing scal-
ability and redundancy. Design and analysis of such systems
is overly challenging.

Actor model is a model of concurrent computation for
developing parallel, distributed and mobile systems [1], [2].
Each actor is an autonomous object that operates concurrently,
and send and receive messages asynchronously. Rebeca [3], [4]
is an actor-based language proposed to bridge the gap between
software engineers and formal methods community. Rebeca
comes with a formal semantics and is the first actor-based
language with model checking support [5].

Models can be used for both synthesis and analysis [6].
We build abstract models that serve as a specification of a
system to be built, and then we refine the models, adding
details until we build the system itself. The process is usually
iterative, with the specifications evolving along with their
refinements. We may have different analysis purposes like
verification, validation, and performance evaluation. Model
checking, simulation, and building physical prototypes can

all be used as methods for analysis. Simulation, which is
the execution of an executable model, reveals one possible
behavior of a model with one set of inputs. Model checking
reveals all possible behaviors of a model over a family of
inputs [6].

According to De Nicola et.al. in [7] a major challenge
in designing languages is to devise appropriate abstractions
and linguistic primitives to deal with the specificities of the
domain under investigation. Karmani and Agha believe that a
programming language should facilitate the process of writing
programs by being close to the conceptual level at which a
programmer thinks about a problem, rather than at the level
at which it may be implemented [8]. In [9], Sirjani defines
faithfulness as the similarity of the model and the system;
and it is argued that faithfulness can bring in analizability and
tracability. According to [9], a modeling language is faithful
to a system if the model of computation supported by the
language matches the model of computation of [the features of
interest of] the system. In [10] a model of computation (MoC)
is defined as a collection of rules that govern the execution of
the [concurrent] components and the communication between
components. Faithfulness can be seen as the key motivation
behind domain-specific languages.

Rebeca stands for Reactive Objects Language, and is de-
signed as a faithful language for distributed reactive software
systems. It is an imperative actor-based language while orig-
inal actor languages are mainly functional languages. It is an
event-driven and asynchronous language, with implicit receive
and non-blocking send statement. There is no shared variables,
and methods are atomic and run to completion. A tool suite
for model checking is available at [11]. Theories, techniques
and tools for compositional verification [12], symmetry and
partial order reduction [13], and slicing [14] are proposed. All
the above methods are based on techniques using isolation of
actors. Rebeca is used for schedulability analysis of wireless
sensor network applications [15], protocol verification [16],
design exploration and comparing routing algorithms [17].
It is also used for lightweight preprocessing for agent-based
simulation [18].

In the following section we explain what we mean by
isolation of actors and how it can help in analysis. We then
focus on a model that is presented as the semantics of Timed
Rebeca and can help by a significant amount of reduction
in the state space while doing the analysis. We believe that
similar techniques can be used in different analysis methods
for event-based reactive isolated modules. In Section IV, we
present a technique used for analysis by distributed model
checking which is specific for actors. The efficiency of the
technique is checked for model checking Rebeca models.
Section V explains how we deployed special techniques to
make analysis of mobile ad-hoc networks possible.

II. ANALYSIS OF DISTRIBUTED SYSTEMS AND ISOLATED
ACTORS

The syntax of Timed Rebeca is showed in Figure 1. Timed
Rebeca is an extension of Rebeca where we can model
computational time, network delays, and periodic events [19],
[20]. A Rebeca model consists of a set of reactive classes
and a main part. In the main, we declare the instances of the
reactive classes as rebecs. Rebec stands for reactive object,
and is how actors are called in Rebeca. In a reactive class
we define the known rebecs to whom we can send messages,
the state variables, and the message servers. Message servers
are the methods or event handlers of the class. The statements
in Rebeca are very similar to Java. The three keywords of
delay, after and deadline are specific to Timed Rebeca.
Using delay we can model the computational time, using
after we model network delays, and periodic events, and
deadline is used to specify the timeout for handling the
request we are sending out.

Actors are encapsulated modules with no shared variables.
Our actors are reactive, there is no explicit receive and the
messages (i.e. events) trigger the execution of the message
servers (i.e. event handlers) when they are taken from the
message queue. Our actors are also asynchronous, when
sending a message they are not blocked. So, there is no
coupling via shared variables, no coupling because of waiting
for another actor to return a value for a remote procedure call,
and no coupling because of a context dependency caused by
having a future construct in the language (futures are mostly
used in active object languages [5]). We call this decoupling
of actors isolation, and use isolation of actors in generating
more efficient analysis techniques. In Rebeca, we choose to
have atomic execution of message servers (i.e. methods, or
event handlers) which gives us a macro-step semantics and
models a non-preemptive execution of the handlers. Macro-
step semantics, by itself, helps in reducing the state space
size significantly. The reason we can have atomic execution
of message servers without loss of generality (in most cases1)
is the isolation of actors, and the fact that we assume non-
preemptive execution of methods. Moreover, if we are only
interested in the event-based properties, we may be able to

1In some cases the behavior of a model may be different if we apply
macro- or micro- semantics, or what we also call fine-grain and coarse-grain
semantics. This discussion is out of scope of this paper.

abstract even more and just keep the states that are followed
by a transition that we are interested in. This type of reduction
is not straight forward as we need to prove that we are
preserving the order of the events while abstracting away some
of the states and transitions (see the following section for more
explanation).

For explaining our approach, we distinguish three levels
of abstraction: the distributed software system itself with all
the implementation details, the modeling language which is
Rebeca here, and the generated state space which is built for
the sake of analysis and we model it as a state transition
system. There are alternative ways for analysis, like using
logical theorems and applying reasoning based on that, but
here we use different variations of state transition systems.
We sometimes call the transition system the semantics of our
model as it shows the behavior in a formal way. Floating
Time Transition System, explained in the following section,
is a natural event-based semantics for timed actors, giving us
a significant amount of reduction in the state space, using a
non-trivial novel idea.

III. TIMED REBECA AND FLOATING TIME TRANSITION
SYSTEM

Floating Time Transition System (FTTS) is proposed based
on the isolation of timed rebecs [21], [22]. The idea behind
FTTS is similar to partial order reduction (POR) but the
technique does not fit exactly in the definition of POR. In
POR we exploit the commutativity of concurrently executed
transitions, which result in the same state when executed in
different orders. So, we can expand only a representative
subset of all enabled transitions and abstract the rest away
while preserving the properties of interest. If we consider
the standard Timed Transitions System semantics (TTS) of
Timed Rebeca, we cannot say that FTTS is derived from TTS
by POR, because we are not only abstracting away some of
the transitions; we are also changing the states. You cannot
necessarily find one state in FTTS which is the same as a
state in TTS. Both states and transitions are changed while
the order of events are preserved (you may see the proof of
property preservation in [22]).

