Software and Systems Modeling (2021) 20:641-665
https://doi.org/10.1007/s10270-021-00877-y

THEME SECTION PAPER l‘)

Check for
updates

An actor-based framework for asynchronous event-based
cyber-physical systems

2

Iman Jahandideh' - Fatemeh Ghassemi'2@® - Marjan Sirjani*

Received: 27 February 2020 / Revised: 3 February 2021 / Accepted: 19 February 2021 / Published online: 3 April 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

In cyber-physical systems like automotive systems, there are components like sensors, actuators, and controllers that com-
municate asynchronously with each other. The computational model of actors supports modeling distributed asynchronously
communicating systems. We propose the Hybrid Rebeca language to support the modeling of cyber-physical systems. Hybrid
Rebeca is an extension of the actor-based language Rebeca. In this extension, physical actors are introduced as new com-
putational entities to encapsulate physical behaviors. To support various means of communication among the entities, the
network is explicitly modeled as a separate entity from actors. We develop a tool to derive hybrid automata as the basis for the
analysis of Hybrid Rebeca models. We demonstrate the applicability of our approach through a case study in the domain of
automotive systems. We use the SpaceEx framework for reachability analysis of the case study. Compared to hybrid automata,
our results show that for event-based asynchronous models hybrid Rebeca improves analyzability by reducing the number of
real variables, and increases modularity and hence, minimizes the number of changes caused by a modification in the model.

Keywords Actor model - Cyber-physical systems - Hybrid automata

1 Introduction

Embedded systems consist of microprocessors which control
a physical behavior. Ninety-eight percent of all microproces-
sors are manufactured as components of embedded systems
[40]. In such hybrid systems, physical and cyber behav-
iors, characterized as continuous and discrete respectively,
affect each other. Cyber-physical systems (CPSs) are hetero-

Communicated by Eugene Syriani and Manuel Wimmer.

DX Fatemeh Ghassemi
fghassemi @ut.ac.ir

Iman Jahandideh
jahandideh.iman@ut.ac.ir

Marjan Sirjani

marjan.sirjani@mdh.se

School of Electrical and Computer Engineering, College of
Engineering, University of Tehran, Tehran, Iran

School of Computer Science, Institute for Research in
Fundamental Sciences, P.O. Box 19395-5746, Tehran, Iran

School of Innovation, Design and Engineering, Mélardalen
University, Visterds, Sweden

School of Computer Science, Reykjavik University,
Reykjavik, Iceland

geneous systems with tight interactions between physical and
software processes where components in the system usually
communicate through the network. These systems are used
in wide variety of safety-critical applications, from automo-
tive and avionic systems to robotic surgery and smart grids.
This makes verifying and analyzing CPSs one of the main
concerns while developing such systems.

Model-based design is an effective technique for devel-
oping correct CPSs [11]. It relies on models specifying the
behavior of the system often with informal notations. Using
formal models instead of physical realizations of the system
not only provides new insights early in the design process,
but also enables analyzing the system behavior in many com-
plex situations that can not easily be reproduced in its real
environment. Furthermore, formal and extensive analysis of
the model can provide more confidence in the correctness of
the system. The heterogeneity of CPSs creates new model-
ing challenges that stem from interactions between different
kinds of components. New theories and tools are needed
to facilitate designing and analyzing CPSs. In [36], Sirjani
argues that for dealing with complicated and heterogeneous
systems, friendliness of our design tools can be as important
as their expressiveness. Friendliness of a modeling language

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00877-y&domain=pdf
http://orcid.org/0000-0002-9677-3854

642

I. Jahandideh et al.

is evaluated by its faithfulness to the target system that is
going to be modeled, and usability to the modeler.

Lee is one of the pioneers to address design challenges
of cyber-physical systems in [25]. According to him for
realizing the full potential of CPS, we will have to rebuild
computing and networking abstractions. These abstractions
will have to embrace physical dynamics and computation
in a unified way. In addition to components for represent-
ing software and physical processes, we need components
to model communication over a network. Modeling different
types of communication over network are crucial in CPS. For
instance in the domain of automotive systems, ECUs, sensors
and actuators may be connected directly by wire or through
a communication medium such as a serial bus. Moreover, to
represent embedded systems and CPS we need models with
a strong and rich support for time and timing constraints.

In this work, we propose Hybrid Rebeca, as an extension
of Timed Rebeca [1,38]. Rebeca is an imperative actor-based
language with formal semantics, Java-like syntax, and sup-
ported by model checking tool. Its timed extension supports
modeling of the computation time, and network delay for
message communication. Actors are suggested as excellent
candidates for modeling CPS. Hewitt actors [2,16] provide
a suitable level of abstraction to faithfully model distributed
event-based asynchronously communicating systems. Actors
are units of computation which can only communicate by
asynchronous message passing. Each actor is equipped by a
mailbox in which the received messages are buffered. This
provides a faithful model for a networked system. We extend
the actor model of Timed Rebeca to include physical actors
with continuous behavior to support hybrid systems. We also
introduce an explicit network entity to support various types
of communication, namely wired connections with no delay,
serial buses with deterministic behavior, and wireless com-
munication among the actors. Without this explicit entity in
the model, in order to model different behaviors of different
network media, one has to model the network as a separate
actor within a Timed Rebeca model.

Improving the level of abstraction by providing first-class
entities for each modeling concept, reduces the number of
errors introduced during the design process and improves
the understandability of the model. Existing formal modeling
languages for hybrid systems such as hybrid automata [4,15],
hybrid process algebra [8], logic for hybrid programs [32],
and hybrid Petri nets [9] are introduced to model CPSs. No
high-level structuring elements such as modules, or modeling
concepts for asynchronous communication are supported in
these languages. These languages are not generally designed
for modeling systems composed of many interacting hetero-
geneous entities communicating via network. The design is
mostly based on the underlying formalism with the focus on
formal verification rather than ease of modeling.

@ Springer

Hybrid Rebeca defines two types of classes, software and
physical. Software classes are similar to reactive classes in
the Rebeca language where the computational behaviors are
defined by message servers. Physical classes in addition to
message servers, can also contain different modes, where the
continuous behaviors are specified. A physical actor (which
is instantiated from a physical class) must always have one
active mode. This active mode defines the runtime continu-
ous behavior of the actor. By changing the active mode of a
physical actor, it is possible to change the continuous behav-
ior of the actor. The modes of physical classes are similar to
the concept of locations in hybrid automata.

To be able to have a concrete example and clearer discus-
sions, here we focus on automotive systems. In such systems,
a Control Area Network (CAN) is defined as a network model
for communications of the actors. Actors can communicate
with each other either through the CAN network or directly
by wire. Since CAN is a priority-based network, a priority
must be assigned for the messages that are sent through CAN.

We define the semantic model of hybrid Rebeca in terms
of hybrid automata. In other words, for a given hybrid Rebeca
model, we derive a monolithic hybrid automaton. To analyze
the resulting hybrid automaton, we provide a set of guide-
line how verification of timed properties can be reduced to
reachability analysis of hybrid automaton, for which many
verification algorithms and tools are available. We demon-
strate the applicability of our approach through a case study
on a simplified Brake-By-Wire system with Anti-lock Brak-
ing System. We use the SpaceEx framework for reachability
analysis of the case study.

We evaluate the effectiveness of our approach by compar-
ing our modeling framework to hybrid automata. To this aim,
we show that by using our framework, the cost of improving
and modifying models is vastly reduced compared to mod-
eling in hybrid automata. We also show that modeling high
level concepts of hybrid Rebeca like message passing and
message buffering directly in hybrid automata can hugely
decrease the analyzability of the models. Furthermore, the
abstraction resulted from choosing actors as the basic units of
computation, offers more friendliness toward cyber-physical
systems compared to the low-level languages like hybrid
automata. Our contributions are summarized as follows:

— Proposing the actor-based modeling language, Hybrid
Rebeca, with first-class entities for modeling the major
concepts in the domain of CPSs, i.e., physical and soft-
ware actors, and different network models,

— Defining formal semantics rules to generate monolithic
hybrid automata as the semantic model of hybrid Rebeca,

— Providing algorithms and tools for formal verification
of Hybrid Rebeca models using existing tools for the
reachability analysis of hybrid automata, and

An actor-based framework for asynchronous event-based cyber-physical systems 643

t==18

Fig.1 A hybrid automaton for the thermostat controller

— Specifying compositional semantics of Hybrid Rebeca
using hybrid automata.

This paper extends an earlier conference publication [17]
by adding structural rules for operational formal semantics
as a monolithic hybrid automata, proposing a compositional
semantics, and providing precise guidelines for reducing the
verification of time properties to reachability analysis of
hybrid automata in order to use SpaceX tool.

The novelty of our modeling language can be explained
in terms of our design decisions: separating physical rebecs
from the software ones, explicit modeling of network,
message-based communication between the software and
physical rebecs (instead of using shared variables or ports).

2 Preliminaries

As we define the semantics of our framework based on hybrid
automata, we first provide an overview on this model and its
analysis approaches. Then, we explain the actor model and
timed Rebeca.

2.1 Hybrid automata

Hybrid automata (HA) [4,15] is a formal model for systems
with discrete and continuous behaviors. Informally a hybrid
automaton is a finite state machine consisting of a set of
real-valued variables, modes, and transitions. Each mode,
which we also call location, defines a continuous behavior
on the variables of the model. The continuous behaviors or
flows are usually described by ordinary differential equations
which define how the values of the variables change with
time. Transitions act as discrete actions between continu-
ous behaviors of the system, where the variables can change
instantaneously.

Example 1 Assume a controller that turns on when the envi-
ronment temperature is 18 and turns off the heater when
the temperature is 22. The model of this controller is given
in Fig. 1. The variable ¢ represents the temperature of the
environment. The locations named off and on define the con-
tinuous behavior of the temperature when the heater is off and
on, respectively. For each location, the flow of the temper-
ature is defined accordingly. The transition with the guard

t == 22 states that when the temperature is equal to 22 the
heater can be turned off. In hybrid automaton, the choice
between staying in one location and taking an enabled tran-
sition is nondeterministic. To make the turning off behavior
deterministic, the invariant r < 22 is defined in the on loca-
tion. This invariant states that the heater can only stay in this
location as long as the temperature is less than equal to 22.
The turning on behavior of the heater is defined similarly.
Initially the heater is off and the temperature is 20.

Let a valuation v : V — Real be a function that assigns a
real value to each variable of V. We denote the set of valua-
tions on the set of variables V as V(V).

Definition 1 A hybrid automaton is defined by the tuple
(Loc, Var, Lab, =, Flws, Inv, Init) as follows:

Loc is a finite set of locations,

Var is a finite set of real-valued variables,

— Lab is a finite set of synchronization labels.

— = is a finite set of transitions. A transition is a tuple
(I,a,m,!") € = wherel € Loc is the source location,
" € Loc is the destination location, @ € Lab is a synchro-
nization label and . € V(Var)? is a transition relation
on variables. The elements of u = (v, v’) represent the
valuation of the variables before and after taking the tran-
sition. In some models, like in our example, this transition
relation is represented with a guard and a set of assign-
ments on the variables. The guard defines the valuation
v and the assignments define the valuation v’.

— Flws is a labeling function that assigns a set of flows
to each location [€ Loc. Each flow is a function from
R=0 — V(Var). Each flow specifies how the values of
variables evolve over time. A flow is usually defined by
a dotted variable x which represents the first derivative
of variable x.

— Inv is a labeling function that assigns an invariant
Inv(l) € V(Var) to each location [/ € Loc.

— Initis a labeling function that assigns an initial condition

Init(/) € V(Var) to each location / € Loc.

In the example given in Fig. 1, the locations and the
variables are defined as Loc = {on, off} and Var = {t} respec-
tively. Since our example only consists of a single automaton,
Lab = 0.

The flows and the invariant of each location are defined
on the location itself. The initial condition for location off is
Init(off) = {t = 20} and for location on is Init(on) = @.
Note that in our language, we use x” instead of x to represent
the first derivative of variable x.

@ Springer

644

I. Jahandideh et al.

2.2 Analysis of hybrid auotomata

In this section, we elaborate on the methods and tools
for the analysis of hybrid automata. There are mainly two
approaches for the analysis of hybrid automata: reachability
analysis and invariant computation.

In the reachability analysis approach, given an undesired
set of states, called unsafe states, for hybrid automaton, all
reachable states of the model are computed to examine if they
contain any unsafe state. As the problem of determining the
reachability of a state for a hybrid automaton is not decidable
[3], an over-approximation for the reachable state set is com-
puted within a bounded time horizon. We can immediately
infer a system is safe when its over-approximation does not
contain any unsafe state. Otherwise, the safety is unknown.
Different tools and approaches use different representations
for over-approximating sets. In the invariant computation
approach, one derives a system of constraints such that all
system states satisfy them [35]. The system is safe if the con-
straints are inconsistent with the specification of unsafe set.
Reachability analysis can be applied in a time-bounded anal-
ysis task with a much lower cost, while invariant computation
work well on unbounded time horizons.

There are many tools supporting reachability analysis of
hybrid automata. Among them, we can mention PHAVer [13],
SpaceEx [14], and Flow* [6]. We derive hybrid automata
from hybrid Rebeca models for reachability analysis. We
use SpaceEx, supported by a user-friendly GUI as an exam-
ple tool for handling our reachability analysis. Within this
tool, we can assign a name to each location and define
the unsafe condition in terms of the name of locations
and real-valued variables. For example the unsafe condition
“loc() == Fault” examines if the location named Fault is
reachable.

