
CRYSTAL Framework: Cybersecurity Assurance for

Cyber-Physical Systems
(Technical Report)

Fereidoun Moradia,∗, Sara Abbaspour Asadollaha, Bahman Pourvatana,
Zahra Moezkarimia, Marjan Sirjania

aSchool of Innovation, Design and Engineering, Mälardalen University, Väster̊as 722
20, Sweden

Abstract

We propose CRYSTAL framework for automated cybersecurity assurance of
cyber-physical systems (CPS) at design-time and runtime. We build attack
models and apply formal verification to recognize potential attacks that may
lead to security violations. We focus on both communication and compu-
tation in designing the attack models. We build a monitor to check and
manage security at runtime, and use a reference model, called Tiny Digital
Twin, in detecting attacks. The Tiny Digital Twin is an abstract behavioral
model that is automatically derived from the state space generated by model
checking during design-time. Using CRYSTAL, we are able to systematically
model and check complex coordinated attacks. In this paper we discuss the
applicability of CRYSTAL in security analysis and attack detection for dif-
ferent case studies, Pneumatic Control System (PCS), Temperature Control
System (TCS), and Secure Water Treatment System (SWaT). We provide a
detailed description of the framework and explain how it works in different
cases.

Keywords: Cybersecurity, Cyber-Physical Systems (CPS), Formal
verification, Model abstraction, Attack detection system, Runtime
Monitoring, Tiny Digital Twin

∗Corresponding author
Email addresses: fereidoun.moradi@mdu.se (Fereidoun Moradi),

sara.abbaspour@mdu.se (Sara Abbaspour Asadollah), bahman.pourvatan@mdu.se
(Bahman Pourvatan), zahra.moezkarimi@mdu.se (Zahra Moezkarimi),
marjan.sirjani@mdu.se (Marjan Sirjani)

Preprint submitted to JLAMP August 5, 2023

1. Introduction

Cybersecurity is considered as one of the highest priority targets in global
policy and national security plans. There are increasingly challenging cyber-
security issues for governments and large companies in various sectors such
as water supply system, energy production, transportation and smart ma-
chines. Because of rapid digitalization, a majority of manufacturing systems
are no longer closed systems and are becoming systems with increasingly net-
worked and cloud-based connectivity. The attack surface is hence expanded
from known threats and known devices to additional security threats of new
devices, protocols, and workflows.

Security assurance is a non-stop process. Companies need to continually
assess their cybersecurity posture to ensure they are up to date with the
latest security measures. We need to prepare our organizations and indus-
trial companies by using proper tools, solutions and methodologies, both at
the design phase and the operational phase of the system, and provide well-
formed adaptation strategies to withstand failures. Formal methods provide
an approach to verifying software systems, which can be particularly useful
in the field of cybersecurity. By using formal methods, one can create a pre-
cise mathematical model of the system at design-time, which can be used to
identify potential vulnerabilities, detect and diagnose flaws and errors, and
verify that the system is secure and will behave as intended. Runtime verifi-
cation and monitoring can also be used for resilience against cyberattacks by
preventing and detecting cyberattacks and therefore can help in improving
reaction time, reducing downtime, and ultimately saving money in the case
of an attack.

Cyber Physical Systems (CPS) provide an outstanding foundation for dig-
italization and building advanced industrial systems and applications. CPSs
are systems that integrate physical, computational, and communication sub-
systems. In a CPS, sensors are responsible for collecting data on the state
of a physical process and submit them to the controllers. Controllers control
the physical process using actuators. These systems are used in a wide va-
riety of safety-critical applications, from automotive and avionic systems to
robotic surgery and smart grids.

2

In this work, we give a thorough overview of the CRYSTAL1 framework
which can be used for building safe and secure Cyber-Physical Systems. The
main building blocks of CRYSTAL are introduced in [1] and [2]. The cor-
nerstone of CRYSTAL is its architecture based on the MAPE-K2 feedback
loop [3] where we have components to monitor the system, analyze the be-
havior of the system, plan accordingly, and actuate necessary actions.

In CRYSTAL, we build an actor-based model of the system and the attack
models, perform security analysis at design-time using formal verification in
the form of model checking, and find the attacks that may jeopardize the
system safety and security [1]. Then, abstract the state space generated by
model checking to create an abstract behavioral model (Tiny Digital Twin)
of the system, and use it at runtime [2]. Based on our experience, the actor
model matches the domain of reactive and Cyber-Physical Systems well and
hence the modeling becomes natural in these domains [4, 5, 6]. Using CRYS-
TAL, we are able to systematically model and check complex coordinated
attacks. In the following, we elaborate the details of our framework, and
explain the stages of the security process in various CPS applications.
CRYSTAL Contributions. CRYSTAL is designed to complement, not
to replace, an industrial cybersecurity program. It provides the industrial
system development with an opportunity to identify areas where existing
processes can be strengthened. The highlight of CRYSTAL is addressing
cybersecurity concerns by deploying a monitor which uses a reference model
of the system for attack detection in the feedback control loops of CPSs.
The style is in the form of MAPE-K architecture, where the reference model
acts like model@runtime for analysis and planning. A formally verified actor
model is used to build the reference model as a Tiny Digital Twin. By cross-
referencing the actual behavior of the system against the Tiny Digital Twin,
we can identify a good percentage of discrepancies and take appropriate
corrective measures to ensure reliability and security of the system. We
use a concept of logical time, and a technique for logical and physical time
alignment to be able to monitor a CPS.

We use Timed Rebeca as an actor-based modeling language supported
by a model checking tool [7, 8] to model the behavior of the cyber-physical
systems. We use Lingua Franca (LF) [9] to build an executable model of

1CRYSTAL stands for CybeR-physical sYstem SecuriTy AnaLysis
2Monitor, Analyze, Plan, Execute - Knowledeg-base

3

the system. LF is a programming language based on the Reactor model of
computation [10] for building CPSs. LF deploys a mechanism to synchronize
the logical time (defined in the Timed Rebeca model) with the physical time
in the system.

The CRYSTAL framework is developed incrementally. In [1], we start by
developing a Timed Rebeca model from the system specification and verify
the safety and security requirements using Afra model checker [11]. In [1],
we show how to model the components of Cyber-Physical Systems as actors
in Timed Rebeca, and define interactions between the components as mes-
sages passed between the actors. We build attack models based on STRIDE
threat modeling [12] as the guideline for defining attack scenarios. We the
show how to verify the safety and security requirements using Afra model
checker [11]. We use the Secure Water Treatment System (SWaT) to show
the modeling and formal verification. In [2], we propose a monitor that uses
a Tiny Digital Twin to detect false sensor data and faulty control commands.
The Tiny Digital Twin is in the form of a state transition model. The moni-
tor checks whether the observed data and commands are consistent with the
transitions in the Tiny Digital Twin. In [13], we provide a formal foundation
for mapping the state space of a Timed Rebeca model generated by Afra to
the input of mCRL2 ltsconvert tool [14], by which we abstract away non-
observable actions from the state space while preserving trace equivalence.
In [2] and [13] we use the Temperature Control System (TCS) case study
to demonstrate the methods. In this paper, we provide a complete overview
of CRYSTAL, elaborating more on the runtime monitoring phase, and high-
lighting the details of the systems under study, attacks that can be detected.
Moreover, the Pneumatic Control System is presented in this paper as an
example where the distributed controllers communicating through insecure
channels.

The CRYSTAL framework comprises modeling and programming for con-
structing cyber-physical systems, security analysis through model checking,
and runtime monitoring. We have designed three stages that can be used to
enhance cyber-resilience in CPS applications.

• We use the actor-based language, Timed Rebeca, for modeling and a
mapping technique to generate executable code from the model.

• We build attack models and define security and safety properties, and
we use them in model checking.

4

• We create a Tiny Digital Twin; for that we map the state space gen-
erated by the model checker into a format that can be the input of
mCRL2 ltsconvert tool, and then abstract it using the reduction tech-
niques of the tool.

• We perform runtime monitoring to detect attacks by checking the con-
sistency of the behavior of the operational system with the Tiny Digital
Twin.

