
Article

Verification of Cyberphysical Systems

Marjan Sirjani 1*, Edward A. Lee 2 and Ehsan Khamespanah 3

1 School of IDT, Mälardalen University, Sweden; marjan.sirjani@mdh.se
2 Department of EECS, University of California at Berkeley, USA; eal@berkeley.edu
3 Department of ECE, University of Tehran, Iran; e.khamespanah@ut.ac.ir
* Correspondence: marjan.sirjani@mdh.se; Tel.: +46-73-662-0517

Version June 6, 2020 submitted to Mathematics

Abstract: The value of verification of cyberphysical systems depends on the relationship between the1

state of the software and the state of the physical system. This relationship can be complex because2

of the real-time nature and different timelines of the physical plant, the sensors and actuators, and3

the software that is almost always concurrent and distributed. In this paper, we study different4

ways to construct a transition system model for the distributed and concurrent software components5

of a CPS. We describe a logical-time based transition system model, which is commonly used for6

verifying programs written in synchronous languages, and derive the conditions under which such a7

model faithfully reflects physical states. When these conditions are not met (a common situation),8

a finer-grained event-based transition system model may be required. We propose an approach9

for formal verification of cyberphysical systems using Lingua Franca, a language designed for10

programming cyberphysical systems, and Rebeca, an actor-based language designed for model11

checking distributed event-driven systems. We focus on the cyber part and model a faithful interface12

to the physical part. Our method relies on the assumption that the alignment of different timelines13

during the execution of the system is the responsibility of the underlying platforms. We make those14

assumptions explicit and clear.15

Keywords: Cyberphysical systems, Verification, Lingua Franca, Model checking, Rebeca.16

1. Introduction17

Cyberphysical systems (CPSs) are all around us, as in industrial control systems, robotics, smart18

grids, autonomous cars, and medical devices. Cyberphysical systems are integrations of computation,19

networking, and physical processes where physical and software components are deeply intertwined.20

Cyberphysical systems include networked embedded computers monitoring and controlling the21

physical processes. They also include mechanical, electrical, chemical, or biological components that22

are controlled or monitored by computer-based algorithms. A study of CPS may emphasize one or the23

other perspective. Here, we focus on verification of the software controlling the physical processes not24

the physical processes being controlled by the software.25

Formal verification is about assuring properties of models. A holistic approach to verifying CPSs26

requires models of both the distributed software and physical processes. However, commonly used27

models for software are incompatible with commonly used models for physical processes [1]. An28

alternative is to clearly define the interfaces between the cyber and the physical parts of the system29

and separate the verification problem, from each side relying on the other side to faithfully carry30

out the semantics of the interfaces. When verifying software, we rely on the hardware to faithfully31

carry out the operations specified by the software. Hence, when we prove that the software has some32

property, such as never reaching some undesired state, we can assume that, with high probability, the33

physical system that executes the software will reflect a corresponding property. The nature of these34

Submitted to Mathematics, pages 1 – 18 www.mdpi.com/journal/mathematics

http://www.mdpi.com
http://www.mdpi.com/journal/mathematics

Version June 6, 2020 submitted to Mathematics 2 of 18

interfaces, however, and the underlying assumptions they entail become extremely important. For35

CPS, verification is ultimately about assuring properties of the physical world. This means that it is36

not sufficient to study the software alone. We need to also study its interactions with its environment.37

We use a simple example of a train door controller from Sirjani etal in [2] as our running example.38

Consider a train door that needs to be locked before the train starts moving. The software controlling39

train systems is able to lock the door and then send a command to the train to start moving. We can40

build a model of the software, or write a simple program, and formally verify its correctness. But if we41

do not know how and when the door gets locked and the train starts moving in response to a software42

command, then it will do little good to prove that the software never enters a state where it thinks the43

door is unlocked while the train is moving. The necessity to include the physical aspects of the system,44

not just its logical ones, is what makes this a CPS.45

We can verify that the door’s software component is never in the unlocked state while the train’s46

software component is in the moving state. Depending on how the physical interfaces are realized,47

however, this may or may not align with the physical world. The state of the software system and48

the state of the physical world are not assured of aligning. What if the door component and the train49

component are executing on two different microprocessors separated by a network? What does it50

mean, in this case, for the two to simultaneously be in some state? To have a useful solution we need51

to address the problem of different timelines in distributed systems and different timelines between52

the software and the physical world.53

A cyberphysical system can be viewed as an interacting pair of reactive systems, one defined in the54

world of software, and the other in the world of physics. The semantic worlds of physics and software55

are radically different and often mutually incompatible. So, to prove properties of cyberphysical56

systems, we may not want to combine models from physics with those of software. Our approach is57

instead to build a model with a focus on the software side and an abstract (but faithful) model of the58

physical side. We model the distributed software system that monitors and receives the data from the59

physical processes and sends the control commands to the physical processes. Using this model we60

can verify whether, upon receiving certain data, the software system is producing correct output based61

on the specified requirements. Modeling the input from the physical world “faithfully,” and producing62

“correct” output needs more elaboration. The model of the physical world is reduced to its interface to63

the software. One major issue in properly modeling this interface is timing.64

Time is a critical feature in cyberphysical systems. There is the issue of time in distributed software,65

and also in the interface of software and the physical world. In order to effectively couple models of66

software with models of the physical world, we need modeling frameworks that support more than67

one timeline. We will explain later how we rely on certain assumptions to consider one logical timeline68

in the model of the software, and how certain guarantees from the selected programming language69

and the underlying platform allow us to assume that the logical time and the physical time are aligned70

in such a way that the model of the physical interface stays faithful to the physical world. In other71

words, our model of the physical inputs is faithful to the physical world and the physical outputs are72

created correctly. Note that faithfulness and correctness here depends not only on the values of the73

inputs and outputs but also on their timing.74

There are alternative approaches in analyzing CPS that are not the topic of this paper (see75

comprehensive overviews in [3,4]). The focus of the approach can be on modeling the physical76

processes, the dynamics of the physical quantities. The theory of dynamical control systems is a77

well-developed discipline rooted in continuous-time models. In a cyberphysical system, the controller78

consists of discrete software with concurrent components operating in multiple possible modes,79

interacting with the continuously evolving physical environment. Such systems are often modeled80

with a mix of finite automata and continuous dynamics, where mode transitions are modeled by81

discrete, instantaneous state transitions in an automaton, and each state of the automaton is associated82

with a distinct model of the continuous dynamics. Such models are called hybrid systems [5,6]. We83

Version June 6, 2020 submitted to Mathematics 3 of 18

will not consider hybrid system models here. We will instead assume a particular style of software,84

embodied in the Lingua Franca language, that yields useful and realistic models.85

Model checking is a method for formal verification of reactive systems. A model checking tool86

receives two inputs: a model of the behavior of the system, and a set of properties represented as87

temporal logic formula showing the desired specification of the same system. A state transition88

diagram is generated based on the interleaved semantics of the input model and the properties are89

checked against this state transition diagram. Here we use the Reactive Object Language, Rebeca [7,8],90

and its model checking tool Afra [9] for formal verification of cyberphysical systems. For doing so,91

we map Lingua Franca [10–12] programs to an extended version of Timed Rebeca. Lingua Franca is a92

programming language based on the Reactor model of computation [11] for building cyberphysical93

systems. Both Rebeca and Lingua Franca are actor-based languages.94

The Hewitt Actor model [13,14] is a reference model for concurrent distributed systems with an95

asynchronous event-driven model of computation. Its event-driven concurrent semantics makes it a96

natural choice for modeling cyberphysical systems, but it needs to be extended with timing properties.97

