®

Check for
updates

Afra: An Eclipse-Based Tool
with Extensible Architecture
for Modeling and Model Checking
of Rebeca Family Models

Ehsan Khamespanah!2(®) Marjan Sirjani®>?, and Ramtin Khosravi'

! School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
2 School of Computer Science, Reykjavik University, Reykjavik, Iceland
e.khamespanah@ut.ac.ir
3 School of Innovation, Design, and Engineering,

Malardalen University, Vasteras, Sweden

Abstract. Afra is an FEclipse-based tool for the modeling and model
checking of Rebeca family models. Together with the standard enriched
editor, easy to trace counter-example viewer, modular temporal property
definition, exporting a model and its transition system to some other for-
mats facilities are features of Afra. Rebeca family provides actor-based
modeling languages which are designed to bridge the gap between for-
mal methods and software engineering. Faithfulness to the system being
modeled, and the usability of Rebeca family languages help in ease of
modeling and analysis of the model, together with the synthesis of the
system based on the model. In this paper, architectural decisions and
design strategies we made in the development of Afra are presented.
This makes Afra an extensible and reusable application for the modeling
and analysis of Rebeca family models. Here, we show how different com-
pilers can be developed for the family of languages which are the same
in general language constructs but have some minor differences. Then
we show how the model checking engine for these different languages is
designed. Despite the fact that Afra has a layered object-oriented design
and is developed in Java technology, we use C++ codes for developing
its model checking for the performance purposes. This decision made the
design of the application even harder.

Keywords: Actors - Rebeca - Afra - Model Checking - Eclipse

1 Introduction

The actor model is a well-known model for the development of highly available
and high-performance applications. It benefits from the universal primitives of
concurrent computation [1], called actors, which are distributed, autonomous
objects that interact by asynchronous message passing. Fach actor provides a
number of services, and other actors send messages to it to run the services.

© IFIP International Federation for Information Processing 2023

Published by Springer Nature Switzerland AG 2023

H. Hojjat and E. Abrahédm (Eds.): FSEN 2023, LNCS 14155, pp. 72-87, 2023.
https://doi.org/10.1007/978-3-031-42441-0_6

Afra: An Eclipse-Based Tool with Extensible Architecture 73

Messages are put in the mailbox of the receiver, the receiver takes a message
from the mailbox and executes its corresponding service. Hewitt introduced the
actor model as an agent-based language [2] and is later developed by Agha as a
mathematical model of concurrent computation [1].

Rebeca is an operational interpretation of the actor model with formal seman-
tics. Rebeca is designed to bridge the gap between formal methods and software
engineering. The formal semantics of Rebeca is a solid basis for its formal verifi-
cation [3]. Compositional and modular verification, abstraction, symmetry and
partial-order reduction have been investigated for verifying Rebeca models [4].
The theory underlying these verification methods is already established and is
embodied in verification tools [5,6]. Different extensions have been provided for
modeling and analyzing of different aspects of actor systems. Timed Rebeca is
an extension on Rebeca with time features for modeling and verification of time-
critical systems [7]. Probabilistic Rebeca is another extension of Rebeca which
is developed to consider the probabilistic behavior of actor systems [8]. Prob-
abilistic Timed Rebeca (PTRebeca) is an extension of Rebeca which benefits
from modeling features of Timed Rebeca and Probabilistic Rebeca, combining
the syntax of both languages [9]. More details about these extensions are pro-
vided in Sect. 2. RebecaSys is another extension of Rebeca which is developed
to support hardware/software co-design (i.e. system-level design) [10]. In Broad-
casting Rebeca [11] and Wireless Rebeca [12] the Core Rebeca is extended from
a different dimension to provide broadcasting and multi-casting among actors
which is crucial for modeling and verification of network protocols.

Afra is a toolset which is developed for the purpose of providing modeling and
analysis facilities for the Rebeca family languages. As the same as many other
Eclipse plugins, Afra contains a set of Eclipse views and editors together with a
set of Java components for implementing models and analyzing them. In addi-
tion to the syntax-highlighting editor, Afra provides easy to use counterexample
browser which made debugging of models easier. The focus of these futures is in
improving the usability of the developed toolset. Beside the essence of providing
usability, there is a need for considering extensibility and maintainability of the
model checking toolset. This need becomes more important for the case of Afra
as it has to support a set of modeling languages which require different compilers
and model checking algorithms.

In this paper, we show how Afra is designed to make it extensible and main-
tainable for different languages of the Rebeca family. Starting from the architec-
tural view (Sect. 3) we make clear how the main functional requirements of Afra
are placed in a set of Java components. Then, we describe the techniques which
are used for the implementation of compilers of the Rebeca family languages
from syntax and semantics points of view (Sect.4). To this end, we discussed
techniques which can be used to develop the hierarchy of compilers using ANTLR
[13] toolset. Then, we introduce the class diagram of the semantics-checker which
we developed for performing semantical analysis of the Rebeca family models
and make it clear that how it can be extended to consider the future extension
on Rebeca.