We demonstrate the details of the methodology to detect attacks using
Pneumatic Control System (PCS), Temperature Control System (TCS), and
Secure Water Treatment System (SWaT). The PCS and SWaT systems are
distributed control systems whereas TCS is a centralized control system.
Aligning logical and physical time, enables us to perform the monitoring
at runtime. Relying only on the logical times defined in the model is not a
realistic assumption at runtime. We model both periodic and trigger sensors,
which are two different types of sensors used in PCS and TCS. The use of
different sensor types in PCS and TCS systems highlights the importance of
adapting the modeling approach to the specific characteristics of each system.
We show how we can model the impact of the environment on the TCS system
functionality by using nondeterministic assignment for state variables. We
highlight the multiple incoming connections and how we use priorities for
events in the development of the SWaT case study in LF. We demonstrate
the detection capability of the monitor and discuss the detection rate for
each case study while enumerating possible attack scenarios.

Outline. We describe CRYSTAL framework and methodology in Sec-
tion 2. We introduce Timed Rebeca and Lingua Franca in Section 3. We
present our approach for modeling system and defining attacks in Section 4.
In Sections 5, 6 and 7, we follow CRYSTAL methodology on three case stud-
ies and show the results of security analysis at both the design-time and
runtime. Section 8 covers the related works. The conclusion of this work and
future directions are discussed in Section 9.

2. The Framework

We realize three stages in the CRYSTAL framework: modeling and code
generation, design-time security analysis, and runtime monitoring, as shown
in Figure 1.

5

Modeling and code generation. We build a Timed Rebeca model [15, 8]
to represent the behavior of a CPS. The approach we use for creating the
Timed Rebeca model depends on the system. We may be building a system
from scratch, or we may be dealing with an already existing system. We may
start from the specification documents of the system and UML diagrams, or
if the company is using Microsoft STRIDE [12] then we may have the Date
Flow Diagrams (DFD) of the system. In the model it is enough to capture
the main functionalities and behavior of the system in order to produce the
correct output based on the inputs. More discussion on this topic may be
found in [5, 16, 6].

Mapping Rebeca
to LF

Modeling and
code generation

Model Checking
(Afra)

ltscast tool

Properties in LTL,TCTL
or Assertions

State Space

Design-time security
analysis

ltsconvert
tool

Input of
mCRL2

Runtime monitoring

Sensors

Physical Process

Monitor
(in LF)

Tiny Digital Twin

Sensor data

Commands

Commands

Actuators

ControllersSensor data

Tiny Digital Twin

Timed Rebeca model
augmented with attacks

(a) (b) (c)

Timed Rebeca
model

LF executable code
(used for simulation)

Counter-examples

Figure 1: Three stages in the CRYSTAL framework. In stage (a), we build a Timed
Rebeca model of the system. Then we map the Timed Rebeca model to an LF executable
code. This LF code is used in simulation when checking the performance of the monitor
at runtime (in stage (c)). In stage (b), we build a Timed Rebeca model that is augmented
with attacks to find potential vulnerable points at design-time. We check the counter-
examples generated by Afra to identify the trace of events leading to a failure. To build
the Tiny Digital Twin, the state space is generated where none of the attacks are activated
in the Timed Rebeca model. We use our ltscast tool to map the state space to the input
format of ltsconvert tool of mCRL2. Then, the Tiny Digital Twin is built using ltsconvert
tool. In stage (c), the monitor (written in LF) uses the Tiny Digital Twin of the system
to detect cyberattacks at runtime.

We use LF to develop an executable code for a CPS. In LF, you may
choose a target language like C or C++ for writing the body of reactors.
Reactors are very close to Rebeca in syntax and semantics as shown in [17],
and this enables us to effectively generate an executable target code from
Timed Rebeca models. In the mapping between Timed Rebeca and LF, each

6

reactor in LF is mapped to a reactive class, and each reaction is mapped to
a message server in Rebeca. In LF we build the bindings between inputs
and outputs explicitly in the connection part of the program. For the timing
issues, there is an after keyword in LF that has the same semantics as in
Timed Rebeca.
Design-time security analysis. To check the security vulnerabilities at
design-time we need attack models to be combined with the system model.
The attack scenarios can be built based on the referenced guidelines in the
security domain, e.g., STRIDE threat model. The attack models mimic real
cyber and physical attacks and target the assets of the system to compromise
their security properties or intended functionally, i.e., attacks on communi-
cation and components to achieve communication outage or reveal secret
data.

We write the correctness properties from system security requirements,
and feed both the combined model of the system and attacks, and the prop-
erty file to the Rebeca model checking tool (Afra) [11] in order to evaluate
the system tolerance against the attacks. We use the state space which is
the output of Afra to build an abstract behavioral model of the system. The
abstract behavioral model is used as the Tiny Digital Twin to help us in
detecting the attacks in the runtime monitoring. We use the mCRL2 ltscon-
vert tool [14] to generate the Tiny Digital Twin while preserving the trace
equivalency.
Runtime monitoring. During operational phase of the system, the Tiny
Digital Twin is used within a monitor to detect cyberattacks on sensor data
and control commands, and identify compromised components such as con-
trollers. The monitor is strategically positioned between the control part
and the sensor and actuator components in CPS applications as shown in
Figure 1.(c). It observes the visible inputs and outputs of the controllers,
traverses state transitions in the Tiny Digital Twin, and detects any mis-
behavior occurring during system operation. To protect the system against
attacks and prevent damage, the monitor drops control commands that are
not consistent with the state transitions in the Tiny Digital Twin. Using the
Tiny Digital Twin, and the knowledge of the correct and secure function-
ality of the system, enables the monitor to validate the sequence of actions
and the completion time of processes. The monitor is developed using LF
language and has the same functionality in different CPS applications. It ad-
justs the input/output ports based on the number of sensors and actuators
of the system.

7

3. Background: Timed Rebeca and Lingua Franca

In this section, we provide an overview on Timed Rebeca [7], and describe
Lingua Franca programming language [18].
Timed Rebeca . Rebeca (Reactive Object Language) [19] is an actor-based
language for modeling and formal verification of concurrent and distributed
systems. An actor, called rebec (reactive Object), is an instance of a reactive
class. Rebecs communicate via asynchronous message passing, which is non-
blocking for both sender and receiver. Timed Rebeca, as an extension of
Rebeca, has a notion of logical time. The logical time is local times of actors
synchronized among all actors, that can be seen as a global time. Each actor
has a set of variables that stores values, a set of methods (called message
servers) and a message bag to store the received messages along with their
arrival times and their deadlines. The actor takes a message with the least
arrival time from its bag and executes the corresponding message server. The
actor can change the values of its variables and send messages to its known
actors while executing a message server. In Timed Rebeca, the primitives
delay and after are used to model the progress of time while executing a
message server.

Timed Rebeca is supported by Afra model checker tool [11]. Afra gen-
erates the state space of the Timed Rebeca model, in which states contain
the local state of all actors and the logical time, and transitions represent
three types of possible actions including taking a message from the message
bag, executing the corresponding message server of the enabled actor, and
progressing the logical time of the model. An approach based on a shift-
equivalence relation is proposed in [8] to make the state space of a Timed
Rebeca model bounded. Two states are in the shift-equivalence relation when
all the elements of both states have the same value except for the elements
related to time (like the current time value, and the time tags on the mes-
sages in the queues including deadlines). The elements related to time can be
different but they should all have the same difference (shift) in their amount.
Lingua Franca (LF). Lingua Franca is a coordination language based
on the Reactor model for programming CPSs [9, 20]. A Reactor model
is a collection of reactors (like rebecs in Rebeca). A reactor has one or
more routines that are called reactions (like message servers in Rebeca).
Reactions define the functionality of the reactor, and have access to a state
shared with other reactions, but only within the same reactor (similar to
Rebeca). Reactors have named (and typed) ports that allow them to connect

8

to other reactors. Two reactors can communicate if an output port of a
reactor is connected to an input port of the other reactor. The usage of ports
establishes a clean separation between the functionality and composition of
reactors; a reactor only references its own ports. Reactions are similar to
the message handlers in the actor model. Reactions are triggered by discrete
events and may also produce them (similar to handling a message and sending
a message). An event relates a value to a tag that represents the logical time
at which the value is present (similar to a time tag for a message). An event
produced by one reactor is only observed by other reactors that are connected
to the port on which the event is produced. Events arrive at input ports,
and reactions produce events via output ports.

In LF, the logical time does not advance during a reaction. A reactor can
have one or more timers. Timers are like ports that can trigger reactions. A
timer has the form timer name(offset, period) that once triggers at the time
shown by offset (if offset is zero, then the timer triggers at the start time
of the execution), and then triggers periodically according to the period. LF
has a built-in type for specifying time intervals. A time interval consists of
an integer value accompanied by a time unit (e.g., sec for seconds or msec for
milliseconds). Timers are used for specifying periodic tasks, which are very
common in embedded computing and CPSs. Each LF code contains a main
reactor that is an entry point for the execution of the code. The mapping of
Timed Rebeca to Lingua Franca and reverse, including the timing features,
is a natural mapping that is discussed in [17, 21].