2.3 Actor model and timed Rebeca

Actor model is used for modeling distributed systems. It was
originally proposed by Hewitt [16]. In this model actors are
self-contained and concurrent [2] and can be regarded as
units of computation. Any communication is done through
asynchronous message passing on a fair medium where mes-
sage delivery is guaranteed but is not in-order. This model
abstracts away the network effects like delays, message con-
flicts, and node crashes. Each actor can only communicate
with its so-called acquaintances. In this model, each actor has
an address and a mailbox which stores the received messages.
The behavior of an actor is defined by its message handlers,
called methods. The methods are executed by processing the
messages.

To extend the actor model with hybrid concepts for spec-
ifying CPSs, we use Rebeca as our basis framework and
hence, use the terms actor model and Rebeca interchangeably

@ Springer

in this paper. Rebeca [38] is a formal actor-based model-
ing language and is supported by model checking tools to
bridge the gap between formal methods and software engi-
neering. Rebeca provides an operational interpretation of the
actor model through a Java-like syntax. It also offers a com-
positional verification approach to deal with the state-space
explosion problem in model checking. Because of its design
principle, it is possible to extend the core language for a
specific domain [37]. For example, different extensions have
been introduced in various domains such as probabilistic sys-
tems [39], real-time systems [1], software product lines [34],
and broadcasting environment [41,42].

In Rebeca, actors are called rebecs and are instances of
reactive classes defined in the model. Rebecs communicate
with each other through asynchronous message passing and
its mailboxes are modeled by message queues. A reactive
class consists of known rebecs to specify its acquaintances,
state variables to maintain the internal state, and message
servers to define the reaction of the rebec on the received
messages. The computation in a rebec takes place by remov-
ing a message from the message queue and executing its
corresponding message server.

Timed Rebeca [1] is an extension of Rebeca for distributed
and asynchronous systems with timing constraints. It adds
the timing concepts computation time, message delivery time
and message expiration. These concepts are materialized by
the constructs: delay, after, and deadline. In timed Rebeca
models, each rebec has its own local clock which can be
considered as synchronized distributed clocks. The delay
statement models the passage of time during the execution
of a message server. Statements after and deadline are used
in conjunction with send statements and specify the network
delay and the message deadline, respectively. The syntax of
timed Rebeca is given in Fig. 2.

Example 2 Consider aroom in which a controller turns on/off
the heater in terms of the room temperature. The temperature
is sent to the controller periodically by a sensor. The model
of a controller turning on/off a heater in a room, based on the
received information from the sensor, is given in Fig. 3. It
consists of two actors, HeaterWithSensor and Controller. In
the class HeaterWithSensor, the room temperature is mod-
eled by the discrete state variable tempr which is updated
every one second by the message server update regarding the
status of the HeaterWithSensor. When status holds, it means
that the heater is on and the temperature is increased. Con-
versely, when the heater is off, the temperature is decreased.
The periodic update behavior is modeled by using the delay
statement and sending the update message to itself, using
the self. It also periodically sends the current room tempera-
ture by sending the control message to Controller every 3 s
through the message server sampleTemp. The delay of the
network is modeled by the after statement; meaning that after

An actor-based framework for asynchronous event-based cyber-physical systems 645

Model == (Class)™ Main

Main = main {InstanceDcl*}
InstanceDcl := Cr ((r)*) : ({(c)™)
Class =
KnowRebecs := knownrebecs {VarDcl}

Vars ::= statevars {VarDcl}
VarDecl == (T v)*;

reactiveclass C {KnownRebecs Vars MsgSrv*}

MesgSrv ::= msgsrv m (VarDcl) {Stmt*}

Stmt := v = Expr; | Call; | if(Expr) MSt [else MSt] | delay(Expr);
Call == r.m((Expr)™*)[deadline Expr]|[after Expr]
MSt == {Stmt*} | Stmt

Expr == ¢ | v | Expr op Expr, op € {+, —,*,A,V,<,<, >, >} | (Expr) | [(Expr)

Fig.2 Abstract syntax of Timed Rebeca. Angle brackets () denotes meta parenthesis, superscripts 4+ and * respectively are used for repetition of
one or more and repetition of zero or more times. Combination of () with repetition is used for comma separated list. Brackets [] are used for
optional syntax. Identifiers C, T', m, v, c, and r respectively denote class, type, method name, variable, constant, and rebec name, respectively.

2 s the message control will be delivered to Controller. The
controller changes the status of the heater to on and off when
the received room temperature is less than or equal to 18 and
more than or equal to 22, respectively.

By model checking technique, we can verify the prop-
erty that “The room temperature never reaches 15”. Initially,
the sensor has two messages update and sampleTemp in its
queue. Upon handling sampleTemp by HeaterWithSensor at
time = 1 andtime = 4 s, Controller receives control(19) and
control(16) messages at time = 3 s and time = 6 s, respec-
tively. Controller sends a change message at time = 6 s to
HeaterWithSensor, it will be delivered at time = 8 s. As the
temperature decreased one by one until time = 8§ s, the prop-
erty is violated. We will replace the discrete variable tempr
with a real one while its stepwise changes is governed by a
dynamic differential equation in hybrid Rebeca.

3 The actor model for CPSs

Extending the actor model for modeling cyber-physical sys-
tems can be divided into two parts, offering more concrete
models for the network, and extending actors with physical
behaviors.

Rebeca offers a fair and nondeterministic network model.
For many applications of CPSs this network model is too
abstract or completely invalid. For example, control area net-
work (CAN) [31] protocol is a dominant networking protocol
in automotive industry, which cannot be faithfully modeled
by Rebeca’s network model because by using this protocol,
messages are deterministically delivered to their receivers.
Modeling the network as an explicit actor does not guarantee
determinacy of message deliveries as the network actor is
executed concurrently with other actors, therefore its deter-

minacy is affected by the interleaving semantics. In other
words, the message delivery sequence by the network actor
depends on the execution order of sending actors. So, we
model the network as a separate entity from the actors.

To extend the actor model with physical behaviors, we
decided to separate physical actors from software actors.
In this approach, software actors will be similar to Timed
Rebeca actors and the physical behaviors are defined in sep-
arate physical actors. Physical actors are similar to a hybrid
automaton in syntax and semantics. Like a hybrid automaton,
each physical actor consists of a set of modes. Each mode
defines its flows, invariant, guard, and a block statement. The
statements of the block define the effect of the mode when the
continuous behavior is finished. A physical actor can only be
in one mode (characterizing a specific continuous behavior)
at any moment. In this approach, the physical behavior of a
system can be easily started, stopped or changed by changing
the active modes of physical actors, either by the actor itself
or by a request from another actor.

As we focus on automotive systems, to make the network
specification more concrete, in the first step we consider the
CAN protocol in our language. CAN is a serial bus network
where nodes can send messages at any moment. When multi-
ple nodes request to send messages at the same time, only the
message with the highest priority is accepted and sent through
the network. After a message is sent, the network chooses
another message from the requested messages. The messages
are sent through the network one by one. As messages in
this protocol must have unique priorities, messages are deter-
ministically communicated. Furthermore, we assume that all
CAN nodes implement a priority-based buffer. This simpli-
fies the network model which can be represented by a single
global priority-based queue [10]. To implement this proto-
col, a unique priority must be assigned to each message and

@ Springer

646 . Jahandideh et al.
1 | reactiveclass HeaterWithSensor 22 msgsrv sampleTemp(){ 43 statevars {}
2| { 23 controller . control (tempr) 44 msgsrv initial (){}
3 knownrebecs{ 24 after 2; 45 msgsrv control(int tpr){
4 Controller controller ; 25 self .sampleTemp() 46 if (tpr >= 22)
5 26 after 3; 47 hws.change(false)
6 statevars { 27 } 48 after 2;
7 bool status; 28 49 if (tpr <= 18)
8 int tempr; 29 msgsrv update(){ 50 hws.change(true)
9 } 30 if (status) 51 after 2;
10 31 tempr=tempr+1; 52 }
11 msgsrv initial (int t){ 32 else tempr=tempr—1; 53 | }
12 tempr = t; 33 delay (1); 54
13 status = false; 34 self .update(); 55 | main
14 self .update(); 35 56
15 self .sampleTemp(); 36 | } 57 HeaterWithSensor hws
16 } 37 58 (controller):(20);
17 38 | reactiveclass Controller 59 Controller controller
18 msgsrv change(bool s){ 39 [{ 60 (hws):();
19 status = s; 40 knownrebecs { 61
20 } 41 HeaterWithSensor hws;
21 42 3}

Fig.3 A model of a room with a heater, sensor and controller, specified in timed Rebeca

the communication delay between each two communicating
actors must be specified. These specifications can be defined
outside of the actors so that actors become agnostic about
the underlying network of the model. This will also make
the model more modular, since it is easier to change the net-
work of the system without modifying the actors. Not all the
actors communicate through CAN. Some of the actors may be
connected by wire and have direct communication with each
other. In our language, both types of communication are con-
sidered, and actors can communicate with each other either
via wire or CAN. All messages, irrespective of the commu-
nication medium, are eventually inserted to their receiver’s
message queue. If two or more simultaneous messages (from
wire or CAN) be inserted into a message queue, the resulting
ordering will be nondeterministic. Note that there can not
be two simultaneous messages from CAN, since CAN is a
serial bus. The resulting hybrid Rebeca model is illustrated
in Fig. 4.

4 Hybrid Rebeca

Hybrid Rebeca is an extension of timed Rebeca to support
physical behaviors. As we focus on the core functionality
of hybrid Rebeca, we only consider the delay statement.
Furthermore, we support connections with nonzero delays
through CAN bus. So after statement is not needed anymore.
Similar to timed Rebeca models, each rebec owns a local
clock in hybrid Rebeca which can be considered synchro-
nized with other rebec clocks. We do not support deadline,
but it can be handled similar to the delay statement.

In Hybrid Rebeca we have two types of rebecs: software
and physical. These rebecs communicate through asyn-

@ Springer

Fig.4 Hybrid Rebeca model: each actor has its own thread of control,
message queue, and ID. In addition to these, physical actors have modes
that are defined by a guard, an invariant, and actions. Actors can com-
municate with each other either by sending messages through CAN or
directly by wire

chronous message passing. Each rebec has a queue for
messages, and handles the message at the head of the queue
by executing the corresponding message server for that mes-
sage. Software rebecs are for modeling software (discrete)
behaviors. These rebecs are reactive and self-contained, and
they can have multiple message servers. Physical rebecs are
for modeling physical (continuous) behaviors and the physi-
cal behaviors are defined by their modes. For physical rebecs

An actor-based framework for asynchronous event-based cyber-physical systems 647

areserved message server is defined for changing the rebec’s
active mode.

Hybrid Rebeca has the concept of class for rebecs, and
rebecs of the model are instantiated from these classes in the
main block. In the instantiation phase the connection type
of the rebecs with each other must be defined. For now our
language supports only two types of connection: CAN and
wire. When rebecs communicate through wire, the commu-
nication delay is considered to be zero. In contrast, CAN
passes messages regarding their priorities by imposing delays
depending on the communicating rebecs and messages. After
instantiating rebecs, the CAN specification must be defined
by expressing the delays and priority of messages.

4.1 Syntax

A hybrid Rebeca model definition consists of a set of classes
and a main block, where classes define different types of
rebecs and main specifies the initial configuration and CAN
specification.

The syntax of hybrid Rebeca is presented in Fig. 5. The
syntax of a software class is similar to a reactive class in
timed Rebeca, which resembles a class definition in Java.
A software class consists of a set of known rebecs, state
variables and message servers. The known rebecs are the
rebecs that an instance of this class can send message to. The
syntax of message servers is like a method in object-oriented
languages, except that they have no return value.

The core statements of our language are variable/mode
assignment, conditional, delay, and method calls. An actor
can send a message asynchronously to other rebecs through
method calls.

A physical class is similar to a software class except that it
also contains the definition for physical modes. The structure
of a mode resembles a location in hybrid automata, and it
consists of invariant, flows, guard and a block statement. The
comparison expression of an invariant and a guard expression
are specified by the reserved words inv and guard, respec-
tively. The block statement following the guard expression,
called trigger of the mode, defines the behavior of the rebec
upon leaving the corresponding mode. We remark that the
next entering mode is either explicitly defined by the user
through the statement setmode in the statement block or the
default mode none if it was not specified. Mode none is
a special mode defined in all physical rebecs. This mode
represents an idle behavior and its flows are defined as zero.
Activating this mode can be interpreted as stopping the phys-
ical behavior of a physical rebec. Other rebecs can change the
mode of a physical rebec by sending the message setMode.

Three primitive data types are available in Hybrid Rebeca:
int, real, and float. Variables of types int are only allowed
in software classes, variables of type int and real are only
allowed in physical classes. Variables of type float can be

used in both types of classes. Mathematically the float and
real values are the same. However, to each real variable, a
flow is assigned which determines how its value evolves over
time. A float variable can be used to capture the value of
a real variable in different snapshots. This can be used in
communication with software rebecs. The value of a float
variable can be changed only by assignment, but the value
of a real variable can be changed by both assignment and
the flow defined on the variable. The assignment of a real
value to a float is managed implicitly in the semantics and
no explicit casting is needed.