74 E. Khamespanah et al.

To increase the performance of model checking, Afra transforms models into a
set of C++ source codes. Running these codes results in generating the transition
system of the model and performs property checking. This approach is very
similar to the development approach of SPIN [14]. Decisions which are made in
the design of C++ classes and how third-party template generators help in code
reuse are issues which we address in Sects. 5 and 5.2.

2 Rebeca Family Modeling Languages

A Rebeca model is similar to the actor model as reactive objects without shared
variables are its only computation units. Objects in Rebeca are reactive, self-
contained, and each of them is called a rebec (reactive object). Note that in this
paper we use rebec and actor interchangeably. Each actor has an unbounded
buffer, called message queue, for its arriving messages. Communication among
actors takes place by asynchronous message passing with no blocking send and
no explicit receive. Computation is event-driven, meaning that each actor takes a
message that can be considered as an event from the top of its message queue and
executes the corresponding message server (also called a method). In Rebeca,
the execution of a message server is atomic, i.e. there is no way to preempt the
execution of a message server of an actor and start executing another message
server of that actor. Note that we call the basic extension of Rebeca as Core
Rebeca to avoid misunderstanding.

2.1 Core Rebeca

A Core Rebeca model consists of a set of reactive classes definitions and the
main block. In the main block, actors which are instances of the reactive classes
are declared. The body of the reactive class includes the declaration of its known
actors, state variables, and message servers. Message servers consist of the dec-
laration of local variables and the body of the message server. The statements
in the body can be assignments, conditional statements, enumerated loops, non-
deterministic assignment, and method calls. Method calls are sending asyn-
chronous messages to other actors (or to itself). A reactive class has an argu-
ment of type integer denoting the maximum size of its message queue. Although
message queues are unbounded in the semantics of Rebeca, to ensure that the
state space is finite, we need a user-specified upper bound for the queue size.
The operational semantics of Rebeca has been introduced in [15] in more detail.
In comparison with the standard actor model, dynamic creation and dynamic
topology are not supported by Core Rebeca. Also, actors in Core Rebeca are
single-threaded.

We illustrate the Core Rebeca language with an example. Listing 1.1 shows
the Core Rebeca model of the ticket service system. The model consists of three
reactive classes: TicketService, Agent, and Customer. In this model, Customer
sends the requestTicket message to Agent (line 32) and Agent forwards the
message to TicketService (line 18). TicketService replies to Agent by sending

Afra: An Eclipse-Based Tool with Extensible Architecture 75

a ticketIssued message (line 8) and Agent responds to Customer by sending
the issued ticket (21). Upon receiving a ticket, Customer tries for another ticket

© 0 N O A W N

[R T ol T R N
H O © 0 N O o A~ W N = O

(line 37).
Listing 1.1. The Rebeca model of Ticket 22 }
Service System 23| }
reactiveclass TicketService (3) { 24| reactiveclass Customer (2) {
knownrebecs {Agent a;} 25 knownrebecs {Agent a;}
statevars {int nextId;} 26 statevars {boolean sent;}
TicketService() { 27 Customer () {
nextId = 0; 28 self.try(Q);
} 29 sent = false;
msgsrv requestTicket() { 30 ¥
a.ticketIssued(nextId); 31 msgsrv try() {
nextId = nextId + 1; 32 a.requestTicket();
} 33 sent = true;
} 34 }
reactiveclass Agent (3) { 35 msgsrv ticketIssued(byte id) {
knownrebecs { 36 sent = false;
TicketService ts; 37 self.try();
Customer c; 38 }
} 39|}
msgsrv requestTicket() { 40 main {
ts.requestTicket(); 41 Agent a(ts, c):0);
} 42 TicketService ts(a):(3);
msgsrv ticketIssued(byte id) { 43 Customer c(a):();
c.ticketIssued(id); aa| }

For a given Core Rebeca model, a modeler can specify the correctness proper-

ties of the model as a set of assertions or LTL formula. As shown in Listing 1.2,
a property specification has three parts. In the first part the atomic proposi-
tions of the properties are defined. An atomic proposition is defined by its name
and a boolean expression as its value. cIsSent and idCounter are two atomic
propositions in Listing 1.2.

© 00 N O A W N

=R
N o= O

Listing 1.2. Correctness property specification of Ticket Service System

property {
define {
cIsSent = c.sent;
idCounter = ts.nextId;
}
Assertion {
MaxNumberOfTickets: idCounter < 10;
}
LTL {
NoStarvation: G(cIsSent -> F(!cIsSent));
}
}

The assertions of models are defined in the second part of property specifica-

tions. An assertion is defined by its name and a boolean expression as its value,

76 E. Khamespanah et al.

which its terms are the labels of atomic propositions. MaxNumberOfTickets is
the only assertion of this model which makes sure that the number of issued
tickets in this model is less than 10. Note that this model does not satisfy
MaxNumberOfTickets as there is no limitation on the number of issued tick-
ets. The last part of the property specification contains LTL formula. An LTL
formula is defined by its name and combination of logical expressions and LTL
modalities as its value, which its terms are the labels of atomic propositions.
G(9), f(¢), and U(¢,) are used to specify ¢ (always), O ¢ (eventually), and
» U 1 (until) respectively. NoStarvation is the only LTL property of this model
which makes sure that each request for ticket will be served in the future.