4. Building the Rebeca Models and Attacks

In this section, we describe the method to model the behavior of the
system and define attack scenarios in Timed Rebeca. We consider each com-
ponent and physical process as an actor in CPS applications. We realize four
categories of actors in the Rebeca model including controllers, sensors, actu-
ators, and physical processes. Generally, the interaction scenarios between
these actors follow a closed-loop feedback. Sensor observes the physical com-
ponent’s status, and sends the sensed data to the controller denoting the state
of the physical component. Based on the received sensed data, the controller
sends the control command to the actuator, and the actuator performs the
actual physical change. In real cases, we may have different types of actors
in each category (e.g., temperature sensors, speed sensors, etc.), and each
type may be defined by a distinct reactive class.

9

Generally, the continuous behavior of physical components is expressed
using differential equations like in Hybrid Automata [22]. We abstract the
continuous behavior and only model the discrete jump transitions among the
states (states are called control modes in hybrid automata). We model the
progress of time in each state in Timed Rebeca. In each actor representing a
physical component, we use state variables to model different states. In the
remainder of this section, we will present the method to define attacks.

4.1. Attack Modeling

According to [1], the malicious behavior on communication channels
and components are considered in three cases: (1) an attacker targets the
communication channel between two components through injecting malicious
messages, (2) an attacker manipulates the internal behavior of one or more
components e.g. through malicious code injection, and (3) one or more at-
tackers perform a coordinated attack to launch malicious behavior on both
the communication channels and the components. To illustrate these cases,
we define three attack schemes.
Scheme-A: Attack on Communication Channels can happen when an
attacker sends malicious messages through the channels between the con-
troller and the sensors/actuators. These messages may mislead the receiver
and cause a system failure. For example, as depicted in Figure 2 for Scheme-
A, an attacker can compromise the channel between the sensor and controller
and send false sensor data that makes the controller give the wrong command
to the actuator, causing unexpected results. In the Timed Rebeca model, a
reactive class is defined to model the attacker’s behavior. This class sends
malicious messages at an appropriate time to damage the system. To perform
exhaustive security check, a set of Timed Rebeca models can be developed
that contains one or more attackers that target different channels at different
injection times during the system operation. These Timed Rebeca models
are inputs of the security analysis using model checking.
Scheme-B: Attack on Components indicates a situation in which a num-
ber of components are compromised and do not function correctly. Attackers
may have direct access to the components and perform physical attacks on
them. They may damage the code in some sensors/actuators or inject mali-
cious code into the controllers. For example, as Figure 2 shows for Scheme-B,
an attacker may compromise controllers and perform actions over a physical
process different from the desired plan. This scheme is modeled in Timed Re-
beca as modified message server inside the reactive class corresponding to the

10

Sensors

Physical Process

Commands

Actuators

Controllers
Sensor data

Inject malicious
msg

Sensors

Physical Process

Commands

Actuators

Controllers
Sensor data

Compromise
components

Sensors

Physical Process

Commands

Actuators

Controllers
Sensor data

Inject malicious
msg

Compromise
components

Scheme-A Scheme-B Scheme-C

Figure 2: Scheme-A, Scheme-B, and Scheme-C in Timed Rebeca model for security analy-
sis of CPS applications (adapted from [1]). The red circles show attacks on communication
channels and the blue diamonds indicate attacks on components. For example, in Scheme-
A the attacker injects malicious data into the communication channel between a sensor
and the controller. In Scheme-B, the attacker compromises controllers, and in Scheme-C,
there is an attack that is performed in a coordinated way.

target component. This message server models the incorrect functionality.
Scheme-C: Combined Attack is a combination of the previous two attack
schemes. In this scheme, attackers can compromise both the system compo-
nents and communication channels by coordinating their attacks. Scheme-C
in Figure 2 illustrates a system with the presence of an attack in which an
attacker injects faulty command into the channel between the controller and
the actuator, and compromises the sensor to report false sensor data to the
controller. The modeling of this scheme would include various combinations
of the defined attackers and compromised components as actors in a Rebeca
model. We can choose many kinds of attack scenarios with the assumption of
compromised network or components in Rebeca model and check the attacks’
damage on the CPS applications.

4.2. Attack Classification

STRIDE1 categorizes threats and corresponding security objectives for
systems. Table 1 classifies significant CPS attacks (reported in [23, 24, 25])
based on the STRIDE categories. Attacks exploit communication and com-
ponent vulnerabilities in Scheme-A and Scheme-B. We are able to model
these attack scenarios using our methodology.

1The acronym STRIDE stands for Spoofing, Tampering, Reputation, Information
Disclosure, Denial of Service, and Elevation of Privilege.

11

Table 1: Attack Classification using STRIDE model [1].

Threat Type
(Security Objective)

Cyber and Physical Attack Scheme-A Scheme-B

Spoofing
(Authentication)

Masquerade attack [24]
Packet spoofing attack [25]

Tampering
(Integrity)

Man-in-the-middle (MITM) [24]
Injection attack [25] [25]
Replay attack [24]
Malware (Virus or Worms) [25]
Physical attack [25] [23]

Reputation
(Non-Repudiation)

On-Off attack [23]

Information
Disclosure
(Confidentiality)

Eavesdropping [24]
Malware (Spyware) [25]
Side-channel attack [25]
Physical attack [25] [23]

Denial of
Service
(Availability)

Resource exhaustion attack [24] [25]
Interruption attack [24]
Malware (Ransomware) [25]
Physical attack [25] [23]

Elevation of
Privilege
(Authorization)

Malware (Rootkit) [25]

The attacks that compromise the communication channels belong to the
following category. In Spoofing attack, the attacker transmits a message with
a spoofed identity into the network. Man-in-the-middle (MITM) requires the
attacker to put herself in between two communicating parties and change the
messages. To launch MITM attack, the attacker impersonates herself as one
of the targeted parties. Injection attack indicates that the attacker injects
invalid messages into the network (i.e., packet injection). Replay attack is an
intentional repetition of sending a message to mislead the receiver. Eaves-
dropping attack takes advantage of unsecured channels to steal the informa-
tion transmitted over the network. Side-channel attack is an attack in which
the attacker uses her own technical knowledge of the system to compromise
the system security. Resource exhaustion attack represents a situation that
the network resources are overwhelmed by a flood of messages transmitted
from the attacker. Interruption attack makes a service unavailable for legit-
imate use, and Physical attack aims to damage a communication link.

The attacks that compromise the components belong to the following
category. Masquerade attack refers to a situation where the attacker imper-
sonates herself as one of the communicating parties. Injection attack is used

12

by an attacker to inject a malicious code into a component (i.e., code injec-
tion). Malware is a malicious software designed to manipulate the behavior
of components. Side-channel attack is an attack in which the attacker gains
knowledge about the system by observing the behavior of some component(s).
Finally, Physical attack manipulates some component(s) physically.

5. Pneumatic Control System (PCS)

Pneumatic Control System (PCS) is a control system that regulates the
movement of mechanical components, such as cylinders, robotic arms or con-
veyor belts, in multiple directions. The system is widely used in various
safety-critical industrial applications, including manufacturing and automo-
tive industries due to its high reliability and low maintenance requirements.
We use a PCS described in [26] to explain CRYSTAL.

The PCS presented here has two cylinders, CylinderA and CylinderB, as
shown in Figure 3. Each cylinder is controlled by a dedicated controller
to regulate the movement in either left-right or up-down directions. The
timing of the movement for cylinders can differ based on the direction of the
movement. The controllers are responsible for coordinating the movements
in the correct sequence and timing that involve pick-and-place operations.
The motion plan is moving the cylinders from the initial position (location
X) to the target position (location Y), and then moving back to the initial
position. In this case, each movement takes 2 units of time. The desired
sequence of movements of the cylinders is as follows: (1) CylinderB moves
down, (2) CylinderB moves up, (3) CylinderA moves right, (4) CylinderB moves
down and (5) then up, (6) CylinderA moves left.

