
Noname manuscript No.
(will be inserted by the editor)

VeriVANca Framework: Verification of VANETs by Property
Based Message Passing of Actors in Rebeca with Inheritance

Farnaz Yousefi · Ehsan Khamespanah · Mohammed Gharib · Marjan

Sirjani · Ali Movaghar

Received: date / Accepted: date

Abstract Vehicular ad-hoc networks have attracted

the attention of many researchers during the last years

due to the emergence of autonomous vehicles and safety

concerns. Most of the frameworks which are proposed

for the modeling and analysis VANET applications make

use of simulation techniques. Due to the high level of

concurrency in these applications, simulation results do

not guarantee the correct behavior of the system and

more accurate analysis techniques are required. In this

paper, we have developed a framework to provide model

checking facilities for the analysis of VANET applica-

tions. To this end, an actor-based modeling language,

Rebeca, is used which is equipped with a variety of

model checking engines. We have extended Rebeca with

the inheritance mechanism to support model-specific

message passing among vehicles, which is crucial for the
modeling of VANET applications. To illustrate the ap-

plicability of this framework, we modeled and analyzed

two warning message dissemination schemes. Reviewing

the results of using the model checking technique sup-

ports the claim that concurrent behaviors of the system

components in VANETs may cause uncertainty which

may not be detected by simulation-based techniques.

F. Yousefi · A. Movaghar
Department of Computer Engineering, Sharif University of
Technology, Iran

E. Khamespanah
School of Electrical and Computer Engineering, University of
Tehran, Iran

E. Khamespanah · M. Sirjani
School of Computer Science, Reykjavik University, Iceland

M. Gharib
School of Computer Science, Institute for Research in
Fundamental Science (IPM), Iran

M. Sirjani
School of IDT, Mälardalen University, Sweden

We also observed that considering the interleaving of

concurrent executions of the system components affects

the performance metrics of it.

Keywords Model Checking · Warning Message Dis-

semination · Vehicular Ad-Hoc Networks (VANETs) ·
Rebeca · Actor Model

1 Introduction

Safety of the autonomous vehicles is turned into one

of the main concerns of future transportation systems.

This concern has been attracting the attention of re-

searchers in both academia and industry, during the last

years. Using autonomous vehicles in mission-critical ap-

plications increases the significance of the problem. Ve-
hicular ad hoc networks (VANETs) are considered as

the main communication network in such systems where

the main responsibility is the Warning Message Dis-

semination (WMD). To prevent further potential dam-

age, WMD is used for vehicle to vehicle communica-

tion in dangerous situations. In this case, vehicles with

the knowledge of hazard broadcast warning messages

to inform the other vehicles. To increase the number

of vehicles receiving the warning message, the receiving

nodes have to forward the message. Such a forwarding

operation causes bursty traffic. Different strategies are

proposed to hold a fair trade-off between the amount

of traffic in the network and the maximum number of

vehicles receiving the message [19]. Each strategy pro-

poses how to select the next group of forwarding nodes

to enhance the performance, considering the mentioned

trade-off. In Section 2 more details about WMD strate-

gies in VANETs are presented.

To validate the correctness of WMD strategies and

to evaluate their performance, a number of simulation-

2 Farnaz Yousefi et al.

based tools and techniques have been used. Simulation-

based approaches cannot provide a high level of confi-

dence for the correct behavior of the system in the pres-

ence of the concurrent execution of system components.

This parameter reduces the effectiveness of simulation-

based techniques in such mission-critical applications.

At the failure of simulation-based techniques, formal

verification approaches seem to be the perfect tech-

nique for achieving reliable results. Formal verification

is widely used in applications of VANETs such as co-

operative collision avoidance [9], intersection manage-

ment using mutual exclusion algorithms [3], and col-

laborative driving [15]. However, to the best of our

knowledge, this is the first formal verification work in

the WMD application of VANETs. Note that there are

some works on formal verification of message dissemi-

nation in VANTEs (e.g. Ferreira et al. in [5]), but none

of them address analysis of schemes which is an appli-

cation layer analysis.

In this paper, we introduce Rebeca with Inheritance

for modeling and analyzing of the WMD schemes in

VANETs. Rebeca [21] is an operational interpretation

of the actor model with formal semantics, supported by

a variety of analysis tools [20,13]. In the actor model,

all the elements that are running concurrently in a dis-

tributed system are modeled as actors. Communica-

tion among actors takes place by asynchronous message

passing. These structures and features match the needs

of VANETs as they consist of autonomous nodes that

communicate by message passing. This level of faithful-

ness helps in having a more natural mapping between

the actor model and VANETs, making models easier to

develop and understand. The way that inheritance is

added to Rebeca, enables support for inheritance in a

variety of Rebeca extensions including Timed Rebeca

[1], Probabilistic Timed Rebeca [10], and Hybrid Re-

beca [11]. We developed VeriVANca as a framework for

the analysis of WMD schemes in VANETs using Timed

Rebeca with inheritance. In Section 3 Timed Rebeca is

briefly introduced using the simplified version of the

counting-based scheme, a WMD scheme. Then, the in-

heritance mechanism and its semantics are presented

in Section 4. More details about how VeriVANca is de-

veloped and its features are described in detail in Sec-

tion 5. Note that Rebeca family members do not sup-

port dynamic actor creation; so, they cannot be used for

modeling WMD schemes which require creating actors

dynamically.

To illustrate the applicability of VeriVANca, we have

modeled a distance-based scheme [22] and a counting-

based scheme [23] using VeriVANca. In the case of the

distance-based scheme, the model checking results show

that concurrent execution of the system components

enables multiple execution traces, some of them cause

starvation which might not be detected by simulation-

based techniques. We also observed that concurrent ex-

ecution of the components in this model, when con-

sidering the interleaving of the components, results in

multiple values for the algorithm performance. Further

investigations yield that this phenomenon is not limited

to one scenario but it is common in this model. More

details on similar cases are presented in Section 6.

The next interesting result of this work is about the

scalability of the model. To examine the scalability of

VeriVANca, a middle-sized model of a four-lane street

with about 40 vehicles is analyzed. The model checking

results show that scaling the number of vehicles up into

a very congested area leads to a dramatical increment

in the size of the state space as well as the analysis time

of model checking. Scaling up the model without form-

ing new congested areas, however, results in a smooth

increment in the size of the state space and analysis

time, as presented in Section 6.

This paper is an extended version of our previously

published conference paper [27]. This paper extends the

conference paper as follows:

– We propose the formal semantics of Rebeca with

inheritance in the form of SOS (Structural Opera-

tional Semantics) rules.

– We illustrate how the proposed semantics can be

used in other extensions of Rebeca family members.

– The experimental results are improved for better

illustration of the case studies and the effectiveness

of this work.

2 Warning Message Dissemination in VANETs

WMD is an application developed for VANETs that

tends to increase the safety and riding experience of

passengers. In this application, a warning message is

disseminated between vehicles in the case of any abnor-

mal situations such as car accidents or undesirable road

conditions. Received warning messages are used either

to activate an automatic operation such as reducing

speed to avoid chained accidents (increasing safety) or

are shown as alerts to inform the driver of the upcom-

ing hazard so that the driver can do operations such as

changing their route (improving the riding experience).

Using WMD in safety-critical applications, requires

providing high reliability for them in developed solu-

tions. Besides, some characteristics of VANETs such as

high mobility of the nodes and fast topology changes,

makes routing algorithms commonly used in MANETs

(Mobile Ad-hoc NETworks) inapplicable to VANETs

[28]. Therefore, the only approach for implementation

VeriVANca 3

of message dissemination in VANETs is multi-hop broad-

cast of the message. In this approach, the receiving

nodes are responsible for re-broadcasting the message

to the others. However, this can result in broadcast

storm problem in the network. In order to tackle this

problem, a number of schemes have been proposed for

WMD as described in the following subsection.

2.1 Message Dissemination Schemes

Message dissemination schemes are algorithms that spec-

ify how a forwarding node is selected in a VANET. The

selection of a forwarding node is performed based on

some criteria such as distance between senders and re-

ceivers, number of received messages by a node, proba-

bilities associated with nodes, topology of the network,

etc. [19]. In this paper, two schemes —a distance-based

and a counting-based scheme— are modeled using the

proposed framework.

The distance-based scheme, called TLO (The Last

One) [22], makes use of location information of the vehi-

cles to select the forwarding node. In this scheme, upon

a message broadcast, the farthest receiver in the range

of the sender is selected as the forwarding TLO node.