To model the unknown factors in a system, like the possible inputs from the environment, we can98

use nondeterminism in our Timed Rebeca model. Timed Rebeca [15,16] extends Rebeca to model the99

timing features. In Timed Rebeca the events are triggered based on their timetag order, and when there100

is more than one enabled event with the same logical time tag, they are triggered in nondeterministic101

order. Lingua Franca ensures determinism in a similar way, by first ensuring that messages are handled102

in timetag order and then also prioritizing reactions within each reactor. To handle simultaneous103

messages to distinct reactors, LF uses the precedence graph relation between reactors to constrain the104

order of execution. To model the deteministic behavior of LF, we have extended Timed Rebeca with105

priorities on message handlers and priorities on actors so that simultaneous messages (those with the106

same timetag) are handled in a determinstic order. For ordering the execution of actors, priorities are107

too strong, but they work for the purpose of this paper, which is verification.108

There are multiple timelines involved in cyberphysical systems. To have a faithful model of109

time for cyberphysical systems we need to address both (1) the asynchrony in distributed systems,110

and (2) the mismatch between physical and logical time. To make analysis possible we need to111

build layers of abstraction and use assumptions by relying on the other layers. In Timed Rebeca we112

assume synchronized local clocks for actors that gives us a notion of global time across the model.113

We use logical timetags, and logical timetags are comparable across all actors in the model. But in114

distributed systems we cannot assume synchronized clocks for distributed software components, at115

least not perfect ones. We need certain mechanisms to be able to have such assumption. Ptides[17]116

and Spanner[18] are two examples that assume synchronized clocks (up to an error bound) and use117

logical timetags. For distributed actors (as faithful representatives of distributed software components)118

to be able to have synchronized clocks and comparable timetags we rely on the lower-level network119

protocols to provide that for us. The second issue is the two timelines of logical world and physical120

world.121

Lingua Franca includes a notion of “logical time” and binds that notion to “physical time” only122

where the software interacts with the physical world. In Lingua Franca the logical timetag of the input123

events are assigned based on the physical time of the physical processes. We also need to make sure124

that the logical timetag of the output events and the physical time of the actuated physical processes125

have the desired relation. We assume that the actuated outputs affect the physical world within a126

certain deadline.127

Our model stays faithful to the system itself only based on the set of assumptions mentioned128

above. These assumptions allow us to reason about the system based on the logical timetags in our129

Rebeca model. Our model may not be a model with the least semantic gap with cyberphysical systems,130

but we will show in this paper that using model checking we are able to catch many subtle design131

problems. We show how these problems may exist in very simple examples that exhibit how building132

such systems can be extremely error-prone. Many of these problems may be related to the timing133

Version June 6, 2020 submitted to Mathematics 4 of 18

configurations. We believe that no simple approach exists for verification of cyberphysical systems.134

Several complimentary methods need to be used to cover the analysis of different aspects of such135

systems, and in each method we rely on certain assumptions that may be guaranteed by other methods.136

In a shorter conference paper version of this paper [19], we raise the interesting questions involved137

in verification of cyberphysical systems and we used a couple of examples to show how we move138

towards solving some of the problems. Here we explain the problem and the solutions in a more139

extensive and structured way using mostly the same examples. The paper is organized as follows.140

Section 2 introduces the programming model we assume (reactors) and the language in which programs141

are written (Lingua Franca, LF). It sketches the source code in LF for a running example, a train door142

controller. Section 3 introduces the Rebeca language and its timed extension, Timed Rebeca, which143

we further extend here to express temporal properties of Lingua Franca programs. Section 4 explains144

a translation of the train door running example into this extended Timed Rebeca. Section 5 studies145

the problem of model checking concurrent LF programs and explains two approaches based on two146

different semantics with different levels of granularity. Section 6 refines the train door example with147

programming constructs to control timing and increased interactivity and shows how the Rebeca148

model checking tool Afra can help identify subtle defects in the design. Section 7 concludes with a149

discussion of problems that remain open.150

2. Lingua Franca and Reactors: Building Cyberphysical Systems151

Lingua Franca (LF) [10–12], is a coordination language designed for embedded real-time systems.152

Software components are called “reactors.” The messages exchanged between reactors have logical153

timetags drawn from a discrete, totally ordered model of time. Any two messages with the same154

timetag are logically simultaneous, which means that, for any reactor with these two messages as155

inputs, if it sees that one message has occurred, then it will also see that the other has occurred.156

Moreover, every reactor will react to incoming messages in timetag order. If the reactor has reacted to157

a message with timetag t, no future reaction in the same reactor will see any message with a lesser158

timetag.159

If a reactor produces output messages in reaction to an input, then, by default, the logical time160

of the output will be identical to the logical time of the input. This principle is borrowed from161

synchronous languages [20]. The Lingua Franca compiler ensures that all logically simultaneous162

messages are processed in precedence order, so the computation is deterministic. At a logical instant,163

the semantics of the program can be given as a unique least fixed point of a monotonic function on a164

lattice [21], so the computation is deterministic, even if it is distributed across a network. We call this165

semantics, based on the semantics of synchronous languages, the “logical-time-based semantics.” Here,166

we also consider an event-based semantics, which becomes useful when an interleaved execution of167

events with the same logical timetag becomes observable. Event-based semantics has finer granularity168

compared to logical-time-based semantics.169

The syntax of a subset of Lingua Franca is given in Figure 1. The model consists of a set of reactors170

and a main reactor. Reactors contain state variables, input and output ports, physical actions and171

reactions. The body of reactions can be written in the target language. As of this writing, LF supports172

C, C++, and TypeScript. In each case, the LF compiler generates a standalone executable in the target173

language. A reactor may also react to a “physical action,” which is typically triggered by some external174

event such as a sensor [11]. The physical action will be assigned a timetag based on the current physical175

clock on the machine hosting the reactor.176

A key semantic property of Lingua Franca is that every reactor reacts to events in timetag order.177

Preserving this order in a distributed execution is a key challenge. One technique that has proven178

effective is Ptides [22], a decentralized and fault-tolerant coordination mechanism that relies on179

synchronized physical clocks with bounded error. The Ptides technique has been applied on a global180

scale in Google Spanner [23].181

Version June 6, 2020 submitted to Mathematics 5 of 18

Lingua Franca includes a notion of a deadline, which is a relation between logical time and182

physical time, as measured on a particular platform. Specifically, a program may specify that the183

invocation of a reaction must occur within some physical-time interval of the logical timestamp of184

the message. This, together with physical actions, can be used to ensure some measure of alignment185

between logical time and some measurement of physical time.186

Model ::= Target Reactor∗ MainReactor
Target ::= target targetLanguageName;

Reactor ::= reactor reactorName { StateVar∗ Input∗ Output∗ Action∗ Reaction∗}
StateVar ::= state varId : typeId (initialValue);

Input ::= input inputId : typeId;

Output ::= output outputId : typeId;

Action ::= physical action actionId : typeId;

Reaction ::= reaction (Trigger∗) [-> outputId(, outputId)∗] {= Code∗=}

Trigger ::= inputId | actionId
Code ::= Target− Language− Statement

MainReactor ::= main reactor mainReactorName { Instantiation∗ Connection∗ }

Instantiation ::= id = new reactorName() ;

Connection ::= id.inputId -> id.outputId [after delayValue];

Figure 1. Syntax of a subset of Lingua Franca that we use in our examples in this paper (adapted
from Lingua Franca Github [24]). The syntax is written in a slightly revised version of Extended BNF
where instead of putting terminals in quotations we use words in “bold” format. Angled brackets 〈...〉
are used as meta parenthesis, superscript + for repetition at least once, superscript ∗ for repetition
zero or more times, whereas using 〈...〉 with repetition denotes a comma separated list. Brackets [...]
indicates that the text within the brackets is optional. In the syntax, targetLanguageName, reactorName,
mainReactorName stand for the target language for LF, the name of the reactor, and the name of the
main reactor, respectively. The varId, typeId, inputId, outputId, actionId stand for the names of a variable,
a type, an input and an output, respectively; and id stands for the name of an instance of a reactor.
Target-Language-Statement stands for the statements of the target language. In the Reactor rule the
components do not need to come in the presented order.