5.1. PCS Timed Rebeca model

The Timed Rebeca model for the PCS case study is depicted in List-
ing 1. The model also contains parts for modeling the compromised version
of sensors, and an attacker (explained in Section 5.2). In this model, there
are six reactive classes ControllerA, SensorA, CylinderA, ControllerB, SensorB,
and CylinderB. Each controller receives the information about the position
of its own cylinder from the corresponding Sensor, using the message server
getsense (see line 10). The controllers also receive the information about
the other cylinder movements using the message server getctl (line 20). The
controllers decide whether to move the cylinder based on the current status

13

C
ylinder B

Cylinder A

C
ylinder B

Controller
A

Controller
B

Location X Location Y

1

2

3

6

4

5

Figure 3: PCS with two cylinders (adapted from [26]). The cylinders pick up a particle
from location X and place it in location Y.

and desired movement (lines 11 to 19). The controllers send the motion com-
mands 1 or -1 to regulate the movements (lines 15 and 19). The sensors in
this system are the trigger sensors and simply serve as intermediaries between
the cylinders and controllers, reporting location information (lines 22 to 27)
when cylinders touch initial location or target location. Sensing the location
of cylinders is modeled using a message server status in both cylinders that
updates the motion and reports it to the respective Sensor, which then for-
wards the location to the corresponding Controller (line 34). The message
server actuate receives a motion command from the Controller to handle the
movements (line 35). The time of the movement for each cylinder is modeled
using after primitive (line 36). In this model, the duration of each move-
ment is 2 units of time. We assume that ControllerA starts its linear motion
from the left at the top of location X. The initial and end locations (value 0
for left-top, 2 for right-top and -2 for right-down) for both cylinders are set
through environmental variables (see line 1).

5.2. PCS attack modeling in Timed Rebeca

The Timed Rebeca model of the system is augmented with different types
of attacks that can be launched to test the resilience of the system. The attack
scenarios that are modeled in this case study include compromised sensors,
compromised cylinders, and injection attacks on the communication channels
between controllers as shown in Figure 4. In addition, the combined attacks
are performed by involving injection attack with the compromised version of
sensors and cylinders to perform complex coordinated attacks.

14

1 env int cylinderAEndloc = 2; env int cylinderBEndloc = -2; //environment variables

2 env boolean sAComp = false; env int sAComp_time = 6; env int sAmalMsg = 0;

3 env boolean inj_attk = false; env int attTime = 4;

4 env int malMsg = 0; env int chl = 1;

5 ...

6 reactiveclass ControllerA(5){

7 knownrebecs{ CylinderA cylA; ControllerB cntlB;}

8 statevars{boolean locBisUP, locAisLeft;}

9 ControllerA(){ locBisUP = false; locAisLeft = true;}

10 msgsrv getsense(int locA) { //locBisUP:true means that CylinderB is up

11 if(locBisUP) {

12 if(locAisLeft) {

13 if(locA == cylinderAEndloc) {

14 cntlB.getctl(locA); locAisLeft = false; locBisUP = false;

15 } else { cylA.actuate(1);}

16 } else if (!locAisLeft) {

17 if(locA == 0) {

18 cntlB.getctl(locA); locAisLeft = true; locBisUP = false;

19 } else { cylA.actuate(-1); } } } }

20 msgsrv getctl(int locB){ if (locB == 0) { locBisUP = true; } }

21 }

22 reactiveclass SensorA(5){

23 knownrebecs{ ControllerA ControllerA;}

24 SensorA(boolean compromised, int compTime, int msg){

25 if (compromised) { self.getloc(msg) after(compTime);} }

26 msgsrv getloc(int loc) { ControllerA.getsense(loc);}

27 }

28 reactiveclass CylinderA(5){

29 knownrebecs{SensorA SensorA;}

30 statevars{ int loc, motion;}

31 CylinderA(boolean compromised, int compTime, int msg){

32 loc = 0; motion = 0; self.status();

33 if (compromised) { self.actuate(msg) after(compTime); }}

34 msgsrv status() { loc = loc + motion; // left to right on x-axis

35 if(loc == 0 || loc == cylinderAEndloc){

36 SensorA.getloc(loc); motion = 0; } self.status() after(2); }

37 msgsrv actuate(int rate) { motion = rate;}

38 }

39 reactiveclass ControllerB(5){...}

40 reactiveclass SensorB(5){...}

41 reactiveclass CylinderB(5){...}

42 reactiveclass Attacker(3){//injects false messages in channels between controllers

43 knownrebecs{ ControllerA cntlA; ControllerB cntlB;}

44 Attacker(boolean inj, int channel, int msg, int attktime) {

45 if(inj){ if (channel == 1) { self.chlBA(msg, attktime);}

46 if (channel == 2) { self.chlAB(msg, attktime); } } }

47 msgsrv chlBA(int msg, int attktime){ cntlA.getctl(msg) after(attktime); }

48 msgsrv chlAB(int msg, int attktime){ cntlB.getctl(msg) after(attktime); }

49 }

50 main{

51 CylinderA cylA(SensorA):(cAComp,cAComp_time,cAmalMsg);

52 ControllerA ControllerA(cylA, ControllerB):();

53 SensorA SensorA(ControllerA):(sAComp,sAComp_time,sAmalMsg);

54 ... // ControllerB and SensorB instances

55 Attacker attacker(ControllerA, ControllerB):(inj_attk, chl, malMsg, attTime);}

Listing 1: A part of the Timed Rebeca model augmented with attacks for the PCS case
study.

15

Controller
A

Controller
B

Cylinder A
(left to right)

Cylinder B
(up to down)

getctl(0 or 2)

actuate(1 or -1)

getctl(0 or -2)

getsense(0 or 2) actuate(1 or -1) getsense(0 or -2)

chlAB

chlBA

Figure 4: The sensor data and control commands in the PCS case study. The messages are
transmitted between controllers in order to regulate the movements. The possible attack
points for performing attack scenarios are depicted with red circles and blue diamonds to
show attacks on communications or components, respectively.

In the following, we explain the attacks augmented in the Timed Re-
beca model. The compromised sensors are where SensorA and SensorB can
be compromised by an attacker. In Timed Rebeca model, this attack sce-
nario is modeled by setting a flag in the input parameter of the construc-
tor that changes the mode of the sensor component to compromised (see
line 24 in listing 1). When the sensor is compromised, it sends a ma-
licious message to its corresponding controller at a specified time. The
SensorA(compromised, compTime,msg) shows how it is activated in the con-
structor (line 24). The parameter msg indicates the current location of the
cylinder being sensed, which may be different from the actual location. This
can mislead the controller to take the wrong decision for the control motion
and cause a failure in the system. The compromised cylinders are where
CylinderA and CylinderB can be compromised by an attacker. Similar to the
attack on sensors, they are modeled by setting a flag in the input parame-
ter of the constructor of the reactive classes (line 31). For example, when
CylinderA is compromised, it receives a malicious command from an attacker
at a specified time (i.e., CylinderA(compromised, compTime,msg))(line 45).
The msg can be either to move left or right, causing the cylinder to move
to a different location than intended and compromise the system. The in-
jection attacks show that the system is also susceptible to injection attacks,
where an attacker can inject a malicious message into the communication
channels, i.e., chlAB and chlBA, between two controllers. This can cause the
controllers to take the wrong decision for the movements and send wrong

16

motion commands. We define the actor Attacker to perform injection at-
tacks on the system (line 42). The channels chlAB and chlBA are compro-
mised and a malicious sensor message is injected at a specified time (i.e.,
Attacker(inj, channel,msg, attktime))(lines 45 to 49). In order to test for pos-
sible complex attack scenarios, we must generate combinations of different
values for both the input parameters of the Attacker and the Compromised
components, and verify the model for each combination. To automate this
process, we develop a Python script for generating input values and collecting
verification results. This approach is similar in nature to the automated ver-
ification technique that uses symbolic modeling and constraint solving. The
complete model of the system and the written python codes are available on
GitHub [27].

5.3. PCS safety properties

We define safety properties to catch unsafe and undesirable movements
of the cylinders. To specify the properties, we use assertions. The Timed
Rebeca model for the PCS satisfies all the properties in Listing 2 when none of
the attacks are activated. If the model checker detects that a safety property
is not satisfied, it provides the modeler with a counter-example that outlines
the sequence of events leading to the violation. This sequence of events can
be used to determine the steps of the successful attack scenario when the
compromised components or injection attacks are activated.