Other vehicles in the range know that they are not the

farthest node and do not forward the received message.

However, they wait for a while to make sure of success-

ful broadcast of the TLO node. Receiving the warning

message from the TLO node, means that the sending

of the message has been successful and they do not for-

ward the warning message. Otherwise, the algorithm is

run once again to select the next TLO forwarding node.

In the counting-based scheme [23], an integer num-

ber is defined as counter threshold. Each receiving node

counts the number of received messages in a time inter-

val. At the end of that time interval, the receiver decides

on being a forwarding node based on the comparison of

the value of its counter and the value of counter thresh-

old. If the value of the counter is greater than the value

of counter threshold, the receiver assumes that enough

warning messages are disseminated in its vicinity; there-

fore, it avoids forwarding the message. Otherwise, the

receiver forwards the warning message.

2.2 Analysis Techniques

Different analysis techniques have been developed for

the correctness and performance evaluation of message

dissemination schemes in VANETs. Simulation-based

approaches are widely used for the analysis of appli-

cations of in this domain. Gama et. al. developed a

model and analyzed three different message dissemina-

tion schemes using Veins simulator [6]. Sanguesa et. al.

have used ns-2 simulator in two independent works re-

garding the selection of optimal message dissemination

scheme. In [17], they aim to select the optimal broad-

casting scheme for the model in each scenario and in

[18], the selection of the optimal scheme is performed for

each vehicle based on vehicular density and the topo-

logical characteristics of the environment where the ve-

hicle is located in. In a more comprehensive work [19]

authors have developed a framework in ns-3 simula-

tor for comparing different schemes. Note that although

this approach is used in many applications, it does not

guarantee correctness of results as it does not consider

concurrent execution of system components.

Another technique used for the analysis of WMD in

VANETs is the analytical approach. In this approach, a

system is modeled by mathematical equations and the

analysis is performed by finding solutions to the equa-

tion system. For example, in [16], Saeed et. al. have

derived difference equations that their solutions yield

the probability of all vehicles receiving the emergency

warning message. This value is computed as a function

of the number of neighbors of each vehicle, the rebroad-

cast probability, and the dissemination distance. In an-

other work, a probabilistic multi-hop broadcast scheme

is mathematically formulated and the packet reception

probability is reported for different configurations, tak-

ing into account the topology of the network and as

a result, major network characteristics such as vehi-

cle density and the number of one-hop neighbors [8].

This approach guarantees achieving correct results but

it is not modular and developing mathematical formula

needs a high degree of user interaction and a high de-

gree of expertise.

As the third technique, model checking is a general

verification approach which provides ease of modeling

similarly to simulation-based approaches in addition to

guaranteeing the correctness of results due to its mathe-

matical foundation. To the best of our knowledge, there

is no framework which provides model checking facili-

ties for the analysis of WMD schemes in VANETs.

3 Rebeca Language

Rebeca is a modeling language based on Hewitt and

Agha’s actors [2]. Actors in Rebeca are independent

units of concurrently running programs that communi-

cate with each other through message passing. The mes-

sage passing is an asynchronous non-blocking call to the

actor’s corresponding message server. Message servers

are methods of the actor that specify the reaction of

the actor to its corresponding received message. In the

4 Farnaz Yousefi et al.

Java-like syntax of Rebeca, actors are instantiated from

reactive class definitions that are similar to the concept

of classes in Java. Actors in this sense can be assumed

as objects in Java. Each reactive class declares the size

of its message buffer, a set of state variables, and the

messages to which it can respond. Reactive classes have

constructors with the same name as their reactive class,

that are responsible for initializing the actor’s state.

Timed Rebeca [14] is an extension on Rebeca with

time features which supports modeling and verification

of time-critical systems. To this end, three primitives

are added to Rebeca to address computation time, mes-

sage delivery time, message expiration, and period of

occurrence of events. In a Timed Rebeca model, each

actor has its own local clock and the local clocks evolve

uniformly. Methods are still executed atomically, how-

ever passing time while executing a method can be

modeled. In addition, instead of a queue for messages,

there is a bag of messages for each actor. We introduce

Timed Rebeca using the example of the counting-based

scheme presented in the previous section. A Timed Re-

beca model consists of a number of reactive class def-

initions which provide type and behavior specification

for the actors instantiated from them. There are two re-

active classes BroadcastingActor and Vehicle in the

implementation of counting-based WMD in VeriVANca

as shown in Listing 1.

Each reactive class consists of a set of state variables

and a message bag with the size specified in parentheses

after the name of the reactive class in the declaration.

For example, reactive class Vehicle has state variables

isAv, direction, latency, counter, etc. The size of

the message bag for this reactive class is set to five.

The local state of each actor consists of the values of

its state variables and the contents of its message bag.

Being an actor-based language, Timed Rebeca bene-

fits from asynchronous message passing among actors.

Upon receiving a message, the message is added to the

actor’s message bag. Whenever the actor takes a mes-

sage from the message bag, the routine which is asso-

ciated with that message is executed. These routines

are called message servers and are implemented in the

body of reactive classes.

As depicted in Listing 1, the message servers of

Vehicle are move, receive, alertAccident, stop, and

finishWait. In order for an actor to be able to send

a message to another actor, the sender has to have a

direct reference to the receiver actor. For example, in

Line 19, the message alertAccident is sent to self

which represents a reference to the actor itself. How-

ever, in order to model a WMD scheme in VANETs,

the warning message should reach actors which are in

the range of the sender actor.

Listing 1 Counting-based scheme in Timed Rebeca

1 env int RANGE = 10;

2 env int THRESHOLD_WAITING = 4;

3 env int MESSAGE_SEND_TIME = 1;

4 env int C_THRESHOLD = 3;

5 abstract reactiveclass BroadcastingActor (5) {

6 statevars { int id, x, y; }

7 abstract msgsrv receive(int data);

8 void broadcast(int data) { ... }

9 double distance(BroadcastingActor bActor,

BroadcastingActor cActor){...}

10 }

11 reactiveclass Vehicle extends BroadcastingActor(5){

12 statevars{

13 boolean isAV;

14 int direction, latency, destX, destY, counter;

15 }

16 Vehicle (/*List of Parameters*/){

17 /*Variables Initializations*/

18 if (isAV) {

19 self.alertAccident();

20 } else

21 self.move() after(latency);

22 }

23 msgsrv alertAccident(){ ... }

24 msgsrv move() { ... }

25 msgsrv stop () { ... }

26 msgsrv finishWait(int hop) { ... }

27 msgsrv receive(int hopNum) { ... }

28 }

29 main {

30 Vehicle v1():(0,0,10,RIGHT,1,10,10,true);

31 Vehicle v2():(1,10,0,UP,2,10,10,false);

32 Vehicle v3():(2,-1,0,RIGHT,1,10,0,false);

33 Vehicle v4():(3,0,1,DOWN,2,0,-10,false);

34 Vehicle v5():(4,3,0,LEFT,1,-10,0,false);

35 }

Basically, in Rebeca, the concept of known rebecs

was introduced for an actor to specify the actors to

which it can send messages. However, to implement

applications in ad-hoc networks, a more flexible send-

ing mechanism is needed. Two Rebeca extensions b-

Rebeca [24] and w-Rebeca [25] have been proposed to

provide more complex sending mechanism. In b-Rebeca

the concept of known rebecs is eliminated and it is as-

sumed that the only communication mechanism among

actors is broadcasting; hence, only a fully connected

network can be modeled. Note that the type of broad-

casting introduced in b-Rebeca is not the same as the

location-based broadcasting in VANETs. In location-

based broadcasting, only the actors in the range of each

other are connected in the Rebeca model. Regarding

this assumption, a counter-based reduction technique

is used in b-Rebeca to reduce the state space size of

the model making it impossible to send messages to a

subset of actors.

The other extension w-Rebeca, which is developed

for model checking of wireless ad-hoc networks, uses an

adjacency matrix in the model checking engine, to con-

VeriVANca 5

sider connectivity of actors. In this approach, by ran-

dom changes in the value of adjacency matrix, all the

possible topologies of the network are considered in the

model checking. Note that users are allowed to define

a set of topological constraints and the topologies that

do not fulfill the constraints are not considered in the

model checking. w-Rebeca does not support timing in

the model which is essential for developing models in

the domain of VANET, since there are some real-time

properties that need to be considered. Besides, consid-

ering all possible topologies —some of which may not

be possible in the reality of the model— results in a

bigger state space for the model. In addition, consider-

ing these infeasible topologies, may cause false-negative

results when checking correctness properties.