What we mean by floating time is that in each state of
the state space, different actors do not necessarily have the
same local clock, i.e., actors are not synchronised on their
local time in the state space. We consider this as letting
the time float across the actors in the state space. To avoid
confusion, it is important to note the different models in
different levels of abstraction, and also layering of models.
We have (1) distributed systems, we use (2) Timed Rebeca to
model distributed systems, and we model (3) the state space
as Floating Time Transition System to do the analysis. Note
that at the level of Timed Rebeca, actors have synchronised
local clocks which gives us a notion of global time across the
model. We use time stamps, and time stamps are comparable
across all actors in the model. This makes our model simpler
and more understandable, and our analysis more efficient. But
in distributed systems we cannot assume synchronised clocks

Model ::= Class∗ Main

Main ::= main { InstanceDcl∗ }
InstanceDcl ::= className rebecName (〈rebecName〉∗) : (〈literal〉∗);

Class ::= reactiveclass className (queueLength) { KnownRebecs Vars Constructor MsgSrv∗ }
KnownRebecs ::= knownrebecs { VarDcl∗ }

Vars ::= statevars { VarDcl∗ }
VarDcl ::= type 〈v〉+;

Constructor ::= className (〈type v〉∗) { Stmt∗ }
MsgSrv ::= msgsrv methodName(〈type v〉∗) { Stmt∗ }

Stmt ::= v = e; | v =?(e〈, e〉+); | Call; | if (e) { Stmt∗ } [else { Stmt∗ }]; | delay(t);
Call ::= rebecName.methodName(〈e〉∗) [after(t)][deadline(t)]

Fig. 1: Abstract syntax of Timed Rebeca (adapted from [21]). Angled brackets 〈...〉 are used as meta parenthesis, superscript
+ for repetition at least once, superscript ∗ for repetition zero or more times, whereas using 〈...〉 with repetition denotes a
comma separated list. Brackets [...] indicates that the text within the brackets is optional. Identifiers className, rebecName,
methodName, queueLength, v, literal, and type denote class name, rebec name, method name, queue length, variable,
literal, and type, respectively; and e denotes an (arithmetic, boolean or nondetermistic choice) expression. In the instance
declaration (rule InstanceDcl), the list of rebec names (〈rebecName〉∗) passed as parameters denotes the known rebecs of
that instance, and the list of literals (〈literal〉∗) denotes the parameters of its constructor.

and time stamps for distributed software components, at least
not for free2. For that assumption to be valid and faithful
enough to the system, we rely on the layering and different
responsibilities for different layers. For distributed actors (as
faithful representatives of distributed software components)
to be able to have synchronised clocks and comparable time
stamps we rely on the lower-level network protocols to provide
that for us.

In Timed Rebeca we have a concept of time and we can
consider that each statement is executed at a certain point in
time. Note that we are now talking at the level of the Rebeca
model, the notion of time is the model time, and we do not
need to worry about synchronising the clocks among different
components in the distributed system (which are modeled as
actors in our Rebeca model). We assume that local clocks
of actors are synchronised and we have time stamps on each
statement in the actors which are comparable across the actors.

In Timed Rebeca models, we use a delay(t) statement to
show the computation delay. Other statements are assumed to
be executed in zero time. We use after(t) in combination
with a send message statement; it means that the time stamp
of the message when it is put in the queue of the receiver is
the value of the local clock of the sender (now in the sender)
plus the value of t. The progress of time is forced by the
delay statement and also by after. We can assume that
the time stamp of all the statements are zero when a model
starts to execute, then in each actor the local time is increased
by value of t if there is a delay(t) statement. A send
statement with an after does not cause any increase in the

2Ptides [23] and Spanner [24] are two examples that assume synchronized
clocks (up to an error bound) and use logical time stamps. They proposed
certain mechanisms to be able to have such assumption.

local time per se. The statement following the send statement
has the same time stamp as the send statement itself. The
after construct may cause an increase in the time when the
actor picks the message annotated by after to be executed.
The local time of the receiver actor is set to the time stamp
of the message, unless it is already greater than that. The
latter situation means that the message sits in the queue while
the actor is busy executing another message. Remember that
messages are executed atomically and are not preempted. The
progress of time happens in the case that the time stamp of
the message is greater than the local time of the receiver actor,
the local time will be pushed forward. The after construct
can be used to model the network delay, and also to model
periodic events.

If we use the standard Timed Transition System (TTS)
to generate the state space, for Timed Rebeca model we
distinguish three types of transitions: τ transitions, events,
and timed transitions. In FTTS we reduce that to only events
transitions. We explain TTS and FTTS for Timed Rebeca using
an example in Listing 1. Listing 1 shows a simple Rebeca
model with two rebecs r1 and r2 instantiated from two reactive
classes RC1 and RC2. RC1 has only one message server
(m1) in which it triggers the two message servers of RC2
(m2 and m3). The two message servers of RC2 are event
handlers that do nothing, i.e., there are no internal actions
caused by statements like assignments, or send, and no
delay statements. Note that send statements are considered
as internal or silent actions but they cause a change in the
message queue of the receiver by adding the sent message to
that queue.

Listing 1: A simple Timed Rebeca model with two rebecs
1 reactiveclass RC1 (3) {
2 knownrebecs {
3 RC2 r2;
4 }
5 RC1() {
6 self .m1();
7 }
8 msgsrv m1() {
9 delay (2) ; %PC = 1

10 r2 .m2(); %PC = 2
11 delay (2) ; %PC = 3
12 r2 .m3(); %PC = 4
13 self .m1() after (10) ; %PC = 5
14 }
15 }
16 reactiveclass RC2 (4) {
17 knownrebecs {
18 RC1 r1;
19 }
20 RC2() { }
21 msgsrv m2() { }

23 msgsrv m3() { }
24 }

26 main {
27 RC1 r1(r2) :() ;
28 RC2 r2(r1) :() ;
29 }

Figure 2a shows the TTS generated for the model in Listing
1. The constructor of RC1 puts the message m1 in the queue
of RC1. So, in time = 0 we have the message m1 in the
queue of r1 (see state s0 in Figure 2a). Also, you see that
the message queue of r2 is empty. On the transition from
s0 to s1 the message is taken from the queue of r1, and in
the state s1 the method m1 is ready to be executed, i.e., the
Program Counter (PC) is at m1 : 1. The first statement in m1
is a delay statement which is executed and pushes the time
forward to time = 2 in state s2. In the state s2, the PC points
at a send statement: r2.m2(). After this statement is executed
as a silent or τ statement, we move to the state s3 and have
the message m2 in the queue of r2. The message m2 is shown
as (m2(), 2,∞) in which 2 is the timestamp of the message
and ∞ is the value of deadline. The message can only be
taken if and when the current time of receiver is greater than
or equal its timestamp. If the current time of receiver is less
than the timestamp and there is no transition of types τ or
event enabled then the time of the receiver is advanced to the
value of the timestamp (transition of type time) and only then
the message can be taken.