The properties shown in Listing 2 are defined using the values of the
variables loc and motion for two cylinders in the Timed Rebeca model. The
variable loc keeps the location information of the cylinder at each state and
the variable motion indicates the motion command issued by the controller.
The property safety prop1 is written to ensure that CylinderA cannot move to
the right (motionR) or left (motionL) while CylinderB is located at the bottom
(locBb). The properties safety prop2 and safety prop3 ensure that both cylin-
ders do not move diagonally. In these safety properties, CylinderB cannot
move up (motionU) or down (motionD) while CylinderA is moving to the right
(motionR) or left (motionL). The properties safety prop4 and safety prop5 en-
sure that CylinderA and CylinderB, respectively, only have motion between
the initial position and the end position in location X or Y.

17

1 property {

2 define {

3 locXa = cylA.loc == 0; locYa = cylB.loc == 0;

4 locXb = cylA.loc == 2; locYb = cylB.loc == -2;

5 motionR = cylA.motion == 1; motionL = cylA.motion == -1;

6 motionU = cylB.motion == 1; motionD = cylB.motion == -1;

7 locXbstuck = cylA.loc == 3; locXastuck = cylA.loc == -1;

8 locYbstuck = cylB.loc == -3; locYastuck = cylB.loc == 1;

9 }

10 Assertion {

11 safety_prop1: !((motionR && locYb) || (motionL && locYb));

12 safety_prop2: !((motionR && motionU) || (motionL && motionD));

13 safety_prop3: !((motionL && motionU) || (motionR && motionD));

14 safety_prop4: !(locXastuck ||locXbstuck);

15 safety_prop5: !(locYastuck ||locYbstuck);

16 }

17

18 }

Listing 2: The safety properties for the PCS case study.

5.4. PCS security analysis

Table 2 and Table 3 show the results of the analysis based on the model
checker outputs. In our experiments, we consider the number of false sen-
sor data and faulty control commands as the number of compromising and
injection attacks during a predefined system execution period (28 seconds).
Among the total number of 2977 attacks on sensor data and control com-
mands (i.e., via Compromised version of the components), 355 attack sce-
narios successfully violated the safety properties. Similarly, out of the 60
injection attacks, 28 attack scenarios successfully violated the safety proper-
ties safety prop1, safety prop2, and safety prop3. Therefore, the total number
of attacks that violated the properties is 383 (i.e., total successful attacks)
out of 3,037 attacks.

Table 2 uses the following notation: sACompromised indicates that SensorA
is compromised, while cACompromised indicates that CylinderA is compro-
mised, and so on for the other components. The high-risk component is
SensorB since preforming attack scenarios using sBCompromised shows the
highest total number of failures for the properties (i.e. 140, highlighted in
pink). This means that SensorB is a more vulnerable point and needs to
be protected against potential attacks. Additionally, safety prop3 is violated
more than other properties during attacks, indicating that this function in
the system behavior is more sensitive (highlighted in blue). We also ob-
serve that some properties have the higher number of violations per attack
(highlighted in gray).

18

Table 2: The failure of properties for the compromising and injection attacks

safety prop1 safety prop2 safety prop3 safety prop4 safety prop5 total successful attacks

cACompromised 5 14 16 3 0 38
cBCompromised 0 19 17 0 13 49
sACompromised 2 44 78 0 4 128
sBCompromised 20 50 31 0 39 140

injection 6 10 12 0 0 28

total fails prop 33 137 154 3 56 383

Table 3 shows the results for the combined attack scenarios. We consider
the compromising and injection attacks that are described in the attack sce-
narios above, and combine those scenarios pairwise where they do not violate
the safety properties without combination. The outcomes show the pairs of
attacks that result in successful coordinated attack scenarios. Out of the 8010
combined attack scenarios, 281 cases successfully violate the safety proper-
ties. We show the property with the higher number of violations (highlighted
in gray) for each pair of attacks. The most effective attack is the combina-
tion of the attack on SensorB and the injection of false data into the channels
(highlighted in pink).

Table 3: The failure of properties for the combined attacks
safety prop1 safety prop2 safety prop3 safety prop4 safety prop5 total successful attacks

sACompromised+injection 0 6 36 5 0 47
sACompromised+sBCompromised 2 24 15 0 4 45

sBCompromised+injection 8 33 10 0 24 75
cBCompromised+injection 0 13 10 0 2 25

cBCompromised+sACompromised 0 9 17 0 0 26
cACompromised+sBCompromised 0 0 5 0 0 5

cACompromised+injection 0 4 2 3 0 9
cBCompromised+sBCompromised 5 14 8 0 11 38
cACompromised+sACompromised 0 0 2 0 0 2
cACompromised+cBCompromised 1 0 2 0 0 3

total fails prop 16 103 107 8 41 281

An example of a combined attack scenario is sBCompromised+ injection
where the attack violates the property safety prop2. As shown within Rebeca
IDE in Figure 5, the attack scenario in the Timed Rebeca model involves an
attacker where it injects the false sensor data 0 into the channel between
the controllers at attktime = 6 and sBCompromised transmits the false sensor
data 0 to ControllerB at sBComp time = 12. In this combined attack scenario,
as shown in Figure 6, (1) the attacker waits until 6 units of time and then
injects the false sensor data getctl(0) into the channel towards ControllerB.
The false sensor data 0 indicates the movement of CylinderA is completed
and ControllerB can actuate CylinderB. (2) ControllerB sends the motion
command actuate(1) to actuate CylinderB. (3) ControllerB gets the status
of CylinderB from the compromised sensor where it reports that CylinderB

19

is moved down. (4) ControllerB reports ControllerA that the movement of
CylinderB is completed since it gets the false sensor data getsense(0). (5)
ControllerA gets the sensor data getsense(0) from SensorA where it indicates
CylinderA is on the left and also gets the report getctl(0) from ControllerB
showing that the movement of CylinderB is completed. (6) ControllerA sends
the motion command actuate(1) to actuate CylinderA to the right at time 12.
The property safety prop2 is violated when actuate(1) is sent from ControllerA
as shown in the counter-example at the top right of the IDE in Figure 5.

The property safety prop2 ensures that both cylinders must not move
diagonally. Therefore, the combined attack scenario violates the safety prop-
erty safety prop2 at time 12 and the model checker generates the counter-
example that indicates the events leading to the violated state. In this case,
the injection attack and the compromised sensor attack are not successful
attacks separately. In our approach, we can extend the attack combinations
and evaluate the system security with various complex attack scenarios.

5.5. PCS Tiny Digital Twin and Monitoring

We employ a monitor to find inconsistencies at runtime. The monitor
observes sensor data and control commands transmitted in the network and
detects attacks using Tiny Digital Twin. Tiny Digital Twin is an abstract
version of the state space generated by the model checker and is used by the
monitor to catch inconsistencies. The monitor walks over the model to check
whether the sensor data and control commands are consistent with the state
transitions in the Tiny Digital Twin.

The actions on the transitions in the state space that are not visible to
the monitor (and the controller), are known as non-observable actions. We
developed a tool, ltscast, to map the state space created by Afra into the input
format of the mCRL2 ltsconvert tool [14]. Using the mCRL2 ltsconvert tool,
we create the Tiny Digital Twin by abstracting away non-observable actions
while preserving trace equivalence [13].

We create the Tiny Digital Twin for the PCS system by providing the
ltsconvert tool with a list of labels that denote the the silent transitions (non-
observable actions). In this system, the actions getsense, actuate and getctl
are observable in the system behavior from the controller point of view, while
actions status and getloc are non-observable. The resulting abstract model
has 87 states and 120 transitions, while the original state space has 276 states
and 439 transitions.

20

Figure 5: The counter-example generated by Afra model checker for the combined at-
tack scenario cBCompromised+ injection where attktime = 12. The property safety prop2
is violated when actuate(1) is sent from ControllerA.

Controller
A

Controller
B

Cylinder A
(left)

Cylinder B
(down)

Communication Channels

Compromised SensorB
getsense(0)

Injects getctl(0)

actuate(1)

getctl(0)

getsense(0)

Successful
Attack

At time @12
1

3

4

56
actuate(1)

2

Figure 6: The sequence of events for the combined attack cBCompromised+ injection where
the attack succeeds at time attktime = 12 on the control system. The attack causes the
system to subsequently generate getctl(0) and actuate(1), and violate the safety property
safety prop2.

