
Finite Interval-Time Transition System for

Real-Time Actors

Shaghayegh Tavassoli1, Ramtin Khosravi1, and Ehsan Khamespanah1

School of Electrical and Computer Engineering, University of Tehran - Iran

Abstract. Real-time computer systems are software or hardware systems

which have to perform their tasks according to a time schedule. Formal

verification is a widely used technique to make sure if a real-time system

has correct time behavior. Using formal methods requires providing

support for non-deterministic specification for time constraints which

is realized by time intervals. Timed-Rebeca is an actor-based modeling

language which is equipped with a verification tool. The values of timing

features in this language are positive integer numbers and zero (discrete

values). In this paper, Timed-Rebeca is extended to support modeling

timed actor systems with time intervals. The semantics of this extension

is defined in terms of Interval-Time Transition System (ITTS) which is

developed based on the standard semantics of Timed-Rebeca. In ITTS,

instead of integer values, time intervals are associated with system states

and the notion of shift equivalence relation in ITTS is used to make the

transition system finite. As there is a bisimulation relation between the

states of ITTS and finite ITTS, it can be used for verification against

branching-time properties.

Keywords: Actor Model, Timed Rebeca, Interval-Time Transition System,
Bisimulation Relation

1 Introduction

Real-time computer systems, are hardware or software systems which work on
the basis of a time schedule [15]. Controller of car engines, networks of wireless
sensors and actuators, and multimedia data streaming applications are examples
of real-time systems. The correct behavior of real-time systems is achieved by
correctness of calculated values as well as the time those values were produced
[14, 22]. So, verification of a real-time system requires considering both the
functional and time behavior of the systems [15]. In the modeling of real-time
systems, presenting nondeterministic time behavior may be required. For example,
the best response time of drivers when braking (with a high probability of signal
prediction) was reported as a value in the range of 0.7 to 0.75 seconds [8]. Using
time intervals is a widely used notion to model such behavior. Supporting time
intervals for nondeterministic time behavior raises challenges in the schedulability
analysis of real-time systems [16].

2 Shaghayegh Tavassoli et al.

Examples of nondeterministic time behavior in real-time systems include the
network delay in communication systems, driver’s reaction time when braking a
car, and the execution time of programs on processors. In such cases, determining
the exact duration of the tasks is not always possible. Instead, a time interval can
be used to specify that the time value will be within a specific range. It is well-
known that Worst Case Execution Time (WCET) analysis does not necessarily
show the worst time behavior [7]. Hence, using the upper bounds for the actions
does not help when analyzing time-sensitive safety properties. In Timed Rebeca,
the values of timing primitives are discrete values [12, 13]. Therefore, it is useful
to propose an extension on Timed Rebeca for modeling and analyzing real-time
systems with time intervals.

Using formal methods, in general, and model checking [6] in particular, is a
verification technique which guarantees correctness of systems. Model checking
tools for real-time models exhaustively explore state spaces of systems to make
sure that given properties hold in all possible executions of the system and
specified time constraints are satisfied. Timed Automata and UPPAAL are widely
used for modeling and model checking of real-time systems [4]. Timed Automata
are automata in which clock constraints (i.e. time interval constraints associated
with clocks) can be associated with both transition guards and location invariants
[3].

In the context of distributed systems, Actor is used to model systems composed
of a number of distributed components communicating via message passing [2, 10].
There are some extensions on the Actor model for modeling real-time systems, e.g.
Timed Rebeca [17] and Creol [5], which provide model checking for timed properties
such as schedulability and deadlock freedom. Creol models are transformed to
timed automata for the model checking purpose which suffers from support for
simple expressions for time constrains and state space explosion for middle-sized
models. In contrast, Timed Rebeca provides direct model checking toolset; but,
only for models with discrete timing primitives [11, 12] as described in detail in
Section 2.

In this paper, we extend Timed Rebeca to support modeling and analysis
of real-time systems with time intervals (Section 3). To this end, the notion
of Interval-Time Transition System (ITTS) is introduced, which can serve as
the basis for the semantic description of timed actor systems. Here, we formally
describe the semantics of Timed Rebeca based on ITTS in Section 4. In the
second step, we illustrate how the notion of shift equivalence relation for ITTS is
used to make the transition system finite, if possible. Using bisimulation method,
in Section 5, it is proved that shift equivalence relation can be used for detecting
equivalent system states in ITTS.

2 Timed Actors

A well-established paradigm for modeling concurrent and distributed systems is
the Actor model. Actor is introduced by Hewitt [10] as an agent-based language
and is later developed as a model of concurrent computation by Agha [2] . Actors

Finite Interval-Time Transition System for Real-Time Actors 3

are seen as the universal primitives of concurrent computation, such that each
actor provides some services which can be requested by other actors by sending
messages to it. Execution of a service of an actor may result in changing the state
of the actor and sending messages to some other actors. In [1], Timed Rebeca is
introduced as an extension on the actor model for modeling of real-time systems.