On the transition from s3 to s4 the message m2 is fetched to
be executed, but the body of the message server m2 is empty
so nothing happens. We move from s4 to s5 by executing
another delay statement and the time is progressed to four.
At state s5 the send statement is executed, the message is
put in the queue of r2 and we will get to the state s6. At state
s6, two transitions are enabled and each can be executed first
non-deterministically. We go to the state s7 if the message

r2 pc

r1

queue

queue
pc

[(m1(),	0,	∞)]
s0

[]

r1
r2

queue

queue
pc

pc

[(m1(),	14,	∞)]
s10

[]

r1
r2

queue

queue
pc

pc

[]
s1

[]
m1:1

r1
r2

queue

queue
pc

pc

[]
s2

[]
m1:2

r1
r2

queue

queue
pc

pc

[]
s3

[(m2(),	2,	∞)]
m1:3

r1
r2

queue

queue
pc

pc

[]
s4

[]
m1:3

r1
r2

queue

queue
pc

pc

[]
s5

[]
m1:4

r1
r2

queue

queue
pc

pc

[]
s6

[(m3(),	4,	∞)]
m1:5

r1
r2

queue

queue
pc

pc

[(m1(),	14,	∞)]
s8

[(m3(),	4,	∞)]

r1
r2

queue

queue
pc

pc

[]
s7

[]
m1:5

r1
r2

queue

queue
pc

pc

[(m1(),	14,	∞)]
s9

[]

Ti
m
e	
=	
0

(m1(),	0,	∞)

time	=	time	+	2

"(r1)

(m2(),	2,	∞)

time	=	time	+	2

"(r1)

"(r1)

"(r1)

(m3(),	4,	∞)

(m3(),	4,	∞)

time	=	time	+	10

Ti
m
e	
=	
2

Ti
m
e	
=	
4

Ti
m
e	
=	
14

r1
r2

queue

queue
now

now

[(m1(),	0,	∞)]
s0

[]

r1
r2

queue

queue

now

now
[(m1(),	14,	∞)]
s1

[(m2(),	2,	∞)
(m3(),	4,	∞)]

r1
r2

queue

queue
now

now

[(m1(),	14,	∞)]
s2

[(m3(),	4,	∞)]

r1
r2

queue

queue
now

now

[(m1(),	14,	∞)]
s3

[]

r1
r2

queue

queue

now

now
[(m1(),	28,	∞)]
s4

[(m2(),	16,	∞)
(m3(),	18,	∞)]

(m1(),	0,	∞)

(m2(),	2,	∞)

(m3(),	4,	∞)

(m1(),	14,	∞)

r1
r2

queue

queue

now

now
[(m1(),	14,	∞)]
s1

[(m2(),	2,	∞)
(m3(),	4,	∞)]

r1
r2

queue

queue
now

now

[(m1(),	14,	∞)]
s2

[(m3(),	4,	∞)]

r1
r2

queue

queue
now

now

[(m1(),	14,	∞)]
s3

[]

r1
r2

queue

queue

now

now
[(m1(),	28,	∞)]
s4

[(m2(),	16,	∞)
(m3(),	18,	∞)]

(m1(),	0,	∞)

(m2(),	2,	∞)

(m3(),	4,	∞)

(m1(),	14,	∞)

(m
2(
),	
16
,	∞

),	
14

r1
r2

queue

queue
now

now

[(m1(),	0,	∞)]
s0

[]
0

0

4

0

4

2

4

4

18

4

18

4

4

4

4

2

0

0

4

0

r2

(a) TTS

r1
r2

queue

queue
pc

pc

[(m1(), 0, ∞)]
s0

[]

r1
r2

queue

queue
pc

pc

[]
s1

[]

r1
r2

queue

queue
pc

pc

[]
s2

[]
r1

r2

queue

queue
pc

pc

[]
s3

[(m2(), 2, ∞)]

r1
r2

queue

queue
pc

pc

[]
s4

[]

r1
r2

queue

queue
pc

pc

[]
s5

[]

r1
r2

queue

queue
pc

pc

[]
s6

[(m3(), 4, ∞)]

r1
r2

queue

queue
pc

pc

[]
s7

[]

r1
r2

queue

queue
pc

pc

[(m1(), 14, ∞)]
s10

[]

m1:1

m1:2

m1:3

m1:3

m1:4

m1:5

r1
r2

queue

queue
pc

pc

[(m1(), 14, ∞)]
s8

[(m3(), 4, ∞)]
m1:5

r1
r2

queue

queue
pc

pc

[(m1(), 14, ∞)]
s9

[]

Ti
m

e
=

0

(m1(), 0, ∞)

time = time + 2

𝜏(r1)

(m2(), 2, ∞)

time = time + 2

𝜏(r1)

𝜏(r1)

𝜏(r1)

(m3(), 4, ∞)

(m3(), 4, ∞)

time = time + 10

Ti
m

e
=

2
Ti

m
e

=
4

Ti
m

e
=

14

r1
r2

queue

queue
now

now

[(m1(), 0, ∞)]
s0

[]

r1
r2

queue

queue

now

now
[(m1(), 14, ∞)]
s1

[(m2(), 2, ∞)
(m3(), 4, ∞)]

r1
r2

queue

queue
now

now

[(m1(), 14, ∞)]
s2

[(m3(), 4, ∞)]

r1
r2

queue

queue
now

now

[(m1(), 14, ∞)]
s3

[]

r1
r2

queue

queue

now

now
[(m1(), 28, ∞)]
s4

[(m2(), 16, ∞)
(m3(), 18, ∞)]

(m1(), 0, ∞)

(m2(), 2, ∞)

(m3(), 4, ∞)

(m1(), 14, ∞)

r1
r2

queue

queue

now

now
[(m1(), 14, ∞)]
s1

[(m2(), 2, ∞)
(m3(), 4, ∞)]

r1
r2

queue

queue
now

now

[(m1(), 14, ∞)]
s2

[(m3(), 4, ∞)]

r1
r2

queue

queue
now

now

[(m1(), 14, ∞)]
s3

[]

r1
r2

queue

queue

now

now
[(m1(), 28, ∞)]
s4

[(m2(), 16, ∞)
(m3(), 18, ∞)]

(m1(), 0, ∞)

(m2(), 2, ∞)

(m3(), 4, ∞)

(m1(), 14, ∞)

(m
1(

),
14

, ∞
),
14

r1
r2

queue

queue
now

now

[(m1(), 0, ∞)]
s0

[]
0

0

4

0

4

2

4

4

18

4

18

4

4

4

4

2

0

0

4

0

(b) FTTS

Fig. 2: TTS and FTTS for the Timed Rebeca model in Listing
1.

in the queue of r2 is taken and executed first. We go to the
state s8 if the send statement at m1 : 5 is executed first and
then the message m1 is put in the queue of r1. No matter
which trace in the diamond shown in the Figure 2a is taken,
we will get to the state s9. In the state s8, although there is
one message in the queue of each rebec, only one transition is
enabled. The reason is that the message in the queue of r1 has
the timestamp of 14 (because of the after(10) attached to
the send statement). Only in the state s9, when there are no
transitions of types τ or event enabled the transition of type
time is taken, and time is advanced for 10 units of time. Now,
at the state s10 finally the message (m1(), 14,∞) is enabled.

The FTTS for Listing 1 is shown in Figure 2b. From this
figure you may observe that the only transitions in FTTS are
the transitions of type event, and you may also notice the

reduction in the state space. Another observation is that rebecs
may have different current times (now) in the same state. That
is the reason we use the term floating time.