Every class definition must have at least one message
server, named initial. In the initial state of the model, an ini-
tial message is put in all rebecs’s message queue. The state
variables and behavior of rebecs are initialized by executing
this message server. The keyword self is used for sending a
message to the rebec itself.

Rebecs are instantiated in the main block of the model.
To instantiate a rebec, its known rebecs must be specified
to be bound to the appropriate instances. Furthermore, for
each known rebec, the connection type must also be speci-
fied, which can either be CAN or Wire. For example, by the
statement A a (@Wire b, @CAN c) : (), a rebec named
a is instantiated from the class A that its known rebecs are b
and ¢ while the communication from a to b is through wire
and a to c through CAN. We remark that the connection type
between two rebecs can be different for each communication
direction. The pair of parenthesizes () after the colon repre-
sents the parameters of the initial message server (which is
empty in this case). After instantiation, the CAN specification
is defined on the messages that may be transmitted through
CAN. This specification consists of two parts. First the pri-
orities of these messages must be specified. To this aim, a
unique priority is assigned to a message. For example the
statement a b.m 1; means that a message sent from rebec a
to rebec b containing the message server name m has a prior-
ity of 1. A lesser number indicates a higher priority. After the
priorities, the network delays of CAN communications are
specified. For instance the statement a b.m 0.01; expresses
that the communication delay of sending a message from a
to b containing the message server name m is 0.01.

4.1.1 Well-formedness

An hybrid Rebeca model is well-formed if all classes, rebecs
and all variables, modes, messages and message parameters
inside a rebec have unique names. All send statements are
specified on defined message servers where actual parame-
ters conform the formal parameters in both length and type
compatibility. In instantiation, the list of actual known rebecs
and actual parameters conforms to the list of formal known
rebecs and formal parameters in both length and type. All
expressions are well-typed and the conditions in conditional

@ Springer

I. Jahandideh et al.

648
Model == (SClass | PClass)* Main
Main = main {InstanceDcl* CANSpec?}
InstanceDcl := Cr ((QCAN | @Wire 1)*) : ({c)™)
CANSpec == CAN {Priorities Delays}
Priorities = priorities {(r rrm ¢;)" }
Delays := delays {{rr.m c;)"}
SClass := softwareclass C {KnownRebecs Vars MsgSrv*}
PClass == physicalclass C {KnownRebecs Vars MsgSrv* Mode™}
KnowRebecs ::i= knownrebecs {VarDcl*}
Vars ::= statevars {VarDcl*}
VarDcl == T (v)T;
MesgSrv ::= msgsrv m ({T v)*) {Stmt*}
Mode := mode m {inv(e) {(v' = ¢;)"} guard(e) {Stmt*}}
Stmt == v = Expr; | Call; | if(Expr) MSt [else MSt] | delay(Expr); | setmode(m);
Call :== r.m((Expr)*) | r.setMode(m)
MSt == {Stmt*} | Stmt
Expr := ¢ | v | Expr op Expr, op € {+, —,

Fig.5 Abstract syntax of Hybrid Rebeca. The main differences in syntax compared to Timed Rebeca, are highlighted with color green. Identifiers
C,T,m,m, v, c, and r respectively denote class, type, method name, mode name, variable, constant, and rebec name (color figure online)

1 | physicalclass HeaterWithSensor 23 timer = 0; 45 statevars {}
2 24 controller . control (tempr); 46
3 knownrebecs{ 25 } 47 msgsrv initial (){ }
4 Controller controller ; 26 } 48
5 27 49 msgsrv control(float tpr)
6 statevars { 28 mode Off{ 50
7 real tempr; 29 inv(timer<=0.05){ 51 if (tpr >= 22)
8 real timer; 30 timer’= 1; 52 hws.SetMode(Off);
9 } 31 tempr’=—0.1xtempr; 53 if (tpr <= 18)
10 32 54 hws.SetMode(On);
11 msgsrv initial (float t){ 33 guard(timer==0.05){ 55 }
12 tempr = t; 34 timer = 0; 56 | }
13 timer = 0; 35 controller . control (tempr); 57
14 setmode(Off); 36 } 58 | main
15 37| 3} 59
16 38|} 60 HeaterWithSensor hws
17 mode On{ 39 61 (@Wire controller):(20);
18 inv(timer<=0.05){ 40 | softwareclass Controller 62 Controller controller
19 timer’= 1; 41 63 (@Wire hws):();
20 tempr’=4—0.1xtempr; 42 knownrebecs { 64
21 43 HeaterWithSensor hws;
22 guard (timer==0.05){ 44 }

Fig.6 A model of a room with a heater, sensor and controller, specified in Hybrid Rebeca

statements, invariants and guards are of type Boolean. The
flows in each mode are defined in the from of v/ = e where v
is a real variable and e is an expression and at most one flow
is defined for each real variable within a mode.

Example 3 We revise the model given in Example 2 for a
room with a heater, sensor and controller. We replace the
discrete variable tempr with a real one in the class Heater-
WithSensor. We consider two modes for the actor (instead
of the boolean variable status). The stepwise changes of
temperature is specified by two dynamic differential equa-

@ Springer

tions for each mode in Hybrid Rebeca as shown in Fig. 6.
In each mode, a control message is sent to Controller peri-
odically each 0.05 s by using a local variable timer which is
updated with the rate of 1. In this model the controller and
sensor are connected through a wire, and hence any message
communicated between these two actors will be immediately
delivered.

An actor-based framework for asynchronous event-based cyber-physical systems 649

4.2 Operational semantics

To formally define the semantics of our language, we first
derive an abstract model, called Hybrid Rebeca model, from
the specification model specified by the Hybrid Rebeca lan-
guage. To this aim, we represent statements with abstract
notations. Then, we define the semantics of our language
using the abstract Hybrid Rebeca model and abstract notions.

4.2.1 Notations and auxiliary functions

Given a set A, the set A* is the set of all finite sequences over
elements of A. Forasequencea € A* of length n, the symbol
a; denotes the ith element of the sequence, where | <i < n.
The empty sequence is denoted by € and (k|T') represents a
sequence whose first element is 7 € A and T € A* is the
sequence of remaining elements. For two sequences a and a’
over A, a @ a’ is the sequence obtained by appending @’ to
the end of a. For a function f : X — Y, we use the notation
f[xr — v] to denote updating the function f by mapping ¢
ton, wherer € X,andp € Y.

A record type Record(T) is defined by (namey : Ty, ...,
name, : T,) where T = T; x ... x T,. For each record
t = (e1,ea,...,e,) of type Record(T), where ¢; € T;,
we use t.name; to denote the i"-element of the tuple called
name;, i.e., ;. Furthermore, we use t[¢’/name;] as symbolic
representation for the tuple achieved by replacing the element
t.name; of t by ¢’ in the record t:

t[¢//name;].name; = t.name;, if i # j

tl¢//name;].name; = ¢’

We assume that each rebec has a unique identifier and Id
is the set of identifiers, ranged over by x and y. Let Name be
the set of all valid names for variables, message servers, and
modes, Stmt be the set of statements, and Expr be the set of
expressions. For readability, the conditional and send state-
ments are represented abstractly by the notations if(e, o, o)
and (x, m) in Stmt, respectively. A conditional statement with
no else part is represented as if(e, o, €).

Each message server is abstractly denoted by the tuple
(m, b) € Name x Stmt* where m is the name of the message
server and b is the body of the message server which is a
sequence of statements. For simplicity we ignore the message
server parameters here. Each mode 901 is defined by the tuple
(m, i, f, g,a) € Name x Expr x Expr x Expr x Stmt* where
m is the name of the mode, i, f, g and a are respectively
invariant, flows, guard and trigger of the mode. We use the
notations invariant(r,, M), flows(r,, M), guard(r,, M) and
trigger(rp, M) to respectively denote the invariant, flows,
guard and trigger of the mode 9 in the physical rebec r),. Let
Msg denote the set of messages communicated among rebecs.
Each message M € Msg is a triple (sender, m, receiver) €

Id x Name x Id where sender is the sending rebec, m is the
name of a message server of the receiver, and receiver is the
receiving rebec.

4.2.2 Hybrid Rebeca model

A hybrid Rebeca model consists of the rebecs of the model
and the network specification. A software rebec consists of
the definitions of its variables, message servers and known
rebecs. A physical rebec is defined like a software rebec plus
the definitions of its modes. The network specification con-
sists of the communication types of rebecs, which can be
either CAN or wire, the message priorities and message deliv-
ery delays.

Definition 2 (Hybrid Rebecamodel) A Hybrid Rebeca model
is defined by the tuple (Ry, R, N) where R, and R, are the
set of software and physical rebecs in the model, respectively,
and N is the network specification. The set R = Ry U R,
denotes the set of all rebecs in the model.

A softwarerebecry € Ry and physicalrebecr, € R), with
auniqueidentifieri, are defined by tuples (i, V;, msgsrvs;, K;)
and (i, V;, msgsrvs;, modes;, K;), respectively, where V; is
the set of its variables, msgsrvs; is the set of its message
servers, K; C R is the set of its known rebecs, and modes;
is the set of modes.

A network specification is defined as a tuple N =
(conn, netPriority, netDelay) where conn is a partial func-
tion Id x Id — {Wire, CAN} which defines the one way
connection type from a rebec to another rebec, netPriority :
Msg — N and netDelay : Msg — R define the priority
and the network delivery delay for a message, respectively.
A lower value indicates a higher priority.

We use the notation body(y, M) to express the body of
the corresponding message server for message M defined
for the rebec r with the identifier y, which is a sequence of
statements:

body(y, M) =b, where M = (x,m,y) A r
= (v, V,msgsrvs, K) N (m, b) € msgsrvs.

4.2.3 Formal semantics of hybrid Rebeca models

Rebecs respond to expiration of a physical mode or taking a
message from their message queues. A physical mode expires
when its guard holds, then the trigger of the physical mode is
executed. Upon taking a message, the rebec processes it by
executing its corresponding message server. The execution of
all the statements except the delay statement is instantaneous.
To model communication via CAN, a network entity is con-
sidered in the semantics which buffers the messages from
the rebecs and delivers them one-by-one to the respective
receivers based on the messages’ priorities and delays speci-

@ Springer

650

I. Jahandideh et al.

fied in the model. For communication via wire, the message
is directly inserted into the receiver’s message queue instan-
taneously. The operational semantics of a Hybrid Rebeca
model is defined as a monolithic hybrid automaton.

Definition 3 (Hybrid automaton for a Hybrid Rebeca model)
Given a Hybrid Rebeca model) = (Ry, R, N), its formal
semantics based on hybrid automata is defined by Hg =
(Loc, Var, Lab, =, Flws, Inv, Init), where Var is the set of
all continuous variables in the model (variables of types float
or real), Lab is the set of labels which is empty as we gener-
ate a monolithic hybrid automaton. The set of locations Loc,
transitions =, flows Flws, invariants Inv, and initial condi-
tions Init are defined in the following.

Locations

Each location is defined by four entities, denoted by the
record (ss : SS,ps : PS,ns : NS,es : ES). The entity ss
defines the states of software rebecs by mapping a given
software rebec with the identifier x to its state. Similarly ps
maps a physical rebec with the identifier x to its state. The
third entity ns, defines the network state and the forth entity
es represents the sequence of pending events. We define each
entity in the following.

Definition 4 (State of a rebec) The state of a software rebec
is denoted by the tuple (v, g, o) where v is the valuation of
its discrete variables, ¢ € Msg* is the message queue of the
rebec, and o € Stmt* denotes the sequence of statements that
the rebec is going to execute. The state of a physical rebec
is a tuple of the form (9N, g, o) where 91 is the active mode
and ¢ and o are defined as in the software rebec’s state.

We remark that a software rebec has the notion of being
suspended (due to the execution of a delay statement). The
suspension status is maintained by a reserved variable in the
valuation of the rebec. As delay statements are not allowed
in physical rebecs, they do not have such a reserved vari-
able. The state of a physical rebec does not contain any
valuation since discrete variables are not defined for physical
rebecs and the continuous variables are handled in the hybrid
automaton.

The network state, which is the state of the CAN network,
consists of the buffered messages in the network and the

Table 1 Formal definition of the function effect

status of the network which indicates that the network is
busy by sending a message or is ready to send one.

Definition 5 (State of the network) The network state is
defined by the pair (b, r), where b € Msg* is the network
buffer and the boolean flag r indicates the status of the net-
work, which can be ready or busy.

Events are used for time consuming actions: executing
delay statements or transferring messages via a CAN bus.
Upon executing a time consuming action, an event is stored in
estobe triggered at the time that the delay of the action is over.
Two types of events are defined in the semantics of Hybrid
Rebeca: Resume and Transfer. Let Event denote the set of
all events, specified by {Transfer(x, M), Resume(x) | x €
Id, M € Msg}. A pending event with event Resume, param-
eterized by a rebec identifier, is generated and inserted into
the pending event list when a delay statement is executed in
the Rebeca model, and the corresponding rebec is suspended.
To model the passage of time for the delay statement, a timer
is assigned to the pending event. After the specified delay has
passed, the event is triggered, and consequently the behav-
ior of the given rebec is resumed by updating the suspension
status of the rebec. The pending event Transfer(x, M) is gen-
erated when a message from the network buffer is chosen to
be delivered to its receiver. A timer is assigned to model the
message delivery delay, and the pending event is inserted into
the pending event list. Upon triggering of a Transfer event,
the specified message is enqueued in the receiver’s message
queue, and the network status is set to ready which means
the network is ready to send another message. The effect of
each event trigger on a given location is formally defined by
a function effect : Event x Loc — Loc which is presented in
Table 1.