2.1. The Simple Train Door Controller in Lingua Franca187

Consider a train door that needs to be locked before the train starts moving. The software188

controlling train systems is able to lock the door and then send a command to the train to start moving.189

Consider in Figure 2b the sketch of an implementation of a highly simplified version of such train190

controller software in Lingua Franca. In this use, the code shown in the figure gets translated into C191

code that can run on a train’s microcontrollers. Similar realizations could be built in any of a number192

of model-based design languages, including any of the synchronous languages [20] (SCADE, Esterel,193

Lustre, SIGNAL, etc.), Simulink, LabVIEW, ModHel’X [26], Ptolemy II [27], or ForSyDe [28], to name a194

few. All will raise similar issues to those we address in this paper.195

The structure of the code is illustrated in Figure 2a. It consists of three components called196

“reactors,” instances of the reactor classes Controller, Door, and Train. The main reactor (starting on197

line 30) instantiates and connects these components so that the controller sends a messages to both the198

door and the train. These components could be implemented on a single core, on multiple cores, or on199

separate processors connected via a network.200

Let’s focus first on the interaction between these components and the physical world. The201

Controller reactor class defines a physical action named “external_move” (line 5), which in Lingua202

Version June 6, 2020 submitted to Mathematics 6 of 18

TrainSystem

Controller

2

1

P

lock

move

Door

lock

Train

move

(a) Structure of the simple door controller example.
This image is rendered automatically by the Lingua
Franca IDE using the KIELER Lightweight Diagrams
framework [25].

1 target C;
2 reactor Controller {
3 output lock:bool;
4 output move:bool;
5 physical action external:bool;
6 reaction(startup) {=
7 ... Set up sensing.
8 =}
9 reaction(external)->lock, move {=

10 set(lock, external_value);
11 set(move, external_value);
12 =}
13 }
14 reactor Train {
15 input move:bool;
16 state moving:bool(false);
17 reaction(move) {=
18 ... actuate to move or stop
19 self->moving = move;
20 =}
21 }
22 reactor Door {
23 input lock:bool;
24 state locked:bool(false);
25 reaction(lock) {=
26 ... Actuate to lock or unlock door.
27 self->locked = lock;
28 =}
29 }
30 main reactor System {
31 controller = new Controller();
32 door = new Door();
33 train = new Train();
34 controller.lock -> door.lock;
35 controller.move -> train.move;
36 }

(b) Lingua Franca code for the simple door controller
example in Figure 2a with a potential defect.

1 reactiveclass Controller(5) {
2 knownrebecs {
3 Door door;
4 Train train;
5 }
6 statevars { boolean moveP; }
7 Controller() {
8 self.external();
9 }

10 msgsrv external() {
11 boolean oldMoveP = moveP;
12 moveP = ?(true,false);
13 if(moveP != oldMoveP) {
14 door.lock(moveP);
15 train.move(moveP);
16 }
17 self.external() after(1);
18 }
19 }
20 reactiveclass Train(5) {
21 statevars { boolean moving; }
22 Train() {
23 moving = false;
24 }
25 msgsrv move(boolean tmove) {
26 if (tmove) {
27 moving = true;
28 } else {
29 moving = false;
30 }
31 }
32 }
33 reactiveclass Door(5) {
34 statevars { boolean is_locked; }
35 Door() {
36 is_locked = false;
37 }
38 msgsrv lock (boolean lockPar) {
39 is_locked = lockPar;
40 }
41 }
42 main {
43 @priority(1) Controller controller(door,
44 train):();
45 @priority(2) Train train():();
46 @priority(2) Door door():();
47 }

(c) Timed Rebeca model (extended with priorities) for
the simple door controller example in Figure 2a.

Figure 2. The structure, Lingua Franca program, and Timed Rebeca model for the simple door controller
example.

Franca is an event that is triggered by something outside the software system and is then assigned a203

logical timetag that approximates the physical time at which that something occurred in the physical204

world [11]. In practice, in the reaction(startup) block of code (starting on line 6), which executes205

upon startup of the system, the reactor could set up an interrupt service routine (ISR) to be invoked206

whenever the driver pushes a button to make the door lock and train move. The ISR would call an LF207

function schedule to trigger the action and assign it a timetag. The reaction to the external_move208

Version June 6, 2020 submitted to Mathematics 7 of 18

action (starting on line 9) will be invoked when logical time reaches the assigned timetag. This reaction209

sets the outputs named “lock” and “move” to the Boolean value true. Since that outputs are connected210

to the input named “lock” of the door component (line 34) and the input named “move” of the train211

component (line 34), respectively, this results in a message to the door component and a message to212

the train component at the logical time of the timetag.213

The train component has a state variable named “moving” (line 16) that changes value when it214

receives a message on its “move” input port (line 19). The variable has value true when the train is215

moving and false when the train is stopped. The door component has a state variable named “locked”216

(line 24) that changes value when it receives a message on its “lock” input port (lines 23 and 27).217

3. Timed Rebeca: Model Checking Cyberphysical Systems218

The Reactive Object Language, Rebeca [7,8], is an actor-based [13,14] modeling language219

supported by a model checking tool Afra [9]. Rebeca is used for modeling and formal verification220

of concurrent and distributed systems. The model of computation in Rebeca is event-driven and the221

communication is asynchronous. The grammar is shown in Figure 3. Actors have message queues;222

each actor takes the message on the top of the queue, executes the method related to that message223

(called message server) in an atomic and non-preemptive way. While executing a method, messages224

can be sent to other actors (or itself), and the values of the state variables can change. Sending messages225

is non-blocking, and there is no explicit receive statement.226

In Timed Rebeca [15,29,30] three keywords are added to model logical time: delay, after and227

deadline. Timetags are attached to messages and states of each actor. Here we have a buffer of228

timetagged messages instead of a message queue. Using the keyword delay, one can model progress229

of time while executing a method. If a send statement is augmented by after(t), the timetag of the230

message when it is put in the queue of the receiver is t units more than the timetag of the message231

when it is sent. The timetag of the message when it is sent is the current logical time of the sender. By232

using after, one can model the network delay; periodic events can be modeled using send messages233

to itself augmented by after. The deadline keyword models the timeout; if the current time of the234

receiver actor at the time of triggering the event (taking the message to handle it) is more than the235

expressed deadline then the model checking tool will complain and raise the deadline-miss warning.236

While mapping Lingua Franca programs to Timed Rebeca we only use the after construct and it is237

used to increase the value of the logical timetag of the message, like in LF.238

The original Rebeca language does not have a model of time and handles incoming messages in239

nondeterministic order. Timed Rebeca adds a model of time, but still handles incoming messages at240

each logical time in nondeterministic order. Our extension supports annotating Rebeca actors, and also241

their message servers, with priorities. These priorities can enforce the ordering constraints on message242

handlers that are defined by the Lingua Franca language.243

The external physical inputs in Lingua Franca are modeled as sending those messages to self.244

These messages are sent to self augmented with the after construct. We can assign nondeterministic245

values to after and hence the messages are received some time later nondeterministically. Of course246

we can also model a periodic physical input by assigning the period of arrival as the value of the after247

construct.248

3.1. A Simple Train Door Controller in Timed Rebeca249

A (slightly simplified) Timed Rebeca model of the program in Figure 2b is shown in Figure 2c.250

