
Sirjani et al.

RESEARCH

Towards a Verification-Driven Iterative
Development of Cyber-Physical System
Marjan Sirjani1,2*†, Luciana Provenzano1, Sara Abbaspour Asadollah1, Mahshid Helali Moghadam1,3 and
Mehrdad Saadatmand3

Abstract

Software systems are complicated, and the scientific and engineering methodologies for software development
are relatively young. Cyber-physical systems are now in every corner of our lives, and we need robust methods
for handling the ever-increasing complexity of their software systems. Model-Driven Development is a
promising approach to tackle the complexity of systems through the concept of abstraction, enabling analysis
at earlier phases of development. In this paper, we propose a model-driven approach with a focus on
guaranteeing safety using formal verification. Cyber-physical systems are distributed, concurrent, asynchronous
and event-based reactive systems with timing constraints. The actor-based textual modeling language, Rebeca,
with model checking support is used for formal verification. Starting from structured requirements and system
architecture design the behavioral models, including Rebeca models, are built. Properties of interest are also
derived from the structured requirements, and then model checking is used to formally verify the properties.
This process can be performed in iterations until satisfaction of desired properties are ensured, and possible
ambiguities and inconsistencies in requirements are resolved. The formally verified models can then be used to
develop the executable code. The Rebeca models include the details of the signals and messages that are
passed at the network level including the timing, and this facilitates the generation of executable code. The
natural mappings among the models for requirements, the formal models, and the executable code improve the
effectiveness and efficiency of the approach.

Keywords: Model Checking; Verification & Validation; Safety-Critical Systems; Model Driven Development;
Requirements; Cyber-Physical Systems

1 Introduction
Cyber-physical systems (CPSs) are taking over in our
everyday life. In cyber-physical systems, we have
embedded computers and networks monitoring and
controlling the physical processes. Due to the high
interplay between software components and physical
processes, in developing software components of such
systems we need more robust and rigorous
approaches comparing to what is the common
practice in software industry today. Moreover, CPSs
are commonly safety-critical systems and their failure
can have catastrophic consequences on people,
environment and facilities.

Verification of safety requirement in cyber-physical
systems is a big challenge and of great importance,
requiring rigorous solutions. In such systems, due to
the existing interaction between the cyber and

*Correspondence: marjan.sirjani@mdh.se
1Mälardalen University, Väster̊as, Sweden

Full list of author information is available at the end of the article
†Equal contributor

physical parts over a communication network,
concurrency bugs and timing violations may be
present. Finding such problems using testing and
simulation is not always easy and formal verification
and model checking can be more effective.

A study of CPS may emphasize on different
perspectives: focus on the software controlling the
physical processes or focus on the physical processes
being controlled by the software. Commonly used
models for software are incompatible with commonly
used models for physical processes [1]. Instead of
going for a holistic approach, an alternative way is to
clearly define the interfaces between the cyber and
the physical parts of the system and separate the
verification problem for each side, relying on the
other side to faithfully carry out the semantics of the
interfaces.

Time is a critical feature and takes an important
role in modeling the behavior of CPSs. In a CPS we
deal with asynchrony intrinsic in distributed software

Sirjani et al. Page 2 of 22

systems, and also the alignment of the timeline in the
software system and the physical part. Accordingly,
we need a modeling framework supporting a proper
logical timeline. Based on the approach proposed in
[2] the reactive modeling language Rebeca [3, 4, 5],
joint with a newly designed language Lingua Franca
[6, 7] can be used to build formally verified CPS. The
timed extension of Rebeca [8, 9, 10] is used for
modeling and verification, and Lingua Franca
provides the executable code. In the model, in
addition to the logic of the software the interface to
the physical system, the sensors and actuators, are
also modeled. Timed Rebeca is designed for modeling
and formal verification of distributed, concurrent and
event-driven asynchronous systems with timing
constraints, and the alignment of the logical and
physical timelines are handled in Lingua Franca.

In this paper, we propose an iterative
verification-driven development approach for building
cyber-physical systems using Timed Rebeca. Timed
Rebeca and its supporting tools for formal
verification help in finding the concurrency bugs and
timing issues. The structured way of representing the
requirements helps in providing a more algorithmic
way of mapping requirements to behavioral models
and then to Rebeca code, and also in deriving the
properties to be verified. The proposed approach
starts from a small set of safety requirements, builds
a formally verifiable textual model which we refer to
as code, use model checking to find the problems in
the code, and cycle back to correct the code, or cycle
further back to refine the requirements. The process
continues accordingly using the same approach, and
when we have a solid verified code that is consistent
with the requirement, we will continue to build the
next increment in the next iteration by adding new
feature and/or requirement.

The approach carries all the benefits of a
model-driven development approach. Starting from
the safety requirements helps in capturing the
domain knowledge and emphasizing on the
application problems. Starting from more abstract
models in general makes the approach more
cost-effective and efficient, and building the code
becomes less error-prone. The novelty of the work is
in proposing a light-weight and agile process that
covers the life cycle from safety requirements to a
formally verifiable abstract code for developing
cyber-physical systems. The proposed process helps
in identifying ambiguities and inconsistencies in
requirements of such systems. Timed Rebeca provides
a textual model of the system. While the model of
computation is matched with cyber-physical systems
and introduces the least semantic gap, the syntax is

close to widely used programming languages, like C
and C++, and hence the model is close to executable
code. We refer to these models as Rebeca code in the
rest of the paper.

The paper is an extension of the conference paper
by Sirjani et al [11]. We keep the same prototypical
industrial example, i.e., “Passenger Door Control”,
from a train control system as the core of our
running example to explain the approach. This
example is a time-critical safety function in a train.
Here we present the iterative nature of the approach
by showing how the requirements, the models and
the Rebeca code are improved and extended; and
explain the cycles we navigate through the process to
debug the code and disambiguate or correct the
requirements. We present the mappings in a more
structured way, and we go deeper in the model
checking exercise.

The paper starts with Section 2, a background
section introducing the SARE approach that is used
for requirements engineering, and then an
explanation of Rebeca. Then it continues by
explaining the process of verification-driven
development of cyber-physical systems in Section 3,
and the case study in Section 4. Then it moves
forward based on the entities and activities involved
through the process phases: structured requirements
as the initial inputs to the process in Section 5, the
system architecture as another input to the process
in Section 6, the transformations from requirements
to behavioral models and Rebeca code in Section 7,
the generated artifacts for the running example
(behavioral models and the Rebeca code) in Section
8, and formal verification in Section 9. We then
continue by explaining the iterative process and
incremental extensions in Section 10 where we
explain how the code and the requirements are fixed
and updated. We wrap up with discussion and future
work in Section 11, and related work in Section 12.

2 Background
Here we present an overview of the SARE approach
that is used to form the requirements, and Rebeca
language that is used to model and verify the code.

2.1 SARE approach and structured requirements
The Safety Requirements Elicitation (SARE)
approach proposed in Provenzano et al. [12] is the
method we use to elicit the safety requirements that
will form the input requirements for the proposed
process. The SARE approach exploits the knowledge
about hazards acquired during safety analyses as a
basis to discover the safety requirements. In
particular, hazard’s causes, sources and consequences

Sirjani et al. Page 3 of 22

issued from safety analyses are structured in an
ontology, called the Hazard Ontology in [13] and [14],
as entities and relationships among entities. The
information stored in the Hazard Ontology is then
used by the SARE approach to create a list of
questions used to guide the elicitation of the safety
requirements. The resulting requirements are thus
“correct with respect to the hazards they are supposed
to mitigate” [12] since they are elicited based on the
knowledge of how hazards occur. Moreover, the
SARE approach can be applied to discover safety
requirements at different level of abstractions (e.g.
system level, sub-system level, component level), for
different types of systems (e.g. individual systems,
cyber-physical systems, System of Systems), and for
discovering both functional and non-functional
requirements (i.e. quality attributes).

To specify the safety requirements elicited by
SARE, we use the GIVEN-WHEN-THEN syntax in
order to obtain well-structured requirements that can
be easily used for modeling in Rebeca. Specifically,
the GIVEN-WHEN-THEN is “a style of specifying a
system’s behavior using Specification by Example”
[15] developed within the Behavior-Driven
Development [16] approach. According to this style, a
requirement is decomposed in three parts, the
GIVEN part states the pre-condition(s) of the
scenario; the WHEN part describes the input
event(s) which trigger the action(s); the THEN part
defines the action(s) the system shall perform as a
consequence of the trigger and the expected changes
in the system.

Pre-conditions, triggers and actions can be
expressed in a language whose vocabulary, syntax
and semantics are defined more or less formally. The
choice of the language depends on different factors,
such as whether the requirements are automatically
processed or not, whether the requirements are
formally checked or not, whether the requirements
are for customers (in this case, a less formal language
is more suitable) or technical requirements. This
implies that this syntax is suitable to specify
requirements at different levels of abstraction (e.g.
system level, sub-system level, component level) and
at different level of details. Independently of the
language chosen, the requirements are structured and
all have the three components of pre-conditions,
triggers and actions. This makes it easier to write the
requirements and facilitates the identification and
creation of the appropriate test cases.

In our process, we use the structured syntax
GIVEN-WHEN-THEN to specify the safety
requirements. This syntax is used in industry to
specify both safety and non-safety requirements, and

both system and software requirements. We use these
requirements to derive the actors, states of the
actors, and also the events that trigger the changes.
Also, it helps to derive the properties to be verified
using model checking, as explained more extensively
in section 8.

Notice that one can alternatively use the safety
requirements from a real industrial setting as input
to this process. In this case, the SARE approach can
be used to complement the existing safety
requirements provided as input or to discover new
safety requirements in case of new systems. However,
requirements written in a well-structured syntax are
fundamental to make the translation of the safety
requirements into Rebeca code smoother and less
ambiguous.