Definition 6 (Pending event) A pending event is a tuple
(d, e, t) where d is the delay of the event e and ¢ is a timer
that is assigned to this event. The event e can either be a
Resume or Transfer event. The timer is a real variable used
for defining the timing behavior for the delay of the pending
event. The event is triggered (and executed) after d units of
time after the pending event is created.

[= (ss, ps, ns, es) A ss(x5) = (v, q,0)

Resume

effect(Resume(xy), 1) = [[ss[xs — (v[suspended > false], q, c)]/SS]

[= (ss, ps, ns, es) A ss(x) = (v,q,0) A ns = (b, false)

Transfer(Software)

effect(Transfer(x, M), 1) = [[ss[x — (v,q & M, 0)]/SS, (b, true)/NS]

[= (ss,ps,ns,es) Aps(x) = (M, q,0) A ns = (b, false)

Transfer(Physical)

effect(Transfer(x, M), 1) = l[ps[x —= (N, q & M, 0)]/PS, (b, true)/NS]

@ Springer

An actor-based framework for asynchronous event-based cyber-physical systems 651

Transitions

We define two general types of transitions: urgent and
non-urgent transitions. An urgent transition must be taken
immediately upon entering its source location. We further
divide urgent transitions into message, statement and net-
work transitions which are respectively shown as =, =
and =,,. The non-urgent transitions are shown as = y. These
transitions indicate the passage of time. We use these types of
transitions to differentiate between different types of actions.
Message transitions are only for taking a message. Statement
transitions are for executing the statements. A network tran-
sition chooses a message from the buffer of the network to
be sent.Non-urgent transitions are used to model the passage
of time. These transitions include the behaviors of physical
rebecs’ active modes and pending time of events since they
are time consuming.

The ordering =,, = =5 > =, > =y is considered

among the transitions. Whenever a higher-order transition is
enabled in a location, no lower order transition can be taken
in that location. As explained in [10], a CAN bus is modeled
by a single global priority-based queue. To deterministically
deliver messages to their recipients according to their priori-
ties, all messages inserted into CAN at the same time should
be defined first and then the highest priority message among
them is selected. For this aim, we consider the effect of the
network entity in the operational semantics when no rebecs
can progress instantaneously, resulting =, = =, > =,.
The semantics of actions in hybrid Rebeca are defined using
these transitions in the locations. In the following, we define
these transitions.
Message transitions Message transitions define the act of tak-
ing a message. A rebec takes a message from the head of its
message queue, whenever the rebec has no statement to exe-
cute. For a software rebec, the rebec should not be also sus-
pended. A rebec is suspended when it executes a delay state-
ment. When a message is taken, the body of its corresponding
message server is added to the execution queue of the rebec,
and the message is removed from the message queue.

I = (ss, ps, ns, es) A ss(x) = (v, (M|q), €) A —v(suspended)
I ., lsslx — (v, ¢, body(x, M))1/SS]

I = (ss,ps,ns,es) Aps(x) =M, (M|q), €)
I <, lps[x — (M, g, body(x, M))]/PS]

Statement transitions Statement transitions define the act of
executing the statements. Like message transitions, a state-
ment transition can take place by a software rebec whenever
the rebec is not suspended. Consider the tuples (v, ¢, o) and
(O, g, 0) as the states of a software rebec and a physical
rebec respectively. The statement transitions include the fol-
lowings:

— Assignment statement This statement has two rules.
When assigning to a discrete variable, the value of the
variable is updated in the valuation of the rebec. When
assigning to a continuous variable, since its value is not
determined (it may depend on the continuous behaviors),
the assignment is transferred over to the transition to be
handled by the resulting hybrid automaton.

[= (ss, ps, ns, es) Ass(x) = (v, q, (dvar = e|o)) A —v(suspended)

I =, I[ss[x — (v[dvar — eval(e, v)], q,0)]/SS]

[= (ss, ps, ns, es) A ps(x) = (M, q, (cvar = e|o))

g var=evalen) ix s (O, g, 0)1/PS]

— Conditional statement This statement has three rules.
If the value of the condition is evaluated to true, the
statements of the true block are added to the tail of the
execution queue. Similarly, if the value of the condition
is evaluated to false, the statements of the false block
are used. If the value of the condition is not determined
(because of continuous variables used in the condition),
both possible paths are considered by creating two sepa-
rate transitions. The condition and its negation act as the
guards for these transitions.

[= (ss, ps, ns, es) A ss(x) = (v, g, {if(e, 0, 0")|d"))
Aeval(e, v) = true A —v(suspended)
[S lsslx — (v,q,0 ®c")]/SS]
[= (ss, ps, ns, es) A ss(x) = (v, q, (if(e, o, 0")|d"))
Aeval(e, v) = false A —v(suspended)
l :r>s I[ss[x — (v,q,0" ®c")]/SS]
[= (ss, ps, ns, es) A ps(x) = (M, q, (if(e, o, ") |c"))
[= lpsix = (M., q.0 & c")]/PS]

1 5 I[pslx > (M, q, 0" ® o”)]/PS]

— Send statement This statement, depending on the com-
munication type, has two rules. When the communication
is via wire, the message is directly added to the receiver’s
message queue. When the communication is via CAN,
the message is added to the CAN buffer to be han-
dled by the CAN behavior. The same rules hold for
physical rebecs with the difference that the condition
—v(suspended) is not needed.

I = (ss, ps, ns, es) A ss(x) = (vy, gx, ((y, m)|ox))
A=y (suspended) A
ss(y) = (vy, gy, 0y) Aconn(x, y) = Wire

1 25 [ss[x > (Vx, Gx. %), Y > (Uy, gy ® (x,m,), 0,)]/SS]

I = (ss, ps, ns, es) A ss(x) = (v, q, ((y, m)|o)A
ns = (b, r) A conn(x,y)=CAN A —v(suspended)

[S l[ss[x — (v, q,0)]/SS, (b & (x,m,y), r)/NS]

@ Springer

652

I. Jahandideh et al.

— Delay statement This statement suspends the software
rebec by updating the corresponding variable (suspension
status) in the valuation of the rebec and creates a pending
event (d, Resume, t) for resuming the rebec after d units
of time. The value d is the delay specified in the delay
statement and 7 is a fresh timer acquired from the pool of
timers by calling acquire_timer().

| = (ss, ps, ns, es) Ass(x) = (v, q, (delay(d)|o))
A—v(suspended) Nt = acquire_timer()

[= [[ss[x — (v[suspended — truel, ¢, o)]/
SS, es ® (d, Resume(x),t)/ES]

— Set mode statement This statement changes the active
mode 901 of the physical rebec to the specified mode.

[= (ss, ps, ns, es) A ps(x) = (M, q, (setmode(IN)|e))

I S, l[ps[x — (M, q,0)]/PS]

Network transitions These transitions define the behavior of
the CAN network which only includes the behavior of choos-
ing a message from the network buffer to be sent. Since
network transitions have a lower priority than message and
statement transitions, this makes the choosing behavior to
happen only when no rebec can progress instantaneously.
Let (b, r) be the network state. For this behavior, the mes-
sage with the highest priority is removed from the network
buffer b by calling highest_priority(b), a pending event of
Transfer type with the delay d for sending the message is
created, and the flag » of the network is updated to indicate
that the network is busy. The delay d for the created pending
event is the network delay for the message determined in the
network specification.

| = (ss, ps, ns,es) Ans = (b, true) N\ b
=D1® (x,m,y)®by ANl #y ANl 5 A
(x, m, y) = highest_priority(b) A d = netDelay(x, m, y)
At = acquire_timer()

I =, I[(by @ by, false) /NS, es®
(d, Transfer(y, (x,m, y)), t)/ES]

Non-urgent transitions Non-urgent transitions are used to
define the end of active physical modes and triggering pend-
ing events. These transitions are defined only when no urgent
transition is possible. These transitions are as follows:

— End of an active mode For a physical rebec (I, g, o)
if M is not none, the guard of the active mode N is
transferred to the transition, and the trigger of the active
mode is added to the execution queue, and the active

@ Springer

mode is set to none.

[= (ss,ps,ns,es) A ps(x) = (MM, €,¢) A M # noneA
L %, ANl 5y ANl 2y

| 2 Iipstx — (none, e, trigger(x,)1/ PS]

— Triggering of an event For a pending event (d, e, t), the
guard t == d is defined on the transition where ¢ and d
are the timer and the delay of the pending event respec-
tively. The event e is executed as a result of this transition
and the pending event is removed from the pending event
list. The effects of the execution of an event is defined by
effect function given in Table 1.

I = (ss,ps,ns,es) Nes=es1 D (d, e, t)Desa N
[£, ANl g N2

[z_=_3i>N effect(e, l[es1 @ esy/ES])

Example 4 Consider the model of a heater, sensor, and con-
troller, given in Fig. 6. Assume the resulting location after the
rebecs have handled their initial messages. In this location,
called €1, the message queues of hws and controller are empty
and they have no statement to execute. As controller has no
discrete variable (except suspended) and no delay statement
within its message handler, we abstractly represent its valu-
ation by an empty set. The rebec hws is in the mode Off. We
represent the local state of controller as ¢ : (4, €, €) and of
hws as & : (Off, €, €). As there is no message to handle and
statement to execute, no urgent transition is derived. Only
one non-urgent transition is derived by using the rule End of
an Active Mode:

Li=(c: (@, e,€),h:(0Off, €,€)) A psth) = (Off, €, €) A
by B AL P, ALY Py

timer==0.05
b —=nN (c: (@ ¢, 6),

h : (none, ¢, {timer = 0 (controller, control))))

A number of reachable locations from £; are shown in
Fig. 7. As rebecs are connected via wire and no delay state-
ment exists in the model, for the sake of brevity, we have
removed the local state of network and event list from the
locations. In the resulting location ¢,, an urgent transition
is derived as the consequence of assignment leading to the
location £3. Next, an urgent transition is generated as the con-
sequence of a send statement; the message control is inserted
into the queue of controller. We will explain the flow and
invariants of the location in Example 5.

We remark that time is advanced implicitly by the kernel of
the generated hybrid automaton through the use of timers and
their corresponding flows. In the following, we will assign
flows to the timers which make timers advance when there

An actor-based framework for asynchronous event-based cyber-physical systems 653

0 A
)

. c:(0,¢,€)
h:i (Off € €) timer == 0.05 | h - (none, e, {timer = 0 (controller, control)))
s — timer’ =1 ’
, / urg =0 urg’ =1
tempr’ = —0.1 x tempr’ g <0
timer < 0.05 u =
=H
il
Li
c: (0, (controly,) c:(0,¢e¢)
. h: (noﬁi €€)) 1?7 h: (none,e, <(uo7[1Lioller, control)))
N urg’ =1 urg == 0 urg’ = 1
urg <0 urg <0

Ly L3

Fig.7 Partial hybrid automaton derived for the system of a controller,
sensor, and heater

is no statement to be executed, no message to handle, and no
message to transfer.

Flows and invariants

To define flows and invariants for each location, we need to
consider continuous and instantaneous behaviors separately.
There are two kinds of continuous behaviors in the model,
behaviors regarding physical rebecs’ modes and behaviors
regarding pending events. Physical modes have all the nec-
essary information in themselves and the pending events
have simple timing behaviors. Instantaneous behaviors, i.e.,
urgent transitions, should be executed without allowing the
time passage. So time should not be passed when the sys-
tem resides in the source locations of such transitions, called
urgent locations. Any location with an instantaneous behav-
ior is considered as an urgent location.

Definition 7 (Urgent location flow and invariant) A possible
implementation for an urgent location is urg’ = 1 as its flow
and urg < 0 as its invariant, where urg is a specific variable.
Note that in this method, this new variable must be added
to the set Var of the hybrid automaton. Also the assignment
urg = 0 mustbe added to all incoming transitions to an urgent
location. The defined invariant prevents the model from stay-
ing in the location as the value of urg will be increased by
the defined flow.