In this work, we extended Rebeca to support Inher-

itance and used the inheritance mechanism of Timed

Rebeca to implement this customized sending strategy.

More details of this extension will be discussed in the

next section.

4 Inheritance in Rebeca

As mentioned before, developing different message dis-

semination algorithms in Rebeca requires a variety of

communication mechanisms that are not supported by

the current extensions of Rebeca. So, we extended Re-

beca to support the inheritance mechanism and user-

defined communication mechanism to enable it for the

modeling of this type of applications. In object-oriented

design, inheritance mechanism enables classes to be de-

rived from another class and form a hierarchy of classes

that share a set of attributes and methods. Using this

approach, we encapsulated new communication mech-

anisms in a base reactive class and all other actors

which need that type of communication are inherited

from the base reactive class. Note that w-Rebeca and

b-Rebeca [26] proposed a broadcasting-based commu-

nication mechanism which cannot be used for message

dissemination purposes as they mainly work based on

distance-based wireless communication.

4.1 Abstract Syntax of Rebeca with Inheritance

To enable formal description of the semantics of Rebeca

with inheritance, we have to provide an abstract specifi-

cation for the Syntax of it. The proposed modifications

in the syntax of Rebeca family extensions are developed

in a way that the minimum changes are applied to their

former syntax.

In the first step, we present the notations used in

the rest of the article. These notation are based on the

work of [12]. Given a set A, the set A∗ is the set of all

finite sequences over elements of A, the set P(A) is the

power set of A, and the set PN(A) is the power multiset

of A. For a sequence a ∈ A∗ of length n, the symbol ai
denotes the ith element of the sequence, where 1 ≤ i ≤
n. Using this notation, we may also write the sequence a

as 〈a1, a2, · · · , an〉. The empty sequence is represented

by ε, and 〈h|T 〉 denotes a sequence whose first element

is h ∈ A and T ∈ A∗ is the sequence comprising the

elements in the rest of the sequence. For two sequences

σ and σ′ over A, the operator ⊕ is defined as ⊕ : A∗ ×
A∗ → A∗ for the concatenation of two sequences such

that σ ⊕ σ′ is a sequence obtained by appending σ′ to

the end of σ. Consequently, getting the prefix of σ with

length l takes place using 	 : A∗ × N→ A∗ operator.

A Rebeca with inheritance model consists of a set

of reactive class declarations and a main block which

specifies actors of the model. A reactive class is defined

as an instance of type RClass = CID × {ε,CID} ×
P(Mtds)×P(Knowns)×P(Vars)×P(Mtds) such that:

– CID is the set of all reactive class identifiers in the

model.

– Mtds is the set of all method declarations.

– Knowns is the set of all the identifiers of known

actors.

– Vars is the set of all variable names.

The tuple (cid, pcid, consts, knowns, vars,mtds) de-

fines a reactive class which has the identifier cid, is

inherited from the reactive class pcid, the constructor

method const, the set of known actors knowns, the set

of state variables vars, and the set of methods mtds.

Each method (and the constructor method) is defined

as the triple (m, p, b) ∈ MName×Var∗×Stat∗, where m

is the name of the message the method is used to serve,

p is the sequence of the names of the formal parameters,

and b contains the sequence of statements comprising

the body of the method.

In Rebeca with inheritance, the set of statements is

defined as Stat = Assign∪Cond ∪Send ∪{skip}, where

different types of statements are defined as below. The

meaning of the below statements is the same as the gen-

eral purpose programming languages. In the following,

Expr is the set of integer expressions defined over usual

arithmetic operators (with no side effects) and BExpr

is the set of Boolean expression defined over usual re-

lational and logic operators. We do not provide more

details of the expressions in this article.

– Assign = Var ×Expr is the set of assignment state-

ments. We use the notation var := expr as an alter-

native to (var, expr).

6 Farnaz Yousefi et al.

– Cond = BExpr × Stat∗ × Stat∗ is the set of condi-

tional statements. We use the notation if exprthen σ

else σ′ as an alternative to (expr , σ, σ′).

– Send = (ID ∪ {self }) ×MName × Expr∗ is the set

of send statements. We use the notation x.m(e) as

alternative to (x,m, e) to show that message m is

sent from actor x with the set of parameters e.

– skip is a predefined statement that has no effect.

In the main part of a model, actors are defined as in-

stances of reactive classes. The set of actors is defined

as Actor = CID × AID × AID∗ × Expr∗ such that

(c, a, k, p) ∈ Actor defines an actor instantiated from

reactive class c, with identifier a, the set of known ac-

tors k, and the set of parameters of its constructor p.

Note that supporting inheritance does not result in any

modification in the syntax of statements and instantia-

tion part of Rebeca family models.

Having the above definitions, the set of Rebeca mod-

els is specified by P(RClass) ∪ P(Actor), where the

first component contains the specification of reactive

classes and the second component corresponds to the

main block consisting of a sequence of actor instantia-

tions. The BNF presentation of the syntax of Rebeca

with inheritance is presented in Fig 1. In comparison

with the former grammar, extends and abstract are

two new keywords which are added to the syntax of

Rebeca.

4.2 Semantics of Rebeca with Inheritance

In this section, we present the semantics of Rebeca
with Inheritance. Prior to presenting the semantics, we

present the notations used in the rest of the article.

For a function f : X → Y , we use the notation

f [x 7→ y] to denote the function {(a, b) ∈ f |a 6= x} ∪
{(x, y)} and D(f) to denote the domain of f (which

is X here). Following this, we use the notation f [x1 7→
y1∧· · ·∧xn 7→ yn] to denote the function {(a, b) ∈ f |a 6∈
{x1, · · · , xn}}∪{(x1, y1), · · · , (xn, yn)}. We also use the

notation x 7→ y as an alternative to (x, y). For X ′ ⊆ X,

we write f |X′
as the restriction of f to X ′, i.e., {(x, y) ∈

f |x ∈ X ′}. Having two sequences a and b of the same

size n, the function map(a, b) returns the mapping of

the elements of a into b such that map(a, b) = {ai 7→
bi|1 ≤ i ≤ n}, assuming that the elements of a are

distinct.

We also define the following auxiliary functions to

be used in defining the formal semantics:

– body : AID ×MName → Stat∗, in which body(x,m)

returns the body of the method m of the reactive

class which actor identified by x is instantiated from,

appended by the special element endm, which de-

notes the end of the method.

– params : AID×MName → Var∗, in which the func-

tion params(x,m) returns the list of formal param-

eters of the method m of the reactive class which

the actor identified by x is instantiated from.

– svars : AID → P(Var) which returns the names of

the state variables of the reactive class which actor

identified by x is instantiated from.

– evalv : Expr → Val abstracts away the semantics of

expressions by evaluating an expression within the

specific context v : V ar → V al. Note that Val con-

tains all possible values that can be assigned to the

state variables or to be used within the expressions.

Here, we have Val = Z ∪ {True,False}. We assume

evalv is overloaded to evaluate a sequence of expres-

sions: evalv(〈e1, e2, · · · , en〉) = 〈evalv(e1), evalv(e2)

, · · · , evalv(en)〉. Note that evalv(e1), evalv(e2), · · · ,
evalv(en) are evaluated sequentially not in parallel.

– unify : 〈(Var → Val)〉 → (Var → Val) is a func-

tion that returns the union of a sequence of contexts

which is given as its input. This function helps in

finding all the variables which are defined or inher-

ited in a reactive class. Note that using inheritance,

state variables of a reactive class consists of the in-

herited state variables. The formal definition of this

function is given below.

unify(A) =

{
An ∪ unify(A′)|D(An) A =〈A′|An〉
∅ A = ε

Using this definition resolves name clash among state

variables as it considers the closest variable’s decla-

ration in the inheritance hierarchy.

– level : AID × MName → N returns the level that

the closest definition of the message server / method

MName for the actor AID that is found in its hier-

archy. As we will show later, level is used to restrict

the access of a message server / method to the state

variables which are defined or inherited from its an-

cestors. For example, assume that there are reactive

classes A, B, C, and D such that B is derived from A,

C from B, and D from C. Also, the method m() is de-

fined in B. In the case of calling m from the actor ac

which is instantiated from D, although ac contains

all the state variables of A, B, C, and D, but m only

has access to the state variables of A and B. In this

case, the value of level is set to 2.