Given this model, we can use the Afra model checking tool to get the transition system model and to251

check safety properties. An interesting point in this Rebeca code is modeling the production of the252

stimulus that triggers reactions. We need to model the environment or the interface to the physical253

world. On line 8, the constructor for the Controller sends itself the message external. On line 12254

in the external method the value of moveP is set to true or false nondeterministically to show the255

possibility of presence or absence of the external message. This is how we model possible external256

Version June 6, 2020 submitted to Mathematics 8 of 18

Model ::= Class∗ Main
Class ::= reactiveclass className (queueLength) { KnownRebecs Vars Constructor MsgSrv∗ }

KnownRebecs ::= knownrebecs { VarDcl∗ }
Vars ::= statevars { VarDcl∗ }

VarDcl ::= type 〈v〉+;

Constructor ::= className (〈type v〉∗) { Stmt∗ }
MsgSrv ::= msgsrv methodName(〈type v〉∗) { Stmt∗ }

Stmt ::= v=e; | v=?(e〈, e〉+); | Call;| if (e) { Stmt∗ } [else { Stmt∗ }]; | delay(t);
Call ::= rebecName.methodName(〈e〉∗) [after(t)][deadline(t)]

Main ::= main { InstanceDcl∗ }
InstanceDcl ::= className rebecName (〈rebecName〉∗):(〈literal〉∗);

Figure 3. Syntax of Timed Rebeca (adapted from [30]). The notation is the same as that in Figure 1.
Identifiers className, rebecName, methodName, queueLength, v, literal, and type denote class name,
rebec name, method name, queue length, variable, literal, and type, respectively; and e denotes an
(arithmetic, boolean or nondetermistic choice) expression. In the instance declaration (rule InstanceDcl),
the list of rebec names (〈rebecName〉∗) passed as parameters denotes the known rebecs of that instance,
and the list of literals (〈literal〉∗) denotes the parameters of its constructor.

stimulus at different times. If this value is changed from the previous period (comparing moveP and257

oldMoveP on line 13) then the two message servers lock and move are called to lock (or unlock) the258

door and move (or stop) the train (lines 14 and 15). This external message is sent to itself every one259

time unit by the controller (line 17).260

4. Mapping of Reactors to Timed Rebeca with Priorities261

Table 1 shows the mapping between Reactors and Timed Rebeca (extended with priorities). Each262

reactor in Lingua Franca is mapped to a reactive class, and each reaction is mapped to a message server263

in Rebeca. The trigger in a reaction is the name of the message server, and states in LF are mapped to264

state variables in Rebeca. Rebeca is an object-based language, not a component-based one. Actors call265

each other instead of writing on a port. In Lingua Franca we build the bindings between inputs and266

outputs explicitly in the connection part of the program. In LF a reaction reacts to a trigger, and the267

trigger is one of the inputs to the reactor. A reaction has outputs and those outputs are set by assigning268

values to them. Then in the connection part of the main reactor, all the bindings are set by defining269

which input of which reactor is connected to which output of which reactor. This way the flow of data270

is realised. You can change the topology by changing the connections. In Rebeca, a message server of271

other rebecs (or self) is called, and that is how the binding and the flow is realised. There is also a list272

of known rebecs in a reactive class that shows the rebecs to whom you may send messages to.273

For the timing issues, there is an after keyword in Lingua Franca that has the same semantics as274

in Timed Rebeca. The timetag of the sent message is increased by the value of the after. Rebeca has a275

delay construct which is not used in LF. Delay in Rebeca increases the timetag within a message server.276

This has no use in synchronous languages.277

In Lingua Franca the messages are handled in timetag order, for the messages with the same278

timetag the reactions are prioritized within each reactor. To handle simultaneous messages to distinct279

reactors, LF uses the precedence graph relation between reactor to constrain the order of execution. To280

faithfully model the LF programs,Timed Rebeca is extended with priorities. The pririties are added by281

annotations to both message servers and rebecs. The precedence graphs in LF cannot necessarily be282

mapped into priorities, but priorities are enough for the purpose of this paper. Adding the information283

Version June 6, 2020 submitted to Mathematics 9 of 18

of precedence graphs to a Rebeca model in the main can be done with no difficulty and is considered284

as a future work.285

We can also describe part of the mapping using the structure diagram in Figure 2a. The triangle286

with the “P” is the physical action in LF and external message server in Rebeca, the circle is the287

“startup” event in LF and the message sent in the constructor message server in Rebeca, the V-shape288

arrows are reactions in LF and message servers in Rebeca, and the red arrows between the reactions289

(message servers) are dependencies in LF, and priorities in Rebeca.290

The mapping between Reactors and Timed Rebeca is natural and can easily be done. In Lingua291

Franca we can write the body of reactions in any target language that LF supports. In this work we292

write the body of reactions in Rebeca. After the code is model checked and debugged, then the Rebeca293

code needs to be translated to one of the languages supported by LF to be able to execute the LF294

program. Many design problems can be revealed by model checking the abstract model when the295

complicated target code is not yet in place. We can also consider mapping the target codes to Rebeca,296

that is left for the future work.297

Lingua Franca Construct/Features Timed Rebeca Construct/Features
reactor reactiveclass
reaction msgsrv
trigger msgsrv name
state statevars
input msgsrv
output known rebecs

physical action msgsrv
implicit in the topology Priority

main main
instantiation (new) instantiation of rebecs

connection implicit in calling message servers
after after

– delay

Table 1. The mapping between Lingua Franca and Timed Rebeca

5. Logical-time-based and Event-based Semantics298

A transition system model, which is needed for model checking, requires a concept of the “state”299

of a system at a particular “instant in time.” It does not require that “time” be Newtonian time,300

measured in seconds, minutes, and hours and aligned to the Earth’s orbit around the sun. Instead,301

it only requires a concept of simultaneity, where the “state” of the system is the composition of the302

states of its components at a “simultaneous instant,” whatever that means in the model. In Lingua303

Franca, we can define a “simultaneous instant” to be the endpoint when all reactions at a logical time304

have completed. The “state” at that “instant” can be defined to be the combination of the state variable305

valuations of all the reactors at that “instant.” This is the approach commonly used in synchronous306

languages, where transient states during the computation at a logical time are ignored. We call this307

interpretation a logical-time-based semantics.308

To perform verification formally, we need to build a state-transition model of the program. Figure309

4b gives the logical-time-based semantics of the program in Figure 2b. In the initial state, the door310

is unlocked and the train is not moving. This state transition system shows that at each logical time,311

the program will nondeterministically either remain in the same state (indicated by the self-loop312

transitions) or change to the other state. Once the program is in the new state, at subsequent logical313

times, it will similarly nondeterministically remain in the same state or transition back to the initial314

state. This transformation relies on the semantics of Lingua Franca being rooted in the fixed-point315

semantics of synchronous languages [21].316

Version June 6, 2020 submitted to Mathematics 10 of 18

Looking at Figure 4b, it is obvious that the model never enters a state where the train is moving317

and the door is unlocked. The transition system model is so simple in this case that there is no need for318

a model checker to verify this property.319

This approach to verification is sound because it accurately and correctly models the semantics320

of the program. But the astute reader should be nervous. What if the door component and the train321

component are executing on two different microprocessors separated by a network? In this case, there322

will be a physical time delay between when the train begins moving and the door gets locked, even323

if there is no logical time delay. In this case, the verification exercise is simply misleading unless we324

consider this delay in our model.325

In the Lingua Franca software, the offending physical state of the system, where the train is326

moving and door is unlocked, is a transitory state occupied briefly during the computation at a logical327

time instant. Its duration in logical time is exactly zero. If the physical system is designed in such a328

way that the physical environment can only observe states with non-zero logical time duration, then329

we can have confidence in the safety conclusion.330

It is not uncommon to design control system hardware precisely to make such guarantees.331