If a location is urgent, the urgency flow, as defined above,
should be set as its flows. In case a location is not urgent,
it inherits the flows of all physical rebecs’ active modes,
denoted by ModeFlows, the flows for timers of pending
events, denoted by EventFlows, and a flow of zero for each
float variable to freeze its value, denoted by FloatFlows. The
flow of a pending event is simply defined as ¢’ = 1 where ¢
is the timer variable of the pending event. The Flws function
of the hybrid automaton is defined as:

Flws(l)
g =1, if [is urgent
| ModeFiows(l) \J EventFlows(l) | FloatFlows(l), otherwise

ModeFlows(l) = U Sflows(x, 91) where [.PS(x) = (M, q,0)

X€ER),
EventFlows(l) = U =1

(d,e,t)el.ES
FloatFlows(l) = J v=o0

vefloat variables

Similarly, if a location is urgent, its invariant is set to
urgency invariant, otherwise it inherits the invariants of all
physical rebecs’ active modes, denoted by Modelnvs and the
invariants for corresponding pending events’ timers, denoted
by EventInvs. The invariant of a pending event is defined as
t < d where t and d are the timer variable and the delay
of the pending event, respectively. The Inv function of the
hybrid automaton is defined as:

Inv(l) urg <0, if / is urgent
nv(l) =
Modelnvs(l) N EventInvs(l), otherwise
Modelnvs(l) = /\ invariant(x,) where [.PS(x) = (M, q, o)
xeRp
Eventlnvs(l) = /\ t<d
(d,e,t)€l.ES

Example 5 The location £ in Fig. 7 is not urgent as it has
no outgoing urgent transition. So the flow and invariant of
the mode Off are added to this location. However, all the
remaining locations ¢», ¢3, and £4 are urgent. We make
these locations urgent by using the specific variable urg as
explained in Definition 7.

Initial location and initial condition

For the initial location [y, we initialize all discrete variables
of rebecs to the value zero. Furthermore, the initial message
for each instantiated rebec, is put into its message queue. We
also set the value of all continuous variables to zero in the
initial condition of the initial location. The initial location [y
and the function Init of the hybrid automaton are defined as
below.

lo = (550, pSg, nS0, €So)

580(rs) = (vpy, ((rs, initial, 7)), €)

where v, (x) = 0 and x is a discrete variable of r;
pso(rp) = (none, ((rp, initial, 7)), €)

nso = (€, true)

es)p = €

. U._ w=0if I=1
Init(l) = vecontinuous variables)
, otherwise

@ Springer

654

I. Jahandideh et al.

4.3 Technical details

For simplicity, some details were omitted from our semantics.
Here, we describe these details informally.

Limited size for message queues In the semantics of
hybrid Rebeca, the message queues of rebecs are considered
unbounded. To derive a hybrid automaton with a finite state
space, a specific size must be specified for message queues
of rebecs. We remark that a hybrid automaton can be derived
only for those hybrid Rebeca models that generate a finite
number of locations, which are the models with bounded
queues and limited possible values for rebec variables.

Message arguments To incorporate message arguments,
we must consider discrete and continuous arguments sepa-
rately. For discrete arguments, since their values are known
in the state, that value is included in the message and when
the message is taken, its arguments are added to the rebec’s
valuation. When the execution of the message is finished, the
arguments are removed from the valuation. For continuous
arguments, the values are not generally determined so it is
not possible to send the value within the message. To this
aim, a non-evolving auxiliary variable is used. Before send-
ing a message, each continuous argument is assigned to an
auxiliary variable (by using continuous variable assignment).
Then, a reference to the auxiliary variable is included in the
message. When the message is taken, for each continuous
argument, an assignment from the auxiliary variable to its
respective parameter variable is implicitly executed.

Continuous variable pools When creating a new event
(for a delay statement or for sending a message from CAN),
anew timer is assigned to each event. But in hybrid automata
all continuous variables must be defined statically. To han-
dle this, variable pools with fixed sizes are used. There are
two variable pools in our semantics, one for timer variables
and one for the auxiliary variables of message arguments (as
mentioned above). The size of the variable pools affects the
behavior of the model. A small size will lead to an incom-
plete model, and a large size will lead to a huge model which
can not be easily analyzed.

We consider a specific location, called Fault, for faulty
situations like queue overflow, running out of the pooled
variables, and having messages with the same priority in the
CAN buffer. We assume the message with the highest pri-
ority must always be unique in CAN buffer. We generate a
transition to this specified location Fault upon occurrences
of the mentioned faults.

5 Compositional hybrid automata model
and hybrid Rebeca

The semantics of our language is defined as a monolithic
hybrid automaton. In this section, we define a compositional

@ Springer

hybrid automata for a Hybrid Rebeca model. In the compo-
sitional semantics we provide a mapping from constituent
elements of actor models to hybrid automata constructs and
templates. We can consider these constructs and templates
as a generic mechanism for customizing hybrid automata
for modeling event-based asynchronous communicating dis-
tributed systems. We illustrate how working at the level of
Hybrid Rebeca instead of hybrid automata increases mod-
ularity and improves analyzability; a Hybrid Rebeca model
makes the modification and maintenance of a model eas-
ier, while its monolithic semantics results in a more feasible
model for analysis. Throughout this section, we use the def-
inition included in Definition 7 for the meaning of urgent
locations.

5.1 Mapping

Due to the complexity of defining the algorithm for find-
ing the highest priority message in the network buffer at the
hybrid automata level, we only focus on a subset of Hybrid
Rebeca language, namely specifications in which rebecs are
connected by wire. To this aim, we only provide mapping for
software rebecs as the structure of physical rebecs is similar
to hybrid automata.

5.1.1 Software rebec

To define a software rebec ry, = (i, V;, msgsrvs;, K;),
we break it to three hybrid automata namely, MsgQueue,
MsgServers and ConsVars. The automaton MsgQueue is the
message queue of the rebec. Other rebecs can only interact
with this component. This component enqueues the received
messages and executes the appropriate message server in
MsgServers when it is ready. The automaton MsgServers
contains the execution logic of all message servers of the
rebec ry,. The automaton ConsVars is an auxiliary compo-
nent for variables that do not evolve over time. As the only
available variable type for hybrid automata is real, we con-
sider a real variable for each variable of the type int and
float. In the following we explain these components in more
details.

MsgQueue: This component has two responsibilities,
queuing the received messages and executing the correspond-
ing message server of the head of the queue when MsgServers
is ready. We use variables to represent queue elements. A
queue element consists of a variable for message ID and some
variables for parameters of messages. For simplicity, here
we only focus on messages ID. The automaton MsgQueue
has C + 1 queue elements where C is the capacity of the
queue. The extra queue element is used as a temporary buffer.
Other rebecs put their message ID in the buffer element and
MsgQueue will put the buffered message ID into the appro-
priate element. This approach encapsulates the inner working

An actor-based framework for asynchronous event-based cyber-physical systems 655

of the queue from other rebecs. We use a circular queue
algorithm to handle the message queue. This automaton has
variables for the queue head, tail and size, and based on
these variables, it decides in which element it should put the
buffered message. This decision is implemented as branch-
ing transitions. The guard of each transition is a comparison
of the tail variable with the indexes of the queue elements.
In the assignment of each transition, the buffered message
ID is assigned to the message ID of the corresponding ele-
ment, the value of the tail variable is incremented and buffer
flag is marked as empty. We remark that the queue state of
MsgQueue could be unfolded into the locations similarly to
the monolithic semantics, but this extremely complicates the
mapping, as for all possible permutations of the queue, a
location should be considered.

To start the execution of the head element, MsgQueue
first checks whether the queue is not empty and MsgServers
isidle. The idleness is checked by means of a shared variable
between MsgQueue and MsgServers. To start the execu-
tion, we use a synchronization label between MsgQueue
and MsgServers. Each message has a unique synchroniza-
tion label and based on the message ID of the head element,
a transition with the appropriate label becomes enabled. To
this aim, the head of the queue is first determined based on
the head variable by using branching transitions. Then each
branch is further divided to more branches to determine the
correct synchronization label based on the message ID of
the chosen element. After synchronization, MsgQueue will
update its queue state accordingly. The size of these branches
is an order of the capacity of the queue times the number
of message servers. The overall behavior of MsgQueue is
implemented as a loop. After completing one of its behav-
iors, the component goes back to its initial location. All the
locations except the initial location are urgent, so execution
of each behavior happens instantaneously. The schematic of
aMsgQueue with the queue size of 2 and two message servers
is represented in Fig. 8.

MsgServers This component merely consists of the exe-
cution logic of all message servers. The overall behavior is to
wait for a synchronization label from the MsgQueue. Then,
it marks itself as “busy”” and executes the specified message
server statements. At the end of execution, it marks itself as
“idle” and goes to the initial location again.

Since a message server is a sequence of statements, to
translate a message server we convert its statements to a
sequence of locations and transitions. Translating most state-
ments to hybrid automata is trivial. An assignment statement
is translated to one urgent location. The assignment itself
will be over the outgoing transition of the location. A delay
statement is translated to one location. The delay behav-
ior is defined as a simple timing behavior on the location
and its outgoing transition. A send statement is translated to
one urgent location. In the outgoing transition we check the

emptiness of the destination queue buffer (which is a shared
variable) and if empty, we put the corresponding message
ID in the buffer’s message ID. Conditional statement can be
regarded as a composite statement. It consists of two paths
based on its condition and each path again can be translated
by the mentioned translations recursively. An overview of
these translations are presented in Fig. 9. The translation
of two consecutive statements is achieved by merging the
outgoing transition of the first statement with the incoming
transition of the second statement.

ConsVars This component has only one location with no
transition. For each variable in the rebec, a flow of zero is
defined in the location to prevent its value from changing
over time. Furthermore, a flow of zero is also defined for
method parameters, queue variables and the variable for the
readiness of the MsgServers. It should be noted that in our
monolithic approach, we have generated a location for each
valuation of discrete variables and the local queues of actors.

5.1.2 Model

A model H = (R4, %, N) is the parallel composition of
the translation of the rebecs in R according to the men-
tioned rules. To translate the initial messages, we only need
to initialize the queue variables of the corresponding rebecs
with appropriate values. Note that the set of physical rebecs
is empty and we have assumed only wire communication
among rebecs in the network specification N.

5.2 Comparison

In this section, we first compare the monolithic semantics to
the compositional approach in terms of modularity and then
analyzability

Modularity Providing a formal measurement for modular-
ity is beyond the scope of this paper. Here we adopt a simple
measure for modularity, which is the amount of changes
required in a model to accommodate with the changes in
the design. We present a list of possible changes in a hybrid
Rebeca model and give an informal measure of required
changes in the defined compositional hybrid automata, from
now on denoted by CHA.

Adding a new message server without parameter In CHA
we add the translation of the message server to MsgServers
with a fresh synchronization label for that message, and in
the MsgQueue we must integrate the execution start of the
message server. As explained before this is done by first
determining the head element and then determining the cor-
responding synchronization label based on the message ID.
The cost of this integration is an order of C (capacity of
queue) because for each queue element we need to add the
synchronization label.

@ Springer

656 I. Jahandideh et al.

elm0Omsg := bufmsg& &
tail .= 1&& size := size + 1

size 1= size — 1

tail == 0 &&head :=

An\cléﬂ ms

size > 0&&busy == 0

(\ (N
T bufful == 1&&size < 2 N/

size 1= S12€

&&head : =1

tail ==

elm1 = bufmsg&&
tail := 0&& size := size + 1 syncl elmOmsg==
&&bufful :== 0

Fig. 8 Schematic for a MsgQueue with a capacity of 2 and two message servers. head, tail and size are the index of the head element, the index
of tail element and the size of the circular queue, respectively. syncl and sync2 are the corresponding synchronization labels for the two message
servers. buffull is a flag which determines whether the buffer element is full or not. elemOmsg, elemImsg and bufinsg are the id of the message
stored in the first element, the second element and the buffer element, respectively

urg, =1

[

urg; == 0 var = expr

(a) Translation for assignment statement v = expr

@ timer; ==d

(b) Translation for delay statement delay(d)

destBufFull == 0

destBufMsg := msg
&& destBufFull := 1

(¢) Translation for send statement

(d) Translation for conditional statement

Fig.9 An overview of statement translations for compositional hybrid automata

Adding a new statement to a message server To add a new
statement we simply add the translation of that statement to
the corresponding message server in the MsgServers.

Adding a new variable We introduce the new variable as a
shared variable between MsgServers and the ConsVars while
the ConsVars is modified by adding a flow of zero for the new
variable.

Increasing rebec’s queue size Since inner workings of the
queue is encapsulated from other rebecs, we only need to
change the MsgQueue of the rebec. We need to change two
places for each added queue element. First we add one branch
for processing the buffer element (queuing the buffer element
in the tail element) and then we add a new branch for process-

@ Springer

ing the head of the queue. Note that this branch must again
be further divided for each message server. So the cost of this
change is in order of the number of the message servers.

Changing the known rebecs bindings The binding is done
by sharing the buffer element of the target rebec with the
original rebec. To change a known rebec binding in a rebec,
we only need to change this sharing.

Adding a new rebec Three automata, based on our map-
ping approach, will be added while the names of its variables
are different from previous instances of the same class. How-
ever, in most tools, the concept of template allows to have
several instances of an automaton. So in practice, adding a
new rebec is trivial.