2.2 Timed Rebeca

Timed Rebeca is an extension on Rebeca with time features for modeling and
verification of time-critical systems [7]. To this end, three primitives are added to
Rebeca to address computation time, message delivery time, message expiration,
and period of occurrence of events. In a Timed Rebeca model, each actor has its
own local clock and the local clocks evolve uniformly. Methods are still executed
atomically, however passing time while executing a method can be modeled. In
addition, instead of a queue for messages, there is a bag of messages for each
actor.

In comparison to the syntax of Rebeca, three timing primitives are defined
in Timed Rebeca which are delay, deadline and after. The delay statement
models the passing of time for an actor during the execution of a message server.
The keywords after and deadline can only be used in conjunction with a
method call. The value of the argument of after shows how long it takes for
the message to be delivered to its receiver. The deadline shows the timeout
for the message, i.e., how long it will stay valid. We illustrate the application
of these keywords using the Timed Rebeca version of the ticket service system
in Listing 1.3. Note that this source code only contains the parts of the model
which are different in the Rebeca and Timed Rebeca models. As shown in line 3
of the model, issuing a ticket takes two or three time units (modeled by a non-
deterministic expression). At line 10 the actor instantiated from Agent sends
a message requestTicket to actor ts instantiated from TicketService, and
gives a deadline of five to the receiver to take this message and start serving
it. The periodic task of retrying for a new ticket is modeled in line 15 by the
customer sending a try message to itself and letting the receiver to take it from
its bag only after 30 units of time (by stating after(30)).

Listing 1.3. The Timed Rebeca model of
ticket service system

}
}
reactiveclass Agent {
msgsrv requestTicket() {
msgsrv requestTicket() { 10 ts.requestTicket ()

1| reactiveclass TicketService {
2
3 delay(7(2, 3)); deadline(5);
4
5

a.ticketIssued(nextId); 11 }
nextId = nextId + 1;

Afra: An Eclipse-Based Tool with Extensible Architecture 77

12| } 15 self.try() after(30);
13| reactiveclass Customer { 16 }
14 msgsrv ticketIssued(byte id) { 17|

For a given Timed Rebeca model, a modeler can specify the correctness
properties of the model as a set of assertions or TCTL formula. The structure
of property specifications for Timed Rebeca models is the same as the property
specification of Core Rebeca models except that there is TCTL part instead of
LTL part. In TCTL specifications AU (time <= ¢, ¢,v), EU(time <= ¢, p,v),
AF(time <= ¢, ¢), AG(time <= c, ¢) are used to specify V¢ US¢), Jp U1,
VOS¢ ¢, YOS ¢ respectively. The same formula can be used to express modalities
with > ¢ time constraint.

2.3 Probabilistic and Probabilistic Timed Rebeca

Probabilistic Rebeca is an extension of Rebeca for modeling actor-based systems
with probabilistic and nondeterministic behavior [8]. In order to provide a con-
cise syntax for Probabilistic Rebeca, different possibilities of probabilistic aspects
that could exist in an actor based system are investigated and two keywords
together with one expression definition are added to Rebeca. The first keyword
is pAlt which models probabilistic alternative behavior in the switch-case style.
In a pAlt structure, each block of statements may be executed by its associated
probabilities. The second keyword is probloss which can only be used in con-
junction with a method call. The value of the argument of probloss shows the
probability of losing this message in the communication among actors. They only
new expression definition of Probabilistic Rebeca is the probabilistic expression
which its definition is like nondeterministic expressions such that a real number
is associated with each choice of it. We illustrate the application of these features
using the Probabilistic Rebeca version of the ticket service system in Listing 1.4.
As shown in line 3, there is a probability of 0.4 percent for the computation
delay of 2 and 0.6 for 3. Finally, a customer may decide to not to ask for a new
ticket with the probability of 0.5 as shown in line 10.

Listing 1.4. The Probabilistic Rebeca 7|}
model of Ticket Service System 8| reactiveclass Customer (2) {
9 msgsrv try() {
1| reactiveclass TicketService { 10 pAlt{
2 msgsrv requestTicket() { 11 0.5: a.requestTicket();
3 delay(7(0.4:2, 0.6:3)); 12 0.5: self.tryQ;
4 a.ticketIssued(nextId); 13 }
5 nextId = nextId + 1; 14 }
6 } 15|

Probabilistic Timed Rebeca (PTRebeca) is an extension of Rebeca which
benefits from modeling features of Timed Rebeca and Probabilistic Rebeca, com-
bining the syntax of both languages [9]. This aims at enhancing modeling abil-
ities in order to cover performance evaluation of probabilistic real-time actors.

78 E. Khamespanah et al.

Although there is no new feature in the syntax of PTRebeca a new semantics
is defined for it to support timing, probabilistic, and nondeterministic features
[16]. PTRebeca is the first actor-based language which supports time, proba-
bility, and nondeterminism in modeling distributed systems with asynchronous
message passing.