2.1 Timed Rebeca

Timed Rebeca is introduced in [1] as the real-time extension of the Rebeca
modeling language [18, 19, 21]. We explain Timed Rebeca using the example of a
simple Ping-Pong model (taken from [20] with slight modifications). In this model,
the ping actor sends pong message to the pong actor and the pong actor sends
ping message to the ping actor. A Timed Rebeca model consists of a number of
reactive classes, each describing the type of a number of actors (also called rebecs)1.
There are two reactive classes PingClass and PongClass in the Ping-Pong model
(Listing 1 lines 1 and 16). Each reactive class declares a set of state variables
(e.g. lines 5-7). The local state of each actor is defined by the values of its state
variables and the contents of its message bag. Communication in Timed Rebeca
models takes place by asynchronous message passing among actors. Each actor
has a set of known rebecs to which it can send messages. For example, an actor of
type PingClass knows an actor of type PongClass (line 3), to which it can send
pong message (line 12). Reactive classes may have some constructors that have
the same name as the declaring reactive class and do not have a return value
(lines 8-10 for PingClass). They may initialize actor’s state variables and put the
initially needed messages in the message bag of that actor (line 9). The way of
responds to a message is specified in a message server which are methods defined
in reactive classes. An actor can change its state variables through assignment
statements, makes decisions through conditional statements, communicates with
other actors by sending messages (e.g., line 12), and performs periodic behavior
by sending messages to itself. Since communication is asynchronous, each actor
has a message bag from which it takes the next incoming message. The ordering
of the messages in a message bag is based on the arrival times of messages. An
actor takes the first message from its message bag, executes its corresponding
message server in an isolated environment, takes the next message (or waits for
the next message to arrive) and so on.

Finally, the main block is used to instantiate the actors of the model. In the
Ping-Pong model, two actors are created receiving their known rebecs and the
parameter values of their constructors upon instantiation (lines 26-27).

1 reactiveclass PingClass(3) {
2 knownrebecs {
3 PongClass pong1;
4 }
5 statevars {

6 //e.g. int var1, var2;
7 }
8 PingClass() {
9 self.ping();

10 }

1 In this paper we use rebec and actor interchangeably.

4 Shaghayegh Tavassoli et al.

11 msgsrv ping() {
12 pong1.pong() after(1);
13 delay(2);
14 }
15 }
16 reactiveclass PongClass(3) {
17 knownrebecs {
18 PingClass ping1;
19 }
20 msgsrv pong() {

21 ping1.ping() after(1);
22 delay(1);
23 }
24 }
25 main {
26 PingClass pi(po) : ();
27 PongClass po(pi) : ();
28 }

Listing. 1. The Timed Rebeca model of

the Ping-Pong model

Timed Rebeca adds three primitives to Rebeca to address timing issues: delay,
deadline and after. A delay statement models the passage of time for an actor
during execution of a message server (line 13). Note that all other statements of
Timed Rebeca are assumed to execute instantaneously. The keywords after and
deadline are used in conjunction with a method call. The term after(n) indicates
that it takes n units of time for a message to be delivered to its receiver (lines 12
and 21). The term deadline(n) expresses that if the message is not taken in n
units of time, it will be purged from the receiver’s message bag automatically [1].

2.2 Timed Transition Systems

One way of modeling real-time systems is using timed transition systems [9]. The
Semantics of Timed Rebeca is defined in terms of timed transition systems in [11].
In this semantics, the global state of a Timed Rebeca model is represented by
a function that maps actors’ ids to tuples. A tuple contains, the state variables
valuations, the content of message bags, local time, the program-counter which
shows the position of the statements which will be executed to finish the service
to the message currently being processed, and the time when the actor resumes
execution of the remained statements.

Transitions between states occur as the results of actors’ activities including:
taking a message from the mailbox, continuing the execution of statements, and
progress of time. In timed transition syatem of Timed Rebeca, progress of time
is only enabled when the other actions are disabled for all of the actors. This
rule performs the minimum required progress of time to make one of the other
rules enabled. As a result, the model of progress of time in the timed transition
system of Timed Rebeca is deterministic. The detailed SOS rules of transition
relations are defined in [11].

Figure 1 shows the beginning part of the timed transition system of the
Ping-Pong example. In this figure, σ denotes the next statement in the body
of the message server which is being processed. The pair of σ = ⟨ping, 1⟩ in
the second state of Figure 1 shows that pi executed the statements of its ping
message server up to the statement in line 1. In each state, r is the time when
the actor can resume the execution of its remained statements. The first enabled
actor of the model is pi (as its corresponding reactive class PingClass has a
constructor which puts message ping in its bag, line 9), so, the first possible

Finite Interval-Time Transition System for Real-Time Actors 5

transition is taking message ping. As shown in the detailed contents of the second
state (the gray block), taking the message ping results in setting the values of σ
and r for the actor pi. The next transition results in executing the first statement
of the message server ping and results in putting the message pong in the bag of
the actor po with release time 1 (because of the value of after in line 7). Note
that the deadline for mesages in this model is ∞ as no specific value is set as the
deadline for these messages. As the next statement of the message server ping is
a delay statement, pi cannot continue the execution. The actor po cannot cause
a transition too. So, the only possible transition is progress of time which is by 1
unit from the third to the fourth state.

!:ping

Time = 0
pi

po

mb =

mb = #$%&, #(, 1,∞

r = 2

r = +
, = +

, = #(%&, 2

Time = 0
pi

po

mb = #(%&, #(, 0,∞

mb =

r = +

r = +
, = +

, = +

Time = 0

pi

po

mb =

mb =

r = 0

r = +
, = +

, = #(%&, 1

pi

po

mb = #(%&, #$, 0,∞

mb = #$%&, #(, 1,∞

r = 2

r = +
, = +

, = #(%&, 2

Time = 1

ping time+1 pong time+1

!:pong

ping

!:pong!:ping

!:ping !:pong

Fig. 1. The beginning part of the transition system of the Ping-Pong example [20].