An actor-based framework for asynchronous event-based cyber-physical systems 657

Table 2 Comparison summary for the number of continuous variables for a single rebec in the two approaches. Here dvar and cvar denote the
number of the rebec’s discrete variables and continuous variables, respectively

MNO

CHA

Defined variables cvar
Communication variables

Message execution variables
Other 1

< C x paramj"™*

< param;nax

dvar + cvar
> (C + 1) x (1 + param{"*)
> param;™®*

6

Analyzability For analyzability, we focus on the number
of continuous variables in models, since often there is an
exponential relation between the number of variables and
the analysis time of a model. Here, we compare the number
of continuous variables in a software rebec i in our mono-
lithic approach (MNO) compared to the CHA approach. In
the MNO, only the defined continuous variables of the rebec
are translated as continuous variables in the final hybrid
automata, but in the CHA both continuous and discrete
variables are translated. As mentioned before, in MNO for
sending continuous parameters a variable pool is used, so at
worst case C x param;"* continuous variables are needed for
arebec, where C is the queue size and param"** is the max-
imum number of parameters of the rebec’s message servers.
In CHA, for each queue element and the buffer, along side
the message ID, at least param}“a"] variables must be con-
sidered for the message parameters. So the total number of
variables for messages is at least (C + 1) x (1 + param;™).
In CHA, at least another param;"** continuous variables are
needed in the MsgServers for the execution of statements
to handle parameters. However, in MNO at most param;"®*
continuous variables are needed, since only float parameters
are translated to continuous variables. In MNO, at most one
extra variable is needed for the rebec’s delay timer. In CHA,
in addition to the delay timer, the variables for the queue
head, queue tail, queue size, buffer fullness flag and mes-
sage server busyness flag are needed. The summary of this
comparison is given in Table 2.

From the modularity standpoint, the main drawback
of CHA is the translation of decisions encoded by the
MsgQueue. In the above mapping, these decisions lead to
inserting the buffered message into the appropriate queue
element and calling the corresponding message server for the
head of the message queue. The former behavior depends on
the queue size and the latter depends on both the queue size
and the number of the message servers of the rebec. These
dependencies make extending or modifying CHA cumber-
some compared to Hybrid Rebeca.

! The exact number depends on the implementation. However since all
the parameters of the message server which has the most parameters
must be considered, at least this number of variables are needed.

From analyzability standpoint, as it was shown, the num-
ber of continuous variables in the CHA approach is higher
than the MNO approach. This higher number of variables
may increase the analysis time of models.

6 Guideline for verification of hybrid Rebaca
models

As we focus on verification of asynchronous event-based
systems using the notion of a single global clock, the relative
intervals are used to naturally specify the timimg behavior of
such systems. Metric Temporal Logic (MTL) [21] is an exten-
sion of linear time properties by adding optional real-time
constraints to the temporal operators, suitable for specifying
relative intervals. We explain how verification of MTL safety
properties can be reduced to reachability analysis by using
monitor classes.

Given a set P of atomic propositions, the formulas of
MTL are built from P using Boolean connectives, and time-
constrained versions of the until operator U as follows:

pi=p | ~¢ | dnG | dUI O,

where I € (0,00) is an interval over the non-negative
reals with endpoints in N U {oo}. The constrained eventually
operator F; ¢ = T Uj¢ and constrained always operator
G| ¢ = —F; —¢ can be defined.

We explain the two timed property patterns that we use
for the analysis of our case study:

— Maximal distance between two events specified by the
formula G a = Fjo,max] b where the events a and b are
communication events, either sending/handling a mes-
sage. This property expresses that whenever the event
a occurs, after at most max time units the event » will
happen.

— Zero distance between two constraints on variables spec-
ifiedby G ¢; = Fjo,0) ¢2 where ¢ and ¢ are constraints
on variables. This property is helpful to inspect the imme-
diate effect of variables on each other.

@ Springer

658

I. Jahandideh et al.

physicalclass Monitor{
knownrebecs { }
statevars{real timer; float r;}

msgsrv initial (){
setMode(Running);
r = 0;}

msgsrv start(){
timer = 0;

QOO Uk W+

[

Fig. 10 The definition of monitor class

We explain how such patterns can be verified by using a
monitor class. To measure the amount of time between two
events, a monitor class is added to the Hybrid Rebeca model
to measure the time between two events. The monitor class
is a simple physical class with one physical mode and two
message servers, namely start and stop. The physical mode
tracks the time with the real variable timer and the message
servers are used to start and stop the tracking. The definition
of the monitor class is presented in Fig. 10. Note that in the
start message server timer is reset.

For inspecting the first pattern Ga = F{o,max]b, one
instance of Monitor class is added to the model under con-
sideration. We revise the code by sending a start message
to the monitor in the code after the statement triggering
the event a. We also send a sfop message to the monitor
in the code after the statement triggering the event b. A
sending event, shown as send(m), is triggered by the state-
ment y.m() while the handle event, denoted by handle(m),
is triggered by executing the first statement of the message
server of m. The monitor class should be wired to the rebecs
that their class definitions have been revised. To enforce that
the distance between two events should be less than max
in SpaceEx, the unsafe condition for reachability analysis
is timer > max where timer is the name of the monitor’s
timer.

For verifying the second pattern G ¢1 = Fjo,0] 2, We
almost act with the same fashion. Sending start and stop
messages are conditioned to ¢ and ¢, respectively. In revis-
ing the code, after any statement that assigns to the variables
involved in c¢1, we add a conditional statement “if (¢1) mon-
itor.start()”. Similarly, after any statement that assigns to
the variables involved in ¢, we add a conditional state-
ment “if (c2) monitor.stop()”. To enforce that the distance
is zero, the unsafe condition for reachability analysis is
timer > 0.

7 Case study

We demonstrate the applicability of our language on a simpli-
fied Brake-by-Wire (BBW) system with Anti-lock Braking

@ Springer

11| r=1;}

12

13 msgsrv stop(){r = 0;}
14

15 mode Running{

16 inv (true){timer’=r;}
17 guard(false){}

18 }

19 |}

System (ABS) [12,20,28]. In a BBW system instead of using
mechanical parts, braking is managed by electronic sensors
and actuators. In ABS, the safety is increased by releasing the
brake based on the slip rate to prevent uncontrolled skidding.

In this system, the brake pedal sensor calculates the brake
percentage based on the position of the brake pedal. A global
brake controller computes the brake torque and sends this
value to each wheel controller in the vehicle. Each wheel
controller monitors the slip rate of its controlled wheel and
releases the brake if the slip rate is greater than 0.2. There is a
nonlinear relationship between the friction coefficient of the
wheel and the slip rate. When the slip rate is between zero
and around 0.2, any increase in the slip rate increases the fric-
tion coefficient, but after 0.2, further increase in the slip rate,
leads to a reduction in the friction coefficient. For this reason
when the slip rate is greater than 0.2, no brake will be applied
to the wheel. In this system, each pair of wheel and its wheel
controller are connected directly by wire. The brake pedal
sensor sends the brake percentage value to the global brake
controller through wire. All other communications are done
through a shared CAN network. For simplicity, we have con-
sidered two wheels in the model. In the following sections,
we explain in detail the behavior of its modules by Hybrid
Rebeca language.

7.1 Model definition

The model consists of four major classes: WheelWithSensor
and WheelCtlr classes, specified in Fig. 11, BrakeWithSensor
and BrakeCtrl classes, specified in Fig. 12. The main block,
defining the configuration of the system and CAN network
is given in Fig. 13.

The WheelWithSensor class models the sensors and actua-
tors of the wheel. This class has only one active mode Rolling.
In this mode, it periodically sends the speed of the wheel to
its wheel controller and applies the effect of braking on the
wheel speed. The WheelCtlr class defines the behavior of the
wheel controller. It monitors the slip rate of the wheel and
decides to apply the brake based on its value.

BrakeWithSensor class defines the behavior for the brake
pedal. Here we assume a simple behavior where the brake

An actor-based framework for asynchronous event-based cyber-physical systems 659

1 | physicalclass WheelWithSensor{
2 knownrebecs { WheelCtlr ctlr;}
3 statevars {float trq; real spd; real t;}
4 msgsrv initial (float spd_){
5 spd = spd_;
6 setmode(Rolling);
7
8 msgsrv setTrq(float trq_){
9 trq = trq_;
10 }
11 mode Rolling{
12 inv(t <= 0.05){
13 £ = 1;
14 spd’ = —0.1—trq;
15
16 guard(t == 0.05){
17 t = 0;
18 ctlr .setWspd(spd);
19 if (spd > 0) setmode(Rolling);
20 | }}}

21

22 | softwareclass WheelCtlr{

23 knownrebecs {

24 WheelWithSensor w;

25 BrakeCtlr bcetlr;}

26 statevars {int id; float wspd; float slprt;}
27 msgsrv initial (int id_){

28 id =id_;

29

30 msgsrv setWspd (float wspd_){

31 wspd = wspd_;

32 betlr .setWspd (id,wspd);

331)

34 msgsrv applyTrq(float reqTrq, float vspd){
35 if (vspd == 0) slprt = 0;

36 else

37 slprt =(vspd—wspd*WRAD) /vspd;

38 if (slprt>0.2) w.setTrq(0);

39 else w.setTrq(reqTrq);

40 | }}

Fig. 11 Specification of WheelWithSensor and WheelCtlr classes in Hybrid Rebeca. WRAD is a constant value of 0.3 for the wheels’ radius

percentage is increased by a constant rate until it reaches a
predefined max percentage. The class has one known rebec
bctrl which is the global brake controller. It defines four state
variables bprcnt, mxprent, t and r which are the brake percent-
age, maximum brake percentage, an auxiliary timer variable
and a variable that defines the rate for the brake percentage,
respectively. In the initial message server, the values of the
initial and maximum brake percentage are initialized with
the given values and the rate variable is set to 1 and the active
mode of the rebec is set to Braking. This mode defines a peri-
odic behavior where the value of bprcnt is sent to betrl and
the brake percentage is increased by the rate defined by r. In
the actions of this behavior, if the brake percentage is equal
or greater than mxprcnt, the rate variable r is set to zero to
stop the brake percentage from changing by time.

The BrakeCtrl class is the global brake controller and has
the responsibility of delegating the brake torque to wheel
controllers. It defines two known rebecs for each wheel con-
troller named wctlrR and wetlrL. This class has five state
variables for the speed of the right and left wheels, the brake
percentage from the brake pedal, the global torque calculated
from the brake percentage and the estimated vehicle speed.
In the message server control, first the speed of the vehicle
is estimated based on the speed of individual wheels and the
desired brake torque is calculated based on the brake per-
centage. Here, we simply assume that the brake percentage
is equal to the brake torque. Then, the estimated speed and
global torque are sent to each wheel controller via the CAN
network. The message servers initial, setWspd and setBprcnt
are omitted for brevity. The message server setWspd updates
the current wheel speed variable based on the input identifier.
The message server control must be executed periodically, so

an auxiliary Clock class is used to periodically send a control
message to BrakeCtrl.

In the main block, all necessary rebecs are instantiated.
The wheels RightWheel and LeftWheel are wired to their
respecting wheel controllers by using the tag @Wire. Both
wheels are initialized with the speed of 1.2 The wheel con-
trollers RightWCtlr and LeftWCtlr are connected to their
corresponding wheels by wire and are connected to the global
brake controller through CAN by using the tag @CAN.
Identifiers of 0 and 1 are given to rebecs RightWCtlr and
LeftWCtlr as initial parameters, respectively. The brake con-
troller bctlr is connected to both wheel controllers through
the CAN network and the brake brake is initialized with the
brake percent 60 and maximum brake percent of 65. Both
brake brake and clock clock are connected to bctlr by wire.
There are four CAN messages in the model. The brake con-
troller betlr sends applyTrq message to the wheel controllers
RightWCtlr and LeftWCtlr. The wheels RightWheel and Left-
Wheel send setWspd message to RightWCtlr and LeftWCtlr
respectively. A higher priority is defined for applyTrg mes-
sages. Note that a lower number indicates a higher priority.
The network delay of all four CAN messages is specified as
10 ms.

7.2 Analysis and verification

For the analysis of this model the queue size of bctlr is set to
4, the queue sizes of both RightWCtlr and LeftWCtlr is set
to 2, and for other rebecs the queue size is set to 1. The size

of timer variable pool is set to 1 and the size of arguments

2 As the properties to be verified do not depend on the value of the
speed, to minimize the analysis time, this value has been chosen.