2.2 Timed Rebeca and Verification of Cyber-Physical
Systems

The Reactive Object Language, Rebeca [3, 4, 5], is an
actor-based [17, 18] modeling language supported by
theories and tools for formal verification. Rebeca is
the first actor-based language with model checking
support [19], and is used for modeling and
verification of distributed and concurrent systems
[20]. The model of computation in Rebeca is
event-driven and the communication is asynchronous.
The syntax of Rebeca is Java-like. Actors in Rebeca
have message queues, each actor takes the message
on the top of the queue, execute the method related
to that message (called message server) in an atomic
and non-preemptive way. While executing a method,
messages can be sent to other actors (or itself), and
the values of the state variables can change. Sending
messages are non-blocking and there is no explicit
receive statement.

In Timed Rebeca [10, 9] three keywords are added to
model logical time: delay, after and deadline. Time
tags are attached to events and states of each actor.
Using the keyword delay, one can model progress of
time while executing a method. If a send statement is
augmented by after(t), the time tag of the message
when it is put in the queue of the receiver is t units
more than the time tag of the message when it is sent.
The time tag of the message when it is sent is the
current logical time of the sender. By using after, one
can model the network delay; periodic events can be
modeled using send messages to itself augmented by
after. The deadline keyword models the timeout, if
the current time of the receiver actor at the time of
triggering the event (taking the message to handle it)
is more than the expressed deadline then the model
checking tool will complain and raise the deadline-miss
warning.

Sirjani et al. Page 4 of 22

Rebeca is used in different applications, for example
in schedulability analysis of wireless sensor network
applications [21], protocol verification [22], design
exploration and comparing routing algorithms [23].

3 The Iterative Verification-Driven
Process: VDD-CPS

Safety analyses are performed to identify the hazards
that may cause failures which lead to accidents.
Safety requirements are written as measures to
mitigate the identified hazards, i.e. to avoid them or
reduce their probability or limit their consequences.
Therefore, safety requirements play an important role
because they define the system’s behaviors that shall
be implemented to ensure the safety properties of the
whole system.

In a model-driven development approach, one starts
from the requirements, builds the necessary models
to capture the structure and the behavior of the
system, and generates the code based on that. In this
process, we can use formal verification to come up
with dependable models which are verified, and thus
more dependable generated code. Note that this is an
iterative and incremental approach where we have to
go back and forth between the models (including the
requirements and the code) several times, the
so-called round-trip engineering. This approach is not
necessarily the common practice in software industry
for different reasons including cost and technical
limitations. But using such approaches will become
inevitable when the safety critical error-prone
cyber-physical systems are ubiquitous.

Defective requirements can cause serious failures.
This emphasizes the need to have requirements that
are correct, precise and clear as basis of the system
development. For building formal models based on
the requirements, we need the requirements to be
consistent and unambiguous, or else we will not be
able to build the models. So, throughout the process
of verification-driven development we not only build
the system based on the requirements, but also the
requirements will be refined and become complete,
consistent, and unambiguous. The models are then
checked against the safety properties that are also
derived from the requirements, to make sure that the
(behavioral and implementation) details that are
added to build the models are not introducing errors.

We describe our experience with an industrial case
study, a time-critical safety function, i.e., “Passenger
Door Control”, from a train control system. We
present how we start with the safety requirements
and software architecture documents, and then
conclude with verified models using the Rebeca
modeling language. Distributed, concurrent, and

event-based reactive systems play a major role in
many industrial control software systems such as
those in railway and automotive domains. Hence, the
experience we report in this paper can be used in
other similar cases in the domain of real-time and
cyber-physical systems.

The whole process from requirements to Rebeca
codes is depicted in Figure 1. Specifically, to be able
to create the Rebeca code, two inputs are necessary,
i.e. the safety requirements and the system
architecture. From the safety requirements and the
architecture document, we create the behavioral
models, i.e. the state diagrams and the sequence
diagrams. Based on these diagrams, we build the
Rebeca code along with the properties that have to
be checked. It is worth noting that this process
foresees a document called “structured
requirements”. Indeed, it is important that the safety
requirements are written according to a
well-structured syntax. This enables us to reduce the
ambiguity that is typical in the requirements written
in natural languages; and facilitates interpretation
and translation of requirements into formal model(s).
We use the GIVEN-THEN-WHEN syntax [16] for
requirement specification, as explained in Section 5
[1].

The process of building the Rebeca code from the
requirements is an iterative and incremental process,
as highlighted by the cycles shown in Figure 1. The
models and the Rebeca code presented in the
conference paper by Sirjani et al. [11] can be seen as
the first iteration of this process. The current paper
addresses the subsequent iterations that aim at
improving, by working per increments, both the
requirements and the Rebeca code in order to obtain
a more complete, unambiguous, and correct set of
requirements and a model that best fits them.
Nevertheless, the paper is written in a self-contained
way and there is no need to first read the conference
paper to understand it.

In each iteration, we consider a set of safety
requirements and generate the models and the
Rebeca code, and then formally verify the safety and
progress properties. During each iteration we may
find incorrect or ambiguous requirements that show
up in the process of building more
mathematically-based models. These requirements
are updated before a new iteration starts. In each
iteration we may consider adding new requirements
or properties to check, or changing the Rebeca code

[1]We use this format based on the experience of the
second author of the paper who worked for seven years
as requirements manager in industry.

Sirjani et al. Page 5 of 22

Figure 1 The iterative and incremental process for Verification-Driven Development of Cyber-Physical Systems (VDD-CPS) from
structured requirements to verified Timed Rebeca codes. Timed Rebeca codes are textual models with formal semantics. The syntax
is in the format of the reactive event-based actor languages suitable for cyber-physical systems. Formal verification is provided with
the model checking tool suite Afra.

to cover more of the existing requirements that are

already specified but not yet modelled into Rebeca.

As for now, the Rebeca codes are the final output of

our proposed process from safety requirements towards

verifiable codes. We can go one step further in the

software life cycle and consider producing executable

code based on Rebeca. Theatre [24] is an execution

platform for Rebeca code. Lingua Franca [7] and its

programming model Reactors [25] is another option

which targets cyber-physical systems.

In summary in our approach we work on the

following artifacts related to the components in

Figure 1:

• System architecture as input to the process

(yellow arrow)

• Abstract system architecture built from the

system architecture, mapping the architecture

components to actors (yellow arrow)

• Safety Requirements (green arrow)

• Structured Requirements (green arrow)

• Behavioral models including UML state diagrams

and sequence diagrams (pink arrow)

• Rebeca model (blue arrow)

• Properties of the system based on the
requirements represented as logical formula (blue
arrow)

The process shown in Figure 1 includes the
transformation of different artifacts and feedbacks in
different iterations as follows:
• The mapping from the abstract system

architecture and the structured requirements (in
Given-When-Then format) as inputs, to
behavioral models (UML state diagrams and
sequence diagrams) and properties (logical
formula) as outputs

• The mapping from the behavioral models to the
Rebeca code

• Formal verification of Rebeca code using the
model checking tool Afra

• Use the output of the model checking (possible
counter examples) to debug the Rebeca model or
find further design problems that goes back to the
behavioral models or the requirements

• Shorter feedback loops, like finding problems in
the requirements while building the behavioral
models

In this paper, we focus on the iterative and
incremental aspects of our process and present three

Sirjani et al. Page 6 of 22

iterations. In these iterations we incrementally
improve and extend both the safety requirements and
the Rebeca code. In the first iteration, presented
throughout the following sections, the train may be
in three different states of leaving, approaching and
running. Compared to the version in paper [11], we
extended the models to include the running state.
This way the models are more faithful to the
requirements. In the second iteration (Section 10.1)
we describe how to manage changes in the Rebeca
code to add more details mentioned in the
requirements, and in the third iteration (Section
10.2) we show how the process is used to include new
safety requirements. One may consider what is
presented in paper [11] as iteration zero.

4 The Door Controller Case Study
The case study presented in this paper to exemplify
the proposed approach is based on a real industrial
case from the railway domain and is chosen based on
the experience of the second author in this domain.
We use the function “Open external passengers
doors” that controls opening of the external doors of
a train to let passengers get on and off safely. This
function is connected to the hazard ”Passengers fall
out of the train”, which is a real hazard for trains
and is used to elicit the safety requirements.
Specifically, the external doors of a train can be
opened by the driver, through a dedicated button
installed in the driver’s cabin, and by the passenger,
through a button placed on each external door. This
is done to let passengers get off the train at their
destination, and it should be only enabled when the
train reaches a station and stops at it. Moreover, the
external passenger doors are equipped with a lock
mechanism to prevent opening a door when the train
leaves the station and is running. This implies that to
open a door, the door must be unlocked. This is an
interesting function to be modeled and verified for
two main reasons:
• The function is safety-related. Indeed, an external

door which is accidentally opened when the train
is running may cause a passenger to fall out of the
train, thus causing an accident.

• The external door can be considered as a shared
resource between the driver and the passenger.
The door can receive simultaneous commands
from the driver (to open, close or lock) and the
passenger (to open). This may cause the door to
be in an erroneous or unexpected state.

Our aim is therefore to formally check by using the
Rebeca modeling language whether there is any
possibility that a passenger get off from a running
train. In iteration 2 (Section 10.1), we include the

information regarding the platforms in the models. In
this case, the doors that are on the side of the train
opposite to the platform shall be kept locked even
when the train is at the station. So, the property to
be checked is not only about “getting off from a
running train”.

It is worth noting that we define “running” as the
train state which corresponds to the situation where
the train is moving between two stations. This means
that the train has left the station and is not yet
approaching the next one. All external doors are
closed and locked. There are multiple properties that
can be checked using the Rebeca model checking tool
Afra [26], in particular, some of the interesting safety
properties that can be checked are the following:

• Is it possible to open a locked door when the train
is running?

• Is it possible to open a locked door on the opposite
platform when the train is stopping at station?

• Is it possible to open a closed door when the train
is ready to leave the station?

Throughout the process we also noticed another
interesting scenario that may happen, and the
property that has to be checked using model
checking:

• Is it possible that a passenger causes a delay in
the departure of a train or block it from moving
by opening a closed door when the train is ready
to leave the station?