3 Timed Rebeca with Intervals

The time interval extension to Timed Rebeca enables the use of time intervals
with the timing directive after. In this model, a time interval is associated
with each state of the transition system. To simplify the presentation of this
paper, the time features delay and deadline are omitted. The modified version
of Listing 1 which contains time interval for after directive is presented in
Listing 2. Note that in Line 9, after([8,16)) means that message pong arrives
its destination during [8, 16) time units after it has been sent. This value models
the nondeterministic delay of the network in message delivery.

6 Shaghayegh Tavassoli et al.

1 reactiveclass PingClass(3) {
2 knownrebecs {
3 PongClass po;
4 }
5 PingClass() {
6 self.ping();
7 }
8 msgsrv ping() {
9 po.pong() after([8,16));

10 }
11 }
12 reactiveclass PongClass(3) {
13 knownrebecs {
14 PingClass pi;

15 }
16 PongClass() {
17 self.pong();
18 }
19 msgsrv pong() {
20 pi.ping() after([8,16));
21 }
22 }
23 main {
24 PingClass pi(po) : ();
25 PongClass po(pi) : ();
26 }

Listing. 2. The Timed Rebeca model of

the Ping-Pong model with time intervals

4 Semantics of Timed Rebeca with Intervals

We define the semantics of a Timed Rebeca with Intervals model as an ITTS
which is based on the usual transition system semantics for actor systems [11].
Although in timed transition systems (TTS) time intervals can be used as timing
constraints on transitions [9], describing the semantics of Timed Rebeca with
intervals using TTS makes the semantics complicated, as it does not fit the timing
model of TTS. Also, using such semantics as a basis for state space generation
and model analysis may result in performance overheads. Thus, it is necessary to
define a semantics for Timed Rebeca with intervals which naturally reflects its
timing model.

The states in ITTS are composed of the local states of the actor in the system.
A key idea behind ITTS is to associate with each state a time interval during
which the local states of the actors do not change. The transitions are of two
types, namely message processing and time progress. The former includes taking
or processing of a message by an actor (which changes the local state of the
actor). Time progress transition changes the state of the system by increasing
the left end-point of the time interval of the state.

To keep the semantics description focused on timed behavior, we assume the
messages do not have parameters, as they do not affect the time behavior of the
model. Otherwise, the semantics rules will be cluttered with actual parameters
evaluation and scope management.

Before we describe the formal semantics of ITTS, we introduce a few notations
that are used throughout the paper.

4.1 Notation and Basic Definitions

We use the notation TInterval (ranged over by α, β, and γ) to denote the set of
all time intervals in R≥0 which are left-closed right-open or left-closed right-closed.
Such intervals are written as [t1, t2) and [t1, t2] respectively. Time interval [t1, t1]

Finite Interval-Time Transition System for Real-Time Actors 7

corresponds to time value t1 of Timed Rebeca. For α ∈ TInterval, αℓ and αr

denotes the left and the right endpoints of α respectively (regardless of being
right-open or right-closed). The notation αℓ←x (resp. αr←x) denote the interval
obtained from replacing the left (resp. right) endpoint of α with x, e.g., [t1, t2)r←x

is [t1, x).
For a function f : X → Y , we use the notation f [x 7→ y] to denote the

function {(a, b) ∈ f |a ̸= x} ∪ {(x, y)}. We also use the notation x 7→ y as an
alternative to (x, y).

The following notations is used for working with sequences. Given a set A, the
set A∗ is the set of all finite sequences over elements of A, ranged over by σ and σ′.
For a sequence σ ∈ A∗ of length n, the symbol ai denotes the ith element of the
sequence, where 1 ≤ i ≤ n. In this case, we may also write σ as ⟨a1, a2, . . . , an⟩.
The empty sequence is represented by ϵ, and ⟨h|T ⟩ denotes a sequence whose
first element is h ∈ A and T ∈ A∗ is the sequence comprising the elements in the
rest of the sequence. For x ∈ A and σ, σ′ ∈ A∗, the expressions x ⊕ σ and σ ⊕ x
denote a sequence obtained from prepending and appending x to σ respectively.
Also, σ ⊕ σ′ is the sequence obtained by concatenating σ′ to the end of σ. The
deletion operator is defined such that σ ⊖ x is the sequence obtained by removing
the first occurrence of x in σ. Finally, we define the membership operator for
sequences as x ∈ ⟨a1, a2, . . . , an⟩ def= ∃1 ≤ i ≤ n · ai = x.

VName is defined as the set of all variable names in the model, and Value as
the set of all values the state variables can take. We do not address typing issues
in this paper to keep the focus on time behavior of the actors. Let Stat denote the
set of all statements appearing in the actors’ message handlers, MName denote
the set of all message names, and ActorID denote the set of all unique identities
of the actors. The function body : ActorID × MName → Stat is defined such that
body(x, m) returns the sequence of statements in the body of the message handler
of m in the actor with ID x. The set Act is defined as MName ∪ {τ} ∪ {TP}.

4.2 Messages and Message Bags

A message in ITTS is a tuple (sID, rID, m, α), where rID and sID denote the
receiver ID and the sender ID respectively, m denotes the message name, while
α denotes the “after” interval. It means that this message arrives its destination
during α time units after it has been sent. The set of all messages is defined
as Msg. In ITTS, each actor has an associated message bag that holds all its
received messages. The set of all message bags is defined as Bag(Msg) = Msg∗.
For the notation to be simpler, message bags are written in the form of sequences.
But it is not necessary for message bags to be sequences, as they can be defined
as multisets in general.