Programmable Logic Controllers (PLCs), which are widely used to control machinery in industrial332

automation, have mechanisms that provide such guarantees [31,32]. In particular, PLC software333

does not directly interact with physical actuators. Instead, during a cycle of execution, the software334

components write commands to a buffer in memory, and only after the cycle is complete does the335

hardware read from that memory and drive the physical actuators. If the memory goes through336

transitory unsafe states during the execution of a cycle, those unsafe states are guaranteed to have no337

effect on the physical world. If Lingua Franca were to be deployed on hardware with such an I/O338

system, where a “cycle” is defined by the completion of all reactions at a logical time, then no safety339

violation would occur. However, this conclusion is not based on the program alone, but rather on a340

deep and tricky analysis of the program and the hardware on which it is executing. Moreover, the341

PLC-style semantics is difficult to realize on a distributed system. If the Door component and the Train342

component are executing on distinct microprocessors, then ensuring that their actuations occur only343

after a logical-time cycles has been completed requires fairly sophisticated distributed control over the344

program execution. Perhaps a better approach is to model the steps in the execution in more detail and345

attempt to design the program to be safe even without such a sophisticated I/O system. We will do346

that next.347

A Lingua Franca execution can be modeled as a sequence of reaction invocations, where each348

reaction is atomic. We call such a model an event-based semantics. It is more fine grained than the349

logical-time-based semantics and it includes a sequence of steps performed during a logical time350

instant. Each step is one invocation of a reaction in the Lingua Franca program. Each reaction is351

triggered by one or more “events,” where an “event” is either a message sent between components352

or an action that has been scheduled by a call to the schedule function in Lingua Franca. Every such353

event occurs at a logical time instant.354

5.1. The State Transition Diagram and the Safety Property of the Example355

For this simple system, the safety property of interest is that the door be locked while the train is356

moving. This can be posed as a formal verification problem, where the goal is to prove this property.357

In the program shown in Figure 2b, the door and train components have state variables, and we can358

attempt to verify that the door is never in the unlocked state while the train is in the moving state.359

Depending on how the physical interfaces are realized, however, this may or may not align with the360

physical world. We can use the features of Lingua Franca to assure that the state of the software system361

and the state of the physical world are aligned.362

We can use Afra model checking tool to get the event-based state transition system of the Rebeca363

model in Figure2c and to check safety properties. The event-based transition system is shown in Figure364

4a. The transitions shown in black in Figure 4a are transitions that all occur at the same logical time.365

Version June 6, 2020 submitted to Mathematics 11 of 18

S1_0:
 controllerMoveNotPresent

 doorUnlocked
 trainNotMoving

S2_0:
 controllerMovePresent

 doorUnlocked
 trainNotMoving

controller.EXTERNAL
 @0 -> +0

S3_0:
 controllerMoveNotPresent

 doorUnlocked
 trainNotMoving

controller.EXTERNAL
 @0 -> +0

S4_0:
 controllerMovePresent

 doorUnlocked
 trainMoving

train.MOVE
 @0 -> +0

S5_0:
 controllerMovePresent

 doorLock
 trainNotMoving

door.LOCK
 @0 -> +0

time +=1
 @0 -> +1

S6_0:
 controllerMovePresent

 doorLock
 trainMoving

door.LOCK
 @0 -> +0

train.MOVE
 @0 -> +0

S7_0:
 controllerMovePresent

 doorLock
 trainMoving

time +=1
 @0 -> +0

controller.EXTERNAL
 @1 -> +1

S8_0:
 controllerMoveNotPresent

 doorLock
 trainMoving

controller.EXTERNAL
 @1 -> +0

S9_0:
 controllerMoveNotPresent

 doorLock
 trainNotMoving

train.MOVE
 @1 -> +0

S10_0:
 controllerMoveNotPresent

 doorUnlocked
 trainMoving

door.LOCK
 @1 -> +0

door.LOCK
 @1 -> +1

train.MOVE
 @1 -> +1

(a) The Event-based transition system model which is generated by Afra
[9]

S1_0, S3_0:
 controllerMoveNotPresent

 doorUnlocked
 trainNotMoving

time +=1
 @0 -> +1

S6_0, S7_0:
 controllerMovePresent

 doorLock
 trainMoving

time +=1
 @0 -> +1

time +=1
 @0 -> +0

time +=1
 @0 -> +0

(b) The Logical-time-based
semantics of the model

Figure 4. Transition system model of the Timed Rebeca model in Figure 2c

Version June 6, 2020 submitted to Mathematics 12 of 18

The transitions shown in red coincide with the advancement of logical time. Thus, Figure 4b can be366

understood to be an abstraction of this transition diagram that aggregates all the intermediate states at367

each logical time into one single state. The self-loops in Figure 4b are represented as the transitions368

from S6_0 to S7_0 and back, and S1_0 to S3_0 and back in Figure 4a.369

The transition system of Figure 4a is a slightly revised version of the transition system generated370

automatically by Afra. In this transition system, the state labeled “S4_0” violates our safety requirement.371

The train is moving and the door is unlocked. There is a safe trace, going through S5_0 instead of372

S4_0, but the interleaving semantics allows either trace. Similarly, the state labeled “S10_0” is also not373

safe. Here we see the so-called diamond effect that is well-known in the model checking domain and374

may be created when two transitions are enabled in the same state (like in states “S2_0” and “S8_0”)375

and are chosen nondeterministically. If the I/O system makes these transitory states invisible to the376

environment, as could be done using the PLC style of I/O, then we do not need this finer grained377

transition system model and could instead have verified the safety property using the much simpler378

logical-time-based model of Figure 4b. Without such an I/O system, however, we have more work to379

do before we can have confidence in this system.380

6. Extending the Simple Train Door Controller381

We use variations of a simple train door example from Sirjani etal. [2] to show how we address382

different questions raised in verification of CPS. In Figure 2, we show a model with three components,383

a train, an external door in the train, and a controller that commands the door to lock, and the train to384

move. In Section 6.1, we add timing features to the example and show how we can fix the problem of385

program in Figure 2 by the proper timing features. We also show the subtleties with the timing and386

how we can easily make design mistakes. We also show how the external physical triggers can put387

the system at risk and jeopardize the safety property. In Section 6.2, we show an example where an388

external physical action can block the progress of system. For example a passenger can keep pressing389

the open door button and hence stopping the door from being closed and locked, and as a consequence390

prevent the departure of the train.391

6.1. The Train Door Controller with Timing Features392

The flaw identified by the Afra tool in the program in Figure 2b can be corrected with a393

slightly more sophisticated Lingua Franca program. Note that the flaw only exists if we consider the394

event-based semantics of the program. A simple way is to define two reactions of move and stop in395

the train reactor (instead of just one reaction of move that decides to actuate move or stop based on396

the input parameter), and lock and unlock in the door reactor (instead of just one reaction of lock397

that decides to actuate lock or unlock based on the input parameter), and increment the timetag of an398

unlock or move message so that it has a logical timetag that is strictly larger than the corresponding399

stop or lock message. Such a Lingua Franca program is shown in Figure 5b. It has the structure shown400

in Figure 5a.401

Here, we use the after keyword on lines 44 and 45 to increment the timetag of the messages by402

a specified amount (100 msec). This keyword has exactly the same semantics in Lingua Franca and403

Timed Rebeca, so it creates no complications in translation. With these changes, when the Controller404

requests that the train move, it issues a lock message with the timetag of the original request and405

a move message with a timetag incremented by 100 msec. When it requests that the train stop, the406

unlock message is similarly delayed. This change required separating the lock from the unlock signal407

and the move from the stop signal because the logical time properties of these pairs of signals differ. In408