The relation between TTS and FTTS of a Timed Rebeca
model is not trivial and cannot be explained as partial order
reduction, i.e., you may find states in FTTS which are not
in TTS. For example in Figure 2 for 3 out of 5 states in
FTTS there are no similar states in TTS. Nevertheless, in [22]
we proved a bisimulation relation between FTTS and TTS to
prove that the order of events is preserved in FTTS.

It is not easy to understand the FTTS semantics of Timed
Rebeca if we start from the standard TTS semantics. A better
way is to start from the Timed Rebeca model, and think of
an event-based semantics. By focusing on the event-based
properties as the properties of interest, we narrow down the
interesting transitions to the event transitions which are taking
the messages from the queue and executing the corresponding
message server. This way, we have macro-step semantics
where on each transition we take the enabled event (i.e.
message) and execute the corresponding message server all
in one transition. This is similar to the original semantics of
Rebeca presented in [3], but here we have messages in the
queue tagged by timestamps (in Timed Rebeca we usually
call the message queues the message bag with time-tagged
messages). The main technical point here is how to choose
the message to take next. The algorithm for making the state
space looks into the queues of all the rebecs and picks the
message that is enabled earlier than the others. The tricky
point is to get the definition of enabled earlier correctly. The
first idea that comes to mind is to pick the message with the
least timestamp, but we also need to check the current time or
now of the receiver rebec. If the value of now is larger than
the timestamp then that would be the time that the message
can really be taken. So, for each rebec we need to find the
maximum between the timestamps and the value of now of
the receiver rebec, and we need to do that for all the rebecs
and all the messages in their queues, and find the least among
these values. That would be the message that will be taken
first and will be the event on the next transition. There may
be more than one message with that characteristic, and in that
case the choice is nondeterministic.

The Bounded Floating Time Transition System (BFTTS)
for Listing 1 is shown in Figure 3. In many reactive systems
the behavior becomes recurrent after a while, and it gives
us the chance to have a bounded number of states and
transitions. When we add the notion of time to our model
and consequently to the transition system, when the time
is increasing in the model we are at the risk of having an
unbounded state space even when the behavior is recurrent. In
BFTTS, if the only difference between two states is an equal
shift in time-dependent values (we call it shift-equivalency)
we merge those two states to one and will make the shift
clear on the transition. Note that this can work because there
is no statement in Timed Rebeca that allows assigning an
absolute value to now, or accessing the absolute value of now
(if necessary, we may allow that but the modeler has to be

r2 pc

r1

queue

queue
pc

[(m1(),	0,	∞)]
s0

[]

r1
r2

queue

queue
pc

pc

[(m1(),	14,	∞)]
s10

[]

r1
r2

queue

queue
pc

pc

[]
s1

[]
m1:1

r1
r2

queue

queue
pc

pc

[]
s2

[]
m1:2

r1
r2

queue

queue
pc

pc

[]
s3

[(m2(),	2,	∞)]
m1:3

r1
r2

queue

queue
pc

pc

[]
s4

[]
m1:3

r1
r2

queue

queue
pc

pc

[]
s5

[]
m1:4

r1
r2

queue

queue
pc

pc

[]
s6

[(m3(),	4,	∞)]
m1:5

r1
r2

queue

queue
pc

pc

[(m1(),	14,	∞)]
s8

[(m3(),	4,	∞)]

r1
r2

queue

queue
pc

pc

[]
s7

[]
m1:5

r1
r2

queue

queue
pc

pc

[(m1(),	14,	∞)]
s9

[]

Ti
m
e	
=	
0

(m1(),	0,	∞)

time	=	time	+	2

"(r1)

(m2(),	2,	∞)

time	=	time	+	2

"(r1)

"(r1)

"(r1)

(m3(),	4,	∞)

(m3(),	4,	∞)

time	=	time	+	10

Ti
m
e	
=	
2

Ti
m
e	
=	
4

Ti
m
e	
=	
14

r1
r2

queue

queue
now

now

[(m1(),	0,	∞)]
s0

[]

r1
r2

queue

queue

now

now
[(m1(),	14,	∞)]
s1

[(m2(),	2,	∞)
(m3(),	4,	∞)]

r1
r2

queue

queue
now

now

[(m1(),	14,	∞)]
s2

[(m3(),	4,	∞)]

r1
r2

queue

queue
now

now

[(m1(),	14,	∞)]
s3

[]

r1
r2

queue

queue

now

now
[(m1(),	28,	∞)]
s4

[(m2(),	16,	∞)
(m3(),	18,	∞)]

(m1(),	0,	∞)

(m2(),	2,	∞)

(m3(),	4,	∞)

(m1(),	14,	∞)

r1
r2

queue

queue

now

now
[(m1(),	14,	∞)]
s1

[(m2(),	2,	∞)
(m3(),	4,	∞)]

r1
r2

queue

queue
now

now

[(m1(),	14,	∞)]
s2

[(m3(),	4,	∞)]

r1
r2

queue

queue
now

now

[(m1(),	14,	∞)]
s3

[]

r1
r2

queue

queue

now

now
[(m1(),	28,	∞)]
s4

[(m2(),	16,	∞)
(m3(),	18,	∞)]

(m1(),	0,	∞)

(m2(),	2,	∞)

(m3(),	4,	∞)

(m1(),	14,	∞)

(m
2(
),	
16
,	∞

),	
14

r1
r2

queue

queue
now

now

[(m1(),	0,	∞)]
s0

[]
0

0

4

0

4

2

4

4

18

4

18

4

4

4

4

2

0

0

4

0

Fig. 3: Bounded FTTS for the Timed Rebeca model in Listing
1.

careful not to break the shift-equivalency).
We have an example of a recurrent behavior in Figure 3.

After state s4 we move to a state which is equivalent to state
s2 with a shift in both now variables (to be 18 for r1 and 16
for r2), and also a shift 14 for the time tags of the messages
(to be 28 for the message in the queue of r1 and 18 for the
message in the queue of r2). So, we do not create a new state,
instead we put a transition back to s2, and make the shift of
14 for the time-dependent values clear on this transition. The
model checking tool of Timed Rebeca is developed using the
idea of BFTTS to be able to generate bounded state spaces and
it is integrated in Afra. To illustrate the efficiency of FTTS, the
result of comparing the state space size and model checking
time consumption of a set of Timed Rebeca examples are
presented in Table I.

IV. DISTRIBUTED MODEL CHECKING

In addition to benefiting from the isolation of actors for
reducing the size of state space, this property can be used for
more efficient analysis of a large state space. A major limiting
factor in applying model checking for the analysis of real-
world systems is the amount of memory space and the time
required to store and explore state space. Distributed model
checking is a technique for analyzing the state space where the
state space is partitioned into slices, and each slice is assigned
to a computational node to be analyzed. Efficiency of this
technique depends on the amount of communications among
the computational nodes which is affected by the distribution
policy of states among the nodes [26].

To reduce the amount of required communication among the
nodes, split transitions have to be avoided; a split transition
is a transition between two states where the hosts of the

Config FTTS TTS Reduction
States Trans. Time States Trans. Time States Trans.