4.3 States in ITTS

The system state is composed of the local states of the actors in the system.
The local state of an actor with ID x, is defined as the triple (vx, mbx, σx),

8 Shaghayegh Tavassoli et al.

where vx is the valuation function of the state variables of the actor, mbx is the
message bag of the actor, and σx denotes the sequence of statements the actor is
going to execute in order to finish the processing of the message being handled.
The set of all local states of the actors is denoted as ActorState = (VName →
Value) × Bag(Msg) × Stat∗.

A (global) system state in ITTS is a tuple (s, α), where s ∈ ActorID →
ActorState is a function mapping each actor ID to its local state, and α ∈
TInterval is the time interval associated with the system state. It is assumed
that S is the set of all possible system states, ranged over by gs (short for global
state). In the initial system state, we let the time interval of the system state to
be [0, 0].

4.4 Order of Events in ITTS

As stated before, to define time progress transitions, we must determine the
earliest time in which a change is possible in the local state of an actor (called an
event). As such changes happen only as a result of taking or executing a message,
the earliest and the latest times the messages can be taken determine the order
of events in the system. To specify the ordering of the events, a message bag is
defined for every system state called “system state message bag”, denoted by
B(gs), which consists of all messages in message bags of all actors in that system
state (which may contain duplicate messages).

The ordering of the events regarding to a state gs ∈ S is denoted by EE i(gs)
which is the ith smallest value in the set of all lower and uppoer bounds of the
time intervals of all messages in B(gs).

4.5 Transitions Definition

As explained before, transitions in ITTS are classified into two major types:
message processing and time progress. The former includes taking a message from
message bag or processing a message by an actor. As with Timed Rebeca, we
assume executing the statements in a message server is instantaneous.

Message Processing For a system state (s, α) we call an actor x idle, if it has
no remaining statement to execute from its previously taken message. If such an
actor has a message in its mailbox whose after interval starts from αℓ, a message
processing transition can take place:

gs = (s, α) ∈ S ∧ s(x) = (v, mb, ϵ) ∧ msg = (y, x, m, β) ∈ mb ∧ βℓ = αℓ

gs m→ (s[x 7→ (v ∪ {(self , x), (sender , y)}, mb ⊖ msg, body(x, msg))], α)
(1)

The execution of each statement in the body of a message handler is considered
an internal action in ITTS. The statements such as assignments, conditionals
and loops only alter the local state of the executing actor. The only statement
that affects the state of other actors is send which may put a message in another

Finite Interval-Time Transition System for Real-Time Actors 9

actor’s message bag. The semantics of send and assignment statements are stated
here and the others are left out to save space.

An assignment statement of the form var = expr overrides the value of var in
the executing actor’s state variables to the value of the expression expr , denoted
by evalx(expr). To keep the description simple, it is assumed that the message
servers do not have local variables, so the left side of the assignment is always a
state variable of the actor executing the message server.

gs = (s, α) ∈ S ∧ s(x) = (v, mb, ⟨var = expr |σ⟩)
gs → (s[x 7→ (v[var 7→ evalx(expr)], mb, σ)], α) (2)

The send statement y.m()after γ denotes sending a message m with the after
interval γ to the receiver y. The semantics of the send statement is defined as

gs = (s, α) ∈ S ∧ s(x) = (v, mb, ⟨y.m()after γ|σ⟩) ∧ s(y) = (v′, mb′, σ′)
gs → (s[x 7→ (v, mb, σ)][y 7→ (v′, mb′ ⊕ (x, y, m, β), σ′)], αr←t)

(3)

where β is the interval whose left and right endpoints are αℓ + γℓ and αr + γr

respectively, and is right-closed if both α and γ are right-closed and is right-open
otherwise. Furthermore, t = min(αr, βℓ) which means that after the message is
sent, βℓ may be the second earliest event, replacing αr in that case.

Time Progress In ITTS, two types of time progress transitions are defined.
The first type corresponds to the case that the only possible transition is time
progress, while for the second type, a nondeterministic choice between time
progress and another transition is enabled.
Type 1 time progress transition: If the lower bound of the time interval
for a system state gs is smaller than the earliest event of that system state
(αℓ < EE1(gs)), the only possible transition is time progress. After executing
Type 1 time progress transition, the time interval for the successor state is
[EE1(gs), EE2(gs)).

gs = (s, α) ∧ αℓ < EE1(gs)
gs TP→ (s, [EE1(gs), EE2(gs)))

(4)

Type 2 time progress transition: In ITTS, in situations which in a system
state, time progress transition and at least one other transition are enabled, second
type of time progress transition can occur. Consider a global state gs = (s, α).
Unlike Type 1 transitions we have αℓ = EE1(gs), so there exists a message msg1

in the system with interval β such that αℓ = βℓ. Now, if no other message exists
which can be taken before βr, the only possible transition from gs is to take msg1

and there is no time progress transition. Hence, there must be a message msg2

in the system with interval γ such that EE2(gs) = γℓ and βℓ ≤ γℓ < βr. In such
a state gs, two transitions are possible: taking msg1, and waiting till γℓ. Note
that this nondeterminism enables the interleaving of processing msg1 and msg2.