5 Safety Requirements of the Example -
Initial Input

For the first iteration presented here, we consider the
safety requirements elicited by answering the
questions in SARE that have been built based on the
hazard “Passengers fall out of the train”. Specifically,
the knowledge about this hazard is summarized in
the following scenario: “The train external doors,
that should behave as barrier to prevent the
passengers from getting off the train when the train
is running, cannot be locked since they are not
equipped with a lock mechanism. As a consequence,
all external doors are closed but unlocked when the
train is running. A passenger accidentally presses the
internal open door button. Since the external door is
not locked, the external door opens and another
passenger, who is standing close to it, falls out of the
train and is seriously injured”. The elicited
requirements are then specified in the
GIVEN-WHEN-THEN syntax, as foreseen by the
process (refer to Figure 1). The set of safety
requirements obtained by performing these two steps
is presented in Table 1.

Sirjani et al. Page 7 of 22

Based on these requirements, we iterate our process
in order to remove some ambiguities and remedy the
incompleteness. For example, the safety requirement
SafeReq3 in Table 1 is about the passenger being
able to open an unlocked door. This requirement is
an improved version of an initial version. Model
checking reveals that the property of “a door must
not be open when train is running” fails. A new
pre-condition, i.e. “the train is at station” is added to
prevent the undesirable behaviour. This pre-condition
prevents the passenger from opening an unlocked
external door when the train is moving. The process
of refining the requirements for this specific example
is explained in [11].

Another observation made in paper [11] is that
most of the concurrency problems in the code are
caused because “close and lock” (and “unlock and
open”) are not atomic actions. The mechanisms in
place to manage the external doors on trains do not
guarantee that these actions take place in an atomic
way. So, this is a problem that needs to be addressed
when writing the software code.

The safety requirements in Table 1 as well as all the
safety requirements presented in this work are
high-level system safety requirements. We choose to
deal with this kind of requirements to avoid technical
details that can hinder the understanding of the text
specially for readers not experienced in the railway
domain. For the sake of clarity, the language used to
express pre-conditions, triggers and action in the
GIVEN-WHEN-THEN format is natural language.

The pre-conditions in GIVEN are statements
described according to the format “who is in which
state”, where “who” can be the system, a sub-system,
a component, and so on. For example, in the
pre-condition “the train is ready to run” of SafeReq1
in Table 1, “who” is “the train” and “in which
state” is “is ready to run”.

The triggers in WHEN are statements described
according to the format “who does what”, where
“who” can be another system, a component, an
external system, and so on, and “does” is the verb
that describes what occurs. For example, in the
trigger “the driver requests to lock all external doors”
of SafeReq1 in Table 1, “who” is “the driver”,
“does” is “requests to lock”, and “what” is “all
external doors”.

Finally, the action in THEN is a statement
described according to the format “who shall do/be
what”, where “who” can be the system, a sub-system,
a component in charge of doing something or being in
a new state, and “shall do” describes what shall
happen. For example, in the action “all the external
doors in the train shall be closed and locked” of

SafeReq1 in Table 1, “who” is “all external doors

in the train”, “shall do/be” is “shall be”, and
“what” is “closed and locked”.

6 The System Architecture: Input to the
Process

Figure 2 depicts an overview of a typical system
architecture realizing the functionalities in our
industrial case. The intended system is an example of
a cyber-physical system consisting of hardware
components like programmable control units,
actuators, different communication channels, and
different control applications running on the
hardware units. The main components in the
architecture are Input-Output (I/O) units, central
Train Control Unit (TCU), Door Control Unit
(DCU). I/O units act as interfaces to the system and
are intended to receive/send the input/output
signals. The I/O unit on the passenger side are in
charge of reading the door push buttons to receive
the open request from the passenger. When a
passenger pushes the “open” button, the I/O unit
receives the open request and sends it to the DCU.
The commands for open, close, lock and unlock
coming from the driver pass through TCU and go to
the DCU. The DCU is responsible for actuating the
proper commands for changing the state of the door.

TCU plays the role of the central control
management. It might be distributed and run on
separate physical devices. For example, one physical
control device for running non safety-related
functions and one device for the execution of
safety-critical functions. DCU may represent a
programmable unit which receives the command
signal from TCU and applies the signal to the
corresponding converters actuating the door. Data
communication between the physical devices is
usually conducted through a system-wide bus and a
safe communication protocol.

Later in our behavioral models, we model both DCU
and the associated I/O on the passenger side as Door

actor and also the combination of TCU and the driver
as Controller actor. The actor Train models a set
of I/O units receiving the status from the sensors, and
other means, that are used to inform the TCU and the
driver that the train is in a state which is significant
for our case study, i.e., approached at the station, and
ready to leave. These are the states in which the TCU
has to change the state of the doors. Figure 2 also
shows abstracting the architecture diagram to extract
main Rebeca actors.

Generally, in safety critical systems, in order to
satisfy the integrity and availability, different types of
redundancy structures are applied to different units

Sirjani et al. Page 8 of 22

Table 1 Safety requirements in GIVEN-WHEN-THEN syntax to mitigate the hazard ”Passengers fall out of the train” connected to the
train function ”Open external passenger doors”. These requirements describe the behavior of the external train doors equipped with the
lock mechanism that makes the door opening function safer. A slightly revised version of the table in [11].

Name Safety Requirement

SafeReq1
GIVEN the train is ready to run
WHEN the driver requests to lock all external doors
THEN all the external doors in the train shall be closed and locked

SafeReq2
GIVEN an external door is locked
WHEN the passenger requests to open an external door
THEN the external door shall be kept closed and locked

SafeReq3
GIVEN an external door is unlocked AND the train is at station
WHEN the passenger requests to open an external door
THEN the external door shall be opened

SafeReq4
GIVEN all external doors on the side of the train close to the platform are unlocked
WHEN the driver requests to open all external doors
THEN all external doors on the side of the train close to the platform shall be
opened

SafeReq5
GIVEN the train approaches a station
WHEN the driver requests to unlock all external doors that are on the train side
close to the platform
THEN all external doors on the side of the train close to the platform shall be
unlocked

SafeReq6
GIVEN the train is running
WHEN an external door is open
THEN an alert shall be provided

Figure 2 The system architecture with a focus on the door controller case study from [11]. The dotted circles show the actors in the
Rebeca code.

including I/O units. For example, redundant I/O
units are in place and extra supervision mechanisms
for the validity check of the resulted values from
these redundant I/O units are used. In our example,
we abstract these details away. We can create other
models focusing on such details and verify the correct
functionality of these parts of the system. In general,

we need to use compositional and modular

approaches to cover large and complicated systems.

Sirjani et al. Page 9 of 22

7 The Transformation Process: Deriving
the Behavioral Models and the Rebeca
Code

Here we explain how we build the behavioral models
based on the requirements. This process is not
automated yet and the automation is an ongoing
project. First we distinguish the actors (or
components) in the model that are the building
blocks of the system and communicate through
asynchronous messages or signals. Then we build the
state diagrams for each actor. The state diagram
describes the behavior of each actor and how
different events change the state of the actors. We
also build a sequence diagram to show the interaction
of the actors more clearly, and represent the messages
and signals passed among the actors. Finally, using
the state and sequence diagrams we build Rebeca
codes. The final step of this process is mapping
Rebeca codes to executable code, in [2] one possible
mapping which is building the executable code in
Lingua Franca is explained.
Deriving actors. We study the structured
requirements, together with the architecture of the
system, to distinguish the actors as the building
blocks of the model. We build an abstract version of
the architecture as a basis for building the behavioral
model and subsequently writing the Rebeca code.
The abstract architecture includes the the actors that
will be the reactive classes in the code.

When the system architecture is already in place,
our behavioral models despite of being abstract are
showing the software components that are or will be
deployed in the hardware system connected via
network. Actors are representing the system
components that create events, and react to events.
In a pure software system, the architecture can be
built based on the requirements and design decisions
that may give us more cohesive and decoupled
software modules. Here, the components and hence
our actors are predetermined based on the system
architecture. In an alternative situation, where the
system architecture is not already in place, then the
approach can be designing the system including the
software and hardware from scratch. In that case, we
can follow the rules of architecture design in software
engineering, or cyber-physical systems engineering,
and then we are not restricted to the existing system
architecture (hardware and the network). But the
outcome should be the same, the actors in the model
must represent the components in the system
architecture.

Note that only this type of mapping will enable us to
check the possible concurrency and timing issues. The
model must faithfully capture the components that run

concurrently, send signals and messages, and react to
events.
Deriving the actors for the train door

example. In the context of our door controller
example, from the structured requirements (Table 1),
we can see that the players are: the train, the driver,
the passenger, and the door. Note that we do not see
the controller in the requirements but it is a central
player in the architecture. From the architecture
(Figure 2), we have the I/O units for the passenger
door buttons (passing the input to the door to
request open) and the door control actuator (passing
the output from the door controller to the door,
commanding for open, close, lock and unlock
(release)). Instead of having an actor representing the
passenger button on the door, and another actor
representing the door control unit and the actuator,
for the sake of simplicity, we model all as one actor
door.

Another I/O unit is the driver input interface
(passing the input to the controller to request open,
close, lock and unlock (release)). For simplifying the
model, we decided not to model the driver as an
standalone actor, the behavior of the driver is merged
with the controller. We may consider this as an
autonomous controller that decides based on the
conditions of the doors and the train. We model train
as an actor to be able to show different states of the
train and check the required properties mentioned in
the requirements. Passenger is an external entity to
the system, but we need to model the inputs from the
passenger to check the main safety properties, and
hence passenger is also an actor. Thus, we need
actors to represent the train, the controller, the
passenger and the door in the model.
Deriving the states diagrams. We derive the
state diagram of each actor based on the explanation
in the requirement. From the requirements we see the
different states that each actor may be in, and we
notice the events that cause the change of states. For
the actor that plays the role of a controller the
mapping is different. The controller receives the data
that indicate changes in the state of other actors, it
also receives triggers from environment (sensing).
When the controller is notified of certain changes it
sends relevant commands to the actors under its
control (actuating).
Deriving the state diagrams for the train

door example. For the actor train, we consider the
states when a train is ready to leave the station,
when it is running, and when it approaches the
station. When boarding is complete and the train is
ready to leave, the driver sends a request to close and
then lock the doors and then starts to run. When the

Sirjani et al. Page 10 of 22

train approaches the station, the driver sends a
request to unlock and then open the doors. The
requests are received by the controller, and the
controller makes the decision based on the status of
the train and the doors. The logic within the code of
the controller is supposedly written in a way that the
safety requirements are guaranteed. There is no exact
physical realization as signals or hardware devices for
the train in the model, the train is in the model to
represent the states where the driver knows she/he
has to send the command for closing and locking the
doors, or unlocking and opening them.