3 Afra Architecture

Afra is the modeling and analysis IDE of the Rebeca family models®. It is devel-
oped as an Eclipse plugin and released as a standalone Eclipse product. It con-
tains a set of Eclipse views and editors together with three Java components for
implementing models and analyzing them. As shown in Fig. 1, the Afra plugin
contains compiler component for compiling its given models, RMC component
for generating model checking codes for models, and model transformer compo-
nent to transform the Rebeca family models to some other well-known models
and programs.

Eclipse Platform p <
Afra Plugin

State
Compiler E Space E
HeIp
_ Transformer
Team ﬁ)\"

|,

Workspace Model E RMC E

Transformer

Platform Runtime \)

Fig. 1. Components and connectors view of Afra

Using Afra, the compiler component makes sure that a given model is syn-
tactically and semantically correct. At the second step, the transition system of
the given model has to be generated and it has to be analyzed against given
correctness properties. To this aim, the given model is transformed to a set of
C++ source. Running the generated C++4 codes provides the model checking
result by generating the transition system of the model. The summary of the
user activities to this end is shown in the Activity Diagram of Fig. 2.

The first release of the Afra benefits from the model checking engine which
was developed in 2006 for Core Rebeca models [17], called Modere. Modere has
an object-oriented design and the next model checking engines for the other
members of the Rebeca family are developed by extending Modere classes. The
overview of the design of model checking classes of Afra is presented in Fig. 3. We

! Afra can be downloaded from http://rebeca-lang.org/alltools/Afra.

Afra: An Eclipse-Based Tool with Extensible Architecture 79
User presses model Model is \ [Check if there is [Yes] Report

checking button compiled compile errors] errors

Report model Compile and Generate

is property checking result run C++ files C++ files

violation]
@ Report counter
[No] [Yes] example

Fig. 2. The main activities of a user with Afra for the model checking of a model

[Check if the result

will provide more details about the classes of this diagram in Sects. 5 and 5.2. As
illustrated in Fig.3, AbstractModelChecker and AbstractActor are two core
classes of this design. For the case of Core Rebeca, there is AbstractCore
RebecalAnalyzer class which deals with actors of models, produces states based
on the behavior of actors, and stores them in the state spaces storage (i.e.
CoreRebecaDFSHashmap in the figure). As the model checker of Core Rebeca
has to consider actor classes and model checking algorithm, it is inherited from
both of AbstractModelChecker and AbstractCoreRebecaAnalyzer. The figure
illustrates that AbstractCoreRebecaAnalyzer is also used for simulating Core
Rebeca models?. The detailed description of this part of the diagram is provided
in Sect. 5. The same condition is valid for the case of Timed Rebeca models. For
the case of PTRebeca, inheritance takes place from the classes of Timed Rebeca
classes as both the model checking and actors behaviors are developed based
on the timed model checker. The detailed description of this part is provided in
Sect. 5.2. The extensible hierarchy of Fig. 3 illustrates it can be easily extended
to combine/modify actor behaviors and model checking algorithms to support
future members of the Rebeca family.

Common Abstract AbstractActor
Clrssas > ModelChecker = g
Core Rebeca AbstractTimed | ____ 5 Timed'Rebeca
Classes CoreRebeca RebecaAnalyzer ReactiveClass
//’7 ReactiveClass j
AbstractCore | -1 N
TimedRebeca i [N
RebecaAnalyzer =1 CoreRebeca ModelChecker A T”:::hR;t;an Timed Rebeca
7] R —<® DFSHashmap S Classes
CoreRebeca CoreRebeca "i" %
TraceGenerator ModelChecker PTRebeca [N PTRebeca ||
ModelChecker ReactiveClass PTRebeca
Classes

Fig. 3. The UML class diagram of model checkers in Afra

2 This feature is excluded from the current release of Afra.

80 E. Khamespanah et al.

4 Compiling Rebeca Family Models

Prior to dealing with the complexities of model checking engines of the Rebeca
family members, we provide a short overview on how we developed an extensi-
ble compiler for them. Rebeca compiler component provides an interface which
checks both syntax and semantics of given models and their corresponding prop-
erty specifications, then publishes their Abstract Syntax Tree (AST) using pre-
defined Java objects. It uses ANTLR toolset to parse the Rebeca family model
and report syntax errors of the models. To improve the extensibility of the design
compiler, we developed two grammar specifications for Core Rebeca: 1) expres-
sions of Rebeca which also includes method calls and sending messages and
2) Rebeca constructs. Then, using the inheritance mechanism of ANTLR for
parser specifications, we developed parser specifications of the other Rebeca
family extensions. For example, there is a rule for specifying primary terms of
expressions which can be an identifier or message sending:

primary : IDENTIFIER (LPAREN expressionList RPAREN)?

To develop the grammar specification of Timed Rebeca, we explicitly specified
that the new grammar is an extension of the Core Rebeca grammar. Then, we
overwrite the primary rule with the following, as a sending message may be
followed by after or deadline specifiers in Timed Rebeca:

primary : IDENTIFIER (LPAREN expressionList RPAREN)? (AFTER LPAREN
expression RPAREN)? (DEADLINE LPAREN expression RPAREN)?)?