To model this type of time progress, we shift the lower bound of the time
interval of msg1 from βℓ to γℓ and update the time interval of the global state

10 Shaghayegh Tavassoli et al.

accordingly. Note that there may be multiple messages that start from βℓ. Hence,
we define the function ds (short for delay starts), such that ds(mb, t) changes the
lower bound of the messages in mb which start earlier than t to t. Formally,

ds(ϵ, t) = ϵ
ds(⟨(x, y, m, α)|T ⟩, t) = ⟨(x, y, m, αℓ←max(αℓ,t))|ds(T, t)⟩

We lift the definition of ds to the function s which returns the local state of the
actors:

ds(s, t) = {x 7→ (v, ds(mb, t), σ)|x 7→ (v, mb, σ) ∈ s}

Now, we can define Type 2 time progress transitions as below.

gs = (s, α) ∧ αℓ = EE1(gs) ∧ (x, y, m, γ) ∈ B(gs) ∧ γℓ = EE2(gs)
gs TP→ (ds(s, EE2(gs)), [EE2(gs), EE3(gs)))

(5)

Figure 2 shows part of the ITTS of the Ping-Pong example of Listing 2 which
is generated based on the proposed semantics of this section.

5 Making State Space Finite

Based on the semantics of Timed Rebeca, there is no explicit time reset operator
in the language; so, the progress of time results in an infinite number of states
in ITTS of models. However, reactive systems which generally show periodic or
recurrent behaviors are modeled using Timed Rebeca, i.e. performing recurrent
behaviors over infinite time. This fact enables us to propose the notion for
equivalence relation between two states with time intervals, aiming to make
ITTSs finite, called shift equivalence relation in ITTS. The idea of defining shift
equivalence relation in states of ITTSs is inspired from [12]. Intuitively, in the
shift equivalence relation two states are equivalent if and only if they are the
same except for the parts related to the time and the timed parts can be mapped
by shifting them with an specific value.

5.1 Shift Equivalence Relation in ITTS

In the first step, the shift equivalence of two time intervals with distance c ∈ R
is defined as:

α ≈c α′
def= α′ℓ = αℓ + c ∧ α′r = αr + c (6)

Then, the shift equivalence of two messages with distance c ∈ R is defined as:

∀sID, rID ∈ ActorID, m ∈ MName, β, β′ ∈ TInterval ·
(sID, rID, m, β) ≈c (sID, rID, m, β′) ⇔ β ≈c β′ (7)

Finite Interval-Time Transition System for Real-Time Actors 11

 gs:

gs:

T.P

T.P

ping

τ

gs:

ping1:
mb = 〈൫po,pi,ping, [32,48)൯〉
σ = ε
pong1:
mb = 〈൫pi,po,pong, [32,48)൯〉
σ = ε
δ = [32,48)

ping1:
mb = 〈൫po,pi,ping, [24,48)൯〉
σ = ε
pong1:
mb = 〈൫pi,po,pong, [32,48)൯〉
σ = ε
δ = [24,32)

ping1:
mb = 〈	〉
σ = 〈po.pong	after	[8,16)〉
pong1:
mb = 〈൫pi,po,pong, [32,48)൯〉
σ = ε
δ = [24,32)

gs:
ping1:
mb = 〈	〉
σ = ε
pong1:

mb = 〈
൫pi,po,pong, [32,48)൯,
൫pi,po,pong, [32,48)൯

〉

σ = ε
δ = [24,32)

gs:
ping1:
mb = 〈	〉
σ = ε
pong1:

mb = 〈
൫pi,po,pong, [32,48)൯,
൫pi,po,pong, [32,48)൯

〉

σ = ε
δ = [32,48)

Fig. 2. A part of the interval time transition system of the Ping-Pong example. The

transition from gs1 to gs3 is a take message transition. The transition from gs3 to gs4
is an internal transition. The transition from gs4 to gs5 is a Type 1 time progress. The

transition from gs1 to gs2 is a Type 2 time progress.

Using Equation 7, the shift equivalence of two message bags B = ⟨m1, ..., mn⟩
and B′⟨m′1, ..., m′n⟩ with distance c ∈ R is defined as:

B ≈c B′ ⇔ ∃1 ≤ i ≤ n, 1 ≤ i′ ≤ n · mi ≈c m′i ∧ B ⊖ mi ≈c B′ ⊖ m′i′ (8)

Now, the shift equivalence of two local states of an actor with ID x with
distance c ∈ R is defined as:(

s(x) = (vx, mbx, σx)
)

≡c

(
s′(x) = (v′x, mb′x, σ′x)

)
⇔

vx = v′x ∧ σx = σ′x ∧ mbx ≈c mb′x (9)

Consequently, the shift equivalence of two system states gs and gs′ (gs, gs′ ∈ S)
with distance c ∈ R is defined as:(

gs = (s, α)
)

≡c

(
gs′ = (s′, α′)

)
⇔ α ≈c α′ ∧ ∀x ∈ ActorID.s(x) ≡c s′(x) (10)

5.2 Shift Equivalence Relation in ITTS is a Bisimulation Relation

The shift equivalence relation aims to make ITTSs of models finite. To this end,
we have to show that there is a timed bisimulation relation between finite and
infinite ITTSs of a given model to prove that they preserve the same set of timed
branching-time properties (i.e., ≡c is a bi-simulation relation). To this end, the
following theorem should be proven:

12 Shaghayegh Tavassoli et al.

Theorem 1. ∀(gs1, gs′1) ∈≡c and ∀a ∈ Act:

∀gs2 ∈ S.gs1
a→ gs2 ⇒ ∃gs′2 ∈ S.gs′1

a→ gs′2 ∧ (gs2, gs′2) ∈≡c (11)

∀gs′2 ∈ S.gs′1
a→ gs′2 ⇒ ∃gs2 ∈ S.gs1

a→ gs2 ∧ (gs2, gs′2) ∈≡c (12)

To prove the first condition of bisimulation relation (i.e., Equation (11)) it
has to be proven that it holds for for all transition types in ITTS.