@ Springer

660 . Jahandideh et al.
1 | physicalclass BrakeWithSensor{ 28 float bprent;float gtrq; float espd;}
2 knownrebecs {BrakeCtlr bctlr;} 29 msgsrv control(){

3 statevars {real bprcnt; real t; 30 espd = (wspdR + wspdL)/2;

4 float mxprent; float r} 31 gtrq = bprcnt;

5 msgsrv initial (float b_, float mx_){ 32 wctlrR.applyTrq(gtrq, espd);

6 bprent = b_; 33 wctlrL.applyTrq(gtrq, espd);

7 mxprcnt = mx_; 34

8 r = 1; 35 // Setters for wspdR, wspdL and bprent
9 setmode(Braking); 36

10 } 371}

11 mode Braking{ 38

12 inv(t <= 0.05){ 39 | physicalclass Clock{

13 t = 1; 40 knownrebecs {BrakeCtlr betlr;}

14 bprent’ = 1 41 statevars {real t;}

15 42 msgsrv initial (){

16 guard(t == 0.05){ 43 setmode(Running)

17 t = 0; 44

18 betrl . setBprent(bprent); 45 mode Running{

19 if (bprent>=mxprent) 46 inv(t <= 0.05){

20 r = 0; 47 t’ = 1;

21 setmode(Braking); 48

22 [11} 49 guard(t == 0.05){

23 50 t = 0;

24 | softwareclass BrakeCtlr{ 51 betlr . control ();

25 knownrebecs{ 52 setmode(Running);

26 WheelCtlr wctlrR;WheelCtlr wetlrL;} 53| }}}

27 statevars {float wspdR;float wspdL;

Fig. 12 Specification of BrakeWithSensor and BrakeCtrl in Hybrid Rebeca
1 | main { 15
2 WheelWithSensor RightWheel 16 CAN{

3 (@Wire RightWCtlr):(1); 17 priorities {

4 WheelWithSensor LeftWheel 18 betlr RightWCtlr.applyTrq 1;

5 (@Wire LeftWCtlr):(1); 19 betlr LeftWCtlr.apply Trq 2;

6 WheelCtlr RightWCtlr 20 RightWCtlr betlr.setWspd 3;

7 (@Wire RightWheel, @QCAN bctlr):(0); 21 Left WCtlr bctlr.setWspd 4;

8 WheelCtlr Left WCtlr 22 }

9 (@Wire LeftWheel, QCAN bctlr):(1); 23 delays{

10 BrakeCtlr bctlr 24 betlr RightWCtlr.applyTrq 0.01;
11 (@CAN RightWCtlr,@QCAN LeftWCtlr):(); 25 betlr LeftWCtlr.applyTrq 0.01;
12 BrakeWithSensor brake 26 RightWCtlr betlr.setWspd 0.01;
13 (@Wire bcetlr):(60,65); 27 LeftWCtlr bctlr .setWspd 0.01;
14 Clock clock(@Wire betlr):(); 28 | }}1}

Fig. 13 Main block of the brake-by-wire model in Hybrid Rebeca

variable pool is set to 11. The hybrid automaton derived from
the model consists of 10,097 locations and 25,476 transitions,
derived automatically by our tool.> We use SpaceEx [14] tool
to verify our model. We simplified the nonlinear equation of
the slip rate for analysis as it is not supported by SpaceEx. By
specifying a set of forbidden states, safety properties can be

3 The tool converting a hybrid Rebeca model to a hybrid automaton, as
an input of SpaceEX is available at http://rebeca-lang.org/allprojects/
HybridRebeca. The tool handles models specified in an intermediate
Footnote 3 continued

format very close to Hybrid Rebeca. This format is suitable for transla-
tion into hybrid automata. The process of translating a Hybrid Rebeca
model to the intermediate format is currently manual.

@ Springer

verified by the reachability analyzer of SpaceEx. We verified
three properties for our case study:

1. The first property is “design-fault freedom”.

2. The second property is a timing constraint. This property
states that the time between the transmission of the brake
percentage from the brake pedal and its reaction by wheel
actuators, must not exceed 0.2 s.

3. The third property states that whenever the slip rate of a
wheel exceeds 0.2, the brake actuator of that wheel must
be immediately released.

http://rebeca-lang.org/allprojects/HybridRebeca
http://rebeca-lang.org/allprojects/HybridRebeca

An actor-based framework for asynchronous event-based cyber-physical systems 661

By design-fault we mean a fault caused by following situa-
tions: exceeding the capacity of a message queue, running out
of the pooled variables, and having messages with the same
priority in the CAN buffer. We assume the message with the
highest priority must always be unique in CAN buffer.

For the first property, the verified forbidden condition in
SpaceEx for this property is loc() == Fault, where the term
loc() specifies the current location in SpaceEx and Fault is
the specific location we considered for faulty situations as
we explained in Sect. 4.3.

The second property inspects the time between two events:
the transmission of the brake percentage indicates sending
the message setBprcnt to bctrl by the instance of the class
BrakeWithSensor. The reaction of the wheel actuator denotes
receiving the message setTrg by the instances of WheelWith-
Sensor. This property is specified as “G send(setBprcnt) =
F0,0.2) handle(setTrg)”. According to our guideline in Sect. 6,
one monitor rebec is instantiated and is wired to the brake
pedal and one of the wheels. A start message is sent in the
trigger of the Braking mode of the BrakeWithSensor class
after the brake percentage is sent to the brake controller and
a stop message is sent by setTrq message server of the wired
wheel.

The third property enforces that when the slip rate is
greater than 0.2, then immediately the brake is released, i.e.,
the wheel torque becomes 0. This property is specified as
“Gslprt > 0.2 = Fp,0trq = 0)”. For this property, a
monitor rebec is wired to one of the wheels and its wheel
controller. A start message is sent from the wheel controller
after it computes the slip rate when the slip rate is greater than
0.2 in the message handler applyTrq and a stop message is
sent by setTrqg message server after assigning to the variable
trq.

The resulted hybrid automaton for the first property has
10,097 locations and 25,476 transitions, which is huge
for verification purposes. This huge size stems from the
fine-grained semantics of our language. But most of these
locations are urgent locations where time does not advance
and can be aggregated for the verification of the properties.
Our tool automatically aggregates the urgent locations of the
hybrid automaton derived from the given model. For aggre-
gation, the tool removes each urgent location by combining
its incoming and outgoing transitions. This aggregation is
sound as we focus on properties that do not depend on aggre-
gated locations. So, our aggregation preserves deadlock and
timed properties expressing the time distance between two
events/value updates in our analyses.

After aggregating these urgent locations, the size of the
resulting hybrid automaton is reduced to 21 locations and
1148 transitions. The three properties are verified on their
respective reduced hybrid automaton. The verification results
of these properties are provided in Table 3.

8 Related work

There are some frameworks for modeling and analyzing
cyber-physical systems. Some of these frameworks rely on
simulation for analysis and others offer formal verification.

Application of the actor model as the basis for modeling
CPSs has been followed in Ptolemy [33] and development
tools such as Theatre [7] which use simulation for analyzing
the systems. These tools help engineers to get insight of sys-
tems by restricting their behavior to be deterministic. With
the aim to synthesis codes from models, non-determinism
is not supported by these frameworks as deployed systems
are deterministic. Hybrid Rebeca allows non-determinism
inherent in concurrent and distributed systems, e.g., in the
case of simultaneous arrival of messages (and no explicit
priority-based policy to choose one over the other). We
can analyze possible implementations of systems (due to
possible resolution of non-determinisms) by application of
reachability analysis to get insight into the system proper-
ties. Although by Ptolemy models we get precise insights
into deterministic scenarios for a specific implementation,
by more abstract Hybrid Rebeca models, we can derive
formal analysis about the possible implementations of a sys-
tem.

Ptolemy II is a framework that uses the concept of model
of computation (MoC) which defines the rules for concur-
rent execution of components and their communications.
Ptolemy supports many models of computation like process
networks, discrete events, dataflow and continuous time. Het-
erogeneous model can be made by nesting these models of
computations in a hierarchical structure. As far as we know
there is no formal semantics for the hybrid models of Ptolemy
framework to enable formal verification. Our hybrid Rebeca
models can be considered as an extension of discrete events
model of computation in Ptolemy.

In [7], an agent-based and control centric methodol-
ogy, called Theatre, is presented for development of CPSs.
This approach includes all development stages of a system
from analysis by simulation to the execution of the final
system. For the modeling phase concepts like actors, mes-
sage, actions, processing units and environmental gateway
are presented in this methodology. The message passing
among actors is asynchronous and the computations of the
model take place in the actions that are submitted to the
processing units by the actor for execution. The environmen-
tal gateway is used for abstracting the physical processes
where in later stages is replaced by the real entities. This
approach relies on simulation to analyze a system, and
no formal analysis is supported. Theatre is extended with
continuous behaviors in [30] for modeling and property
checking of CPSs. As mentioned by the authors in the
paper the work is inspired from [17]. For continuous behav-
iors, the concept of mode is introduced which is similar

@ Springer

662

I. Jahandideh et al.

Table 3 Verification result of the case study

Property Derived HA Generation time (s) Reduced HA Verification result Verification duration (s)
Design-fault freedom 10,097 25,476 12 21 1148 Passed 3705
Reaction time 16,317 42,976 20 21 1168 Passed 7521
Brake release 54,097 175,036 64 21 1168 Passed 3541

Legends: Property: verified property, Derived HA: derived hybrid automaton size where the first and second columns are the number of locations
and transitions, respectively, Generation time: duration of hybrid automaton generation in seconds, Reduced HA: reduced hybrid automaton size,
Verification result: result of verified property, Verification duration: duration of verification in seconds

to the concept of modes in Hybrid Rebeca, but they are
defined as separate entities from the actors. Hybrid The-
atre models are reduced into the stochastic timed and hybrid
automata of Uppaal Statistical Model Checker for an approx-
imate analysis based on simulation. In [29], a modular
approach for specifying and validating CPSs using rewrit-
ing logic-based technique is proposed. In this work a CPS
is described as a linear hybrid automata in rewriting logic
where the components of the system communicate asyn-
chronously. Timed hybrid Petri nets [9] can also be used
to model hybrid systems and CPSs. For analysis of these
hybrid Petri nets in [9] a translation to hybrid automata
is presented. However, Petri-net-based approaches prohibit
modular specification of systems. The framework of [22]
provides a hybrid process calculus tailored for modeling
CPSs and analyzing their security properties [23,24]. Dif-
ferential dynamic logic (dL) [32] specifies hybrid systems in
a sequential imperative programming language. This hybrid
logic, not suitable for modeling distributed and concurrent
hybrid systems, supports verification via its implementation
in theorem prover tools. The Active Object, objects realiz-
ing actor-based concurrency, language ABS [18] has been
extended with Hybrid Active Objects for modeling CPSs,
called Hybrid ABS (HABS) [19]. In this formalism, object
actives can have real-valued fields that their evolution over
time is expressed by ODEs. Hybrid active objects are time-
deterministic as opposed to Hybrid Rebeca and communicate
via ports. Their verification approach is based on translation
from HABS models following certain communication pat-
terns to dL. In all mentioned approaches network governing
the interactions between physical and cyber entities is not
addressed.

9 Discussion

In Sect. 3, we presented our extended actor model for cyber-
physical systems. In our model, the software and physical
actors are separated and modes are added to physical actors
for specifying the continuous behaviors. The separation of
software and physical rebecs prevents the interference of con-

@ Springer

tinuous behaviors with discrete behaviors. In Rebeca, each
actor has only one thread of execution and its local state is
encapsulated from other actors. This greatly simplifies the
interactions between actors. But having both continuous and
discrete behaviors in one actor, can be considered as having
multiple threads of execution in the actor; each continuous
behavior is governed by a thread. Since these threads share
the same variables, this approach is inconsistent with Rebeca
and can surprise the modeler. A simple example to highlight
this issue is to consider the following code segment of a mes-
sage server:

a=xk;
delay (2);
b=a+c;

The constant k is assigned to the variable a. The delay state-
ment is used to abstractly model the computation time of
complex computations. After the specified delay, the value
of variable a is used to update the variable b. Assume that the
rebec has a continuous behavior and during the execution of
the delay statement, the continuous behavior is finished and
changes the value of variable a in its actions. This affects the
value of the variable b when the delay statement is over and
can lead to a faulty behavior. The separation of software and
physical actors solves this issue. Note that the delay statement
is not allowed in the physical actors.

To analyze a Hybrid Rebeca model, we are constrained to
first derive its corresponding monolithic hybrid automaton.
This derivation is only possible for Rebeca models that gen-
erate a finite number of locations. However, this process may
be time-consuming for the models with large bounded queues
and large variations of values for rebec variables. The anal-
ysis of some properties may only need a partial generation
of the automaton. To avoid building the whole automaton, in
another project, we define our semantics in terms of timed
transition systems and integrate an existing approximation
algorithm for the reachability analysis of hybrid automata
into our state-space generation process. As we explained in
Sect. 2.2, the reachability analysis of hybrid automata is not
decidable and approximation algorithms are used. We remark

An actor-based framework for asynchronous event-based cyber-physical systems 663

that if the over-approximating set contains an unsafe state,
we cannot decide on the safety of the system.

10 Conclusion and future work

In this paper, we presented an extended actor model for mod-
eling hybrid systems and CPSs, where both continuous and
discrete processes can be defined. In this actor model, two
kinds of actors are defined: software actors and physical
actors. The software actors contain the software behaviors
of the model and similarly, physical actors contain the phys-
ical behaviors. We also introduced a network entity to the
actor model for modeling the behavior of the network of the
model. We implemented this extended actor model in Hybrid
Rebeca language. This language is an extension of Timed
Rebeca language and allows defining classes to make mod-
els modular and reusable. The semantics of the language is
defined based on hybrid automata allowing formal verifica-
tion of models. Since our focus was automotive domain, CAN
network is modeled in this version of the language. To show
the applicability of our language, we modeled and analyzed
a Brake-by-Wire system. For the verification of the model,
three safety properties were considered. We used SpaceEx
framework to verify these properties. It was shown that for
some properties new entities were needed to make the veri-
fication feasible.

We also demonstrated how our modeling framework is
useful. To this aim, we first defined a translation for hybrid
rebeca models to compositional hybrid automata, then we
compared these approaches from modularity and analyzabil-
ity standpoints. We showed that changing and modifying a
model is much easier in our language. Also, we showed that
the compositional hybrid automata model contains more con-
tinuous variables compared to the hybrid automaton resulted
from our language semantics. The number of continuous vari-
ables can have exponential effect on the verification time of
a model.

Since we focused on the automotive domain, only CAN
network was defined in our current version of the language.
Other network models are needed for different applications of
CPSs. Instead of defining multiple network models, it must be
possible to allow user-defined network models. Providing a
set of basic functionalities for defining most network models
is among of our future work. Furthermore, defining multiple
instances of a network model (e.g., multiple CAN networks)
may be needed in some systems. Like network models which
dispatch messages among rebecs and may resolve the non-
determinism due to simultaneous arrival of messages, it must
be possible to define internal message schedulers for rebecs
to resolve the non-determinism due to simultaneous arrival
of messages maybe from different network models.