Hadoop YARN Scheduler

1 AM 25 41 < 1 sec 132 148 < 1 sec 19% 28%
2 AMs 499 1.02K 1 sec 3.01K 4.28K 1 sec 17% 24%
3 AMs 5.10K 13.3K 1 sec 34.3K 66.7K 1 sec 15% 20%
4 AMs 28.19K 92.87K 2 secs 219K 553K 7 secs 13% 17%
5 AMs 220K 840K 11 secs 1.94M 5.69M 70 secs 11% 15%

WSAN Application

33-6-4-2 386 548 < 1 sec 1.58K 2.69K < 1 sec 24% 20 %
25-6-4-2 1.21K 1.63K < 1 sec 5.04K 8.59K < 1 sec 24% 19%
30-6-4-2 2.90K 3.25K < 1 sec 13.00K 20.54K 2 secs 22% 16%
25-5-4-10 3.54K 5.01K < 1 sec 19.59K 38.61K 2 secs 18% 13%
25-7-5-10 4.87K 6.66K < 1 sec 25.42K 48.29K 2 secs 19% 14%
50-9-3-2 9.20K 11.79K 1 sec 49.33K 91.93K 3 secs 18% 13%

Ticket Service System

1 Customer 5 6 < 1 sec 13 16 < 1 secs 38% 37 %
2 Customers 51 77 < 1 sec 155 285 < 1 sec 33% 27%
3 Customers 252 418 < 1 sec 842 1894 < 1 sec 30% 22%
4 Customers 1.29K 2.21K < 1 sec 4.75K 12.6K 1 sec 27% 18%
5 Customers 7.53K 12.8K < 1 sec 29.1K 85.9K 2 sec 26% 15%
6 Customers 51.6K 84.7K 3 secs 195.3K 599.3K 9 secs 26% 14%
7 Customers 408K 650K 11 secs 1.46M 4.34M 67 secs 28% 15%

TABLE I: Comparing the number of states and transitions in TTS and FTTS of three different example (from [25]).

source and destination states are located at different nodes.
In [27], we show how for an actor model we can reduce
the number of split transitions. We introduce a new state
distribution policy based on the so-called Call Dependency
Graph (CDG) of actor models. A CDG represents the abstract
causality relation among the message passing of actors. Our
abstraction is inspired from the Clinger’s event diagram [28]
that shows the trace of system events and causality relation
among events. It also can be count as an special kind of System
Dependence Graph in which its intra-procedure dependency
relations are omitted. [29]

In a Clinger’s diagram, events are arrival of messages
to receivers’ message queues. A Clinger’s event diagram
comprises vertices (called dots) for each event, and edges
(called arrows) that represent the activation relation of two
events. Clinger’s event diagram is typically drawn using
parallel vertical swim-lanes for each actor, where the dots are
placed for each event respecting their sequential execution
order. Figure ?? represents the Clingers’ event diagram
of a simple actor model, shown in Listing 2. In contrast,
sent messages of actors are events in CDG and events are
associated with edges instead of vertices. The other major
difference between Clinger’s event diagram and CDG is that
Clinger’s event diagram is an infinite graph which shows trace
of events in actor programs. However, a CDG is generated
for an actor model using static analysis of its source code
and can accurately represent the flow of message passing
among actors. A CDG shows that by handling a message,
which messages may or must be sent to other actors. The
idea of dividing edges to may and must is inspired from [30]
and as we will show later, it helps in having a more effective
state distribution policy. Figure ?? illustrates the CDG which
corresponds to the actor model of Listing 2.

Listing 2: A simple actor model (from [27])
1 reactiveclass AC1 {
2 knownrebecs {
3 AC2 ac2;
4 }
5 AC1() {
6 self .msg1();
7 }
8 msgsrv msg1() {
9 self .msg2();

10 ac2.msg3();
11 }
12 msgsrv msg2() {
13 self .msg1();
14 ac2.msg4();
15 }
16 }
17 reactiveclass AC2 {
18 knownrebecs{
19 AC1 ac1;
20 }
21 statevars {
22 int sv;
23 }
24 AC2() {
25 sv = 1;
26 }
27 msgsrv msg3() {
28 ac1.msg1();
29 }
30 msgsrv msg4() {
31 if (sv == 1)
32 sv = 4;
33 else
34 sv = 3;
35 }
36 }
37 main {
38 AC1 ac1(ac2):() ;
39 AC2 ac2(ac1):() ;
40 }

The most primitive and widely used distribution policy is

Problem Size #Transitions #Split Transitions
Random CDG improvement

Asynch. Resource Manager

4 clients 7,76K 5,83K 4516 23%
5 clients 83,19K 66,52K 50,46K 25%
6 clients 1,02M 850,74K 635,14K 26%
7 clients 14,34M 12,30M 9,01M 27%

Dining Philosophers
3 phils 10,30K 6,97K 4,81K 31%
4 phils 206,00K 154,76K 75,86K 51%
5 phils 3,78M 3,02M 1,60M 47%

Train Controller

5 trains 33,30K 26,66K 18,17K 32%
6 trains 265,89K 221,61K 148,32K 34%
7 trains 2,30M 1,97M 1,30M 35%
8 trains 21,83M 19,11M 12,40M 36%

TABLE II: The number of split edges in the random and the CDG-based distribution policies (from [27]).

𝑎𝑐1.𝑚𝑠𝑔1 𝑎𝑐2.𝑚𝑠𝑔3

𝑎𝑐1.𝑚𝑠𝑔2

𝑎𝑐2.𝑚𝑠𝑔4

𝑎𝑐1.𝑚𝑠𝑔1

𝑚𝑠𝑔1

𝑚𝑠𝑔2

𝑚𝑠𝑔1

𝑚𝑠𝑔3

𝑚𝑠𝑔4

𝑎𝑐1 𝑎𝑐2

𝑚𝑠𝑔1

𝑎𝑐1.𝑚𝑠𝑔1 𝑎𝑐2.𝑚𝑠𝑔3

𝑎𝑐1.𝑚𝑠𝑔2

𝑎𝑐2.𝑚𝑠𝑔4

𝑎𝑐1.𝑚𝑠𝑔1

𝑚𝑠𝑔1

𝑚𝑠𝑔2

𝑚𝑠𝑔1

𝑚𝑠𝑔3

𝑚𝑠𝑔4

𝑎𝑐1 𝑎𝑐2

𝑚𝑠𝑔1

Fig. 4: (a) Clinger event diagram and (b) CDG of the actor
model in Listing 2 (from [27]).

the random state distribution [31]. Random state distribution
policy distributes states among nodes based on their hash
values. Random distribution policy guarantees load balancing.
However, it is not an effective technique as it scatters cycles
in state spaces over different nodes. Note that detecting cycles
of state spaces is crucial for model checking against LTL-
like properties; so, splitting them among nodes (i.e., reducing
locality of cycles) dramatically increases the time consumption
of model checking. In [27] we proved that there is a relation
between cycles in state spaces of actor models and cycles
in their corresponding CDGs. So, we devise a distribution
policy that is based on associating each cycle of a CDG
with a computational node of our distributed model checker.
When assigning the states of the state space to different nodes,
we assign the state to the node which is associated to the
corresponding CDG. This way, we reduce the number of cycles
which are scattered among different nodes. In the case that
there is a state in CDG which is shared among more than
one cycle, the cycle that contains an edge which is associated
with a must label determines the host of the state. When none
of the cycles include a must label then one of the cycles is
randomly selected and the new state is distributed to its host.
We have implemented the CDG-based distribution policy in
the distributed model checking tool of Rebeca, and the result
of using CDG-based distribution policy is shown in Table II
for three different examples. Experimental evidence supports
that this new policy improves cycles locality, and decreases
the model checking time and memory consumption.