The passenger represents an entity outside the
system, and can always request to open the doors.
The state diagram of the passenger shows this
behavior.
Deriving the sequence diagrams. The process of
building the sequence diagrams is similar to building
the state diagram, but here the focus is on the
messages and signals being passed among the actors.
In actors any observable change in the state is caused
by an event, so the state diagrams and the sequence
diagrams can be checked against each other.
Deriving the states variables. The structured
requirements lead to deriving the state variables, and
their values, specially the pre- and post-conditions in
the GIVEN and THEN parts. The conditions in the
requirements show the states that an actor can be in,
we introduce state variables to represent those states.
Also, actions explain the changes in the states that
need to be captured by state variables. For example,
consider the condition “the train is ready to run”
written in the GIVEN part of the requirement
SafeReq1 in Table 1. It shows that we need a
variable representing the train status (the variable
trainStatus of the Controller actor in Figure 5);
and one possible value of this variable shows that the
train is “ready to run”. From these requirements, we
can also infer that we need two state variables to
capture the status of the doors being locked or
unlocked, and being opened or closed (the variables
isLocked and isClosed of the Controller actor in
Figure 5).
Deriving the events. The events defined in the
WHEN parts are mapped to the messages that are
sent to the actors and upon which the actors react.
They can be used to obtain the sequence of messages
exchanged among the actors, and to build the
sequence diagram.
Deriving the properties. The pre- and post-
conditions in the requirements are used to form the
assertions that represent the properties to be verified.
These conditions show the relation among the derived
state variables and we use these specified relations to

form the assertions. For instance, consider the
requirement SafeReq2: “GIVEN an external door is
locked, WHEN the passenger requests to open the
locked external door, THEN the external door shall be
kept closed and locked”. This requirement helps us to
derive the main safety property of the function “open
external passenger door”. The assertion that shall be
checked is: “It is not possible to open a locked door by
passengers”. A stronger assertion that covers this one
is discussed in Section 9, the assertion is checked by
Afra, and we show how the model is modified such
that this assertion holds.

There are other interesting requirements, like the
requirement SafeReq4 which is a progress (or
liveness) property and shows that progress has to be
made. The SafeReq4 requirement states: “GIVEN all
external doors on the side of the train close to the
platform are unlocked, WHEN the driver requests to
open all external doors, THEN all external doors on
the side of the train close to the platform shall be
opened”. Safety properties are about showing that
nothing bad will happen, while progress properties
are about showing that good things will finally
happen. The detailed explanation about this
requirement and the related property are illustrated
in Sections 10.1 and 10.2.

For checking some requirements, we cannot use
simple assertions and we need to use the TCTL
model checking tool for Timed Rebeca [27][2]. The
timing features can be included in TCTL properties,
for example for the requirement SafeReq4, we can
check that “if the doors are unlocked and an open
request is sent by the driver then the doors will be
opened within x units of time”. We did not use
TCTL model checking in the work presented in this
paper.

8 The Artifacts: Behavioral Models and
the Rebeca Code of the Example

Here we explain the state diagrams, sequence
diagrams and the Rebeca code that are derived from
the requirements. We also explain the timing
properties.
State diagrams. Using the mapping explained in
Section 7, we can derive the state diagrams for the
door controller case study. In Section 7, we concluded
that we need actors to represent the controller, the
door, the driver, the passenger, and the train in the
model. Note that we only have one actor that
represents all the doors, for the sake of simplicity.
The model can be refined, and details can be added

[2]The TCTL model checking tool for Timed Rebeca is
not yet integrated in the Eclipse tool suite of Afra.

Sirjani et al. Page 11 of 22

in an iterative and incremental way in order to check
different properties and different parts of the system.

As shown in the state diagram in Figure 3.a, the
train can be in three states: (1) a state when the
train has approached the station and stopped (not
running), and the passengers leave the train and
come on board (!trainStatus & !isRunning); (2) a
state when the train is ready to leave, i.e. boarding is
completed (trainStatus & !isRunning); (3) a state
when the train is running and after some time ready
to approach (trainStatus & isRunning). Note that
two of the states of the train are important for us in
our example because our focus is on changing the
states of the doors, and we need to change the status
of the doors only in these states of the train. For
example, when the train is running and door receives
an event to open the door the status of the doors
should stay unchanged (and that is what the
controller in Figure 3.c guarantees by not accepting
any wrong event in the wrong states). The third
status is added to show the “running” state explicitly
to make the behavioral models more faithful to the
requirements.

Figure 3.b illustrates the states of the doors. A
locked and closed door can only be unlocked, and
then opened; and an unlocked and open door can
only be closed and then locked. The state diagram is
consistent with the Rebeca code in Figure 5. We
prevent the door from going to a state where it is
locked and open, an unsafe state that should be
avoided. The if-statement in Line 103 guarantees
this.

Figure 3.c presents the state diagram for the
controller. The controller receives the status of the
doors and the train, also the requests for running the
train, and opening, closing, locking and unlocking the
doors. The controller coordinates the commands that
are sent to the doors based on the status of the door
itself, and the train.

Figure 3.d is the state diagram of the passenger.
This actor models the requests coming from the
passengers in a non-deterministic way, and the
Rebeca code is model checked to make sure this
behavior cannot jeopardize the safety.
Sequence diagrams. The sequence diagrams
derived from the requirements and the architecture
are shown in Figure 4. These diagrams are made in a
similar way as described for the state diagram.
Indeed, the actors controller, door, passenger and
train become the objects in the sequence diagrams
among which messages are exchanged in a temporal
order to perform the door functions. In the sequence
diagrams the flow of messages between actors, and
also their order and causality are clearer.

Note that the sequence diagrams are consistent
with the Rebeca code. In Figure 4, it is shown that
when the status of the train or the door is changed
the controller receives a message to update the status
of these two actors in the controller. Any change in
the status of the train or the doors triggers the
execution of driveController message server in
which the controller decides which command to send
to the train or doors.

The sequence diagram presented in Figure 4 also
shows a Passenger sends the open command directly
to the door, and the door sends a message to the
controller to update the status in the controller. This
is where different errors may occur if the Rebeca code
is not written carefully considering the concurrency
issues. More explanation is in Section 9.
Rebeca code. Based on the state and the sequence
diagrams, we wrote a Timed Rebeca code with four
reactive classes: Controller, Train, Door, and
Passenger. The Rebeca code is presented in Figure
5. The rebecs (i.e. reactive objects, or actors)
controller, train, door, and passenger are
instantiated from these reactive classes.

The main message server of the reactive class
Controller is driveController, where we check the
state of the train and the doors, and send proper
commands. If the train is in the state that the
boarding is completed and the train is ready to run
(trainStatus is true - lines 35-44), then if the doors
are not yet closed, the Controller sends a command
to close them (by sending the closeDoor message to
the rebec door). If the doors are already closed the
controller sends a command to lock them (by sending
the lockDoor message to the rebec door). The
message server DriveController also checks if the
doors are closed and locked then it sends a command
to run the train ((by sending the running message to
the rebec train- lines 42 and 43). If the train is in
the approaching state (trainStatus is false - lines
45-51), then if the doors are not yet unlocked, the
controller sends a command to unlock the doors (by
sending the unlockDoor message to the rebec door).
If the doors are already unlocked the controller sends
a command to open them (by sending the openDoor

message to the rebec door).
The reactive class Controller also has two other

message servers: setDoorStatus and
setTrainStatus. The setDoorStatus (lines 24-28) is
called by the Door after updating the status of the
doors. The setTrainStatus (lines 29-33) is called by
the Train after updating the status of the train. The
reactive class Train has three message servers that
model the train behavior when the train is ready to
leave the station (leaveStation), the train is

Sirjani et al. Page 12 of 22

(a) Train

trainStatus
!isRunning

lea
veStati

on()
afte

r (t2
)

trai
nStatu

s = tru
e

isR
unning =

 fal
se

trainStatus = false

running() after (t1)

isRunning = true

! trainStatus
!isRunning

trainStatus
isRunning

approachStation() after (t1)
trainStatus = false
isRunning = false

! trainStatus
! isRunning
Unlocked
Opened

trainStatus
! isRunning

Unlocked
Opened

trainStatus
! isRunning
Unlocked

Closed

trainStatus
! isRunning

Locked
Closed

! trainStatus
! isRunning

Locked
Closed

! trainStatus
! isRunning

Unlocked
Closed

train.leaveStation() after (t2)
door.closeDoor()

door.lo
ck

Door()
train.approachStation() after (t1)

do
or

.un
lo

ck
Doo

r()

door.openDoor(

)

trainStatus
isRunning

Locked
Closed

train.running() after (t1)

(c) Controller(b) Door

Unlocked
Opened

Locked
Closed

Unlocked
Closed

closeDoor()lockDoor()

openDoor()unlockDoor()

(d) Passenger

P

passengerO
penD

oor()

Figure 3 The state diagrams for the door controller case study. The name of the variables are chosen in a way to make the diagrams
self-explanatory as much as possible.

running (running) and the train is approaching the
station (approachStation). The message servers in
this actor inform the controller when the train status
changes.