For the case of Probabilistic Rebeca, both of the parser specifications are
extended to add probabilistic expressions in the expression parser and pAlt in
the language constructs. The compiler of Probabilistic Timed Rebeca is devel-
oped by inheriting from the parsers of both Timed Rebeca and Probabilistic
Rebeca and no modification in parsing rules is needed. Compilers of property
specifications are developed using the same approach for Core Rebeca and Timed
Rebeca models.

The same as the compilers, for the semantic check of the models, we need to
consider extensibility and future Rebeca extensions. To this end, we used pico-
container design pattern to manage semantic checker rules of each extension of
the language. In addition, two sets of semantics checker are designed for the
compiler of the Rebeca family models which check statements and expressions
of models, As shown in Fig. 4. Implementing the check method in subclasses of
AbstractStatementSemanticsCheck or AbstractExpressionSemanticsCheck,
different semantics checkers for the Rebeca family constructs are Developed.
Then, based on the Rebeca extension, a subset of these semantics checkers are
put in the statements and expressions containers. Note that as Rebeca state-
ments can be nested (e.g. nested loops of conditional statements) each semantic
checker delegates semantics checking of its internal statements into the appro-
priate semantics checker object, which is accessible from the containers. In addi-
tion, for considering dynamic scoping of Rebeca variables ScopeHandler class
in defined which keeps track of activation records, shown in Fig. 4.

Afra: An Eclipse-Based Tool with Extensible Architecture 81

ScopeHandler
- scopeStack
o > + pushScopeRecord d o

AbstractSemanticCheck N 500(\6\@‘ + popScopeRecord 2N O,/'O S _z | AbstractSemanticCheck

- compilerFeatures e + addVaribaleToCurrentScope r Container

- symbolTable 1% + retreiveVariableFromScope - compilerFeatures

+ getters / setters Ak symbolTable

regi -
T glsteredSematlcsCheckers + getters / setters
f T
AbstractStatementSemantic AbstractExpressionSemantic S ls -
Check Check tatementSemantic
CheckContainer
+ check(statement) + check(expression, baseType)
??AAA Z‘SZISAAA + check(expression)
PR | c | | LoamC fadc dnticChae | + ChECk(Statement)
CoeCing c N 1 MoandatC inlhC ticCh 1
i +at, +Caman: itneal i 4 hh
famns oS = : . r t - : - - ExpressionSemantic
ConditionalStatement BinaryExpressionSemantic CheckContainer
SemanticCheck Check
+ check(statement) + check(expression, baseType) + check (expression)

Fig. 4. The UML class diagram of the semantics checker of the Rebeca family

AbsractActor AbsractTimedActor
/ - myld # now
PosctiuaClace 1 Actar - myName # messageQueueTimeBundle
2 R £ t NCI 2 "A" t’ # messageQueue V\
' eactiveClass_n_Actor # knownRebecs + exportStatelnXML()
1# IocaIHashmaQ # allRebecs + exportQueueContentInXML()
| - state_variable_1 # timeEnqueue()

enqueue()
+ execute()

- state_variable_n

+ execute()

+ exportStateVariablesInXML()
+ exportAMessagelnXML()

+ marshalActorToArray()

+ unmarshalActorFromArray()
+ messageServer_1()

messageServer_1_Imp()

+ messageServer_n()

messageServer_n_lmp()

applyPolicy()
+ marshalActor()
+ exportStateInXML() + unmarshalActor()
+ exportQueueContentInXML() + storeLocalState()
+ exportStateVariablesInXML() Zﬁ Zf A

+ exportAMessagelnXML()
oaactivaClace 2 [TimadActar

+ marshalActorToArray()
+unmarshalActorfFromArray() ReactiveClass_n_TimedActor
localHashTable

+ marshalActor()
localHashmapTimeBundles

SN - SN SN S SN S S N

+ unmarshalActor()
+ storelLocalState()

Fig. 5. The UML class diagram of actors classes in Modere

5 Model Checking of Rebeca Family Models

5.1 Model Checking of Core Rebeca

As mentioned before, the correctness properties of Core Rebeca models can be
specified by assertions and LTL formulas. In Modere, the model and the negation
of the correctness property are generated as two Biichi automata. The model
satisfies the correctness property if and only if the synchronous product of these
two automata does not accept any word. Otherwise, the accepted word has to
be reported as the counterexample of the model. Modere uses Nested Depth

82 E. Khamespanah et al.

First Search (NDFS) algorithm for computing the product automata on-the-fly.
This way, only one DFS is used to generate the product automaton and find
the accepting states. To avoid stack overflow, Modere uses the non-recursive
implementation of the NDFS and handles the search stack manually. Note that
Modere only considers the fair sequences of execution. An infinite sequence is
considered (weakly) fair when all the actors of the model are infinitely often
executed or disabled. For generating the Biichi automata of the negations of
property specifications we used LTL transformer of Java PathFinder (JPF) [18].