Take Message Transitions: Assume that gs1 = (s1, α), s1(x) = (vx, mbx, ϵ),
msg = (y, x, m, β) ∈ mbx and βℓ = αℓ. Thus take message transition is enabled
in gs1 and gs1

m→ gs2. Assume that gs′1 = (s′1, α′), s′1(x) = (v′x, mb′x, ϵ) and
gs1 ≡c gs′1. Therefore α′ℓ = αℓ + c. From s1(x) ≡c s′1(x), it can be concluded
that a message msg′ exists in mb′x such that msg ≈c msg′. Thus msg′ is of the
form (y, x, m, β′) such that β′ℓ = α′ℓ and β′r = βr + c . Therefore take message
transition is enabled in gs′1. Hence, gs′2 exists in ITTS such that gs′1

m→ gs′2. From
equation (1), It can be concluded that:

gs2 = (s2, α) = (s1[x 7→ (vx ∪ A, mbx ⊖ msg, body(x, msg))], α)
gs′2 = (s′2, α′) = (s′1[x 7→ (v′x ∪ A, mb′x ⊖ msg′, body(x, msg′))], α′)

A = {(self , x), (sender , y)}

To prove that gs2(x) ≡c gs′2(x), the following points should be considered:

1. s1(x) ≡c s′1(x) ⇒ vx = v′x
⇒ vx ∪ {(self , x), (sender , y)} = v′x ∪ {(self , x), (sender , y)}

2. mbx ≈c mb′x ∧ msg ≈c msg′ ⇒ mbx ⊖ msg ≈c mb′x ⊖ msg′
3. msg ≈c msg′ ⇒ body(x, msg) = body(x, msg′)
4. gs1 ≡c gs′1 ⇒ α ≈c α′

Based on the above equations, gs2 ≡c gs′2 can be concluded, which is required
for proving Equation 11.

Internal Transitions: Assuming that gs1 = (s1, α), gs′1 = (s′1, α′), gs1 ≡c gs′1,
two cases are possible:

– Assignment Statement: Assume that s1(x) = (vx, mb1x, ⟨var = expr |σx⟩).
Therefore internal action is enabled in gs1 and gs1

τ→ gs2. From gs1 ≡c gs′1, it
can be concluded that s1(x) ≡c s′1(x), so s′1(x) = (vx, mb′1x, ⟨var = expr |σx⟩).
Thus internal action is enabled in gs′1 and gs′1

τ→ gs′2. The produced next
states gs2 and gs′2 are:

gs2 = (s1[x 7→ (vx[var 7→ evalx(expr)], mb1x, σx)], α)
gs′2 = (s′1[x 7→ (vx[var 7→ evalx(expr)], mb′1x, σx)], α′)

To prove that gs2 ≡c gs′2, the following points should be considered:

Finite Interval-Time Transition System for Real-Time Actors 13

1. gs1 ≡c gs′1 ⇒ α ≈c α′

2. s1(x) ≡c s′1(x) ⇒ mb1x ≈c mb′1x

On the basis of the above results (1,2), gs2 ≡c gs′2 can be concluded.
– Send Statement: Assume that s1x = (vx, mb1x, ⟨y.m()after γ|σx⟩) such that

γℓ and γr are relative time values and s1y = (vy, mb1y, σy). After executing
send statement in gs1, msg = (x, y, m, β) will be appended to mb1y such that
βℓ = αℓ + γℓ and βr = αr + γr. From gs1 ≡c gs′1, it can be concluded that
s′1x = (vx, mb′1x, ⟨y.m()after γ|σx⟩) and s′1y = (vy, mb′1y, σy) exist in ITTs.
After executing send statement in gs′1, msg′ = (x, y, m, β′) will be appended
to mb′1y such that β′ℓ = α′ℓ + γℓ and β′r = α′r + γr:

mb2y = mb1y ⊕ msg = mb1y ⊕ (x, y, m, β)
mb′2y = mb′1y ⊕ msg′ = mb′1y ⊕ (x, y, m, β′)

Time interval of gs2 is αr←t such that t = min(αr, βℓ) and Time interval of
gs′2 is α′r←t′ such that t′ = min(α′r, β′ℓ):

gs2 = (s2, αr←t) = (s1[x 7→ (vx, mb1x, σx)][y 7→ (vy, mb2y, σy)], αr←t)
gs′2 = (s′2, α′r←t′) = (s′1[x 7→ (vx, mb′1x, σx)][y 7→ (vy, mb′2y, σy)], α′r←t′)

To prove the equivalency of gs2 and gs′2, the following points should be
considered:
1. s2(x) ≡c s′2(x)
2. msg ≈c msg′ ∧ mb1y ≈c mb′1y ⇒ mb2y ≈c mb′2y ⇒ s2(y) ≡c s′2(y)
3. αr←t ≈c α′r←t′

On the basis of the above results (1-3), it can be concluded that gs2 ≡c gs′2.

So, in both cases of internal transitions, gs2 ≡c gs′2 as required for proving
Equation 11.

Time Progress Transition: In ITTS, two types of time progress transitions
were defined (Equations 4 and 5). So, it has to be proven that the first condition
holds for these two types. In the following, we assume that gs1 = (s1, α), gs′1 =
(s′1, α′), gs1 ≡c gs′1.