For using similar techniques in distribution of states to
nodes, we can think of System Dependence Graphs (SDG)

that is presented as an standard formalism to model structures
and dependencies in programs [29]. SDGs are the basis for
multiple applications in program analysis, such as slicing and
testing. Similar to CDGs for actor-based models, SDGs can be
used in showing causality relations in models, but for a wider
range of textual imperative modeling languages including the
model checking languages of Promela [32] and NuSMV [33].
However, as all the dependencies between the statements of
models are shown in SDGs, there are many cycles in SDGs
which are not related to cycles in the state space. So, using
SDGs for state distribution policy to localize cycles most likely
will not be practically effective. The reason that there is a
relation among the cycles in the CDG and the state space
of an actor model is inherent in the model of computation
of actors and their isolation. Our technique is not limited to
Rebeca and applicable to other distributed systems where the
unit of concurrency can be modeled as isolated autonomous
reactive objects and message passing is the only means of
communication.

V. VERIFICATION OF MOBILE AD-HOC PROTOCOLS

Mobile Ad-hoc wireless networks (MANETs) consist of
mobile nodes equipped by wireless transceivers by which they
communicate. These networks are applicable where no pre-
existing infrastructure, such as routers in wired networks or
access points in wireless networks are available. Node A can
receive data from node B if A is located in the communication
range of B, i.e., A is directly connected to B. The union of
connectivity/disconnectivity relations among nodes forms the
underlying topology. In such networks, nodes can freely move,
so the topology dynamically changes. As all nodes are not
directly connected, they rely on each other to communicate
indirectly with those not within their range. To this aim, they
collaborate ad-hocly to find a valid route from a source to a
destination. A route is valid if the corresponding path exists
in the topology. Routes are partially maintained in the routing
tables of nodes by indicating the next-hop(s) via which an
intended destination is accessible. As topology changes, the
routes maintained by nodes should be updated to prevent using
invalid routes. During the process of route maintenance, it
is possible that by following next-hops, a route visits the
same node more than once, and a loop is formed. Loop-

1 reactiveclass Node{
2 statevars {
3 int sn , ip ;
4 int [] dsn, rst ,hops,nhop;
5 }
6 Node(int i , boolean starter)
7 {
8 ... /* Initialization code*/
9 }

10 msgsrv rec newpkt(int data , int dip)
11 {
12 if (rst [dip]==1)
13 {... /*forward packet*/}
14 else {
15 sn++;
16 rec rreq (0, dip ,
17 dsn[dip], self , sn , self ,5) ;}
18 }
19 msgsrv rec rreq (int hops , int dip , int dsn ,

int oip , int osn , int sip , int maxHop)
20 {
21 boolean gen msg = false;
22 ... /* processing code*/
23 if (gen msg == true) {
24 if (ip == dip) {
25 sn = sn+1;
26 unicast (nhop[oip],
27 rec rrep (0 , dip , sn , oip , self))
28 succ:{
29 rst [oip] = 1;
30 }
31 unsucc:{
32 if (rst [oip] == 1)

33 {... /* error */}
34 rst [oip] = 2;}
35 } else {
36 hops = hops + 1;
37 if (hops <maxHop) {
38 rec rreq (hops ,dip ,dsn ,oip ,
39 osn , self ,maxHop);}
40 }}}
41 msgsrv rec rrep (int hops , int dip , int dsn ,
42 int oip , int sip){
43 boolean gen msg = false;
44 ... /* processing code*/
45 if (gen msg == true){
46 if (ip == oip){
47 ... /*forward packet*/ }
48 else {
49 hops = hops +1;
50 unicast (nhop[oip], rec rrep
51 (hops ,dip ,dsn ,oip , self)) ;
52 ...
53 }}}
54 msgsrv rec rerr (int source ,
55 int sip , int [] rip rsn)
56 {... /* error recovery code*/}
57 }
58 main{
59 Node n1(n2,n4) :(0, true) ;
60 Node n2(n1,n4) :(1, false) ;
61 ...
62 constraints {
63 and(con(n1,n2) , con(n3,n4))
64 }
65 }

Fig. 5: The AODV protocol specified by wRebeca (adapted from [16])

freedom is one of the main required properties of MANET
routing protocols. Because the topology is changing all the
time, finding a scenario that leads to protocol malfunction
(for example formation of a loop in the routing protocol), is
very unlikely if we use simulation-based approaches. So, these
approaches are not very helpful in designing such protocols in
practice.

An extension of Rebeca, called wRebeca, is introduced in
[16], and is used to model and verify MANET protocols
addressing dynamically changing topology. To support mod-
eling such protocols, wRebeca provides unicast, multicast,
and broadcast for communication. The wRebeca model of
an abstract version of Ad-hoc On Demand Vector (AODV)
routing protocol [34] is given in Figure 5. Each node in the
network is represented as an actor while the routing protocol is
modeled through the message servers of the actor. The network
topology and its mobility are not explicitly modeled in the
wRebeca code, instead we address them at the level of the
state transition system. In message server rec newpkt (line
10), whenever a source node intends to send a data packet
to a destination (dip), first it looks up in its routing table,
rst [dip], to see if it has a valid route to the destination to
forward the data packet. Otherwise it starts a route discovery
by broadcasting a route request message, rec rreq , at line 16.

Nodes upon processing a request message, forward the request
(line 38) if they do not have any route to the destination until
the request reaches to the destination (line 24). The destination
replies by unicasting a reply message, rec rrep, in response
(line 26) to the sender of the request (oip), called origin. As
links may not be bidirectional, the origin may not be directly
connected to the destination, so the destination unicasts to the
next-hop towards the origin (nhop[oip]). The modeler can
specify what should be done in case the unicast message is
delivered successfully (succ in line 28) or the delivery fails
(unsucc in line 31). The reply message is resent by the middle
nodes (line 50) until it arrives to the source node (line 47).

To reason about MANET protocols by model checking
technique, the state transition systems of their models have to
be generated. In wRebeca tool, the global states (denoted as
(S, γ)) are defined by the local states of rebecs and the under-
lying topology. The state-space generator produces two types
of transitions; transitions for atomic handling of messages in
the actor queues, and transitions for random modification of
the underlying topology to address mobility. A resulting state
space is shown partially in Figure 6a. The message handling
transitions are represented by a/b-transitions while random
modification of the topology is shown by τ -transitions. For
generating the first type of transition, the effect of topology on

TABLE III: Comparing the size of state space with/without applying topology-elimination reduction (from [16]).