Based on the design strategies that we introduced in Sect.3, in Modere,
reactive classes are transformed into C++ classes and actors are instantiated
from them, shown in Fig. 5. Each class that corresponds to a reactive class has
a local hash table (its name if localHashtable in Fig.5) for storing its local
states and the index of each local state in the hashtable is assumed as its id.
Note that as one hashtable is enough for storing states of all of the instances of
a reactive class, it is defined as a static field. The global state of the model
is the composition of the local states of all of the actors of the model and it is
stored in another hashtable as one state of the transition system of the model.
Dividing state of the system into inter-process and intra-process hashtables is
similar to the method used in SPIN, causes up to 60% reduction in the memory
usage for storing transition systems [17]. State exploration in Modere takes place
by calling the execute method of all the enabled actors from each state. Actors
in Modere have an execute method that picks a message from the head of its
message queue and execute a method which corresponds to that message. As
calling execute results in delegating the execution to one of the methods of the
actor classes, its implementation is different for each actor class; so, it is defined
as an abstract method in AbstractActor and is overwritten in its inherited
classes.

AbsractCoreRebecaAnalyzer AbstractModelChecker
AbsractActor 1 rebecs n | #now # numberOfStates
o .
messageQueueTimeBundle # numberOfTransitions
+ exportState() + doModelChecking()
+ tTransiti + exportModelCheckingDetails
CoreRebecaDFSHashmap exportTransition() P g 0
+ marshalActors()
- hashmap ‘1——1— + unmarshalActors()
+ exists() storage |, storeRecentlyCreatedState()
+ put() + instantiationPart()
+ checkAtomicProposition_1() CoreRebecaModelChecker
+ checkAtomicProposition_n()
ﬁk + doModelChecking()
CoreRebecaTraceGenerator + doDFSModelChecking()
- numberOfTraces + exportModelCheckingResult()
+ generateTraces() + getNextClaimState()
- generateOneTrace() + isAcceptingState()

Fig. 6. The UML class diagram of Modere

Afra: An Eclipse-Based Tool with Extensible Architecture 83

As shown in Figs.5, AbstractActor provides methods marshalActor and
unmarshalActor for putting/restoring the state of an actor into/from its local
hashtable, including the values of state variables and the queue content. But,
as different actors have a different set of state variables, the implementation of
these two methods are actor dependent. To break this dependency, we defined
two abstract helper methods in AbstractActor, i.e. marshalActorToArray and
unmarshalActorFromArray, which put/restore the state of an actor into/from a
byte array. The actor classes implement these two methods based on their state
variables and queues configuration. So, marshalActor and unmarshalActor
methods consider dealing with the local hashtable and use the helper methods
to deal with the actor state variables and queues contents. As we will discuss
later, this strategy made the implementation of actor classes which correspond to
Timed and Probabilistic Rebeca easier. The same strategy is followed in imple-
menting methods which correspond to exporting the state of actors in XML.
As shown in Fig.5, exportStateInXML and exportQueueContentInXML meth-
ods are implemented in AbstractActor; but, exportStateVariablesInXML and
exportAMessageInXML are defined as abstract methods and are implemented in
the actor classes to consider state variables and message structure of actors.

To implement the provided services of reactive classes, two types of methods
are defined in ReactiveClass_x_Actor classes, as shown in Fig.5 (note that
x in the name of classes are replaced with the name of reactive classes which
are defined in the given model). The public methods are called by the other
actors and put a message in the queue of actors. The protected methods (which
have _Imp suffix) are called by the execute method of the actors to perform the
expected behavior of executing message server.

Using these classes, the model checker of Core Rebeca can be implemented
using the classes of Fig.6. The common behavior of model checking and sim-
ulation are put in AbsractCoreRebecaAnalyzer. This class is able to handle
instantiation of actors (as described in the main part), marshal or unmarshal
the global state of the system, export the global state of the system in XML,
and check atomic propositions in a global state. CoreRebecaModelChecker uses
these methods to implement the model checking algorithm. The NDFS algo-
rithm of Modere is implemented in doDFSModelChecking and two methods
getNextClaimState and isAcceptingState are used to traverse the property
Biichi automata and check its accepting states respectively.

As mentioned in [17], Modere has been used for the model checking of mod-
els from networking, distributed systems, an some other models from different
domains and handles state spaces of up to 10 million states. Also, two reduc-
tion techniques have been implemented for it which made it applicable for the
analysis of more complicated models.

5.2 Model Checking of Timed and PTRebeca Models

As depicted in Fig. 3, the structure of the Timed Rebeca model checking classes
is the same that of in Core Rebeca. Two major semantics have been proposed

84 E. Khamespanah et al.

considered for Timed Rebeca: coarse-grained semantics which is a natural event-
based semantics for actors, and fine-grained semantics which is a standard state-
based semantics [19]. Using the coarse-grained semantics, in each state, the local
time of each actor can be different from the others, i.e., the execution of actors is
not synchronized over their local times. The state space which is generated using
this semantics is called Floating Time Transition System (FTTS). In contrast,
using the fine-grained semantics, the local time of all actors is the same. Note
that when we talk about synchronized local clocks we are explaining the concept
of time in the model, while fine-grained semantics respects this synchrony, in
the coarse-grained we relax the time synchronization constraint. Comparing to
the fine-grained semantics, using FTTS can be considered as a reduced state
transition system where the event-based properties are preserved.