The reactive class Door models the behavior of the
doors and has four message servers: closeDoor(),
lockDoor(), unlockDoor() and openDoor(). The
closeDoor() (lines 97-100) is called by Controller

actor (line 38) to close the door by changing the
status of the door (line 98). The lockDoor() (lines
101-106) is called by the controller (line 40) to lock
the door. If the current status of the door is closed,
then the status of the door is changed to locked (line
103). The unlockDoor() (lines 107-110) is called by
the Controller actor (line 48) to unlock the door by
changing the status of the lock (line 108). The
openDoor() (lines 111-116) is called by the
Controller actor (line 50) and the Passenger actor
(line 126) to open the door. If the current status of
the door is unlocked, then the status of the door can
change to open (line 113). The status value is sent to
the Controller actor after any updates in all these
message servers.

The Passenger actor is implemented to model the
behavior of a passenger. We assume that the
passenger can constantly send a request to the Door

actor to open the door. This actor has only one
message server (passengerOpenDoor). The
passengerOpenDoor is designed to send a request
(open the door) to the Door actor every 5 units of
time (lines 125 and 128).

Timing properties. The Rebeca code in Figure 5
contains the environment variables (denoted by env

at the top of the code). These variables are used to
set the timing parameters. The variable
networkDelayDoor represents the amount of time
that takes for a signal to get to the door from the
controller (and vice versa), and the variable
networkDelayTrain shows the amount of time that
takes for a signal to get from the train to the
controller (and vice versa). The other timing feature
is for modeling a reaction delay of the controller
when it reacts to the events (reactionDelay). We
have passengerPeriod environment variable to show
that the passenger can send the open command
periodically (it can be modeled differently but this is
the simplest way and serves our purpose to find
possible errors). We also model passage of time
between a train leaving and then again approaching
the station (runningT ime), and the time that train
stays at the station (atStationT ime).

The environment variables can be used as
parameters to set different cycle times and
communication channel features. The value for the
parameters can be changed to check different
configurations. For example, we can see varying
depths in getting into the error state by changing the
period of the passenger pressing the open door
button.

9 Formal Verification of the Rebeca Code
The Rebeca code in Figure 5 is a version of the code
that runs without violating any of the properties of

Sirjani et al. Page 13 of 22

Figure 4 Sequence diagrams of the door controller case study showing the message passing between the actors Controller, Train,
Passenger, and Door.

interest. We run the Rebeca model checking tool, Afra,
on a MacBook Pro laptop with 2,9 GHz Intel Core i5
processor and 8GB memory.

We check the assertion: “It is not possible to open
a locked door (not by the driver nor the passengers);”
and we show that the door cannot be opened when it
is locked. This assertion covers multiple other weaker
assertions, like: “It is not possible to open a locked door
(by driver or passengers) when the train is leaving the
station;”, “It is not possible to open a locked door (by
driver or passengers) when the train is running;” and

“It is not possible to open a locked door (by driver or
passengers) when the train is arriving at the station”.
A subset of the assertions that are checked in Afra are
shown in Table 2. These assertions are written based
on the state variables in the Rebeca code shown in
Figure 5, and are related to the properties explained
above.

In the Rebeca code, the passenger sends a request
directly to the door, the request does not pass
through the controller. This is what makes the model
vulnerable to errors. The door is receiving commands

Sirjani et al. Page 14 of 22

1 env byte networkDelayDoor = 3;
2 env byte networkDelayTrain = 0;
3 env byte reactionDelay = 1;
4 env byte passengerPeriod = 5;
5 env short runningTime = 233;
6 env short atStationTime = 50;
7 reactiveclass Controller(23){
8 knownrebecs{
9 Door door;
10 Train train;
11 }
12 statevars{
13 boolean isClosed;
14 boolean isLocked;
15 boolean trainStatus;
16 boolean commandToMove;
17 }
18 Controller(){
19 trainStatus = true;
20 commandToMove = false;
21 isClosed = false;
22 isLocked = false;
23 }
24 msgsrv setDoorStatus(boolean close, boolean lock) {
25 isClosed = close;
26 isLocked = lock;
27 self.driveController();
28 }

29 msgsrv setTrainStatus(boolean status,
 Boolean isRunning){

30 trainStatus = status;
31 commandToMove = isRunning;
32 self.driveController();
33 }
34 msgsrv driveController(){
35 if(trainStatus){ // leave the station
36 if(!isClosed || !isLocked) {
37 if(!isClosed)
38 door.closeDoor() after(networkDelayDoor);
39 if(!isLocked)

40 door.lockDoor()
 after(reactionDelay + networkDelayDoor);

41 }
42 if(isClosed && isLocked && !commandToMove)
43 train.running() after(networkDelayTrain);
44 }// end of if(trainStatus)
45 else if(!trainStatus){ // arrive to the station
46 if(isClosed || isLocked) {
47 if(isLocked)
48 door.unlockDoor() after(networkDelayDoor);
49 if(isClosed)

50 door.openDoor()
 after(reactionDelay + networkDelayDoor);

51 } } // end of else if(!trainStatus)
52 } // end of driveController()
53 } //end of the Controller class
54 } //end of the Controller class
55 reactiveclass Train(5){
56 knownrebecs{
57 Controller controller;
58 }
59 statevars{
60 boolean status;
61 boolean isRun;
62 }
63 Train(){
64 status = true;
65 isRun = false;
66 self.leaveStation();
67 }
68 msgsrv leaveStation(){
69 status = true;
70 isRun = false;

71 controller.setTrainStatus(status, isRun)
 after(networkDelayTrain);

72 }
73 msgsrv running(){
74 isRun = true;

75 controller.setTrainStatus(status, isRun)
 after(networkDelayTrain);

76 self.approachStation() after(runningTime);
77 }
78 msgsrv approachStation(){
79 status = false;
80 isRun = false;

81 controller.setTrainStatus(status)
after(networkDelayTrain);

82 self.leaveStation() after(atStationTime);
83 }
84 } //end of the Train class
85 reactiveclass Door(15){
86 knownrebecs{
87 Controller controller;
88 }
89 statevars{
90 boolean isDoorClosed;
91 boolean isDoorLocked;
92 }
93 Door(){
 94 isDoorClosed = false;
 95 isDoorLocked = false;
 96 }
 97 msgsrv closeDoor(){
 98 isDoorClosed = true;

 99 controller.setDoorStatus(isDoorClosed,
isDoorLocked) after(networkDelayDoor);

100 }
101 msgsrv lockDoor(){
102 if (isDoorClosed){

 // The door is only locked if the door is closed.
103 isDoorLocked = true;
104 }

105 controller.setDoorStatus(isDoorClosed,
isDoorLocked) after(networkDelayDoor);

106 }
107 msgsrv unlockDoor(){
108 isDoorLocked = false;

 109 controller.setDoorStatus(isDoorClosed,
isDoorLocked) after(networkDelayDoor);

110 }
111 msgsrv openDoor(){

 // The door is only opened if the door is not locked.
112 If (!isDoorLocked){
113 isDoorClosed = false;
114 }

115 controller.setDoorStatus(isDoorClosed,
isDoorLocked) after(networkDelayDoor);

116 }
117 } //end of the Door class
118 reactiveclass Passenger(5){
119 knownrebecs{
120 Door door;
121 }
122 Passenger(){
123 self.passengerOpenDoor() after(passengerPeriod);
124 }
125 msgsrv passengerOpenDoor(){
126 door.openDoor();
127 self.passengerOpenDoor() after(passengerPeriod);
128 }
129 } //end of the Passenger class
130 main {
131 Controller controller(door, train):();
132 Door door(controller):();
133 Train train(controller):();
134 Passenger passenger(door):();
135 }

Figure 5 The Rebeca code for the door controller case study. This is revised version of the Rebeca code in [11] where the code is
adjusted to include the running state of the train.

Sirjani et al. Page 15 of 22

Table 2 The properties checked by Afra in the first iteration.
These assertions are satisfied for the Rebeca code shown in Figure
5.

Property
Assertion 1: (! (!door.isDoorClosed && door.isDoorLocked))
Assertion 2: (! (train.isRun && !door.isDoorLocked))
Assertion 3: (! (train.isRun && !door.isDoorClosed))

from both the passenger and the controller, and
variant interleaving of these commands (i.e. events in
the queue) may cause the execution of the model to
end in a state that violates the safety property[3]. The
two “if-statements” in lines 102 and 112 of the
reactive class Door are there to avoid this problem. If
we remove the passenger from the model, the model
is correct even without these if-statements.

Consider the Rebeca code in Figure 5 where we do
not have a passenger (we can just remove the
statement in the main part instantiating the
passenger). The number of reached states for this
model is 55, and the number of reached transitions is
68 (consumed memory is 660, and the total spent
time is below one second). If we have a passenger and
the passenger sends a request to open the door every
5 units of time then the number of reached states will
be 402079, the number of transitions is 1286068 and
the total time spent for model checking is 115
seconds. If we remove the if-statements in lines 102
and 112, then the model violates the assertion and
the model checking tool Afra comes back with a
counterexample. The depth of the trace in the state
space to reach the counterexample depends highly on
the setting of the timing parameters.

A screenshot of the Afra tool where the
counterexample is found is shown in Figure 6. The
assertion is checking the value of variables
isDoorClosed and isDoorLocked from the rebec
door. The screenshot shows that isDoorClosed is
true (the door is closed), and isDoorLocked is also
true (the door is locked). The only message in the
queue of the rebec door is openDoor coming from
passenger. This will cause the execution of the
message server openDoor in the rebec door which will
create the state in which isDoorLocked stays true
(the door is locked), and isDoorClosed changes to
false (the door is opened). This state fails the
assertion and the model checking tool comes back
with the counterexample shown in Figure 6. The
counterexample states are presented on the right
hand side of the figure, and the trace is in the left
hand side of the figure.

[3]A different design for the model, derived from a
different allocation of functions in the architecture, can
be modeled and model checked. More explanation will
be in Section 11.