No. of No. of No. of states No. of transitions No. of states No. of transitions
nodes topologies before reduction before reduction after reduction after reduction

4 4 3,007 16,380 763 1,969
4 8 12,327 113,480 1,554 3,804
4 16 35,695 610,816 2,245 5,549
4 32 93,679 3,097,792 2,942 7,596
4 64 258,447 16,797,536 4,053 10,629
5 16 >655,441 >11,276,879 165,959 598,342

the execution of the communication statement, like broadcast,
is considered. When an actor broadcasts, only those that
are directly connected to the sending actor will receive the
message. We remark that the underlying topology is not
changed by the first type of transitions, for example note
the following transitions in Figure 6a: (S0, γ1)

a−→ (S1, γ1)

and (S0, γ1)
b−→ (S2, γ1). For a network of n nodes, there

are 2 ×
(
n
2

)
possible uni-directional links among the nodes,

and as each link can be up/down, there are 2(n
2−n) possible

topologies. So, for each global state, 2(n
2−n) transitions are

generated to randomly change the topology, and the state
space grows exponentially, resulting state-space explosion. It
is notable that the local states of rebecs are not changed by τ -
transitions like (S1, γ1)

τ−→ (S1, γ2) and (S2, γ1)
τ−→ (S2, γ3).

(S0, γ1)

(S0, γ2)(S0, γ3)

(S1, γ1)

(S1, γ2)

(S2, γ1)

(S2, γ3) ττ

τ

ττ

ab

ab

(a) Before reduction

S0

S1

S2

a,
C1

b, C
2

(b) After reduction

Fig. 6: A simple state space before and after applying the
reduction. The network constraint C1 expresses the common
links of the topologies γ1 and γ2, and C2 represents the
common links of γ1 and γ3.

To tackle the state-space explosion, we propose a reduction
technique that eliminates the topology from the global states
and combines those states that are only different in their
topologies. A similar technique is used in a previous work
in an algebraic framework using Process Algebra [35]. By
using wRebeca for solving the same problem, we not only
gain a more modular model but also much more reduction in
the state space. The isolation of rebecs which allows us to
use a macro-step semantics with no loss of generality helps in
reducing the state space significantly.

As we want to eliminate the topology from the global states
and combine those states, the states (S0, γ1), (S0, γ2), and
(S0, γ3) of Figure 6a are aggregated to S0 as demonstrated
in Figure 6b. As a consequence, transitions modifying the
topology are removed. So, a state transition like S0

a−→ S1

is possible in Figure 6b after the reduction. As message
handlers are executed with regard to the topology, the con-
nectivity/disconnectivity of those links that are common in

both topologies make the effect of handling the message to be
the same. The connectivity/disconnectivity relations of these
links, called network constraint [36], [37], are added to the
labels on the transitions. For example, the links common in
both γ1 and γ2 that result in the same next local states, i.e.,
S1 in Figure 6a, are added by the network constraint C1

to the label of the transition S0
a,C1−−−→ S1 in Figure 6b.

By the topology-elimination reduction technique, the state-
space generator for each local states of actors S generates
the next local actor states for handling messages considering
all the possible connectivity/disconnectivity of handling actors
to other actors. For a network of n nodes, each node has
2n−1 possible connectivity/disconnectivity relations with oth-
ers. So, the topology-elimination reduction technique reduces
the number of states from S × 2(n

2−n) to S × 2n−1, where
S is the total number of possible local states of actors. If
S be a large number, the reduction achieved by topology-
elimination is not sufficient enough for tackling state-space
explosion, as we experienced in the algebraic framework of
[35]. The macro-step semantics of Rebeca helps in reducing
S, and hence, makes this reduction at the state-space level more
effective for the analysis of real-world protocols like AODV.

Table III illustrates the amount of reduction achieved by
applying topology-elimination reduction on isolated actors. To
restrict the state-spaces generator in considering the possible
topologies, we have enforced a set of stable connectivity/dis-
connectivity relations among the actors. This set are specified
by network constraint at the constraints block of the model.
For instance, the network constraint given in line 68 of Figure
5 enforces the state-space generator to consider the topologies
that n3 is connected to n4, expressed by con(n3, n4). The
second column of Table III indicates the number of possible
topologies considered for generating the state space. We
proved that the reduced state space is branching bisimilar to
the original one, and consequently a set of properties such
as ACTL-X are preserved [16]. The network constraints on
transition are used during model checking [35], [38] to verify
the topology-sensitive properties.

VI. HYBRID REACTIVE SYSTEMS

In Hybrid Rebeca [39], Timed Rebeca is extended with
physical behavior to support hybrid systems. Like in Timed
Rebeca, Hybrid Rebeca allows modeling of non-determinism
inherent in concurrent and distributed systems, e.g., in the case
of simultaneous arrival of messages (and no explicit priority-
based policy to choose one over the other). In Hybrid Rebeca,

physical behaviors are encapsulated in so-called physical ac-
tors. Each physical actor, in addition to message handlers,
is defined by a set of modes which define the continuous
behavior of the actor. A physical actor must always have
one active mode. The active mode can be changed upon
handling a message that is received from either a software
actor (controller) or a physical actor. The semantics of Hybrid
Rebeca is defined as a hybrid automaton, for which many
verification algorithms and tools are available.

In [40], we show that how using Hybrid Rebeca, can
reduce the cost of modifying models compared to the cost
of changing a hybrid automata. The reason is that in Hybrid
Rebeca, modeling concepts like message passing and message
buffering can be handled in the model at a higher level of
abstraction compared to hybrid automata. Furthermore, mod-
eling these features directly in hybrid automata can decrease
the analyzability of the models. We are currently working
on more efficient analysis techniques for Hybrid Rebeca. We
believe such techniques can be developed based on the ease
in modeling which we gained by using Hybrid Rebeca.

ACKNOWLEDGMENT

The work of the first author is supported in part by DPAC
Project (Dependable Platforms for Autonomous Systems and
Control) at Malardalen University, and MACMa Project (Mod-
eling and Analyzing Event-based Autonomous Systems) at
Software Center, Sweden. The work of the first and second
authors is supported by the project Self-Adaptive Actors:
SEADA (nr 163205-051) of the Icelandic Research Fund. We
would like to thank Edward Lee and Libero Nigro for their
detailed comments on the paper.

REFERENCES

[1] C. Hewitt, “Viewing control structures as patterns of passing messages,”
Journal of Artificial Intelligence, vol. 8, no. 3, pp. 323–363, 1977.

[2] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott, “A foundation
for actor computation,” Journal of Functional Programming, vol. 7,
no. 1, pp. 1–72, 1997.

[3] M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer, “Modeling and
verification of reactive systems using Rebeca,” Fundam. Inform., vol. 63,
no. 4, pp. 385–410, 2004.

[4] M. Sirjani, “Rebeca: Theory, applications, and tools,” in Formal Methods
for Components and Objects, 5th International Symposium, FMCO
2006, 2006, pp. 102–126.

[5] F. S. de Boer, V. Serbanescu, R. Hähnle, L. Henrio, J. Rochas, C. C.
Din, E. B. Johnsen, M. Sirjani, E. Khamespanah, K. Fernandez-Reyes,
and A. M. Yang, “A survey of active object languages,” ACM Comput.
Surv., vol. 50, no. 5, pp. 76:1–76:39, 2017.