– Type 1 Time Progress Transition: Assume that Type 1 time progress
transition is enabled in gs1. On the basis of (4), αℓ < EE1(gs1) and gs1

TP→ gs2.
From gs1 ≡c gs′1, it can be concluded that α′ℓ < EE1(gs′1). Therefore Type
1 time progress transition is enabled in gs′1 and gs′1

TP→ gs′2. According to
equation (4), gs2 and gs′2 are of the following forms:

gs2 = (s1, [EE1(gs1), EE2(gs1)))
gs′2 = (s′1, [EE1(gs′1), EE2(gs′1)))

To prove that gs2 ≡c gs′2, the following points should be considered:
1. gs1 ≡c gs′1 ⇒ s1 ≡c s′1

14 Shaghayegh Tavassoli et al.

2. gs1 ≡c gs′1 ⇒ EE1(gs′1) = EE1(gs1) + c ∧ EE2(gs′1) = EE2(gs1) + c ⇒
[EE1(gs1), EE2(gs1)) ≈c [EE1(gs′1), EE2(gs′1))

On the basis of the above results (1,2), gs2 ≡c gs′2 can be concluded.
– Type 2 Time Progress Transition: Assume that Type 2 time progress

transition is enabled in gs1. On the basis of equation (5), αℓ = EE1(gs1)
and message (x, y, m, γ) exists in B(gs1) such that γℓ = EE2(gs1). Therefore
gs1

TP→ gs2. On the basis of gs1 ≡c gs′1, it can be concluded that α′ℓ = EE1(gs′1)
and message (x, y, m, γ′) exists in B(gs′1) such that γ′ℓ = EE2(gs′1). Therefore
Type 2 time progress transition is enabled in gs′1 and gs′1

TP→ gs′2. According
to equation (5), gs2 and gs′2 are of the following forms:

gs2 = (s2, [EE2(gs1), EE3(gs1))) = (ds(s1, EE2(gs1)), [EE2(gs1), EE3(gs1)))
gs′2 = (s′2, [EE2(gs′1), EE3(gs′1))) = (ds(s′1, EE2(gs′1)), [EE2(gs′1), EE3(gs′1)))

To prove that gs2 ≡c gs′2, the following points should be considered:
1. gs1 ≡c gs′1 ⇒ ds(s1, EE2(gs1)) ≡c ds(s′1, EE2(gs′1)) ⇒ s2 ≡c s′2
2. gs1 ≡c gs′1 ⇒ [EE2(gs1), EE3(gs1)) ≈c [EE2(gs′1), EE3(gs′1))

On the basis of the above results (1,2), it can be concluded that gs2 ≡c gs′2.

Therefore Equation 11 holds for both types of time progress transitions.
The proof of the second condition of the bisimulation relation (i.e. Equation 12)

is almost the same as the first condition and omitted from this paper because of
lack of space.

6 Conclusion

The correctness of behavior in real-time systems, depends on the calculated values
and the time of producing theses values [14, 22]. In many real life applications,
nondeterministic time behavior is present; In such circumstances, time intervals
can be used to define the time behavior of a real-time system.

In this paper, a time interval extension to Timed Rebeca was presented.
Timed Rebeca with intervals can be used for modeling real-time systems with
nondeterministic time behavior. Using this method, the models of such real-time
systems can be described with a high-level language and they can be efficiently
analyzed. The semantics of Timed Rebeca with intervals models was defined as
Interval Time Transition System (ITTS). In ITTS, every time feature is defined
as an interval of non-negative real numbers . A time interval is associated with
every system state. The semantics of ITTS was explained and messages, system
states, and transitions for different action types were defined. Using the presented
semantics, the state space of timed actor systems with time intervals could
be generated. In order to determine equivalent system states, shift equivalence
relation in ITTS was defined. Using bi-simulation method, it was proved that
shift equivalence relation in ITTS could help detect equivalent system states. In
many cases with finite time intervals, state space explosion could be prevented
using shift equivalence relation in ITTS.

Finite Interval-Time Transition System for Real-Time Actors 15

Other equivalence relations can be proposed in the future for detection of
equivalent states in cases with infinite time intervals. Another line of research
is implementation of the proposed semantics and testing its efficiency on actor
models.

References

1. Aceto, L., Cimini, M., Ingólfsdóttir, A., Reynisson, A.H., Sigurdarson, S.H., Sirjani,

M.: Modelling and simulation of asynchronous real-time systems using timed rebeca.

In: Mousavi, M.R., Ravara, A. (eds.) Proceedings 10th International Workshop on the

Foundations of Coordination Languages and Software Architectures, FOCLASA

2011, Aachen, Germany, 10th September, 2011. EPTCS, vol. 58, pp. 1–19 (2011),

https://doi.org/10.4204/EPTCS.58.1
2. Agha, G.A.: ACTORS - a model of concurrent computation in distributed systems.

MIT Press series in artificial intelligence, MIT Press (1990)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical computer science

126(2), 183–235 (1994)

4. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a Tool

Suite for Automatic Verification of Real-Time Systems. In: Alur, R., Henzinger, T.A.,

Sontag, E.D. (eds.) Hybrid Systems. Lecture Notes in Computer Science, vol. 1066,

pp. 232–243. Springer (1995)

5. Bjørk, J., Johnsen, E.B., Owe, O., Schlatte, R.: Lightweight time modeling in timed

creol. In: Ölveczky, P.C. (ed.) Proceedings First International Workshop on Rewriting

Techniques for Real-Time Systems, RTRTS 2010, Longyearbyen, Norway, April 6-9,

2010. EPTCS, vol. 36, pp. 67–81 (2010), https://doi.org/10.4204/EPTCS.36.4
6. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state

concurrent systems using temporal logic specifications. ACM Trans. Program. Lang.