In addition to differences in the semantics, the mechanism of detecting
repeated states in Core Rebeca and Timed Rebeca are different. In Core Rebeca,
two states are the same if the valuation of state variables of all actors are the
same, together with the content of their message queues. In Timed Rebeca this
condition is needed but progress in time does not allow states to be the same
as it goes to infinity. It because of the fact that there is no explicit time reset
operator in Timed Rebeca. However, reactive systems which generally show peri-
odic or recurrent behaviors are modeled using Timed Rebeca. In other words,
they perform periodic behaviors over infinite time. Based on this fact, in [20]
we proposed a new notion for equivalence relation between two states to make
the transition systems finite, called shift equivalence relation. Intuitively, in shift
equivalence relation two states are equivalent if and only if they are the same
except for the parts related to the time and shifting the times of those parts
in one state makes it the same as the other one. To make detecting the shift
equivalence relation possible, we divided the content of states into two parts
in Timed Rebeca. The first part contains values of state variables and untimed
part of the message bag. This part is stored in the local hashtable of actors
the same as what we described for Core Rebeca actors. A list of time-bundles
is associated with the states of the local hashtable of actors which stores the
second part, i.e. the local time of the actor and timed specifier of messages of its
message bag. This way, a newly generated state is repeated if it corresponds to
an existing item in the local hashtable and shifting the values of its time-bundle
make it equal to one of the existing time-bundles associated to that item. These
changes require inheriting AbstractTimedActor from AbstractActor to deco-
rate methods which are responsible for marshaling, unmarshaling, and storing
the state of timed actors. In addition, methods which export the state of the
timed actors have to be overwritten to put timing specification of actors and its
received messages in exported data. As mentioned in [16], behaviors of actors
and generating the state space of PTRebeca is very similar to that of in Timed
Rebeca. So, PTRebecaReactiveClass and PTRebecaModelChecker are directly
inherited from their corresponding classes in Timed Rebeca.

Combining the mentioned techniques, Timed Rebeca and PTRebeca is used
in modeling, model checking, and performance evaluation of NoC designs, WSAN

Afra: An Eclipse-Based Tool with Extensible Architecture 85

applications, network protocols, and transportation planning, which results in
state spaces of up to 10 million states.

6 Conclusion and Future Work

In this paper, we addressed the problem of designing an extensible toolset for
modeling and model checking of a family of languages. We showed that how
Rebeca family models are defined and how an extensible compiler can be devel-
oped for the existing and future extensions of it, in Afra. Using the proposed
approach, developing syntax and semantics checkers of the future extension of
Rebeca only requires rewriting the compiler specification rules of the modified
parts and their semantics checker observers. At the second step, we proposed
an extensible design for developing the model checkers of a subset of Rebeca
family extensions. Separating actors behavior from the state space generation
mechanism, we illustrated that how a new model checker can be developed for
a new extension of Rebeca.

We have used the proposed approaches for developing model checkers for
Core Rebeca, Timed Rebeca, and Probabilistic Timed Rebeca and integrate
them in Afra as an Eclipse-based standalone toolset. Afra provides an enriched
editor, easy to trace counter-example viewer, and exports models and their tran-
sition systems to some other formats. As a future work, we planned to integrate
compilers and model checkers of more members of Rebeca family in Afra to ben-
efit from the mentioned facilities. We also want to enrich transformation from
models and state spaces to other formalism to allow modelers to use them for
analyzing their actor models.

Acknowledgments. The work on this paper has been supported in part by the
project “Self-Adaptive Actors: SEADA” (nr. 163205-051) of the Icelandic Research
Fund.

A Graphical User Interface of Afra

An overview of Afra user interface is depicted in Fig. 7. Afra user interface con-
sists five main sections which are, projects browser, model and property editor,
model-checking result view, and counter example and its details views. The demo
of how to work with the toolset is available from the address http://rebeca-lang.
org/assets/tools/Afra/Afra-3.0-Demo.mov.