– upVar : {(Var → Val)}∗ × VName × newVal →
{(Var → Val)}∗ updates the value of the closest

variable name to the value val for the given func-

tion upV ar(v, name, val). The formal definition of

VeriVANca 7

Model ::= Class∗ Main

Main ::= main { InstanceDcl∗ }
InstanceDcl ::= className rebecName(〈rebecName〉∗) : (〈literal〉∗);

Class ::= [abstract] reactiveclass className [extends className]

{ KnownRebecs Vars MsgSrvDef ∗ LocalMethodsDef ∗ }
KnownRebecs ::= knownrebecs { RebecDcl∗ }

Vars ::= statevars { VarDcl∗ }
RebecDcl ::= className 〈v〉+;

VarDcl ::= Type 〈v〉+; | Type [number]+ v

MsgSrvDef ::= MsgSrv | AbsMsgSrv

MsgSrv ::= msgsrv msgName(〈ExtType v〉∗) { Stmt∗ }
AbsMsgSrv ::= abstract msgsrv msgName(〈ExtType v〉∗);

LocalMethodsDef ::= LocalMethods | AbsLocalMethods

LocalMethods ::= methodName(〈ExtType v〉∗) { Stmt∗ }
AbsLocalMethods ::= abstract methodName(〈ExtType v〉∗);

Stmt ::= Assignment | SendMessage | MethodCall | ConditionalStmt | LoopStmt | LocalVars

Assignment ::= v = Exp; | v =?(Exp〈, Exp〉+);

SendMessage ::= rebecExp.msgName(〈Exp〉∗);
MethodCall ::= methodName(〈Exp〉∗);

ConditionalStmt ::= if (Exp) { Stmt∗ } [else { Stmt∗ }]
LoopStmt ::= for (Exp ; Exp ; Exp) { Stmt∗ } | while (Exp) { Stmt∗ }
LocalVars ::= ExtType 〈v〉+;

Exp ::= e | rebecExpr
rebecExp ::= self | rebecTerm | (className)rebecTerm

rebecTerm ::= rebecName | sender
ExtType ::= Type | float | double

Type ::= boolean | int | short | byte | className

Fig. 1 Abstract syntax of Rebeca(a slightly revised version of the syntax presented in [1]). Angle brackets 〈...〉 are used as
meta parenthesis, superscript + for repetition at least once, superscript ∗ for repetition zero or more times, whereas using
〈...〉 with repetition denotes a comma separated list. Brackets [...] indicates that the text within the brackets is optional. The
symbol ? shows non-deterministic choice. Identifiers className, rebecName, methodName, v, literal , and type denote class
name, rebec name, method name, variable, integer number, and type, respectively; and e denotes an (arithmetic, boolean or
nondeterministic choice) expression. The parameter t is an expression with natural number result.

upVar is given below.

upVar(vs,n, v) =

T ⊕ vs′[n→ v] vs =〈T |vs′〉,

n ∈ D(vs′)

upV ar(T, n, v)⊕ vs′ o.w.

Now, the semantics of Rebeca with inheritance can

be defined. For a given Rebeca modelM, the semantics

of the model is defined in terms of transition system

TS = (S, s0, Act,→, AP, L), where S is the set of states,

s0 is the initial state, Act is the set of actions, →⊆
S ×Act× S is the transition relation, AP is the set of

atomic propositions, and L : S → 2AP is the labeling

function, described as the following.

– The global state of a Rebeca model is represented

by a function s : AID → (Var → Val)×PN(Msg)×
(Stat∗,N), which maps an actor’s identifier to the

local state of the actor. The local state of an ac-

tor is defined by a tuple like (v, q, (σ, l)), where v :

8 Farnaz Yousefi et al.

Var → Val gives the values of the state variables

of the actor, q : PN(Msg) is the message queue of

the actor, σ : Stat∗ contains the sequence of state-

ments the actor is going to execute to finish the ser-

vice to the message currently being processed, and

l shows the level of the currently executing message

server. Here, Msg = AID ×MName × (Var → Val)

is used as the type for the messages which are passed

among actors. In a message (i,m, r) ∈ Msg , i is the

identifier of the sender of this message, m is the

name of its corresponding method, r is a function

mapping argument names to their values. Note that

the sequence of statements is put as a part of the

states to make the operation semantics easier to un-

derstand and more readable not for supporting dy-

namic statement definition and configuration. Also,

as mentioned before, we assume that actors commu-

nicate via message passing and put their incoming

messages into message bags.

– In the initial state, the values of state variables and

content of the actors’ message queues are set based

on the statements of their constructor methods.

– The set of actions is defined as Act = MName∪{τ}.
– The transition relation →⊆ S ×Act×S defines the

transitions between states which are taking a mes-

sage from the message queue and continuing the

execution of statements. The SOS rules of Table 1

define these transitions. Note that we associated a

rule name with τ transitions to relate τ transitions

to their corresponding rules.

– AP contains the name of all of atomic propositions.

– The function L : S → 2AP associates a set of atomic

propositions with each state, shown by L(s) for a

given state s.

Finally, we assumed that Rebeca models are well-

formed. The following rules define the well-formedness

of a Rebeca model which is hard to (or cannot be) de-

scribed in the grammar, but may be statically checked.

– Unique Identifiers. The actor identifiers are unique

within a Rebeca model.

– Unique Variables. The names of the state vari-

ables of an actor are unique.

– Unique Methods. The names of the methods of

an actor are unique.

– Unique Parameters. The names of the formal pa-

rameters of a method are unique and different from

the state variables of the enclosing actor.

– Type Safety. The model is well typed, i.e.,

– expressions are well-typed,

– the type of the right side of an assignment is

upcastable to the type of the left side,

– the conditions of the conditional statements are

of type Boolean, and

BroadcastingActor

+broadcast(data)
+receive(data)

Vehicle

+receive(data)

Fig. 2 The UML class diagram of VeriVANca

– the receiver of a message has a method with the

same name as the message.

– Well-Formed Arguments. The list of actual ar-

guments passed to a message send statement con-

forms to the list of formal parameters of the corre-

sponding method, in both length and type.

4.3 Inheritance for Extensions of Rebeca

Reviewing the abovementioned semantic rules illustrates

that only minor modifications are needed to enable the

other extensions of Rebeca to support inheritance. These

modifications are in how to specify state variables of

reactive classes, the scope part of the eval function, re-

solving name of method / message server, and storing

the level of the method / message server which currently

being executed.

Considering Timed Rebeca [13], applying these mod-

ifications to the semantic rules results in modifying the

set of SOS rules which are presented in Table 2. Note

that the state variable part of all of the other semantic

rules has to be modified which is straightforward.

These modifications are sufficient to enable Proba-

bilistic Timed Rebeca [10] to support inheritance too.

5 The VeriVANca Framework

In object-oriented design, inheritance mechanism en-

ables classes to be derived from another class and form

a hierarchy of classes that share a set of attributes and

methods. Using this approach, VeriVANca is developed

as a framework that encapsulates broadcasting mecha-

nism in a reactive class called BroadcastingActor and

all other actors are inherited from it to use the broad-

casting mechanism. Figure 2 illustrates this fact in a

UML class digram.

In BroadcastingActor, the broadcast method that

is shown in Listing 2 mimics the distance-based send-

ing mechanism of vehicles in VANETs. In VeriVANca

behaviors of vehicles and warning message dissemina-

tion scheme are implemented in the Vehicle reactive

class. Broadcasting data by a vehicle results in receiving

a message containing that data by the vehicles in the

range of the sender actor. In the body of this method, all

VeriVANca 9

(take−message)
s(x) = (v, 〈(ac,mg, pr)|T 〉, (ε, ε))

s
mg−→ s[x 7→ (v ⊕ {pr ∪ {(self , x)} ∪ {(sender , ac)}, T, (body(x,mg))⊕

endmsgsrv, level(x,mg))]

(method− call)
s(x) = (v, q, (〈method(e)|σ〉, l))

s
τ−→ s[x 7→ (v, q, (body(x ,method)⊕ endm⊕ level : l⊕ σ, level(x ,method)))]

(assignment)
s(x) = (v, q, (〈var := expr |σ〉, l))

s
τ−→ s[x 7→ (upVar(v, var , evalunify(v	 l)(expr)), q, (σ, l))]

(ConditionalT)
s(x) = (v, q, (〈if expr then σ else σ′|σ′′〉, l)) ∧ evalunify(v	 l)(expr) = True

s
τ−→ s[x 7→ (v, q, (σ ⊕ σ′′, l))]