Note that changing the timing parameters can
change the state space significantly. The timing
parameter includes the period of sending the
requests, network delay, and the computation/process
delay (a detailed example is described in Section
10.2).

10 The Iterative Process and Incremental
Extensions: Updating and Fixing

Throughout the paper we explained one iteration of
the VDD-CPS process from the requirements to
Rebeca code for the door control case study. In this
section we explain two more iterations. In Section
10.1 we update the Rebeca code by adding a feature
that is in the requirements but not modeled, this
shows how more complete increments are built based
on the requirements. Section 9.2 shows how by using
the VDD-CPS process we can discover a new
requirement that is added to the set of requirements
since it concerns concurrency issues, that is our main
focus. Note that the Rebeca model in Figure 5 is
already the next increment of what is explained in
the conference paper [11] where we added the
“running” state to the code to make the code more
faithful to the requirements.

10.1 Second Iteration in the VDD-CPS Process
In the second iteration, we add the concept of
“platform” defined in the safety requirements
SafeReq4 and SafeReq5 in Table 1 to the code. In
the railway domain, a platform can be defined as “an
area alongside a railway track providing convenient
access to trains” [28]. This implies that passengers
get on and off the train through the doors that are on
the side of the train close to the platform. This is also
done for safety reasons. The safety requirements
SafeReq4 and SafeReq5 highlight that only the
external doors that are on the side close to the
platform shall be opened to prevent passengers from
falling down out of the platform. By modelling the
concept of “platform”, it is possible to formally verify
that the scenario in which a passenger opens an
external door on the wrong side of the train does not
happen.

The state diagrams and sequence diagrams given in
Figures 3 and 4 stay valid for this iteration. In order
to add the functionality related to the platforms, we
apply the following changes to the Rebeca code
presented in Figure 5. Instead of only one door, we
have door1 and door2 instantiated from the Door

reactive class. Each door has an id representing the
platform close to it.

While executing the approachStation method, the
train actor sets the platform id using a

Sirjani et al. Page 16 of 22

Assertion1: (! (!door.isDoorClosed && door.isDoorLocked));

Figure 6 The screenshot of Afra, coming back with a counterexample for checking the assertion “It is not possible to open a locked
door” for a revised version of the Rebeca code in Figure 5 where the if-statemenst in lines 102 and 112 are removed.

nondeterminitic assignment. The nondeterminitic
assignment platformId = ?(1,2) models possible
different behaviors. The platform id is sent to the
controller actor by the train actor together with
other state variables after any updates.

The Passenger actor can constantly send a request
to the Door actor to open door1 or door2. The
passengerOpenDoor is designed to send a request
(open the door) to the Door actor every 5 units of
time. Figure 7.a shows the updated
passengerOpenDoor message server.

As explained in Section 8, the setDoorStatus in
controller actor is called by the Door after
updating the status of the doors. Figure 7.b shows
the updated message server in this iteration. We
consider the isClosed and isLocked variables to
show the status of both door1 and door2. If both
doors are closed then the value of isClosed is true.
Similarly, if both doors are locked then the value of
isLocked is true otherwise they are false.

For the Rebeca code in Figure 5, when we have a
passenger and the passenger sends a request to open
the door every 5 units of time, the number of reached

states is 917 and the number of reached transitions is
1235 (the total spent time is two seconds and
consumed memory is 18340).

The updated code assures that a locked door on both
platforms cannot be opened not only when the train
is running but also when the train is at station. In
particular, the doors that are on the side of the train
opposite to the platform shall be kept locked. Thus, we
check whether the behavioral model that is updated
based on the requirements (SafeReq4 and SafeReq5)
violates a safety property of the train.

This also means to show that the requirements may
be incorrect, inconsistent, or ambiguous.

We check the assertion: “It is not possible to open a
locked door on the opposite side of the platform;” and
we show that the door cannot be opened on the
opposite side of the platform when it is locked. This
assertion covers multiple other weaker assertions, i.e.,
“It is not possible to open a locked door on the
opposite side of the platform when the train is leaving
the station;”, “It is not possible to open a locked door
on the opposite side of the platform when the train is
running;” and “It is not possible to open a locked

Sirjani et al. Page 17 of 22

(a) The updated PassengerOpenDoor message server from Passenger actor.

(b) The updated setDoorStatus message server from Controller actor.

Figure 7 The updated two message servers of the Rebeca code presented in Figure 5.

door on the opposite side of the platform when the
train is arriving to the station”. For what concerns
model checking, in our experiments these properties
are satisfied, confirming that the models with the
given configurations did not violate the requirements.
Table 3 shows some of the assertions that are checked
using Afra in this iteration, these assertions are
written based on the state variables in the Rebeca
code, and are related to the properties explained
above.

10.2 Third Iteration in the VDD-CPS Process
In the third iteration, we focus on the concurrency
and timing problems to highlight the benefits of
using a verification-driven approach based on Rebeca.
Specifically, we are interested to verify that a shared
resource, such as the external train doors in our use
case, can never behave in an undesirable way due to
inconsistent requests that may arrive simultaneously.

So, we iterate the SARE approach to search for
new safety requirements that may be necessary to
mitigate a possible failure of the lock mechanism and,
consequently, avoid or reduce the probability of the
hazard ”Passengers fall out of the train”.

This results in a new safety requirement, i.e.
SafeReq7 in Table 4, that aims at avoiding that a
passenger can open a closed door when the train is
leaving the station. The lock mechanism can fail
because it is “susceptible to malfunctions”.
Malfunctions can be erroneous and/or delayed
inputs, inconsistent inputs, computational errors, and
so on. In particular, the requirement SafeReq7

concerns the safety behavior of the system in case a
closed door receives simultaneously two or more
inconsistent requests, i.e. the open request from a
passenger and the lock request from the driver. The
pre-condition “the train is leaving the station”
guarantees therefore that the request to open a closed
door is not performed when the train is departing,
which is a safety behavior.

In this iteration, we aim at formally verifying the
consequences of the interference between the two
events of open triggered by the passenger and lock
triggered by the controller after the doors are closed
and the train is ready to leave. As explained earlier,
at the beginning of the Rebeca code, we can define
environment variables as parameters to set different
cycle times and communication channel features. The
values of these variables can be changed to check

Sirjani et al. Page 18 of 22

Table 3 The properties checked by Afra in the second iteration. These assertions are satisfied.

Property
Assertion 1: (! ((!door1.isDoorClosed && door1.isDoorLocked) || (!door2.isDoorClosed && door2.isDoorLocked)))
Assertion 2: (! ((!door1.isDoorClosed || !door2.isDoorClosed) && (door1.isDoorLocked && door2.isDoorLocked)))
Assertion 3: (! (train.isRun && (!door1.isDoorClosed || !door2.isDoorClosed)))
Assertion 4: (! (train.isRun && (!door1.isDoorLocked || !door2.isDoorLocked)))
Assertion 5: (! (platform == 1 && !door2.isDoorClosed))
Assertion 6: (! (platform == 2 && !door1.isDoorClosed))
Assertion 7: (! (platform == 1 && !door2.isDoorLocked))
Assertion 8: (! (platform == 2 && !door1.isDoorLocked))

Table 4 The new safety requirement SafeReq7 to prevent from opening an external door when the train is leaving the station.

Name Safety Requirement

SafeReq7
GIVEN the train is leaving the station AND an external door is closed
WHEN a passenger requests to open an external door
THEN the external door shall be kept closed

different configurations. We show that the verified
Rebeca code can get into an error state by changing
the settings. We set the time duration that takes for
a signal to get from the door to the controller to 4
(networkDelayDoor = 4) and set the time duration
that takes for a signal to get from the train to the
controller to 0 (networkDelayTrain = 0). Figure 8
shows the simplified state diagram for a livelock bug
when the train wants to leave the station (door
should close and then lock) and a passenger wants to
open the door by pressing the open button every 5
units of time. The train never reaches the running
state. This scenario shows that the door can be
closed by the controller, and opened by the passenger
iteratively, resulting in blocking the train from
moving. So, model checking shows that the door
behaves in an undesirable and unexpected way in
case of simultaneous inconsistent requests. This result
corroborates the fact that a new requirement is
needed to avoid this situation, such as the
requirement SafeReq7. We also came up with other
settings for the timing parameters in which the train
was delayed but eventually could move and go into
the running state.

This iteration shows how the Rebeca code can be
used to check different settings for the timing
parameters. This feature can be used in investigating
and setting the timing parameters for the network
and computation delays, and the cycle of the periodic
events.

11 Summary, Discussion and Future Work
In summary, our proposed process is a light-weight
verification-driven iterative process for model-driven
development of safety-critical cyber-physical systems.
Using formal verification within the proposed MDD
process makes it well suited for safety-critical
domains where a solid verification of all properties is
required. It involves actor-based modelling and

trainStatus
! isRunning
Unlocked
Opened

train.leaveStation()

trainStatus
! isRunning
Unlocked
Opened

trainStatus
! isRunning
Unlocked

Closed

controller→door.closeDoor()

trainStatus
! isRunning
Unlocked
Opened

passenger→door.openDoor()

co
nt
ro
lle
r→
do
or
.lo
ck
D
oo
r(
)

Figure 8 The simplified state diagram of a livelock bug in the
door controller case study that happens with a specific setting
for timing parameters.

formal verification using Timed Rebeca and the
associated model checking tool Afra. Actor-based
style of modelling, mitigates the issue of
transformation from high-level specification to the
inputs of a formal verification tool on one hand, and
to an executable code in CPS domain on the other
hand. Moreover, to bridge the remaining gap between

Sirjani et al. Page 19 of 22

high-level requirements and actor model, we leverage
a structuring method based on
GIVEN-WHEN-THEN syntax to alleviate the
ambiguity and facilitate the transition from
requirements to the formal model. The structured
requirements also help in one of the most challenging
tasks in model checking which is deriving the
required properties to check.