Figure 2a, by contrast, lock and unlock are carried by a single Boolean, as are move and stop.409

We can adjust the Timed Rebeca model to match this new design (see Figure 5c) and re-run the410

model checker. This time, Afra reveals a more subtle problem that can occur if the system has no411

constraints on the spacing between timetags of successive external events. Suppose that the train is412

stopped and the door is unlocked and we received external = true at logical time 0. This will result413

Version June 6, 2020 submitted to Mathematics 13 of 18

System

Controller

2

1

P

lock

unlock

move

stop

Door

2

1

unlock

lock

Train

2

1

stop

move

100msec

100msec

(a) Structure of the door controller example

1 target C;
2 reactor Controller {
3 output lock:bool; output unlock:bool;
4 output move:bool; output stop:bool;
5 physical action external:bool;
6 reaction(startup) {=
7 ... Set up external sensing.
8 =}
9 reaction(external)

10 ->lock, unlock, move, stop {=
11 if (external_value) {
12 set(lock, true); set(move, true);
13 } else {
14 set(unlock, true); set(stop, true);
15 }
16 =}
17 }
18 reactor Train {
19 input move:bool; input stop:bool;
20 state moving:bool(false);
21 reaction(move) {=
22 self->moving = true;
23 =}
24 reaction(stop) {=
25 self->moving = false;
26 =}
27 }
28 reactor Door {
29 input lock:bool; input unlock:bool;
30 state locked:bool(false);
31 reaction(lock) {=
32 ... Actuate to lock door.
33 self->locked = true;
34 =}
35 reaction(unlock) {=
36 ... Actuate to unlock door.
37 self->locked = false;
38 =}
39 }
40 main reactor System {
41 c = new Controller(); d = new Door();
42 t = new Train();
43 c.lock -> d.lock;
44 c.unlock -> d.unlock after 100 msec;
45 c.move -> t.move after 100 msec;
46 c.stop -> t.stop;
47 }

(b) Variant of Figure 2b that manipulates timetags. The
values for after are set to 100.

1 reactiveclass Controller(5) {
2 knownrebecs{
3 Door door; Train train;
4 }
5 statevars { boolean moveP;}
6 Controller() {
7 moveP = true;
8 self.external_move();
9 }

10 msgsrv external_move() {
11 int d = ?(0, 50); // lock, stop
12 int x = ?(51, 99); // move, unlock
13 int extd = 100; // external_move
14 if (moveP) {
15 door.lock() after(d);
16 train.move() after(x);
17 } else {
18 door.unlock() after(x);
19 train.stop() after(d);
20 }
21 moveP = !moveP;
22 self.external_move() after(extd);
23 } }
24 reactiveclass Train(10) {
25 statevars{
26 boolean moving;
27 }
28 Train() {
29 moving = false;
30 }
31 @priority(1) msgsrv stop() {
32 moving = false;
33 }
34 @priority(2) msgsrv move() {
35 moving = true;
36 } }
37 reactiveclass Door(10) {
38 statevars{
39 boolean is_locked;
40 }
41 Door() {
42 is_locked = false;
43 }
44 @priority(1) msgsrv lock () {
45 is_locked = true;
46 }
47 @priority(2) msgsrv unlock () {
48 is_locked = false;
49 }
50 }
51 main {
52 @priority(1) Controller controller(door,
53 train):();
54 @priority(2) Train train():();
55 @priority(2) Door door():();
56 }

(c) The Rebeca model for the code in Figure 5b. Note
that here we put different values for after constructs
comparing to the LF code in Figure 5b.

Figure 5. The Train Door Example with delays in lock/unlock and stop/move

Version June 6, 2020 submitted to Mathematics 14 of 18

Figure 6. An snapshot of Afra finding the counterexample for the model in Figure 5c where the physical
external event occurs every 50 units of time (variable extd in the model is set to 50). The value of the
variables and the contents of the message buffer in state 11_0 is shown in the snapshot.

in a lock message to the Door with timetag 0 and a move message to the Train with timetag 100 msec.414

Suppose that we then receive external = false at logical time 50 msec. This will result in a stop415

message to the Train with timetag 50 msec, overtaking the move message! But worse, it will send an416

unlock message with timetag 150 msec, and the door will unlock while the train is moving! This new417

flaw is revealed by a counterexample generated by Afra shown in Figure 6. In Figure 6, you may see418

the Afra interface with the Rebeca model and the property file including the assertions. The Boolean419

variables defined in the “define” part of the property file are those that are shown in the states in the420

transition system. In the right corner of the figure, the trace of the counterexample is shown and the421

values of variables in state 11_0 (the state right before the assertion is failed) are shown in another422

window.423

This new flaw is not correctable by simply manipulating logical timetags. The flaw pertains424

to the relationship between physical time and logical time (having no constraints on the spacing425

between timetags of successive external events that represent physical actions), and our verification426

strategy here stays entirely in the world of logical time. A similarly cross-cutting flaw could occur if427

the later timetag of the move event does not result in a later occurrence of the train moving physically.428

Again, this flaw pertains to the relationship between physical and logical times, a relationship that429

is ultimately established not only by the software in the systems, but rather by the combination of430

software and hardware.431

6.2. The Train Door Controller and a Passenger432

Another example is shown in Figure 7. In this example we only show the controller and the433

door. Here the door accepts four commands of unlock, open, close and lock. When the train stops at a434

platform the controller unlock and then opens the door. When the train is ready to move the controller435

first close and then lock the door. The train can only start moving if the doors are locked. But the436

Version June 6, 2020 submitted to Mathematics 15 of 18

System

Controller

2

1

P

close

lock

unlock

open

Door

4

3

2

1

P

open

unlock

lock

close

5msec

4msec

7msec

3msec

(a) Structure of the door controller example

1 target C;
2 reactor Controller {
3 output lock:bool; output unlock:bool;
4 output open:bool; output close:bool;
5 physical action external:bool;
6 reaction(startup) {=
7 // ... Set up external sensing.
8 =}
9 reaction(external)->close, lock, open,

10 unlock {=
11 if (external_value) {
12 set(close, true); set(lock, true);
13 } else {
14 set(open, true); set(unlock, true);
15 }
16 =}
17 }
18 reactor Door {
19 input lock:bool; input unlock:bool;
20 input open:bool; input close:bool;
21 physical action ext_open:bool;
22 state locked:bool(false);
23 state is_open:bool(false);
24 reaction(close) {=
25 ... Actuate to close door.
26 self->is_open = false;
27 =}
28 reaction(lock) {=
29 ... Actuate to lock door.
30 if(!self->is_open)
31 self->locked = true;
32 =}
33 reaction(unlock) {=
34 ... Actuate to unlock door.
35 self->locked = false;
36 =}
37 reaction(open, ext_open) {=
38 ... Actuate to open door.
39 if(!self->locked)
40 self->is_open = true;
41 =}
42 }
43 main reactor System {
44 c = new Controller();
45 d = new Door();
46 c.lock -> d.lock after 5 msec;
47 c.unlock -> d.unlock after 4 msec;
48 c.open -> d.open after 7 msec;
49 c.close -> d.close after 3 msec;
50 }

(b) Variant of Figure 5b with open door.