(ConditionalF)
s(x) = (v, q, (〈if expr then σ else σ′|σ′′〉, l)) ∧ evalunify(v	 l)(expr) = False

s
τ−→ s[x 7→ (v, q, (σ′ ⊕ σ′′, l))]

(nondet− assign)
s(x) = (v, q, (〈var :=?(expr1, expr2, · · · , exprn)|σ〉, l))∨

1≤i≤n s
τ−→ s[x 7→ (v, var , evalunify(v	 l)(expr i))], q, (σ, l))]

(send)
s(x) = (v, q, (〈y.m(e1)|σ, l)〉) ∧ s(y) = (v′, q′, (σ′, l′)) ∧ p = params(y ,m)

s
τ−→ s[x 7→ (v, q, (σ, l)) ∧ y 7→

(v′, q′ ⊕ {(m, (map(p, evalunify(v	 l)(e1))))}, (σ′, l′)]

(skip)
s(x) = (v, q, (〈skip|σ〉, l))

s
τ−→ s[x 7→ (v, q, (σ, l))]

(end−msgSrv)
s(x) = (v, q, (〈endmsgsrv〉, l))

s
τ−→ s[x 7→ (v 	 (|v | − 1), q, (ε, ε))]

(end−method)
s(x) = (v, q, (〈endm|σ〉, l))

s
τ−→ s[x 7→ (v 	 (|v | − 1), q, (σ, l))]

(change− level)
s(x) = (v, q, (〈level : l′|σ〉, l))

s
τ−→ s[x 7→ (v, q, (σ, l′))]

Table 1 The SOS rules of Rebeca with Inheritance

(take−message)
s(x) = (v, 〈(ac,mg, pr, ar, dl)|T 〉, (ε, ε), t, ε) ∧ ar ≤ t ∧ dl ≥ t

s
mg−→ s[x 7→ (v ⊕ pr ∪ {(self , x)} ∪ {(sender , ac)}, T, (body(x,mg))⊕

endmsgsrv, level(x,mg)), t, t)]

(internal)
s(x) = (v, q, (〈st, σ〉 l), t, r) ∧ t = r

s
τ−→ s[effect(st, x)]

(time− progress)

s
mg9 ∧ s τ9 ∧ n1 = minx∈AID{ar|s(x) =

(v, 〈(ac,mg, pr, ar, dl)|T 〉, ε, t, ε)} ∧ n2 = minx∈AID{r|s(x) = (v, q, (σ, l), t, r)}
s→ s[∀x ∈ AID · x = (v, q, (σ, l), t, r) 7→ (v, q, (σ, l),min{n1, n2}, r)]

(delay)
s(x) = (v, q, (〈delay(e)|σ〉, l), t, r) ∧ r = t

s
τ−→ s[x 7→ (v, q, (σ, l), t, r + evalunify(v	 l))]

Table 2 The SOS rules of Timed Rebeca with Inheritance

10 Farnaz Yousefi et al.

actors —that are derived from BroadcastingActor—

are examined in terms of their distance to the sender

(Line 5). If the distance between an actor and the sender

is less than the threshold RANGE (Line 6), the data is

sent to the actor by an asynchronous message server

call of receive (Line 7). As BroadcastingActor has

no idea about the behavior of vehicles, upon receiving

the receive message, the template method design pat-

tern [7] is used in the implementation of receive. So,

the receive message server is defined as an abstract

message server in BroadcastingActor and its body is

implemented in Vehicle.

Listing 2 Body of broadcast Method in Broadcasting Actor

1 void broadcast(int data) {

2 ArrayList<ReactiveClass> allActors=getAllActors();

3 for(int i = 0; i < allActors.size(); i++) {

4 BroadcastingActor ba =

(BroadcastingActor)allActors.get(i);

5 double distance = distance (ba , self);

6 if(distance < RANGE) {

7 ba.receive(data) after (MESSAGE_SEND_TIME);

8 }

9 }

10 }

11 double distance(BroadcastingActor bActor ,

BroadcastingActor aActor){

12 int xPart = pow(aActor.x - bActor.x, 2);

13 int yPart = pow(aActor.y - bActor.y, 2);

14 return sqrt(xPart + yPart);

15 }

Using this separation significantly improves the us-

ability and flexibility of VeriVANca and other not known

rebec based communication mechanisms can be imple-

mented in the same way. For example, in the case of

distance-based delay in communication, there is no lim-

itation on the range of message sending but the receiv-

ing time is set based on the location of moving items.

This behavior is implemented in Listing 3. As shown

in lines 5 and 6, the communication delay for receive

message is set based on the distance of vehicles. Note

that the definition of distance in this example is the

same as that of Listing 2.

Listing 3 Body of distance-based communication delay in
BroadcastingActor

1 void broadcast(int data) {

2 ArrayList<ReactiveClass> allActors=getAllActors();

3 for(int i = 0; i < allActors.size(); i++) {

4 BroadcastingActor ba =

(BroadcastingActor)allActors.get(i);

5 int distDelay = (int)distance (ba , self);

6 ba.receive(data) after (distDelay);

7 }

8 }

9 }

BroadcastingActor

+broadcast(data)
+receive(data)

Vehicle

+receive(data)

BroadcastingActor

+broadcast(data, topic)
+receive(data)
+interestedIn(topic)

Vehicle

+receive(data)
+interestedIn(topic)

Fig. 3 The UML class diagram of Publisher/Subscriber com-
munication mechanism

In addition to the broadcasting-based communica-

tion mechanisms, more complex communication mech-

anisms can be implemented in VeriVANca. For exam-

ple, publish/subscribe communication mechanism can

be implemented using another helper function. Figure 3

shows the UML class diagram representation of pub-

lish/subscribe communication mechanism in Rebeca and

its implementation is presented in Listing 4.

In this implementation, each actor implements its

own interestedIn method in a way that it returns

true if this actor interested in the given topic as the

parameter of interestedIn.

Listing 4 Body of broadcast method in publish/subscribe
communication mechanism

1 void broadcast(int data, int topic) {

2 ArrayList<ReactiveClass> allActors=getAllActors();

3 for(int i = 0; i < allActors.size(); i++) {

4 BroadcastingActor ba =

(BroadcastingActor)allActors.get(i);

5 boolean interested = ba.interestedIn(topic);

6 if(interested) {

7 ba.receive(data) after (MESSAGE_SEND_TIME);

8 }

9 }

10 }

6 Experimental Results

In this section we present two different case studies

and illustrate how functional analysis and performance

evaluation can be made using VeriVANca. To demon-

strate the applicability of VeriVANca, both of them are

analyzed in different configurations. As mentioned be-

fore, concurrent behaviors of the system components

may cause uncertainty which is clearly observable in

the presented scenarios, but may not be detected using

simulation-based techniques. For the case of the TLO

scheme, we show that nondeterminism causes starva-

tion and for the case of the counting-based scheme, it

causes different results in the performance of the algo-

rithm. Furthermore, we illustrate that the approach is

scalable regarding the number of cars with traffic pat-

terns that do not contain congested areas. Note that the

VeriVANca 11

following experiments have been executed on a Mac-

book Air with Intel Core i5 1.3 GHz CPU and 8GB

of RAM, running macOS Mojave 10.14.2 as the op-

erating system. Development of these experiments are

performed in Afra, modeling and verification IDE of

Rebeca family languages [4].

6.1 Counting-Based Scheme in VeriVANca

The model of Counting-Based scheme in Rebeca is pre-

sented in Listing 5. Note that definition of broadcast

and distance methods is omitted in Listing 5, as it

is the same as that of Listing 2. In the following im-

plementation, three message servers alertAccident,

finishWait, and receive provide the behavior of the

scheme. When Vehicle actors are instantiated, their

constructor methods are executed resulting in sending

one of the following messages to themselves:

– alertAccindent: sent by the accident vehicle (i.e.

v1 as shown in Line 65) to start the WMD algorithm

(Line 34),

– move: sent by the other actors to begin moving with

their pre-defined latency (Line 36); an actor per-

forms this through sending move message periodi-

cally to itself (Lines 39 to 48).