Discussion. To reach the Rebeca code from the
requirements, we use an iterative approach. There
may be ambiguity in the informally stated
requirements that need to be clarified. To come up
with the right state variables and right transitions
among states, we may need to go back and forth
several times and ask the experts for the right
information to avoid misunderstandings and incorrect
outcome. As stated in many classical papers on
formal methods, one of the main advantages of
formal methods is to make the requirements clear,
unambiguous, and consistent. Some examples of this
kind of clarifications within our work are explained
throughout the paper.

Rebeca codes can be useful for checking safety and
timing properties only if the topology of the actor
model matches (or is consistent with) the
architecture of the system. As we plan for a
straightforward mapping of Rebeca code to
executable code, we need this consistency. This can
be another challenge in the process, to know the
architecture and the allocation of tasks to different
components. One example is the decision that we
made for the Door Control Unit, modeled within the
actor door, to send the open command to the door
upon receiving the request from the passenger.
Alternatively, we could have a model in which all the
decisions for sending the open command to the door
are handled centrally in the Train Control Unit. This
would change the design and verification results in a
significant way.

In the current Rebeca code, the status of the units
are sent to the control unit upon any change.
Another design is updating the status of different
units periodically. This will result in a complicated
design where verification can help in finding the
timing problems and tuning the timing features.
Again, the decision has to be based on the
architecture and execution model of the system.

Future work. This work serves as a foundation
towards several other interesting directions. One
direction to go is to make the mappings automatic or
semi-automatic. The transformations among state
diagrams together with sequence diagrams to Rebeca

code , and generating Lingua Franca code from
Timed Rebeca can be automated.

12 Related Work
Model-Driven Development (MDD) is intended to
reduce complexity in the classical development
approaches. Using MDD, different objectives with
regard to design, verification, simulation, and code
generation can be reached at different stages of
development [29, 30]. In a typical MDD process, a
system is modeled, analysis and verification of the
models are performed, and then the corresponding
code is generated. Hardware-software co-modelling is
an essential engineering practice within MDD. The
resulted synergy from hardware and software
co-modelling facilitates fulfilling system-level
requirements.

MDD based on co-modelling of hardware and
software is a main approach for developing cyber
physical systems (CPS) that involves a combination
of different computation models and communication
patterns along with physical dynamics [1, 31, 32].
With the growing size and complexity of CPS, there
is a need for (semi-) formal approaches to design and
model the system at different stages of the
development process. Currently, modelling language
standards like SysML [33], MARTE [34] and
MATLAB/Simulink are used by engineers in practice
in some areas for modelling CPS.

After behavioral modelling of the system, reasoning
on the correctness of the system behavior is the
essential next phase during the development process.
In general, a big part of resources during the CPS
development phases are allocated to ensure that the
system fulfills the requirements [35]. Verification and
validation can be done using testing, simulation, and
formal verification. However, there are still many
challenges in verification and validation phases. For
example, with the growing complexity of CPS, the
models also become more complex and are often
considered as compute-intensive models which require
considerable computational power for execution [36].

Testing approaches are often intended to generate
test cases based on the internal structure of the
model to evaluate different paths of execution [37, 38]
or act in a black-box fashion such as
falsification-based techniques [39] and differential
testing techniques [40] to generate the test cases
resulting in violation of system requirements.
However, testing is not effective enough when dealing
with concurrent systems due to the non-deterministic
interleaving between the processes running on
distributed components. Also, testing may not be
optimal and comprehensive for checking timed

Sirjani et al. Page 20 of 22

behavior in particular, when the software under
development is a cyber-physical system. This issue
becomes more serious for safety-critical CPS where
any failure, bug or undesired situation might cause
catastrophic consequences. Therefore, using formal
verification for reasoning about the behavior of the
system, finding bugs and undesired situations
becomes more critical.

Simulation approaches, specifically the ones
targeting the co-modelling of hardware and software
are another underlying part of MDD chain for
visualizing and also behavior verification and
validation step. The maturity is growing in this
domain and there are several commercial and
academic tools for co-modelling and simulation of
hardware and software. Ptolemy II [32] and Stateflow
[41] are popular examples of this category. However,
they do not support formal verification.

Formal verification and more specifically model
checking is one of the main techniques for verifying
different types of safety and liveness properties in
safety-critical systems. Timing properties are an
intrinsic aspect of CPSs. There are model checking
tools which are able to capture timing features such
as RMC (Rebeca Model checker) [42], UPPAAL [43],
and PRISM [44]. They support different types of
models such as timed automata, and timed actors.

The main challenge in using model checking tools is
the state space explosion problem, another certain
challenge in using formal methods within MDD chain
is the mapping high-level requirements onto the
formal specifications. There are several different
approaches as transformation engines for addressing
this challenge. In particular, there is a considerable
amount of literature on transforming SysML/UML
specification to inputs for different formal verification
tools [45, 46, 47]. The FTG+PM framework [48, 49]
is an example of such frameworks which presents
formalism transformation between models within
model-driven development. The framework consists of
two sub languages: the Formalism Transformation
Graph (FTG) and Process Model (PM) languages.
The former (FTG) presents a set of available
modeling languages within a given domain and the
latter (PM) describes the control flow between the
model transformation activities during the
development life cycle. It supports automatic model
transformation between different phases of design,
verification, simulation, deployment and code
generation. It also presumes manual transformation
of textual requirements to a SysML requirement
diagram in the process. The framework allows the
MDE process to be flexible, and provides insight in
the domain by providing means to describe and even

prescribe the MDE process. Gamma [50] is another
modeling framework which integrates heterogeneous
statechart components to make a hierarchical
composition, supports formal verification using
UPPAAL for the composite model and provides
automatic code generation on top of the existing
source code of the components. Gamma focuses on
building hierarchical statechart network based on the
existing statechart components, and as the most
existing tools and approaches do not consider the
phase in the process where we need to map the
requirements to behavioral models. In [51] an MDD
framework is proposed for dataflow applications on
multi-processor platforms. The framework uses
Synchronous Dataflow (SDF) graphs to model
application and besides the SDF, a platform
application model (PAM) showing hardware platform
and an allocation model are also created. The SDF
model and hardware models are then transformed to
priced time automata which are used as inputs to
UPPAAL for verification of requirements and also to
compute the energy-optimal schedule for given
requirements.

Placing our approach among others. In modeling
and analysis, the faithfulness of the model to the
target system is of importance and could effectively
facilitate the process [20]. Using our VDD-CPS
process we start from small models that are
manageable for the model checking tool. Each
increment of the model/code needs to be written
with care without extra complexity, and a modular
and compositional method can be used when the
models get larger. The Rebeca language helps in
assuring the faithfulness of the model by decreasing
the semantic gap between the model and the system.
Actor model is a reference model for modeling the
behavior of distributed reactive systems, and also
suggested for co-modeling of hardware and software
of cyber-physical systems [52]. The actors in the
design step are similar to the actors in the
architecture and the components in the requirements.
This feature makes the transformation step less
costly. Using Rebeca for modeling and verification we
bridge the gap between the design models and formal
verification. In this work, we use
GIVEN-WHEN-THEN syntax to derive the
structured safety requirements. To fill the gap
between the actor model and the requirements we use
common behavioral models, i.e., UML state diagrams
or sequence diagrams that are closer to the
requirement specification and quite common in the
industrial application domains.

Sirjani et al. Page 21 of 22

Abbreviations

MDD: Model-Driven Development; CPS:Cyber-Physical Systems; SARE:

Safety Requirements Elicitation; I/O: Input-Output; TCU: Train Control

Unit; DCU: Door Control Unit; INIT: Initiating; ENV: Environment; TCTL:

Timed Computational Tree Logic; VDD-CPS: Verification-Driven

Development of Cyber-Physical Systems; RMC: Rebeca Model checker;

SDF: Synchronous Dataflow; PAM: Platform Application Model.

Acknowledgment

We would like to thank Edward Lee for reading the paper and giving us

very useful comments.

Availability of data and material

The details of the models and codes are already included in this paper.

However, the Rebeca codes can also be provided upon request from the

corresponding author.

Competing interests

The authors declare that they have no competing interests.

Funding

The research of the first three authors for this work is supported by the

Serendipity project funded by the Swedish Foundation for Strategic

Research (SSF). The research of the first two authors is also supported by

the DPAC project funded by the Knowledge Foundation (KK-stiftelsen).

The research of the fourth and fifth authors is funded partially by Vinnova

through the ITEA3 European TESTOMATand XIVT projects.

Authors’ information

Dr. Marjan Sirjani is a professor of software engineering at Mälardalen

University, Sweden. Dr. Luciana Provenzano is a senior lecturer at

Mälardalen University, Sweden. Dr. Sara Abbaspour Asadollah is a postdoc

at Mälardalen University, Sweden. Mahshid Helali Moghadam is a

researcher at RISE Research Institutes of Sweden and a doctoral student at

Mälardalen University, Sweden. Dr. Mehrdad Saadatmand is a senior

researcher and group manager at RISE Research Institutes of Sweden.

Author details
1Mälardalen University, Väster̊as, Sweden. 2Reykjavik University, Reykjavik,

Iceland. 3RISE Research Institutes of Sweden, Väster̊as, Sweden.

References
1. Lee, E.A.: Cyber physical systems: Design challenges. In: 2008 11th

IEEE International Symposium on Object and Component-Oriented

Real-Time Distributed Computing (ISORC), pp. 363–369 (2008). IEEE

2. Sirjani, M., Lee, E., Khamespanah, E.: Verification of cyberphysical

systems. submitted (2020). Available at

http://rebeca-lang.org/assets/papers/2020/Verification-of-

Cyberphysical-Systems.pdf

3. Rebeca: Rebeca Homepage . Available at

http://www.rebeca-lang.org/, Retrieved July, 2019

4. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and

verification of reactive systems using Rebeca. Fundam. Inform. 63(4),

385–410 (2004)

5. Sirjani, M.: Rebeca: Theory, applications, and tools. In: Formal

Methods for Components and Objects, International Symposium,

FMCO 2006, pp. 102–126 (2006)

6. Lohstroh, M., Schoeberl, M., Goens, A., Wasicek, A., Gill, C., Sirjani,

M., Lee, E.A.: Actors revisited for time-critical systems. In: 2019 56th

ACM/IEEE Design Automation Conference (DAC), pp. 1–4 (2019).