Syst. 8(2), 244–263 (1986), https://doi.org/10.1145/5397.5399
7. Gomes, L., Fernandes, J.M., Gomes, L., Fernandes, J.M.: Behavioral modeling for

embedded systems and technologies: applications for design and implementation.

Information Science Reference (2010)

8. Green, M.: "How long does it take to stop?"Methodological analysis of driver

perception-brake times. Transportation human factors 2(3), 195–216 (2000)

9. Henzinger, T.A., Manna, Z., Pnueli, A.: Timed transition systems. In: de Bakker,

J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) Real-Time: Theory in

Practice, REX Workshop, Mook, The Netherlands, June 3-7, 1991, Proceedings.

Lecture Notes in Computer Science, vol. 600, pp. 226–251. Springer (1991),

https://doi.org/10.1007/BFb0031995
10. Hewitt, C.: Description and theoretical analysis (using schemata) of PLANNER: A

language for proving theorems and manipulating models in a robot. MIT Artificial

Intelligence Technical Report 258, Department of Computer Science, MIT (Apr 1972)

11. Khamespanah, E., Khosravi, R., Sirjani, M.: An efficient TCTL model checking

algorithm and a reduction technique for verification of timed actor models. Sci. Comput.

Program. 153, 1–29 (2018), https://doi.org/10.1016/j.scico.2017.11.004
12. Khamespanah, E., Sirjani, M., Sabahi-Kaviani, Z., Khosravi, R., Izadi, M.: Timed

rebeca schedulability and deadlock freedom analysis using bounded floating time

transition system. Sci. Comput. Program. 98, 184–204 (2015), https://doi.org/10.
1016/j.scico.2014.07.005

https://doi.org/10.4204/EPTCS.58.1
https://doi.org/10.4204/EPTCS.36.4
https://doi.org/10.1145/5397.5399
https://doi.org/10.1007/BFb0031995
https://doi.org/10.1016/j.scico.2017.11.004
https://doi.org/10.1016/j.scico.2014.07.005
https://doi.org/10.1016/j.scico.2014.07.005

16 Shaghayegh Tavassoli et al.

13. Khamespanah, E., Sirjani, M., Viswanathan, M., Khosravi, R.: Floating time

transition system: More efficient analysis of timed actors. In: Braga, C., Ölveczky,

P.C. (eds.) Formal Aspects of Component Software - 12th International Conference,

FACS 2015, Niterói, Brazil, October 14-16, 2015, Revised Selected Papers. Lecture

Notes in Computer Science, vol. 9539, pp. 237–255. Springer (2015), https:
//doi.org/10.1007/978-3-319-28934-2_13

14. Kopetz, H.: Real-Time Systems - Design Principles for Distributed Embedded

Applications. Real-Time Systems Series, Springer (2011), https://doi.org/10.1007/
978-1-4419-8237-7

15. Liu, J.W.: Real-Time Systems. Integre Technical Publishing Co., Inc. (2000)

16. Manolache, S., Eles, P., Peng, Z.: Memory and time-efficient schedulability analysis

of task sets with stochastic execution time. In: Proceedings 13th EUROMICRO

conference on Real-time Systems. pp. 19–26. IEEE (2001)

17. Reynisson, A.H., Sirjani, M., Aceto, L., Cimini, M., Jafari, A., Ingólfsdóttir, A.,

Sigurdarson, S.H.: Modelling and simulation of asynchronous real-time systems using

timed rebeca. Sci. Comput. Program. 89, 41–68 (2014), https://doi.org/10.1016/
j.scico.2014.01.008

18. Sirjani, M., de Boer, F.S., Movaghar-Rahimabadi, A.: Modular verification of

a component-based actor language. J. UCS 11(10), 1695–1717 (2005), https:
//doi.org/10.3217/jucs-011-10-1695

19. Sirjani, M., Jaghoori, M.M.: Ten years of analyzing actors: Rebeca experience. In:

Formal Modeling: Actors, Open Systems, Biological Systems. Lecture Notes in

Computer Science, vol. 7000, pp. 20–56. Springer (2011)

20. Sirjani, M., Khamespanah, E.: On time actors. In: Theory and Practice of Formal

Methods. Lecture Notes in Computer Science, vol. 9660, pp. 373–392. Springer

(2016)

21. Sirjani, M., Movaghar, A., Shali, A., De Boer, F.S.: Modeling and verification of

reactive systems using rebeca. Fundamenta Informaticae 63(4), 385–410 (2004)

22. Stankovic, J.A., Spuri, M., Ramamritham, K., Buttazzo, G.C.: Deadline Scheduling

for Real-Time Systems: EDF and Related Algorithms. The Springer International

Series in Engineering and Computer Science, Springer US (2012), https://books.
google.com/books?id=1TrSBwAAQBAJ

https://doi.org/10.1007/978-3-319-28934-2_13
https://doi.org/10.1007/978-3-319-28934-2_13
https://doi.org/10.1007/978-1-4419-8237-7
https://doi.org/10.1007/978-1-4419-8237-7
https://doi.org/10.1016/j.scico.2014.01.008
https://doi.org/10.1016/j.scico.2014.01.008
https://doi.org/10.3217/jucs-011-10-1695
https://doi.org/10.3217/jucs-011-10-1695
https://books.google.com/books?id=1TrSBwAAQBAJ
https://books.google.com/books?id=1TrSBwAAQBAJ

	Finite Interval-Time Transition System for Real-Time Actors