21

S67

S65

controllerb.getsense[0].[]

S66

controllera.getsense[0].[]

S3

@[28>>30]

S7

S52

controllera.getsense[0].[]

S78

controllerb.getsense[0].[]

S9

S54

controllerb.getsense[0].[]

S56

controllera.getsense[0].[]

S10

time +=2

S47

S48

time +=2

S49

cyla.actuate[1].[]

S50

@[12>>2]

S51

controllerb.getsense[0].[]

cyla.actuate[1].[]

S81

controllerb.getsense[0].[]

S53

time +=2

S55

controllera.getsense[0].[]

S80

controllera.getctl[0].[]

controllera.getctl[0].[]

controllerb.getsense[0].[]

S57

S58

time +=2

S59

S63

controllerb.getsense[-2].[]

S64

controllera.getsense[0].[]

S60

time +=2

S61

controllera.getsense[0].[]

S62

cylb.actuate[1].[]

cylb.actuate[1].[]controllera.getsense[0].[]controllerb.getsense[-2].[]

S70

controllera.getsense[0].[] controllerb.getsense[0].[]

S68

controllera.getsense[0].[]

S71

cylb.actuate[-1].[]

S76

time +=2

S74

controllerb.getsense[-2].[]

S79

controllera.getsense[0].[]

S75

time +=2

@[12>>2]

controllerb.getsense[-2].[]

controllera.getsense[0].[]@[12>>2]

S67

S65

controllerb.getsense[0].[]

S66

controllera.getsense[0].[]

S3

@[28>>30]

S7

S52

controllera.getsense[0].[]

S78

controllerb.getsense[0].[]

S9

S54

controllerb.getsense[0].[]

S56

controllera.getsense[0].[]

S10

time +=2

S47

S48

time +=2

S49

cyla.actuate[1].[]

S50

@[12>>2]

S51

controllerb.getsense[0].[]

cyla.actuate[1].[]

S81

controllerb.getsense[0].[]

S53

time +=2

S55

controllera.getsense[0].[]

S80

controllera.getctl[0].[]

controllera.getctl[0].[]

controllerb.getsense[0].[]

S57

S58

time +=2

S59

S63

controllerb.getsense[-2].[]

S64

controllera.getsense[0].[]

S60

time +=2

S61

controllera.getsense[0].[]

S62

cylb.actuate[1].[]

cylb.actuate[1].[]controllera.getsense[0].[]controllerb.getsense[-2].[]

S70

controllera.getsense[0].[] controllerb.getsense[0].[]

S68

controllera.getsense[0].[]

S71

cylb.actuate[-1].[]

S76

time +=2

S74

controllerb.getsense[-2].[]

S79

controllera.getsense[0].[]

S75

time +=2

@[12>>2]

controllerb.getsense[-2].[]

controllera.getsense[0].[]@[12>>2]

S67

S65

controllerb.getsense[0].[]

S66

controllera.getsense[0].[]

S3

@[28>>30]

S7

S52

controllera.getsense[0].[]

S78

controllerb.getsense[0].[]

S9

S54

controllerb.getsense[0].[]

S56

controllera.getsense[0].[]

S10

time +=2

S47

S48

time +=2

S49

cyla.actuate[1].[]

S50

@[12>>2]

S51

controllerb.getsense[0].[]

cyla.actuate[1].[]

S81

controllerb.getsense[0].[]

S53

time +=2

S55

controllera.getsense[0].[]

S80

controllera.getctl[0].[]

controllera.getctl[0].[]

controllerb.getsense[0].[]

S57

S58

time +=2

S59

S63

controllerb.getsense[-2].[]

S64

controllera.getsense[0].[]

S60

time +=2

S61

controllera.getsense[0].[]

S62

cylb.actuate[1].[]

cylb.actuate[1].[]controllera.getsense[0].[]controllerb.getsense[-2].[]

S70

controllera.getsense[0].[] controllerb.getsense[0].[]

S68

controllera.getsense[0].[]

S71

cylb.actuate[-1].[]

S76

time +=2

S74

controllerb.getsense[-2].[]

S79

controllera.getsense[0].[]

S75

time +=2

@[12>>2]

controllerb.getsense[-2].[]

controllera.getsense[0].[]@[12>>2]

Figure 7: A subset of the state transitions in the Tiny Digital Twin of the PCS case study.
A transition path that presents the actions to handle the desired movement of CylinderB
is shown in the diagram (orange arrows).

22

Figure 7 shows a subset of state transitions of the Tiny Digital Twin. A
transition path that presents the actions to handle the desired movement of
CylinderB is shown in the diagram (orange arrows). SensorA and SensorB send
getsense(0) to report that CylinderA is on the left and CylinderB is moved up
(outgoing transitions from state S67 and state S65). Regarding the desired
behavior of the system, ContollerB sends the motion command actuate(−1)
to move CylinderB down (S70). Each motion in the movement of the cylinder
takes 2 units of time (S71). SensorB updates the status of CylinderB to the
controller (S76 to S75). The CylinderB moves in the linear motion and reachs
the end location (i.e., getsense(−2)). ContollerB sends the motion command
actuate(1) to move CylinderB back to the up (S74 to S61). ContollerB starts
to send actuate(1) to CylinderA when it receives the report getsense(0) from
SensorA and the message getctl(0) from ControllerB through the channel be-
tween the controllers (S61 to S48). The time shifting transitions between
states are shown with blue arrows where they indicate the transition due to
the shift-equivalence relation.

5.6. PCS Lingua Franca

In Timed Rebeca model and Tiny Digital Twin, we use logical time.
However, the monitor deals with physical time in the real applications based
on physical clocks. To synchronize logical time and physical time, we develop
the monitor using Lingua Franca (LF). LF aligns these two timelines at
runtime using a scheduler that monitors the local clock of each actor and
delays processing the message until its measurement of physical time exceeds
a threshold [20].

We use the mapping between Timed Rebeca and Lingua Franca presented
in [17] and write a Lingua Franca code for the PCS case study. The code is
presented in Listing 3 and its diagram is shown in Figure 8. The diagram
shows reactors including their reactions for the system. To simulate the
attacks, we modify the reactions in the reactors. This way, the reactors
behave as Compromised components and respectively send false sensor data
and faulty control commands on the output ports. In addition, the reactor
Attacker is defined to inject false messages into the channel between the
controllers.

Similar to the Timed Rebeca model of the system, the code implements
all components of the system. The message servers getsense, getctl, status
and actuate (see Listing 1) are mapped to the reactions of the corresponding
reactors in LF (see Listing 3). The list of known rebecs in knownrebecs

23

PCS_Monitor

ControllerA

2

1
getctl

getsense

actuate

getctlB

ControllerB

2

1
getctl

getsense

actuate

getctlA

SensorA

sensedValue out

SensorB

sensedValue out

CylinderA

(0, 2sec)

2

1
actuate

getloc

CylinderB

(0, 2sec)

2

1
actuate

getloc

Monitor

2

1

getctlB

getctlA

getsenseB

getsenseA

actuateB

actuateA

cmd_actuateA

cmd_actuateB

cmd_getctlA

cmd_getctlB

cmd_getsenseA

cmd_getsenseB

Attacker
in_getctlB

in_getctlA

getctlA

getctlB

1sec

1sec

1sec

1sec

1sec

1sec

Figure 8: The diagram (built in Eclipse IDE) of the reactors in LF code for PCS case
study including monitor and attacker reactors.

shows the number of output ports that are defined in the respective reactors.
For example, the output ports actuate and getctlB in the reactor ControllerA
are defined based on two known rebecs cylA and cntlB. The state variables
locBisUP, locAisLeft, loc, and motion in the reactive classes ControllerA and
CylinderA are mapped to the states in LF (see e.g., line 4). In Timed Rebeca,
a message server of other reactive classes (or self) is called, and that is how
the binding and the flow is realized. In LF, in the connection part of the main
reactor, all the bindings are set by defining which input of which reactor is
connected to which output of which reactor (see line 46 to 53).

As shown in Listing 3, the input ports getsense and getctl in the reactor
ControllerA are defined to get sensor data and the report from ControllerB.
Two output ports actuate and getctlB are defined to send values as the notion
commands to CylinderA and reports the status of the cylinder to ControllerB
(line 4). We can set the value of motion defined in the reactor CylinderA
(line 29) by transmitting a value in the output port actuate. We set the value
1 to move the cylinder to the right (line 10), and -1 to move the cylinder to
the left (line 14), and use the value of 0 to stop the motion of the cylinder.

The timing of the movement for the cylinders is defined using timer. The
reactor CylinderA includes timer that is used to trigger the reaction status in

24

the cylinder reactor after every 2 seconds (i.e., timer status(0, 2 sec)). The
reaction status changes the location loc of the cylinder based on the value of
motion (line 28 to 41). The reactors ControllerB, SensorB and CylinderB are
defined similarly for other components of the system (line 42 to 44).