IEEE

7. Lohstroh, M., Lee, E.A.: Deterministic actors. In: 2019 Forum for

Specification and Design Languages (FDL), pp. 1–8 (2019). IEEE

8. Reynisson, A.H., Sirjani, M., Aceto, L., Cimini, M., Jafari, A.,

Ingólfsdóttir, A., Sigurdarson, S.H.: Modelling and simulation of

asynchronous real-time systems using timed Rebeca. Sci. Comput.

Program. 89, 41–68 (2014)

9. Sirjani, M., Khamespanah, E.: On time actors. In: Theory and Practice

of Formal Methods - Essays Dedicated to Frank de Boer on the

Occasion of His 60th Birthday, pp. 373–392 (2016)

10. Khamespanah, E., Sirjani, M., Sabahi-Kaviani, Z., Khosravi, R., Izadi,

M.: Timed Rebeca schedulability and deadlock freedom analysis using

bounded floating time transition system. Sci. Comput. Program. 98,

184–204 (2015)

11. Sirjani, M., Provenzano, L., Asadollah, S.A., Moghadam, M.H.: From

requirements to verifiable executable models using Rebeca. In:

International Workshop on Automated and Verifiable Software sYstem

DEvelopment (2019). http://www.es.mdh.se/publications/5645-

12. Provenzano, L., Häninnen, K., Zhou, J., Lundqvist, K.: An ontological

approach to elicit safety requirements. In: Asia-Pacific Software

Engineering Conference, APSEC, pp. 713–718 (2017)

13. Zhou, J., Häninnen, K., Lundqvist, K., Provenzano, L.: An ontological

approach to hazard identification for safety-critical systems. In:

Reliability and System Engineering, 2nd International Conference,

ICRSE, pp. 54–60 (2017)

14. Zhou, J., Häninnen, K., Lundqvist, K., Provenzano, L.: An ontological

approach to identify the causes of hazards for safety-critical systems.

In: System Reliability and Safety, 2nd International Conference, ICSRS,

pp. 405–413 (2017)

15. Fowler, M.: ThoughtWorks: GivenWhenThen. Available at

https://martinfowler.com/bliki/GivenWhenThen.html, Retrieved July,

2019 (2013)

16. North, D.: Introducing BDD. Better Software Magazine, March

(2006). Available at https://dannorth.net/introducing-bdd/, Retrieved

July, 2019

17. Agha, G.A.: ACTORS - a Model of Concurrent Computation in

Distributed Systems. MIT Press series in artificial intelligence. MIT

Press, Cambridge, MA (1990)

18. Hewitt, C.: Description and theoretical analysis (using schemata) of

PLANNER: A language for proving theorems and manipulating models

in a robot. Technical report, MIT Artificial Intelligence Technical

Report (1972)

19. de Boer, F.S., Serbanescu, V., Hähnle, R., Henrio, L., Rochas, J., Din,

C.C., Johnsen, E.B., Sirjani, M., Khamespanah, E., Fernandez-Reyes,

K., Yang, A.M.: A survey of active object languages. ACM Comput.

Surv. 50(5), 76–17639 (2017)

20. Sirjani, M.: Power is overrated, go for friendliness! expressiveness,

faithfulness and usability in modeling - the actor experience. In:

Principles of Modeling - Essays Dedicated to Edward A. Lee on the

Occasion of His 60th Birthday. Lecture Notes in Computer Science

10760, pp. 424–449 (2018)

21. Khamespanah, E., Sirjani, M., Mechitov, K., Agha, G.: Modeling and

analyzing real-time wireless sensor and actuator networks using actors

and model checking. STTT 20(5), 547–561 (2018)

22. Yousefi, B., Ghassemi, F., Khosravi, R.: Modeling and efficient

verification of wireless ad hoc networks. Formal Asp. Comput. 29(6),

1051–1086 (2017)

23. Sharifi, Z., Mosaffa, M., Mohammadi, S., Sirjani, M.: Functional and

performance analysis of network-on-chips using actor-based modeling

and formal verification. ECEASST 66 (2013)

24. Nigro, L., Sciammarella, P.F.: Time synchronization in wireless sensor

networks: A modeling and analysis experience using theatre. In: 22nd

IEEE/ACM International Symposium on Distributed Simulation and

Real Time Applications, DS-RT 2018, Madrid, Spain, October 15-17,

2018, pp. 63–70 (2018)

25. Lohstroh, M., Schoeberl, M., Goens, A., Wasicek, A., Gill, C., Sirjani,

M., Lee, E.A.: Actors revisited for time-critical systems. In:

Proceedings of the 56th Annual Design Automation Conference 2019,

DAC 2019, p. 152 (2019)

26. Rebeca: Afra Tool. Available at http://rebeca-lang.org/alltools/Afra,

Retrieved July, 2019 (2019)

27. Rebeca: RMC Tool. Available at http://rebeca-lang.org/alltools/RMC,

Retrieved July, 2019 (2016)

28. Wikipedia: RailwayPlatform:

https://en.wikipedia.org/wiki/Railway platform (2019)

29. Beydeda, S., Book, M., Gruhn, V., et al.: Model-driven Software

Development. Springer, ??? (2005)

30. Liebel, G., Marko, N., Tichy, M., Leitner, A., Hansson, J.:

Model-based engineering in the embedded systems domain: an

industrial survey on the state-of-practice. Software & Systems

Modeling 17(1), 91–113 (2018)

31. Lee, E.A.: CPS foundations. In: Design Automation Conference, pp.

737–742 (2010). IEEE

Sirjani et al. Page 22 of 22

32. Ptolemaeus, C.: System Design, Modeling, and Simulation Using

Ptolemy II. Ptolemy.org, Berkeley, CA (2014)

33. Object Management Group: OMG Systems Modeling Language v1.5.

https://sysmlforum.com/sysml-specs/, Retrieved July, 2019 (2017)

34. Object Management Group: UML profile for MARTE, beta 2.

https://www.omg.org/omgmarte/Specification.htm, Retrieved July,

2019 (2008)

35. Baheti, R., Gill, H.: Cyber-physical systems. The impact of control

technology 12(1), 161–166 (2011)

36. Chaturvedi, D.K.: Modeling and Simulation of Systems Using

MATLAB and Simulink. CRC press, Boca Raton, FL, USA (2017)

37. Nejati, S.: Testing cyber-physical systems via evolutionary algorithms

and machine learning. In: Proceedings of the 12th International

Workshop on Search-Based Software Testing, pp. 1–1 (2019). IEEE

Press

38. Matinnejad, R., Nejati, S., Briand, L., Bruckmann, T., Poull, C.:

Automated model-in-the-loop testing of continuous controllers using

search. In: International Symposium on Search Based Software

Engineering, pp. 141–157 (2013). Springer

39. Kong, S., Gao, S., Chen, W., Clarke, E.: dreach: δ-reachability analysis

for hybrid systems. In: International Conference on TOOLS and

Algorithms for the Construction and Analysis of Systems, pp. 200–205

(2015). Springer

40. Chowdhury, S.A., Mohian, S., Mehra, S., Gawsane, S., Johnson, T.T.,

Csallner, C.: Automatically finding bugs in a commercial cyber-physical

system development tool chain with slforge. In: Proceedings of the

40th International Conference on Software Engineering, pp. 981–992

(2018). ACM

41. MathWorks: Stateflow: Model and simulate decision logic using state

machines and flow charts. Available at

https://www.mathworks.com/products/stateflow.html, Retrieved July,

2019 (2018)

42. Khamespanah, E., Khosravi, R., Sirjani, M.: An efficient TCTL model

checking algorithm and a reduction technique for verification of timed

actor models. Sci. Comput. Program. 153, 1–29 (2018)

43. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International

Journal on Software Tools for Technology Transfer (STTT) 1(1),

134–152 (1997)

44. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic

symbolic model checker. In: International Conference on Modelling

Techniques and Tools for Computer Performance Evaluation, pp.

200–204 (2002). Springer

45. Ando, T., Yatsu, H., Kong, W., Hisazumi, K., Fukuda, A.: Translation

rules of SysML state machine diagrams into CSP# toward formal

model checking. International Journal of Web Information Systems

10(2), 151–169 (2014)

46. Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M., Van De Pol, J.:

Towards model checking executable UML specifications in mCRL2.

Innovations in Systems and Software Engineering 6(1-2), 83–90 (2010)

47. Andrade, E., Maciel, P., Callou, G., Nogueira, B.: A methodology for

mapping SysML activity diagram to time petri net for requirement

validation of embedded real-time systems with energy constraints. In:

2009 Third International Conference on Digital Society, pp. 266–271

(2009). IEEE

48. Lucio, L., Mustafiz, S., Denil, J., Meyers, B., Vangheluwe, H.: The

formalism transformation graph as a guide to model driven

engineering. McGill University, Tech. Rep. SOCS-TR2012 (2012)

49. Lucio, L., Denil, J., Vangheluwe, H.: An overview of model

transformations for a simple automotive power window. Technical

report, McGill University, Tech. Rep. SOCS-TR-2012.2, 2012,

http://msdl. cs. mcgill . . . (2012)

50. Molnár, V., Graics, B., Vörös, A., Majzik, I., Varró, D.: The Gamma

statechart composition framework. In: Internation Conference on

Software Engineering, ICSE, pp. 113–116 (2018)

51. Ahmad, W., Yildiz, B.M., Rensink, A., Stoelinga, M.: A model-driven

framework for hardware-software co-design of dataflow applications. In:

International Workshop on Design, Modeling, and Evaluation of Cyber

Physical Systems, pp. 1–16 (2016). Springer

52. Lee, E.A.: Cyber physical systems: Design challenges. In: 11th IEEE

International Symposium on Object-Oriented Real-Time Distributed

Computing (ISORC), pp. 363–369 (2008)