The algorithm of Counting-Based scheme, as imple-

mented in Listing 5, begins by serving alertAccident

message in the accident vehicle. Upon the execution

of receive (Lines 56 to 62), if the counter, which is

initially set to zero for all actors (Line 32), is zero —

meaning that it is the first time the actor is receiving the

warning message— a watchdog timer is started. This is

implemented by sending the finishWait message to

the actor itself with THRESHOLD WAITING as its arrival

time(Line 58). In addition, the value of counter is set

to one to indicate that this is the first call of receive

(Lines 60). The next calls of receive result in increas-

ing the value of counter, which represents the num-

ber of received warning messages. When message server

finishWait is executed by an actor, showing that the

watchdog timer is expired, as shown in Line 51, the

value of counter is compared with C THRESHOLD, i.e.

the threshold considered for the counter. By not ex-

ceeding the threshold, i.e., the area around the actor

is not covered by enough number of warning messages,

the actor broadcasts the warning message (Line 52).

Listing 5 Counting-based scheme in Timed Rebeca

1 env int RANGE = 10;

2 env int THRESHOLD_WAITING = 4;

3 env int C_THRESHOLD = 3;

4 env int RIGHT = 0;

5 env int LEFT = 1;

6 env int UP = 2;

7 env int DOWN = 3;

8 abstract reactiveclass BroadcastingActor(5) {

9 statevars {

10 int id, x, y;

11 }

12 abstract msgsrv receive(int data);

13 void broadcast(int data) { ... }

14 double distance(BroadcastingActor bActor ,

BroadcastingActor cActor) { ... }

15 }

16 reactiveclass Vehicle extends BroadcastingActor(5) {

17 statevars{

18 boolean isAV;

19 int direction, latency;

20 int destX, destY;

21 int counter;

22 }

23 Vehicle(int vid, int X, int Y, int dir, int vLatency,

int dX, int dY, boolean isAccidentVehicle) {

24 id = vid;

25 x = X;

26 y = Y;

27 direction = dir;

28 latency = vLatency;

29 destX = dX;

30 destY = dY;

31 isAV = isAccidentVehicle;

32 counter = 0;

33 if (isAV) {

34 self.alertAccident();

35 } else

36 self.move() after(latency);

37 }

38 msgsrv alertAccident() { broadcast(0); }

39 msgsrv move() {

40 switch (direction) {

41 case 0: x++; break;

42 case 1: x--; break;

43 case 2: y++; break;

44 case 3: y--; break;

45 }

46 if (x != destX || y != destY)

47 self.move() after(latency);

48 }

49 msgsrv stop() { stop(); }

50 msgsrv finishWait(int hopNum) {

51 if (counter < C_THRESHOLD)

52 broadcast(hopNum++);

53 else

54 stop();

55 }

56 msgsrv receive(int hopNum) {

57 if (counter == 0) {

58 finishWait(hopNum) after(THRESHOLD_WAITING);

59 }

60 counter++;

61 }

62 }

63
64 main {

65 Vehicle v1():(0,0,10,RIGHT,1,10,10,true);

66 Vehicle v2():(1,10,0,UP,2,10,10,false);

67 Vehicle v3():(2,-1,0,RIGHT,1,10,0,false);

68 Vehicle v4():(3,0,1,DOWN,2,0,-10,false);

12 Farnaz Yousefi et al.

69 Vehicle v5():(4,3,0,LEFT,1,-10,0,false);

70 }

The configuration depicted in Figure 4(a) is used

for the analysis of the Counting-Based scheme. In this

scenario, the value of C THRESHOLD is set to 2 and the

RANGE is set to 4. The scenario begins with the vehi-

cle A broadcasting the warning message (Figure 4(b)).

This broadcast results in increasing the counters of the

vehicles A, B, C, and E by one. In the next round two

following cases may happen.

1. The watchdog timer of vehicle E expires af-

ter receiving the message from B: In this case,

as the counter has reached the threshold, E does

not forward the warning message as shown in Fig-

ure 4(c). Following this case, the algorithm contin-

ues with vehicles D, H, and F being selected as

forwarding nodes and rebroadcasting the message

(Figures 4(d) to 4(f). As a result, it takes 5 hops

for all the vehicles to get informed of the warning

message. Note that the same scenario happens when

C forwards the message before the expiration of the

watchdog timer of E.

2. The watchdog timer of vehicle E expires be-

fore receiving warning message from B and

C: In this case, since the counter of E is less than

the threshold, E must forward the warning message

(Figure 5(a)). In the next step, vehicle F broadcasts

the message and all non-informed vehicles receive

the warning message and algorithm finishes in 3

hops.

Achieving two different numbers for performance of

this algorithm shows that beside correctness properties,

providing guaranteed values for performance results re-

quires applying formal verification techniques as well.

We analyzed this scenario with different values for range

and counter threshold, the result of three of them are

shown in Figure 6.1. The results show that this phe-

nomenon is not rare and can be observed in many cases.

For the purpose of scalability analysis, we have mod-

eled a four-lane street which contains about 30 vehicles.

These vehicles are distributed in a way that there is no

congested area in the street as shown in Figure 7(a).

Note that we assumed cars are fixed and do not move.

Analyzing this model using Afra results in the execution

time of 11 seconds, reaching 19,588 states and 110,627

transitions. To examine the scalability of the model,

we added new cars in two different areas. First, we in-

creased the length of the street and added new vehi-

cles to the tail of the street of Figure 7(a). The newly

added cars follow the same distribution to avoid creat-

ing congested areas. This way of scaling resulted in the

execution time of 15 seconds, 23,734 states, and 133,255

transitions for 35 vehicles and 18 seconds, 25,872 states,

and 143,727 transitions for 40 vehicles (i.e. about 1.3

times more than the first case).

In the second way, the newly added vehicles in-

creased congestion in some areas (Figure 7(b)). Scaling

in this way increases the execution time of the model

to 120 seconds and the number of reached states and

transitions to 157,086 and 1,265,839, respectively (i.e.

about 10 times more than the previous case). This is

because of the fact that in a congested area, the num-

ber of delivered warning messages to each vehicle grows

rapidly and all of the possible orders of execution for

messages with the same execution time are considered

in the model checking. This results in a sharp growth

in the size of the state space and model checking time

consumption.

6.2 TLO Scheme in VeriVANca

In the TLO scheme, explained in Section 2.1, upon

receiving the warning message for the first time, the

runTLO method is called. In the body of this method, if

the actor has not received the duplicate warning mes-

sage from a selected TLO node as a sign of its success-

ful broadcast, the isTLO method is called. This prop-

erty is checked by examining the value of state vari-

able received in Line 86. The isTLO method is imple-

mented in the BroadcastingActor and checks if the

actor is the furthest node in the range of the sender

and returns the result as a boolean value. If the return

value is true, the actor is the last one in the range and

is selected as the TLO node to forward the warning

message.

Then the value of received is set to true to show

that broadcasting has been successful (Line 89). In the

case that the actor is not the last one in the range,

the actor should wait for a while to make sure that

the selected TLO node has successfully broadcasted the

warning message (Line 91 and 92). To this end, the

actor sets the value of isWaiting to true to show that

it is in the waiting mode. In this case a watchdog timer

is set for the actor by sending message finishWait to

itself by execution time of THRESHOLD WAITING (Line

92).

The message server receive, mimics receiving the

warning message. In the body of this message server, if

the actor is not in the waiting mode, isTLO is executed

to select the TLO forwarding node (Lines 80 and 81).

Otherwise, isWaiting is set to false since this message

is interpreted as a successful broadcast of the TLO node

(line 83). The finishWait message server is executed

upon expiration of the watchdog timer and it checks

the value of isWaiting (Line 76). In the case of false

VeriVANca 13

A E

C

D

B

H

F

G

J

(a) Configuration of the scenario

0

1 1

1

0

1

0

0

0

0

A E

C

B

(b) Vehicle A starts broadcasting

2 2

1

2

0

0

0

0

2

A E

C

D

B

(c) B broadcasts before expiration of the watch-
dog timer of E

2 2

2

2

3

1

0

0

0

D

B

H

(d) D forwards the warning message

2 2

2

3

3

2

1

0

1

D H

F J

(e) H rebroadcasts the message

2 3

2

2

3

4

3

2

3

E

D H

F

G

J

(f) F and (or) J forward(s) the message and
algorithm finishes

Fig. 4 A case of the scenario for the counting-based scheme

2 2

1

2

0

1

1

1

2

A E

C

D

B

F

G

J

(a) E is selected as forwarder (instead of B as
depicted in Figure 4(c))

2 3

2

3

1

2

2

2

3

E

C

D

B

H

F

G

J

(b) F broadcasts the message and algorithm fin-
ishes

Fig. 5 Another case of the scenario for the counting-based scheme

14 Farnaz Yousefi et al.

1 2 3 4 5 6
2

3

4

5

6

7

Counter Threshold

N
u
m

b
er

o
f

h
o
p
s

Worst case
Best case

(a) Range is 3

1 2 3 4 5 6
2

3

4

5

6

7

Counter Threshold

Worst case
Best case

(b) Range is 4

1 2 3 4 5 6
2

3

4

5

6

7

Counter Threshold

Worst case
Best case

(c) Range is 5

Fig. 6 Analysis results of the counting-based scheme with different values for the range and counter threshold (Note that Y
axis shows the number of hops required for termination of the algorithm)

(a)

(b)

Fig. 7 Configuration of the scenario used for scalability analysis

value for finishWait, the actor has not received any

warning message from the already selected TLO node;

so, runTLO is called to select the next TLO forwarding

node.