We set the compromised version of SensorA and CylinderA using state
variables (line 19). If the state variable compromised becomes true, the re-
actor SensorA behaves as the compromised version and compares the logical
time provided in get elapsed logical time() with the time value compTime. It
sends msg into the output port when two logical times are the same (line
20 to 23). We have the similar implementation for the compromised version
of CylinderA, CylinderB and SensorB (line 30 to 34).

The main reactor instantiates the components and binds their input and
output ports to connect the components together. For example, we connect
the output port out in the reactor SensorA to the input port getsenseA of the
reactor Monitor. This way, the sensor data is transferred from the sensor to
the Monitor (line 50). In the main reactor, the use of after indicates that a
value reaches the input port getsenseA of the reactor Monitor after 1 unit of
time.

5.7. Detection capability of the monitor in PCS

We consider those Compromised components and Injection attacks that
successfully violate the safety properties at design-time (see Section 5.4, Ta-
ble 2 and Table 3 for the total successful attacks) in evaluating the detection
capability of the monitor at runtime. In our experiments, in developing LF
code, we simulate 355 false sensor data and faulty actuation as listed in Ta-
ble 2. We also simulate 28 injection attacks by defining Attacker and 281
combined attacks where the injection attacks are combined with sensor data
and faulty commands.

We implement the monitor as a reactor in LF (i.e., Monitor.lf) (line 2).
The reactor Monitor is imported to the LF code of the PCS case study. As
shown in Figure 8, the reactor Monitor contains two reactions, one for loading
Tiny Digital Twin and another for comparing input data with the transitions
in the model. The code is compiled by the Lingua Franca compiler, and an
executable file is returned. The monitor observes the sensor data and the
control commands during the code execution and decides to drop or pass the
commands to the cylinders. The complete LF code of the monitor and the
components of the system are available in GitHub [27].

25

1 target Cpp {fast: false, threads: 1};

2 import Monitor.lf; //loads Tiny Digital Twin and compares inputs with labels on transtions

3 reactor ControllerA {

4 input getsense:int; input getctl:int; output actuate:int; output getctlB:int;

5 state locBisUP:bool(false); state locAisLeft:bool(true);

6 reaction(getsense) -> actuate, getctlB {=

7 if (locBisUP) {

8 if (locAisLeft) {

9 if(*getctl.get() == 2){ getctlB.set(*getctl.get());

10 locAisLeft = false; locBisUP = false; } else { actuate.set(1); }

11 } else if (!locAisLeft) {

12 if(*getctl.get() == 0){

13 getctlB.set(*getctl.get()); locAisLeft = true; locBisUP = false;

14 } else { actuate.set(-1); } } } =}

15 reaction(getctl) {= if (*getctl.get() == 0) { locBisUP = true; } =}

16 }

17 reactor SensorA {

18 output out:int; input sensedValue:int;

19 state compromised:bool(false); state compTime:int(0); state msg:int(0);

20 reaction(sensedValue) -> out {=

21 auto elapsed_time = get_elapsed_logical_time();

22 auto elapsed_secs = std::chrono::duration_cast<std::chrono::seconds>(elapsed_time);

23 if(compromised && elapsed_secs == std::chrono::seconds(compTime)){

24 out.set(msg);

25 } else { out.set(sensedValue.get()); }

26 =}

27 }

28 reactor CylinderA {

29 input actuate:int; output getloc:int; state loc:int(0); state motion:int(0);

30 state compromised:bool(false); state compTime:int(0); state msg:int(0);

31 reaction(actuate) {=

32 auto elapsed_time = get_elapsed_logical_time();

33 auto elapsed_secs = std::chrono::duration_cast<std::chrono::seconds>(elapsed_time);

34 if(compromised && elapsed_secs == std::chrono::seconds(compTime)){ motion = msg;

35 } else { motion = *actuate.get(); }

36 =}

37 timer status(0, 2 sec);

38 reaction(status) -> getloc {=

39 loc = loc + motion;

40 if(loc == 0 || loc == 2){ getloc.set(loc); motion = 0; } =}

41 }

42 reactor ControllerB { ... }

43 reactor SensorB { ... }

44 reactor CylinderB { ... }

45 reactor Attacker { ... } //injections

46 main reactor PCS {

47 ...

48 ControllerA = new ControllerA(); ControllerB = new ControllerB();

49 cylA.getloc -> SensorA.sensedValue; cylB.getloc -> SensorB.sensedValue;

50 SensorA.out -> Monitor.getsenseA after 1 sec;

51 ControllerA.actuate -> Monitor.actuateA; ControllerB.actuate -> Monitor.actuateB;

52 Monitor.cmd_actuateA -> cylA.actuate; Monitor.cmd_actuateB -> cylB.actuate;

53 Attacker.getctlA -> ControllerA.getctl; Attacker.getctlB -> ControllerB.getctl;

54 }

Listing 3: LF code for the PCS case study.

26

An example of runtime attack detection using Monitor is described be-
low. Consider Tiny Digital Twin in Figure 7, and assume that the sys-
tem is in state S74 and Compromised SensorA sends getsense(1) to the con-
troller indicating CylinderA is moved to the right whereas the actual location
that is sensed by SensorA is left. Upon receiving this false sensor data,
Monitor produces an alarm and terminates the monitoring process because
the data sent by the sensor is not the same with the labels on transitions
from S74 to S60. As another example, assume the system is in state S70
and Compromised CylinderB moves up. Monitor does not detect this attack
immediately because the transmitted command from the controller matches
the one in Tiny Digital Twin while CylinderB moves up. Monitor detects the
attack when it receives false sensor data getsense(−2) at S74. Monitor can
drop the commands transmitted from the controller that are not consistent
with the outgoing transition in Tiny Digital Twin. A coordinated attack can
occur when Attacker injects getctl(0) while Compromised SensorB sends false
sensor data getsense(0) to the controller at S54. In this coordinated attack,
injecting getctl(0) into the channel is not successful since Monitor compares
the order and timing of the events with the transitions in Tiny Digital Twin.
Monitor compares getctl(0) with the outgoing transition at S54 and detects
the false sensor data by comparing it with the data on the transition between
S80 and S49.

Table 4: The detection capability of the monitor in the PCS case study

attack types total successful attacks detection capability

cACompromised 38 0
cBCompromised 49 0
sACompromised 128 128
sBCompromised 140 140

injection 28 28
sACompromised+injection 47 47

sACompromised+sBCompromised 45 45
sBCompromised+injection 75 75
cBCompromised+injection 25 8

cBCompromised+sACompromised 26 9
cACompromised+sBCompromised 5 2

cACompromised+injection 9 4
cBCompromised+sBCompromised 38 18
cACompromised+sACompromised 2 1
cACompromised+cBCompromised 3 0

total detection rate 664 505 (%76)

As shown in Table 4, the detection rate of the monitor can be calculated
with respect to the detected/undetected attacks by the monitor. In this case
study, out of the 664 attack scenarios (combined and single successful at-
tacks), 159 attacks were not directly detected by the monitor, therefore the

27

detection rate is around 76 percent. The undetected attacks are related to
the compromise of components cACompromised and cBCompromised, as well
as their combination with other attacks, where the attack impact is reported
by sensors after the attack succeed. The monitor can not immediately detect
the attacks that directly affect the actuators and physical process, because
the monitoring system relies on sensor data and control commands transmit-
ted over the network to detect potential attacks, and compares them with the
expected state transitions in the Tiny Digital Twin. To improve the ability
to detect these types of attacks, it may be necessary to implement additional
security measures, such as network segmentation, or endpoint protection so-
lutions. These measures can help to identify and isolate compromised com-
ponents or devices, as well as detect anomalous behavior that may indicate
an ongoing attack.

6. Temperature Control System (TCS)

The temperature control system is responsible for maintaining the tem-
perature of a room in a desired range. We explained this system in [2], here
we study the whole process and with more details. Figure 9 shows the com-
ponents of the system and its environment. This system includes a sensor, a
heating and cooling unit (hc unit), and a controller. The controller receives
sensor data from the sensor and transmits the command activatec, activateh
or switchoff to the hc unit to respectively activate the cooling or heating
process, or switch off the process. Assume that there is a window inside the
room and the outside weather blows inside when the window is open. The
temperature of the room is slowly changed whether the outside weather is
colder or warmer than the current temperature value (i.e., uncertain envi-
ronment). The controller activates the heating/cooling process based on the
sensed temperature value. The physical process is temperature regulation,
and the desired state is a specific range for the temperature.