1 reactiveclass Controller(5) {
2 knownrebecs{
3 Door door;
4 }
5 statevars {
6 boolean moveP;
7 }
8 Controller() {
9 moveP = true;

10 self.external_move();
11 }
12 msgsrv external_move() {
13 int closingDelay = 3;
14 int lockingDelay = 5;
15 int unlockingDelay = 4;
16 int openingDelay = 7;
17 if (moveP) {
18 door.close() after(closingDelay);
19 door.lock() after(lockingDelay);
20 } else {
21 door.unlock() after(unlockingDelay);
22 door.open() after(openingDelay);
23 }
24 moveP = !moveP;
25 self.external_move() after(10);
26 }
27 }
28 reactiveclass Door(10) {
29 statevars{ boolean is_locked, is_open; }
30 Door() {
31 is_locked = false; is_open = true;
32 self.external_open() after(1);
33 }
34 @priority(1) msgsrv close() {
35 is_open = false;
36 }
37 @priority(2) msgsrv lock (){
38 if(!is_open)
39 is_locked = true;
40 }
41 @priority(3) msgsrv unlock() {
42 is_locked = false;
43 }
44 @priority(4) msgsrv open() {
45 if(!is_locked)
46 is_open = true;
47 }
48 @priority(1) msgsrv external_open() {
49 int retryDelay = 2;
50 self.open();
51 self.external_open() after(retryDelay);
52 }
53 }
54 main {
55 @priority(1) Controller controller(door):();
56 @priority(2) Door door():();
57 }

(c) The Rebeca model for the code in Figure 7b.

Figure 7. The Door Control Example with an external passenger pressing the open button. Here we
added open and close commands for the door and do not show the train.

Version June 6, 2020 submitted to Mathematics 16 of 18

door can only be locked if the door is closed. Here we assume that there is an open button for the437

passengers also. So, a passenger can press the open button before the door is locked. The controller438

sends the close and then the lock command, but there is a scenario in which the external open button is439

pressed quickly enough that the door can never be locked, and consequently the train can never move.440

We can change the values of the after construct for different commands and see various behaviors441

of the system for different configurations. With the configuration shown in Figure 7 the door will never442

be locked. We checked the assertion of door being unlocked and it is satisfied in this scenario showing443

that the door stays unlock all the time. If we increase the value of after in sending external_open it444

will eventually be large enough to allow the door to close and then lock.445

7. Discussion and Future Work446

The combination of a language like Lingua Franca with an explicit model of time, and a model447

checking tool like Timed Rebeca with Afra can prove quite effective for finding a number of bugs.448

Although Rebeca language, which is similar to Java, is expressive enough, it is not clear whether it449

would be accepted by designers as a target language, and the toolchains do not currently exist to450

compile it down to code that could execute in microcontrollers as would be needed to deploy the train451

controller. If these toolchains are created, however, the result could be a very effective package for452

designing and deploying formally verifiable CPS software. However, there are some serious limitations453

that warrant further research.454

Based on our (limited number of) experiments and our insights, the mapping between Lingua455

Franca and Timed Rebeca can be simple as long as we stay in the logical time domain of Lingua Franca456

(and as long as the reaction code in Lingua Franca can be translated to message server code in Timed457

Rebeca). By mapping LF to Rebeca and through our examples we demonstrated a set of problems that458

can be found using model checking. In the first example we show the model and how logical-time-base459

semantics and event-based semantics are different, and how we rely on the underlying platform to460

guarantee that the observable behavior is base on the for example logical-time-base semantics. When461

we have distributed CPS this may become a nonrealistic assumption. The second example shows how462

timing comes in, and how we can rely on different timing configurations to build correct cyberphysical463

systems. It also shows how subtle problems may raise that are not easy for a designer to notice,464

and how model checking helps in revealing such problems. In the last two examples we show the465

connection between the logical and the physical timelines, and the effect of physical events on the466

logical behavior of the software and how by using model checking we can move towards finding such467

problems.468

Because Rebeca is designed for model checking, Rebeca models are closed, meaning that there469

are no external inputs. The reactions that can be triggered from outside of the Lingua Franca code470

(like the physical actions named external in Figure 2b and ext_open in Figure 7b) can be modeled as471

message servers that are invoked nondeterministically. This nondeterministic call can be modeled as472

a self-call from within the same message server, and there is no need to introduce an extra actor to473

model the environment. This message server is first called in the constructor of the rebec, as shown for474

external on line 8 of Figure 2c, and for ext_open on line 32 of Figure 7c.475

Because the Timed Rebeca code will be used for model checking, we need to be careful regarding476

the state space explosion. The external method calls can be problematic here, and the Timed Rebeca477

models may have to be carefully crafted in some places. The logical time intervals over which these478

methods can be called has a great effect on the state space size. If the state space gets too large, model479

checking becomes intractable.480

Although we performed the mapping from Lingua Franca to Timed Rebeca by hand, it should be481

possible to create a Rebeca target for Lingua Franca and then automate the translation. When using482

this target, the body of each reaction will need to be written in Rebeca’s own language for writing483

message servers. This is necessary because Afra analyzes this code to build the transition system484

Version June 6, 2020 submitted to Mathematics 17 of 18

model, and as for now Afra is not capable of analyzing arbitrary C, C++, or TypeScript code, the target485

languages currently supported by Lingua Franca.486

One subtle point in model checking of CPS that we presented is that we only checked how the487

state of the program evolves in logical time, not how it evolves in physical time. Every model checking488

tool that we know of assumes a single timeline, but our systems always have at least three. There is the489

logical timeline of timestamps, and programs can be verified on this timeline, proving for example that490

a safety condition is satisfied by a state trajectory evolving on this logical timeline. But in a concurrent491

and distributed CPS, the state trajectory is also evolving along a physical Newtonian timeline, and our492

proof says nothing about its safety on that timeline. Moreover, every clock that measures Newtonian493

time will differ from every other clock that measures Newtonian time, so any constraints we impose494

on execution based on such clocks may again lead to proofs of safety even though the physical system495

is capable of entering unsafe states. Our approach in this paper is relying on a set of assumptions496

mainly based on alignment of logical and physical time at the execution time.497

When we assert that a design has been “verified” against a set of formal requirements, we need to498

make every effort to make as clear as possible what are the assumptions about the physical system that499

make our conclusions valid. There will always be assumptions, and in any real system deployment,500

any assumption may be violated. There is no such thing as a provably correct system.501

502

503

Funding: The work of the first author is supported in part by KKS SACSys Synergy project (Safe and Secure504

Adaptive Collaborative Systems), and KKS DPAC Project (Dependable Platforms for Autonomous Systems and505

Control) at Mälardalen University, and MACMa Project (Modeling and Analyzing Event-based Autonomous506

Systems) at Software Center, Sweden. The second author receives support from the National Science Foundation507

(NSF), award #CNS-1836601 (Reconciling Safety with the Internet) and the iCyPhy Research Center (Industrial508

Cyber-Physical Systems, supported by Camozzi Industries, Denso, Siemens, and Toyota.509

References510

1. Lee, E.A. Cyber Physical Systems: Design Challenges. Int. Symp. on Object/Component/Service-Oriented511

Real-Time Distributed Computing (ISORC). IEEE, 2008, pp. 363 – 369. doi:10.1109/ISORC.2008.25.512

2. Sirjani, M.; Provenzano, L.; Asadollah, S.A.; Moghadam, M.H. From Requirements to Verifiable Executable513

Models using Rebeca. International Workshop on Automated and verifiable Software sYstem DEvelopment,514

2019.515

3. Lee, E.A.; Seshia, S.A. Introduction to Embedded Systems - A Cyber-Physical Systems Approach; MIT Press,516

2017.517

4. Alur, R. Principles of Cyber-Physical Systems; MIT Press, 2019.518

5. Henzinger, T.A. The Theory of Hybrid Automata. Proceedings, 11th Annual IEEE Symposium on Logic in519

Computer Science, 1996. IEEE Computer Society, 1996, pp. 278–292.520

6. Carloni, L.P.; Passerone, R.; Pinto, A.; Sangiovanni-Vincentelli, A. Languages and Tools for Hybrid Systems521

Design. Foundations and Trends in Electronic Design Automation 2006, 1, 1–204. doi:10.1561/1000000001.522