Analyzing the mode of Listing 6, a starvation con-

dition can be detected. Using this implementation of

TLO scheme causes starvation and affects the reliabil-

ity of the scheme in some executions. The steps of the

scenario is depicted in Figure 8. In 8(a), the position

of the vehicles is shown in the time of the accident be-

tween vehicles A and B. In the next step, vehicle B

starts broadcasting the warning message and vehicles

C and D receive the message as they are in the range

of B (Figure 8(b)). Upon receiving the warning mes-

sage, these vehicles execute the TLO algorithm and

since they both have the same distance from B, they

forward the received warning message and the vehi-

cles E and F receive the warning message from these

two vehicles. When vehicles E and F execute the TLO

algorithm, racing between the following two scenarios

happen.

1. E broadcasts before F: vehicles G and H receive

the warning message from E. Upon execution of

TLO algorithm by G and H, Vehicle H is selected

as the TLO forwarding node and forwards the mes-

sage. Meanwhile, vehicle G is waiting for receiving

the warning message from H to make sure that the

broadcasting has been successful. If in the waiting

time of G, vehicle H forwards the warning message,
the message will be interpreted as acknowledgement

of the successful broadcast of H and although G is

TLO node in this step, it will not forward the mes-

sage. In this case, the vehicle J does not receive the

warning message.

2. F broadcasts before E: vehicle G receive the warn-

ing message from F and after the execution of TLO

algorithm, it forwards the message as the selected

TLO node and vehicle J will receive the warning

message in this scenario.

This example shows that concurrent execution of

the algorithm in nodes causes nondeterministic behav-

ior which may violate correctness properties of the ap-

plication. To avoid such cases, all the possible nondeter-

ministic behaviors have to be considered in any analysis

framework. However, simulation-based techniques, fail

to report a result by considering all the possible execu-

tion traces.

VeriVANca 15

A

F
D

C
B

H

E

J G

(a) Accident between A and B

A

D

C

B
A

D

C
B

(b) B broadcasts the warning message

F

D

C

B

E

A

F
D

C
B

E

G

(c) C and D are both selected as TLO nodes to for-
ward the warning message

F

H

E

J G

(d) Order of broadcasting between E and F results in
two cases

Fig. 8 A scenario of TLO scheme which results in two execution alternatives that one of them causes starvation for vehicle J

Listing 6 TLO scheme in Timed Rebeca

1 env int RANGE = 9;

2 env int THRESHOLD_WAITING = 2;

3 env int MESSAGE_SEND_TIME = 1;

4 env int RIGHT = 0;

5 env int LEFT = 1;

6 env int UP = 2;

7 env int DOWN = 3;

8 abstract reactiveclass BroadcastingActor (5) {

9 statevars {

10 int id, x, y;

11 }

12 abstract msgsrv receive(int data);

13 void broadcast() { ... }

14 double distance(BroadcastingActor bActor ,

BroadcastingActor cActor){ ... }

15 boolean isTLO () {

16 boolean isTLO = true;

17 ArrayList<ReactiveClass> all = getAllActors();

18 BroadcastingActor senderData;

19 for(int i = 0 ; i < all.size(); i++) {

20 BroadcastingActor rns =

(BroadcastingActor)all.get(i);

21 BroadcastingActor sn = (BroadcastingActor)sender;

22 if (rns.id == sn.id)

23 senderData = rns;

24 }

25 double myDistance = distance (senderData , self);

26 for(int i = 0; i < allActors.size(); i++) {

27 BroadcastingActor ba =

(BroadcastingActor)allActors.get(i);

28 double distance = distance (ba ,

(BroadcastingActor)senderData);

29 if(distance < RANGE && distance > myDistance) {

30 isTLO = false;

31 }

32 }

33 return isTLO;

34 }

35 }

36
37 reactiveclass Vehicle extends BroadcastingActor(5){

38 statevars{

39 boolean isAV;

40 int direction, latency;

41 int destX, destY;

42 boolean isWaiting, received, isAware;

43 }

44
45 Vehicle (int vid, int X , int Y , int dir , int

vLatency , int dX , int dY , boolean

isAccidentVehicle) {

46 id = vid;

47 x = X;

48 y = Y;

49 direction = dir;

50 latency = vLatency;

51 destX = dX;

52 destY = dY;

53 isAV = isAccidentVehicle;

54 isWaiting = false;

55 received = false;

16 Farnaz Yousefi et al.

56 if (isAV) {

57 self.alertAccident();

58 isAware = true;

59 received = true;

60 } else

61 self.move() after(latency);

62 }

63 msgsrv alertAccident(){ broadcast(); }

64 msgsrv move() {

65 switch (direction) {

66 case 0: x++; break;

67 case 1: x--; break;

68 case 2: y++; break;

69 case 3: y--; break;

70 }

71 if (x != destX || y != destY)

72 self.move() after(latency);

73 }

74 msgsrv stop (){ stop(); }

75 msgsrv finishWait() {

76 if (isWaiting) runTLO();

77 }

78 msgsrv receive(int data) {

79 isAware = true;

80 if(!isWaiting)

81 runTLO();

82 else

83 isWaiting = false;

84 }

85 void runTLO() {

86 if (!received) {

87 if (isTLO()) {

88 broadcast();

89 received = true;

90 } else {

91 isWaiting = true;

92 self.finishWait() after (THRESHOLD_WAITING);

93 }

94 }

95 }

96 }

97
98 main {

99 Vehicle v1():(0,0,10,RIGHT,1,10,10,true);

100 Vehicle v2():(1,10,0,UP,2,10,10,false);

101 Vehicle v3():(2,-1,0,RIGHT,1,10,0,false);

102 Vehicle v4():(3,0,1,DOWN,2,0,-10,false);

103 Vehicle v5():(4,3,0,LEFT,1,-10,0,false);

104 Vehicle v6():(5,0,-7,UP,2,0,10,false);

105 }

7 Conclusion and Future Work

Lack of a framework for formal modeling and efficient

verification of warning message dissemination schemes

in VANETs is the main obstacle in using these schemes

in real-world applications. In this paper, we presented

VeriVANca, an actor-based framework, developed using

Timed Rebeca for modeling warning message dissemi-

nation schemes in VANETs. Model of schemes devel-

oped in VeriVANca can be analyzed using Afra, the

model checking tool of Timed Rebeca. We showed how

warning message dissemination schemes can be mod-

eled using VeriVANca by implementing two of these

schemes. Scenarios in these schemes were explored to

illustrate the effectiveness of the approach in check-

ing correctness properties and performance evaluation

of the schemes. We further explained how easily the

model of a scheme can be transformed to present an-

other scheme by making minor modifications. Providing

this level of guarantee in correctness and performance of

warning message dissemination schemes, enables engi-

neers to benefit from these schemes in the development

of smart cars.

Considering different members of Rebeca family mod-

eling language, VeriVANca can be used for addressing

other characteristics of schemes such as their probabilis-

tic behavior. Since Afra supports different members of

Rebeca family, models with these characteristics can be

analyzed using Afra.

VeriVANca can be used for the analysis of scenar-

ios with limited congested areas. However, to be able

to use the framework for large-scale models containing

congested areas, we are going to develop a partial order

reduction technique. This reduction relies on the fact

that reaction of a vehicle to received warning messages

is independent of their sender; therefore, different or-

ders of execution (interleaving) for messages received

at the same time can be ignored without affecting the

result of model checking.

Acknowledgements The work on this paper has been sup-
ported in part by the project “Self-Adaptive Actors: SEADA”
(163205-051) of the Icelandic Research Fund and by DPAC
Project (Dependable Platforms for Autonomous Systems and
Control) at Mälardalen University, Sweden.