[6] E. A. Lee and M. Sirjani, “What good are models?” in Formal Aspects
of Component Software - 15th International Conference, FACS 2018,
2018, pp. 3–31.

[7] R. De Nicola, G. L. Ferrari, R. Pugliese, and F. Tiezzi, “A formal
approach to the engineering of domain-specific distributed systems,”
in Coordination Models and Languages - COORDINATION 2018,
Proceedings, 2018, pp. 110–141.

[8] R. K. Karmani and G. Agha, “Actors,” in Encyclopedia of Parallel
Computing, 2011, pp. 1–11.

[9] M. Sirjani, “Power is overrated, go for friendliness! expressiveness,
faithfulness and usability in modeling - the actor experience,” in Prin-
ciples of Modeling, ser. LNCS 10760, 2018, pp. 424–449.

[10] C. Ptolemaeus, System Design, Modeling, and Simulation using Ptolemy
II. Berkeley, CA: Ptolemy.org, 2014.

[11] Rebeca, “Rebeca Homepage: http://www.rebeca-lang.org/.”

[12] M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer, “Model checking,
automated abstraction, and compositional verification of rebeca models,”
J. UCS, vol. 11, no. 6, pp. 1054–1082, 2005.

[13] M. M. Jaghoori, M. Sirjani, M. R. Mousavi, E. Khamespanah, and
A. Movaghar, “Symmetry and partial order reduction techniques in
model checking rebeca,” Acta Inf., vol. 47, no. 1, pp. 33–66, 2010.

[14] H. Sabouri and M. Sirjani, “Actor-based slicing techniques for efficient
reduction of rebeca models,” Sci. Comput. Program., vol. 75, no. 10,
pp. 811–827, 2010.

[15] E. Khamespanah, M. Sirjani, K. Mechitov, and G. Agha, “Modeling and
analyzing real-time wireless sensor and actuator networks using actors
and model checking,” STTT, vol. 20, no. 5, pp. 547–561, 2018.

[16] B. Yousefi, F. Ghassemi, and R. Khosravi, “Modeling and efficient
verification of wireless ad hoc networks,” Formal Aspect of Computing,
vol. To appear, 2017.

[17] Z. Sharifi, M. Mosaffa, S. Mohammadi, and M. Sirjani, “Functional and
performance analysis of network-on-chips using actor-based modeling
and formal verification,” ECEASST, vol. 66, 2013.

[18] J. de Berardinis, G. Forcina, A. Jafari, and M. Sirjani, “Actor-based
macroscopic modeling and simulation for smart urban planning,” Sci.
Comput. Program., vol. 168, pp. 142–164, 2018.

[19] A. H. Reynisson, M. Sirjani, L. Aceto, M. Cimini, A. Jafari,
A. Ingólfsdóttir, and S. H. Sigurdarson, “Modelling and simulation
of asynchronous real-time systems using timed rebeca,” Sci. Comput.
Program., vol. 89, pp. 41–68, 2014.

[20] M. Sirjani and E. Khamespanah, “On time actors,” in Theory and
Practice of Formal Methods - Essays Dedicated to Frank de Boer on
the Occasion of His 60th Birthday, 2016, pp. 373–392.

[21] E. Khamespanah, M. Sirjani, Z. Sabahi-Kaviani, R. Khosravi, and
M. Izadi, “Timed Rebeca schedulability and deadlock freedom analysis
using bounded floating time transition system,” Sci. Comput. Program.,
vol. 98, pp. 184–204, 2015.

[22] E. Khamespanah, M. Sirjani, M. Viswanathan, and R. Khosravi, “Float-
ing time transition system: More efficient analysis of timed actors,” in
Formal Aspects of Component Software, FACS 2015, 2015, pp. 237–255.

[23] P. Derler, E. A. Lee, and S. Matic, “Simulation and implementation
of the PTIDES programming model,” in International Symposium on
Distributed Simulation and Real-Time Applications, 2008, pp. 330–333.

[24] J. C. Corbett and et.al, “Spanner: Google globally distributed database,”
ACM Trans. Comput. Syst., vol. 31, no. 3, pp. 8:1–8:22, Aug. 2013.

[25] E. Khamespanah, “Modeling, Verification, and Analysis of Timed Actor-
Based Models,” Ph.D. dissertation, Reykjavik University, School of
Computer Science, June 2018.

[26] S. Orzan, J. van de Pol, and M. V. Espada, “A state space distribution
policy based on abstract interpretation,” Electr. Notes Theor. Comput.
Sci., vol. 128, no. 3, pp. 35–45, 2005.

[27] E. Khamespanah, M. Sirjani, M. R. Mousavi, Z. Sabahi-Kaviani, and
M. Razzazi, “State distribution policy for distributed model checking of
actor models,” ECEASST, vol. 72, 2015.

[28] W. D. Clinger, “Foundations of actor semantics,” Cambridge, MA, USA,
Tech. Rep., 1981.

[29] J. Graf, “Speeding up context-, object- and field-sensitive SDG genera-
tion,” in SCAM 2010, 2010, pp. 105–114.

[30] K. G. Larsen and B. Thomsen, “A modal process logic,” in Proceedings
of (LICS ’88). IEEE Computer Society, 1988, pp. 203–210.

[31] H. Garavel, R. Mateescu, and W. Serwe, “Large-scale distributed ver-
ification using CADP: beyond clusters to grids,” Electr. Notes Theor.
Comput. Sci., vol. 296, pp. 145–161, 2013.

[32] G. Holzmann, The SPIN Model Checker: Primer and Reference Manual,
1st ed. Addison-Wesley Professional, 2011.

[33] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv: A
new symbolic model verifier,” in CAV 99, 1999, pp. 495–499.

[34] C. E. Perkins and E. M. Belding-Royer, “Ad-hoc on-demand distance
vector routing,” in Proc. 2nd Workshop on Mobile Computing Systems
and Applications. IEEE, 1999, pp. 90–100.

[35] F. Ghassemi and W. J. Fokkink, “Model checking mobile ad hoc
networks,” Formal Methods in System Design, vol. 49, no. 3, pp. 159–
189, 2016.

[36] F. Ghassemi, W. J. Fokkink, and A. Movaghar, “Equational reasoning
on mobile ad hoc networks,” Fundamenta Informaticae, vol. 103, pp.
1–41, 2010.

[37] F. Ghassemi and W. J. Fokkink, “Reliable restricted process theory,”
Fundamenta Informatica, vol. 165, no. 1, pp. 1–41, 2019.

[38] F. Ghassemi, “Verification of mobile ad hoc network processes with
data,” The CSI Journal on Computer Science and Engineering, vol. 15,
no. 2, pp. 44–52, 2018.

[39] I. Jahandideh, F. Ghassemi, and M. Sirjani, “Hybrid Rebeca: Modeling
and analyzing of cyber-physical systems,” in Proc. Model-Based Design

of Cyber Physical Systems, ser. LNCS, vol. 11615. Springer, 2019, pp.
1–25.

[40] ——, “An actor-based framework for asynchronous event-based cyber-
physical systems,” CoRR, vol. abs/1709.01786v2, 2019. [Online].
Available: http://arxiv.org/abs/1709.01786v2