7. Sirjani, M.; Movaghar, A.; Shali, A.; de Boer, F.S. Modeling and Verification of Reactive Systems using523

Rebeca. Fundam. Inform. 2004, 63, 385–410.524

8. Sirjani, M.; Jaghoori, M.M. Ten Years of Analyzing Actors: Rebeca Experience. Formal Modeling: Actors,525

Open Systems, Biological Systems, 2011, pp. 20–56.526

9. Rebeca. Afra Tool, 2019. Available at http://rebeca-lang.org/alltools/Afra, Retrieved July, 2019.527

10. Lohstroh, M.; Schoeberl, M.; Goens, A.; Wasicek, A.; Gill, C.; Sirjani, M.; Lee, E.A. Invited: Actors Revisited528

for Time-Critical Systems. Design Automation Conference (DAC), 2019.529

11. Lohstroh, M.; Romeo, I.n.I.; Goens, A.; Derler, P.; Castrillon, J.; Lee, E.A.; Sangiovanni-Vincentelli, A.530

Reactors: A Deterministic Model for Composable Reactive Systems. Model-Based Design of Cyber531

Physical Systems (CyPhy’19), 2019. Held in conjunction with ESWEEK 2019.532

12. Lohstroh, M.; Lee, E.A. Deterministic Actors. Forum on Specification and Design Languages (FDL)„ 2019.533

13. Hewitt, C. Viewing control structures as patterns of passing messages. Journal of Artificial Intelligence 1977,534

8, 323–363.535

https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1561/1000000001
http://rebeca-lang.org/alltools/Afra

Version June 6, 2020 submitted to Mathematics 18 of 18

14. Agha, G.A. ACTORS - a model of concurrent computation in distributed systems; MIT Press series in artificial536

intelligence, MIT Press: Cambridge, MA, 1990.537

15. Reynisson, A.H.; Sirjani, M.; Aceto, L.; Cimini, M.; Jafari, A.; Ingólfsdóttir, A.; Sigurdarson, S.H. Modelling538

and simulation of asynchronous real-time systems using Timed Rebeca. Sci. Comput. Program. 2014,539

89, 41–68.540

16. Sirjani, M. Rebeca: Theory, Applications, and Tools. Formal Methods for Components and Objects,541

International Symposium, FMCO 2006, 2006, pp. 102–126.542

17. Derler, P.; Lee, E.A.; Matic, S. Simulation and Implementation of the PTIDES Programming Model.543

International Symposium on Distributed Simulation and Real-Time Applications, 2008, pp. 330–333.544

18. Corbett, J.C.; et.al. Spanner: Google Globally Distributed Database. ACM Trans. Comput. Syst. 2013,545

31, 8:1–8:22.546

19. Sirjani, M.; Khamespanah, E.; Lee, E.A. Model Checking Software in Cyberphysical Systems. COMPSAC547

2020, 2020.548

20. Benveniste, A.; Berry, G. The Synchronous Approach to Reactive and Real-Time Systems. Proceedings of the549

IEEE 1991, 79, 1270–1282.550

21. Edwards, S.A.; Lee, E.A. The Semantics and Execution of a Synchronous Block-Diagram Language. Science551

of Computer Programming 2003, 48, 21–42. doi:10.1016/S0167-6423(02)00096-5.552

22. Zhao, Y.; Lee, E.A.; Liu, J. A Programming Model for Time-Synchronized Distributed Real-Time Systems.553

Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 2007, pp. 259 – 268.554

doi:10.1109/RTAS.2007.5.555

23. Corbett, J.C.; Dean, J.; Epstein, M.; Fikes, A.; Frost, C.; Furman, J.; Ghemawat, S.; Gubarev, A.; Heiser,556

C.; Hochschild, P.; Hsieh, W.; Kanthak, S.; Kogan, E.; Li, H.; Lloyd, A.; Melnik, S.; Mwaura, D.; Nagle,557

D.; Quinlan, S.; Rao, R.; Rolig, L.; Saito, Y.; Szymaniak, M.; Taylor, C.; Wang, R.; Woodford, D. Spanner:558

Google’s Globally-Distributed Database. OSDI, 2012. doi:10.1145/2491245.559

24. Lingua Franca Grammar. Lingua Franca Github . Available at https://github.com/icyphy/lingua-franca/560

blob/master/xtext/org.icyphy.linguafranca/src/org/icyphy/LinguaFranca.xtext, Retrieved May, 2020.561

25. Schneider, C.; Spönemann, M.; von Hanxleden, R. Just Model! – Putting Automatic Synthesis of562

Node-Link-Diagrams into Practice. Proceedings of the IEEE Symposium on Visual Languages and563

Human-Centric Computing (VL/HCC ’13); , 2013; pp. 75–82. doi:10.1109/VLHCC.2013.6645246.564

26. Hardebolle, C.; Boulanger, F. ModHel’X: A Component-Oriented Approach to Multi- Formalism Modeling.565

MODELS 2007 Workshop on Multi- Paradigm Modeling. Elsevier Science B.V., 2007.566

27. Ptolemaeus, C. System Design, Modeling, and Simulation using Ptolemy II; Ptolemy.org: Berkeley, CA, 2014.567

28. Jantsch, A. Modeling Embedded Systems and SoCs - Concurrency and Time in Models of Computation; Morgan568

Kaufmann, 2003.569

29. Sirjani, M.; Khamespanah, E. On Time Actors. Theory and Practice of Formal Methods - Essays Dedicated570

to Frank de Boer on the Occasion of His 60th Birthday, 2016, pp. 373–392.571

30. Khamespanah, E.; Sirjani, M.; Sabahi-Kaviani, Z.; Khosravi, R.; Izadi, M. Timed Rebeca schedulability and572

deadlock freedom analysis using bounded floating time transition system. Sci. Comput. Program. 2015,573

98, 184–204.574

31. International Electrotechnical Commission. International Standard IEC 61131: Programmable Controllers, 4.0575

ed.; IEC, 2017.576

32. Berger, H. Automating with SIMATIC S7-1500: Configuring, Programming and Testing with STEP 7 Professional,577

1st ed.; Publicis MCD Werbeagentur GmbH, 2014.578

c© 2020 by the authors. Submitted to Mathematics for possible open access publication579

under the terms and conditions of the Creative Commons Attribution (CC BY) license580

(http://creativecommons.org/licenses/by/4.0/).581

https://doi.org/10.1016/S0167-6423(02)00096-5
https://doi.org/10.1109/RTAS.2007.5
https://doi.org/10.1145/2491245
https://github.com/icyphy/lingua-franca/blob/master/xtext/org.icyphy.linguafranca/src/org/icyphy/LinguaFranca.xtext
https://github.com/icyphy/lingua-franca/blob/master/xtext/org.icyphy.linguafranca/src/org/icyphy/LinguaFranca.xtext
https://github.com/icyphy/lingua-franca/blob/master/xtext/org.icyphy.linguafranca/src/org/icyphy/LinguaFranca.xtext
https://doi.org/10.1109/VLHCC.2013.6645246
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Lingua Franca and Reactors: Building Cyberphysical Systems
	The Simple Train Door Controller in Lingua Franca

	Timed Rebeca: Model Checking Cyberphysical Systems
	A Simple Train Door Controller in Timed Rebeca

	Mapping of Reactors to Timed Rebeca with Priorities
	Logical-time-based and Event-based Semantics
	The State Transition Diagram and the Safety Property of the Example

	Extending the Simple Train Door Controller
	The Train Door Controller with Timing Features
	The Train Door Controller and a Passenger

	Discussion and Future Work
	References