References

1. Luca Aceto, Matteo Cimini, Anna Ingólfsdóttir,
Arni Hermann Reynisson, Steinar Hugi Sigurdarson,
and Marjan Sirjani. Modelling and simulation of
asynchronous real-time systems using timed rebeca.
In Mohammad Reza Mousavi and António Ravara,
editors, Proceedings 10th International Workshop on the
Foundations of Coordination Languages and Software
Architectures, FOCLASA 2011, Aachen, Germany, 10th
September, 2011, volume 58 of EPTCS, pages 1–19,
2011.

2. Gul Agha and Carl Hewitt. Concurrent programming
using actors: Exploiting large-scale parallelism. In S. N.
Maheshwari, editor, Foundations of Software Technol-
ogy and Theoretical Computer Science, Fifth Confer-
ence, New Delhi, India, December 16-18, 1985, Proceed-
ings, volume 206 of Lecture Notes in Computer Science,
pages 19–41. Springer, 1985.

3. Aoxueluo, Weigang Wu, Jiannong Cao, and Michel Ray-
nal. A generalized mutual exclusion problem and its algo-
rithm. In ICPP, pages 300–309. IEEE Computer Society,
2013.

VeriVANca 17

4. Frank S. de Boer, Vlad Serbanescu, Reiner Hähnle,
Ludovic Henrio, Justine Rochas, Crystal Chang Din,
Einar Broch Johnsen, Marjan Sirjani, Ehsan Khames-
panah, Kiko Fernandez-Reyes, and Albert Mingkun
Yang. A survey of active object languages. ACM Com-
put. Surv., 50(5):76:1–76:39, 2017.

5. Bruno Ferreira, Fernando A. F. Braz, Antonio A. F.
Loureiro, and Sérgio V. A. Campos. A probabilistic
model checking analysis of vehicular ad-hoc networks.
In IEEE 81st Vehicular Technology Conference, VTC
Spring 2015, Glasgow, United Kingdom, 11-14 May,
2015, pages 1–7. IEEE, 2015.

6. Óscar Gama, Maria João Nicolau, António Costa,
Alexandre Santos, Joaquim Macedo, and Bruno Dias.
Evaluation of message dissemination methods in vanets
using a cooperative traffic efficiency application. In
IWCMC, pages 478–483. IEEE, 2017.

7. Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
oriented Software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

8. Mozhdeh Gholibeigi and Geert Heijenk. Analysis of
multi-hop broadcast in vehicular ad hoc networks: A re-
liability perspective. In Wireless Days, pages 1–8. IEEE,
2016.

9. Michael R. Hafner, Drew Cunningham, Lorenzo
Caminiti, and Domitilla Del Vecchio. Cooperative
collision avoidance at intersections: Algorithms and
experiments. IEEE Trans. Intelligent Transportation
Systems, 14(3):1162–1175, 2013.

10. Ali Jafari, Ehsan Khamespanah, Marjan Sirjani, Holger
Hermanns, and Matteo Cimini. Ptrebeca: Modeling and
analysis of distributed and asynchronous systems. Sci.
Comput. Program., 128:22–50, 2016.

11. Iman Jahandideh, Fatemeh Ghassemi, and Marjan Sir-
jani. Hybrid rebeca: Modeling and analyzing of cyber-
physical systems. In Roger D. Chamberlain, Walid Taha,
and Martin Törngren, editors, Cyber Physical Systems.
Model-Based Design - 8th International Workshop, Cy-
Phy 2018, and 14th International Workshop, WESE
2018, Turin, Italy, October 4-5, 2018, Revised Selected
Papers, volume 11615 of Lecture Notes in Computer Sci-
ence, pages 3–27. Springer, 2018.

12. Ehsan Khamespanah. Modeling, Verification, and Analy-
sis of Timed Actor-Based Models. PhD thesis, Computer
Science, Menntavegi 1, 101 Reykjav́ık, 6 2018.

13. Ehsan Khamespanah, Ramtin Khosravi, and Marjan Sir-
jani. An efficient TCTL model checking algorithm and a
reduction technique for verification of timed actor mod-
els. Sci. Comput. Program., 153:1–29, 2018.

14. Ehsan Khamespanah, Marjan Sirjani, Mahesh
Viswanathan, and Ramtin Khosravi. Floating time
transition system: More efficient analysis of timed
actors. In Formal Aspects of Component Software - 12th
International Conference, FACS 2015, Niterói, Brazil,
October 14-16, 2015, Revised Selected Papers, pages
237–255, 2015.

15. Shou-pon Lin and Nicholas F. Maxemchuk. The fail-safe
operation of collaborative driving systems. J. Intellig.
Transport. Systems, 20(1):88–101, 2016.

16. Taqwa Saeed, Yiannos Mylonas, Andreas Pitsillides,
Vicky Papadopoulou, and Marios Lestas. Modeling prob-
abilistic flooding in vanets for optimal rebroadcast proba-

bilities. IEEE Trans. Intelligent Transportation Systems,
20(2):556–570, 2019.

17. Julio A. Sanguesa, Manuel Fogue, Piedad Garrido,
Francisco J. Martinez, Juan-Carlos Cano, Carlos
Miguel Tavares Calafate, and Pietro Manzoni. On the
selection of optimal broadcast schemes in vanets. In
MSWiM, pages 411–418. ACM, 2013.

18. Julio A. Sanguesa, Manuel Fogue, Piedad Garrido,
Francisco J. Martinez, Juan-Carlos Cano, Carlos
Miguel Tavares Calafate, and Pietro Manzoni. RTAD: A
real-time adaptive dissemination system for vanets. Com-
puter Communications, 60:53–70, 2015.

19. Julio A. Sanguesa, Manuel Fogue, Piedad Garrido, Fran-
cisco J. Martinez, Juan-Carlos Cano, and Carlos T.
Calafate. A survey and comparative study of broadcast
warning message dissemination schemes for vanets. Mo-
bile Information Systems, 2016:8714142:1–8714142:18,
2016.

20. Marjan Sirjani and Mohammad Mahdi Jaghoori. Ten
years of analyzing actors: Rebeca experience. In For-
mal Modeling: Actors, Open Systems, Biological Sys-
tems, volume 7000 of Lecture Notes in Computer Science,
pages 20–56. Springer, 2011.

21. Marjan Sirjani, Ali Movaghar, Amin Shali, and Frank S
De Boer. Modeling and verification of reactive systems
using rebeca. Fundamenta Informaticae, 63(4):385–410,
2004.

22. Kanitsom Suriyapaibonwattana and Chotipat Po-
mavalai. An Effective Safety Alert Broadcast Algorithm
for VANET. In 2008 International Symposium on Com-
munications and Information Technologies, pages 247–
250. IEEE, oct 2008.

23. Yu-Chee Tseng, Sze-Yao Ni, Yuh-Shyan Chen, and Jang-
Ping Sheu. The broadcast storm problem in a mobile ad
hoc network. Wireless Networks, 8(2-3):153–167, 2002.

24. Behnaz Yousefi, Fatemeh Ghassemi, and Ramtin Khos-
ravi. Modeling and efficient verification of broadcast-
ing actors. In Fundamentals of Software Engineering -
6th International Conference, FSEN 2015 Tehran, Iran,
April 22-24, 2015, Revised Selected Papers, pages 69–83,
2015.

25. Behnaz Yousefi, Fatemeh Ghassemi, and Ramtin Khos-
ravi. Modeling and efficient verification of wireless ad
hoc networks. Formal Aspects of Computing, 29(6):1051–
1086, 2017.

26. Behnaz Yousefi, Fatemeh Ghassemi, and Ramtin Khos-
ravi. Modeling and efficient verification of wireless ad hoc
networks. Formal Asp. Comput., 29(6):1051–1086, 2017.

27. Farnaz Yousefi, Ehsan Khamespanah, Mohammed
Gharib, Marjan Sirjani, and Ali Movaghar. Verivanca:
An actor-based framework for formal verification of warn-
ing message dissemination schemes in vanets. In Fabrizio
Biondi, Thomas Given-Wilson, and Axel Legay, editors,
Model Checking Software - 26th International Sympo-
sium, SPIN 2019, Beijing, China, July 15-16, 2019, Pro-
ceedings, volume 11636 of Lecture Notes in Computer
Science, pages 244–259. Springer, 2019.

28. Sherali Zeadally, Ray Hunt, Yuh-Shyan Chen, Angela
Irwin, and Aamir Hassan. Vehicular ad hoc networks
(VANETS): status, results, and challenges. Telecommu-

nication Systems, 50(4):217–241, 2012.