Concerning deterministic models, a deterministic soft-
ware model ensures that a model starting from a given initial
state and with certain inputs always behaves the same (i.e.,
generates always the same output). In a timed and hybrid
model, receiving physical triggers at different times are con-
sidered as different inputs. By definition, “inputs” are not
controlled by the model and therefore cannot be determined
by the model. Still there are ways to handle this so-called
“nondeterminism in the inputs” which refers to the fact that
inputs are not controlled by the model. Simultaneous occur-
rences of different events, of both cyber and physical types,
can be handled in different ways. Hybrid Rebeca allows
nondeterministic handling of such events, and hence a non-
deterministic behavior in such situations. Some solutions to
keep the behavior deterministic, even in such situations, are
offered by synchronous languages [5], and some are recently
proposed in Lingua Franca language [26,27].

Providing more patterns of MTL and reducing their verifi-
cation to reachability analysis are among of our future work.

Acknowledgements We would like to thank Edward Lee for his support
and patient guidance on modeling and analyzing CPSs, Tom Hen-
zinger for his fruitful discussion on the extended actor model, and
MohammadReza Mousavi and Ehsan Khamespanah for their useful
contributions.

References

1. Aceto, L., Cimini, M., Ing6lfsdéttir, A., Reynisson, A.H., Sigurdar-
son, S.H., Sirjani, M.: Modelling and simulation of asynchronous
real-time systems using timed rebeca. In: 10th International Work-
shop on the Foundations of Coordination Languages and Software
Architectures. EPTCS, vol. 58, pp. 1-19 (2011)

2. Agha, G.A.: ACTORS: A Model of Concurrent Computation in
Distributed Systems. MIT Press Series in Artificial Intelligence,
MIT Press, Cambridge (1986)

3. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho,
P., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorith-
mic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3-34
(1995)

4. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho,
P., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorith-
mic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3-34
(1995)

5. Berry, G., Gonthier, G.: The Esterel synchronous program-
ming language: design, semantics, implementation. Sci. Comput.
Program. 19(2), 87-152 (1992). https://doi.org/10.1016/0167-
6423(92)90005-V

6. Chen, X., Abrahdm, E., Sankaranarayanan, S.: Flow*: an analyzer
for non-linear hybrid systems. In: 25th International Conference
on Computer Aided Verification. LNCS, vol. 8044, pp. 258-263.
Springer (2013)

7. Cicirelli, F., Nigro, L., Sciammarella, P.F.: Model continuity in
cyber-physical systems: a control-centered methodology based on
agents. Simul. Model. Pract. Theory 83, 93-107 (2018)

8. Cuijpers, P., Reniers, M.A.: Hybrid process algebra. J. Log. Algebr.
Program. 62(2), 191-245 (2005)

9. David, R., Alla, H.: On hybrid petri nets. Discrete Event Dyn. Syst.
11(1-2), 9-40 (2001)

@ Springer

https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V

664

I. Jahandideh et al.

10.

11.

12.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Davis, R.I., Burns, A., Bril, R.J., Lukkien, J.J.: Controller area net-
work (CAN) schedulability analysis: refuted, revisited and revised.
Real Time Syst. 35(3), 239-272 (2007)

Derler, P, Lee, E.A., Sangiovanni-Vincentelli, A.L.: Modeling
cyber-physical systems. Proc. IEEE 100(1), 13-28 (2012)
Filipovikj, P., Mahmud, N., Marinescu, R., Seceleanu, C.,
Ljungkrantz, O., Lonn, H.: Simulink to UPPAAL statistical model
checker: Analyzing automotive industrial systems. In: 21st Inter-
national Symposium on Formal Methods. LNCS, vol. 9995, pp.
748-756 (2016)

. Frehse, G.: Phaver: algorithmic verification of hybrid systems past

hytech. In: Morari, M., Thiele, L. (eds) 8th International Workshop
on Hybrid Systems: Computation and Control. LNCS, vol. 3414,
pp. 258-273. Springer (2005)

Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel,
0., Ripado, R., Girard, A., Dang, T., Maler, O.: Spaceex: scalable
verification of hybrid systems. In: 23rd International Conference
on Computer Aided Verification. LNCS, vol. 6806, pp. 379-395.
Springer (2011)

Henzinger, T.A.: The theory of hybrid automata. In: 11th Annual
IEEE Symposium on Logic in Computer Science, pp. 278-292.
IEEE Computer Society (1996)

Hewitt, C.: Description and theoretical analysis (using schemata) of
planner: a language for proving theorems and manipulating models
in a robot. Technical Report on Massachusetts Institute of Tech-
nology, Artificial Intelligence Laboratory (1972)

Jahandideh, 1., Ghassemi, F., Sirjani, M.: Hybrid rebeca: Model-
ing and analyzing of cyber-physical systems. In: 8th International
Workshop on Model-Based Design of Cyber Physical Systems.
LNCS, vol. 11615, pp. 3—-27. Springer (2018)

Johnsen, E., Hihnle, R., Schifer, J., Schlatte, R., Steffen, M.:
ABS: a core language for abstract behavioral specification. In: 9th
International Symposium on Formal Methods for Components and
Objects. LNCS, vol. 6957, pp. 142—164. Springer (2010)
Kamburjan, E., Mitsch, S., Kettenbach, M., Hihnle, R.: Modeling
and verifying cyber-physical systems with hybrid active objects.
arXiv:1906.05704 (2019)

Kang, E., Enoiu, E.P., Marinescu, R., Seceleanu, C.C., Schobbens,
P., Pettersson, P.: A methodology for formal analysis and verifica-
tion of EAST-ADL models. Reliab. Eng. Syst. Saf. 120, 127-138
(2013)

Koymans, R.: Specifying real-time properties with metric temporal
logic. Real Time Syst. 2(4), 255-299 (1990)

Lanotte, R., Merro, M.: A calculus of cyber-physical systems. In:
Language and Automata Theory and Applications: 11th Interna-
tional Conference. LNCS, vol. 10168, pp. 115-127 (2017)
Lanotte, R., Merro, M., Muradore, R., Vigano, L.: A formal
approach to cyber-physical attacks. In: 30th IEEE Computer
Security Foundations Symposium, pp. 436-450. IEEE Computer
Society (2017)

Lanotte, R., Merro, M., Tini, S.: Towards a formal notion of impact
metric for cyber-physical attacks. In: 14th International Conference
on integrated Formal Methods (2018) (to appear)

Lee, E.A.: Cyber physical systems: Design challenges. In: 11th
IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2008), pp. 363-369. IEEE Com-
puter Society (2008)

Lohstroh, M., Romeo, L.I., Goens, A., Derler, P., Castrillén, J.,
Lee, E.A., Sangiovanni-Vincentelli, A.L.: Reactors: a deterministic
model for composable reactive systems. In: 9th International Work-
shop on Model-Based Design of Cyber Physical Systems. Lecture
Notes in Computer Science, vol. 11971, pp. 59-85. Springer
Lohstroh, M., Schoeberl, M., Goens, A., Wasicek, A., Gill, C.,
Sirjani, M., Lee, E.A.: Actors revisited for time-critical systems. In:
Proceedings of the 56th Annual Design Automation Conference,
p- 152. ACM (2019)

@ Springer

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Marinescu, R., Mubeen, S., Seceleanu, C.: Pruning architectural
models of automotive embedded systems via dependency analy-
sis. In: 42th Euromicro Conference on Software Engineering and
Advanced Applications, pp. 293-302. IEEE Computer Society
(2016)

Metelo, A., Braga, C., Brandao, D.N.: Towards the modular spec-
ification and validation of cyber-physical systems: a case-study on
reservoir modeling with hybrid automata. In: 18th International
Conference on Computational Science and Its Applications, Part I.
LNCS, vol. 10960, pp. 80-95. Springer (2018)

Nigro, L., Sciammarella, P.F.: Statistical model checking of cyber-
physical systems using hybrid theatre. In: Proceedings of SAI
Intelligent Systems Conference, pp. 1232—1251. Springer (2019)
Pfeiffer, O., Ayre, A., Keydel, C.: Embedded Networking with
CAN and CANopen, Ist edn. Copperhill Media Corporation,
Greenfield (2008)

Platzer, A.: Differential-algebraic dynamic logic for differential-
algebraic programs. J. Log. Comput. 20(1), 309-352 (2010)
Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation
using Ptolemy II. Ptolemy.org (2014)

Sabouri, H., Khosravi, R.: Delta modeling and model checking of
product families. In: 5th International Conference on Fundamentals
of Software Engineering. LNCS, vol. 8161, pp. 51-65. Springer
(2013)

Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing
invariants for hybrid systems. Formal Methods Syst. Des. 32(1),
25-55 (2008)

Sirjani, M.: Power is overrated, go for friendliness! expressivness
versus faithfulness and usability in modeling-actor experience. In:
Edward A. Lee Festschrift, LNCS, pp. 1-21. Springer (2018)
Sirjani, M., Jaghoori, M.M.: Ten years of analyzing actors: Rebeca
experience. In: Formal Modeling: Actors, Open Systems, Biologi-
cal Systems—Essays Dedicated to Carolyn Talcott on the Occasion
of Her 70th Birthday. LNCS, vol. 7000, pp. 20-56. Springer (2011)
Sirjani, M., Movaghar, A., Shali, A., de Boer, E.S.: Modeling and
verification of reactive systems using Rebeca. Fundam. Inform.
63(4), 385-410 (2004)

Varshosaz, M., Khosravi, R.: Modeling and verification of prob-
abilistic actor systems using prebeca. In: 14th International Con-
ference on Formal Engineering Methods. LNCS, vol. 7635, pp.
135-150. Springer (2012)

Wolf, W., Madsen, J.: Embedded systems education for the future.
Proc. IEEE 88(1), 23-30 (2000)

Yousefi, B., Ghassemi, F., Khosravi, R.: Modeling and efficient
verification of broadcasting actors. In: 6th International Conference
on Fundamentals of Software Engineering. LNCS, vol. 9392, pp.
69-83. Springer (2015)

Yousefi, B., Ghassemi, F., Khosravi, R.: Modeling and efficient
verification of wireless ad hoc networks. Formal Asp. Comput.
29(6), 1051-1086 (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1906.05704

An actor-based framework for asynchronous event-based cyber-physical systems

665

Iman Jahandideh received his
M.Sc. degree in Software Engi-
neering from University of Tehran
in 2018. His researching focus
was formal methods in Cyber-
Phyiscal systems. His main inter-
est is bridging the gap between
game development and software
engineering principles and prac-

Marjan Sirjani Marjan Sirjani is
a Professor and chair of Software
Engineering at Milardalen Uni-
versity, and the leader of Cyber-
Physical ~ Systems Analysis
research group. Her main research
interest is applying formal meth-
ods in Software Engineering. She
works on modeling and verifica-

tices. tion of concurrent, distributed,
timed, and self-adaptive systems.
- Marjan and her research group are
11} | pioneers in building model check-
\"“"m‘\ J «”’M,,‘ ing tools, compositional verifica-
- tion theories, and state-space
reduction techniques for actor-based models. She has been work-
Fatemeh Ghassemi has received ing on analyzing actors since 200lusing the modeling language
her Ph.D in Software Engineer- Rebeca (http://www.rebeca-lang.org). Her research is now focused on
ing from Sharif university of tech- safety assurance and performance evaluation of cyber-physical and
nology in 2011, and in Computer autonomous systems. Marjan has been the PC member and PC chair of
Science from Vrije Universiteit of several international conferences including SEFM, iFM, Coordination,
Amsterdam in 2018. She is an FM, FMICS, SAC, FSEN. She is an editor of the journal of Science of
assistant professor at University Computer Programming.

of Tehran since 2012, supervising
the Formal Methods laboratory.
Her research interest includes for-
mal methods in software engi-
neering, protocol verification,
model checking, process algebra,
and software testing. Her research
is now focused on combining
machine learning and automata learning approaches. Fatemeh has
been the PC member of several international conferences including
iFM, Coordination, FM, and FSEN.

@ Springer

http://www.rebeca-lang.org

	An actor-based framework for asynchronous event-based cyber-physical systems
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Hybrid automata
	2.2 Analysis of hybrid auotomata
	2.3 Actor model and timed Rebeca

	3 The actor model for CPSs
	4 Hybrid Rebeca
	4.1 Syntax
	4.1.1 Well-formedness

	4.2 Operational semantics
	4.2.1 Notations and auxiliary functions
	4.2.2 Hybrid Rebeca model
	4.2.3 Formal semantics of hybrid Rebeca models
	Locations
	Transitions
	Flows and invariants
	Initial location and initial condition

	4.3 Technical details

	5 Compositional hybrid automata model and hybrid Rebeca
	5.1 Mapping
	5.1.1 Software rebec
	5.1.2 Model

	5.2 Comparison

	6 Guideline for verification of hybrid Rebaca models
	7 Case study
	7.1 Model definition
	7.2 Analysis and verification

	8 Related work
	9 Discussion
	10 Conclusion and future work
	Acknowledgements
	References