86 E. Khamespanah et al.

:; . e Rebeca IDE SEE——
=) Proiect OEm— \ Counter
(5 Project Explorer 2% E |J ice.rebeca 23 = O | counter Exam| Example = g
R - - folse; Model Editor ‘ Viewer
. . V //sel () after(30):
¥ =% CoreRebecaProject) self.try() after(30); -
(& out } | c2.TRY 7o c2 @(0)
V& src - X reactiveclass Agent(10) { |
P DiningPhilsophers.property knownrebecs { 4.0
DiningPhilsophers.rebeca TicketService ts;
P TrainController.property } a.REQUESTTICKET from c2 @(0)
TrainController.rebeca statevars { m
¥ 2 TimedRebecaProject 1
>, out Agent() {
pos } ts.REQUESTTICKET from a @(0)
v .
— srcr ” . 5 msgsrv requestTicket() {
icketService.rebeca ts.requestTicket((Customer)sender) deadline(24); 6.0
TinyOS-MACB.rebeca }
msgsrv ticketIssued(Customer customer) {
customer. ticketIssued();
7.0
} Attribute Value
reactiveclass TicketService(10) { Queue Content
knownrebecs { Now o
Agent a; Program Counter
Resuming Time
0 = + - = vis
[2] Problems | = Analysis Result 83 | & Console =] T
Attribute Value ¥ Queue Content
¥ Systeminfo requestTicket(c1) arrival(... from a
Total Spent Time 1 requestTicket(c2) arrival(... from a
\L, Number of Reached States 77 Now 0
H Number of Reached Transitions 107 Program Counter<|
AnalySIS Consumed Memory 1232 Resuming Ti | _
¥ CheckedProperty vel Yy D
Resu“’ Property Name Deadlock-Freedom and No Deadlin... » State Va Counter
Property Type Reachability Queue (
Analysis Result satisfied Now EXampIe
procran Details

Fig. 7. Afra graphical user interface

References

1. Agha, G.A.: ACTORS - A Model of Concurrent Computation in Distributed Sys-
tems. Artificial Intelligence, MIT Press, Cambridge (1990)

2. Hewitt, C.: Description and Theoretical Analysis (Using Schemata) of PLANNER:
A Language for Proving Theorems and Manipulating Models in a Robot. MIT
Artificial Intelligence Technical report 258, Department of Computer Science, MIT,
April 1972

3. Sirjani, M., Jaghoori, M.M.: Ten years of analyzing actors: Rebeca experience. In:
Formal Modeling: Actors, Open Systems, Biological Systems, pp. 20-56 (2011)

4. Jaghoori, M.M., Sirjani, M., Mousavi, M.R., Khamespanah, E., Movaghar, A.:
Symmetry and partial order reduction techniques in model checking Rebeca. Acta
Inf. 47(1), 33-66 (2010)

5. Sabouri, H., Sirjani, M.: Slicing-based reductions for Rebeca. Electr. Notes Theor.
Comput. Sci. 260, 209-224 (2010)

6. Sirjani, M., de Boer, F.S., Movaghar-Rahimabadi, A.: Modular verification of a
component-based actor language. J. UCS 11(10), 1695-1717 (2005)

7. Reynisson, A.H., et al.: Modelling and simulation of asynchronous real-time sys-
tems using timed Rebeca. Sci. Comput. Program. 89, 41-68 (2014)

8. Varshosaz, M., Khosravi, R.: Modeling and verification of probabilistic actor sys-
tems using pRebeca. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol.
7635, pp. 135-150. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34281-3_12

9. Jafari, A., Khamespanah, E., Sirjani, M., Hermanns, H.: Performance analysis of
distributed and asynchronous systems using probabilistic timed actors. In: ECE-
ASST 70 (2014)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Afra: An Eclipse-Based Tool with Extensible Architecture 87

Razavi, N., Behjati, R., Sabouri, H., Khamespanah, E., Shali, A., Sirjani, M.: Sys-
fier: Actor-based formal verification of systemc. ACM Trans. Embedded Comput.
Syst. 10(2), 19:1-19:35 (2010)

Yousefi, B., Ghassemi, F., Khosravi, R.: Modeling and efficient verification of
broadcasting actors. In: Dastani, M., Sirjani, M. (eds.) FSEN 2015. LNCS,
vol. 9392, pp. 69-83. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24644-4_5

Yousefi, B., Ghassemi, F., Khosravi, R.: Modeling and efficient verification of wire-
less ad hoc networks. CoRR abs/1604.07179 (2016)

Parr, T.J., Quong, R.W.: ANTLR: a predicated-LL(k) parser generator. Softw.
Pract. Exp. 25(7), 789-810 (1995)

Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279-295
(1997)

Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fundam. Inform. 63(4), 385-410 (2004)

Jafari, A., Khamespanah, E., Sirjani, M., Hermanns, H., Cimini, M.: PTRebeca:
modeling and analysis of distributed and asynchronous systems. Sci. Comput. Pro-
gram. 128, 22-50 (2016)

Jaghoori, M.M., Movaghar, A., Sirjani, M.: Modere: the model-checking engine of
Rebeca. In: Haddad, H. (ed.) Proceedings of the 2006 ACM Symposium on Applied
Computing (SAC), Dijon, France, April 23-27, 2006, pp. 1810-1815. ACM (2006)
Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. 10(2), 203-232 (2003)

Khamespanah, E., Sirjani, M., Viswanathan, M., Khosravi, R.: Floating time tran-
sition system: more efficient analysis of timed actors. In: Braga, C., élveczky, P.C.
(eds.) FACS 2015. LNCS, vol. 9539, pp. 237-255. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-28934-2_13

Khamespanah, E., Sirjani, M., Sabahi-Kaviani, Z., Khosravi, R., Izadi, M.: Timed
Rebeca schedulability and deadlock freedom analysis using bounded floating time
transition system. Sci. Comput. Program. 98, 184-204 (2015)