6.1. TCS Timed Rebeca model

There are two differences in the modeling of the TCS case study as com-
pared to the PCS system. First, the sensor in the TCS has periodic function
for sensing temperature, whereas the sensors of the cylinders in the PCS are
triggered by movements and transmit updates to the controllers. Secondly,
the environment of the PCS is isolated, with no uncertain behaviors that
affect the system functionality, while in the TCS the changing and uncertain

28

Room

Heating-Cooling
Unit

Sensor

Window

Controller

Figure 9: Temperature Control System (TCS) of the room and its environment [2]. The
outside air affects the temperature and the sensor reports the temperature changes to
the controller. The Heating-Cooling Unit is controlled by the controller to regulate the
temperature of the room in a desired range.

temperature value of the environment can impact the functionality of the
system.

We demonstrate the Timed Rebeca model (augmented with attacks) of
the TCS case study in Listing 4. We assume that the temperature of the
room is within the desired range at the beginning (i.e., the value 22 which
is between 21 and 23) (line 1). We define three reactive classes Controller,
Sensor, and HC Unit to model the system components and one reactive class
Room to model the environment. The state variable sensedValue in the con-
troller stores the sensor data sent by the sensor, and the state variables
heating active and cooling active respectively show whether the cooling pro-
cess or the heating process is activated (line 5). In order to regulate the
temperature, a message including the value of the temperature (line 38) is
sent by the reactive class Sensor to the reactive class Controller. The con-
troller decides to send switchoff to the hc-unit if the temperature value is
within the desired range (line 10). If the temperature value is higher/lower
than the desired range, the controller produces an appropriate command,
i.e., activatec or activateh, and sends it to HC Unit (lines 13 and 15). The
state variable temperature in the reactive class Room shows the value of the
temperature of the room. The state variable outside air blowing with the
non-deterministic assignment shows the outside air blowing inside when the
window is open (line 27). The temperature of the room is slowly affected by

29

outside air blowing, whether the outside weather is colder or warmer than
the current temperature value of the room i.e. we do not have a sudden tem-
perature change (line 23). The message server status updates value of the
temperature after 10 units of time (line 29) and provides the updated value
of the temperature as a response to the request of the sensor (line 30). The
message server regulate gets a regulation value from the controller and sets
the process to increase and decrease the temperature value (line 31). The
Sensor periodically senses the temperature after 2 units of time and sends
the updated value to the controller (line 37). The main block includes the
declarations of all reactive classes defined in the model (line 51 to 56).

6.2. TCS attack modeling in Timed Rebeca

The goal of attacks in this system is to change the temperature out of
the desired range or cause damage to the physical infrastructure (i.e., the
heating and cooling unit). We assume that the attacker can compromise the
controller to tamper the commands issued by the controller (e.g., code injec-
tion attack), and alter the sensor to send false sensor data. These attacks
can be modeled by defining Compromised Sensor and Compromised Controller
as shown in Figure 10. The coordinated attacks are also modeled by combin-
ing both the compromised versions of the sensor and the controller. Similar
to the approach in modeling compromised version of the components in the
PCS case study, we define Sensor(compromised, compTime, msg) (line 35)
and Controller(compromised, compTime, msg) (line 6) as shown in Listing 4,
and count the number of false sensor data and faulty control commands as
the number of attacks by changing the values of the parameters.

In the attack modeling, Compromised Sensor sends false sensor data to
the controller by transmitting values ranging from 19 to 25 when sensing
the temperature value (Listing 4, line 2). Also, Compromised Controller sends
faulty commands activatec, activateh or switchoff to HC Unit (Listing 4, line 16
to 19). The complete Timed Rebeca code including the defined attacks is
available on GitHub [28].

6.3. TCS safety properties

Listing 5 shows the safety properties that are defined for preventing any
unsafe activation of cooling or heating processes in HC Unit. The Timed
Rebeca model without attacks for the TCS case study satisfies the safety
properties safety prop1, safety prop2 and safety prop3 as listed below.

30

1 env int desiredValue = 22; // initial value for the desired temperature

2 env boolean sComp = false; env int sComp_time = 0; env int smaliciousMsg = 0; ...

3 reactiveclass Controller(5) {

4 knownrebecs { HC_Unit hc_unit; }

5 statevars { int sensedValue; boolean heating_active; boolean cooling_active; }

6 Controller(boolean compromised, int compTime, int msg){

7 heating_active = false; cooling_active = false; sensedValue = desiredValue;

8 if (compromised) { self.compromise(msg) after(compTime);}}

9 msgsrv getsense(int temp) { sensedValue = temp;

10 if (temp <= 23 && temp >= 21) {

11 if (heating_active == true || cooling_active == true) {

12 hc_unit.switchoff(); heating_active = false; cooling_active = false; }

13 } else if (21 > temp) {

14 if (heating_active == false) { hc_unit.activateh(); heating_active = true; }

15 } else if (23 < temp) {... } }

16 msgsrv compromise(int msg){

17 if(msg == 0) {hc_unit.switchoff();

18 } else if(msg == 1) { hc_unit.activateh();} else if(msg == -1) {...}

19 }

20 }

21 reactiveclass Room(5) {//a temperature is affected by outside air blowing

22 knownrebecs { Sensor sensor; }

23 statevars { int temperature; int outside_air_blowing; int regulation; }

24 Room() {

25 temperature = 22; regulation = 0; outside_air_blowing = 0; self.status();}

26 msgsrv status() { //enviroment effects the temp slowly, in each 10 units of time

27 outside_air_blowing = ? (1, 0, -1);

28 temperature = temperature - outside_air_blowing + regulation; //update temp

29 self.status() after(10); }

30 msgsrv reqsensor() { sensor.getTemp(temperature); }

31 msgsrv regulate(int v) { regulation = v; }// regulate temp

32 }

33 reactiveclass Sensor(5) {

34 knownrebecs { Room room; Controller controller; }

35 Sensor(boolean compromised, int compTime, int msg){

36 if (compromised) {self.getTemp(msg) after(compTime);} self.sense();}

37 msgsrv sense() { room.reqsensor(); self.sense() after(2); }

38 msgsrv getTemp(int temp) { controller.getsense(temp); }

39 }

40 reactiveclass HC_Unit(5) {

41 knownrebecs { Room room; }

42 statevars { boolean heater_on, cooler_on; int regValue; }

43 HC_Unit() {

44 heater_on = false; cooler_on = false; regValue = 0; self.regulateTemp();

45 }

46 msgsrv activateh() { regValue = 1; heater_on = true; }

47 msgsrv activatec() { regValue = -1; cooler_on = true; }

48 msgsrv switchoff() { regValue = 0; cooler_on = false; heater_on = false; }

49 msgsrv regulateTemp() { room.regulate(regValue); self.regulateTemp() after(5); }

50 }

51 main {

52 Room room(sensor): ();

53 Controller controller(hc_unit):(cComp,cComp_time,cmaliciousMsg);

54 Sensor sensor(room,controller):(sComp,sComp_time,smaliciousMsg);

55 HC_Unit hc_unit(room): ();

56 }

Listing 4: Timed Rebeca model for the TCS case study augmented with attacks.

31

Controller

Sensor
(@2)

activatec,
activateh or
switchoffgetsense(temp)

HC_Unit
(@5)

21 <= temp <= 23

temperature
(@10)

Figure 10: The sensor periodically senses the temperature every 2 units of time and sends
the updated value with the message getsense to the controller. The controller transmits an
appropriate command to regulate the temperature value between 21 and 23. The HC Unit
changes the heating/cooling process after 5 units of time. The temperature of the room
is affected by the environment after 10 units of time. The attack points for performing
attack scenarios are the sensor and the controller (depicted with blue diamonds).

The property safety prop1 ensures that the heating process is not acti-
vated when the sensed temperature value is higher than 23 degrees (i.e.,
sensedValue over). Indeed, if the sensed temperature is above the desired
range, the controller must not send the command activateh to the HC Unit.
Similarly, the property safety prop2 ensures that the cooling process is not
activated when the sensed temperature value is lower that 21 degrees (i.e.,
sensedValue under). Finally, the safety property safety prop3 is violated if the
temperature goes outside of the desired range due to any event.

1 property {

2 define {

3 sensedValue_over = controller.sensedValue > 23;

4 sensedValue_under = controller.sensedValue < 21;

5 unit_heating = hc_unit.heater_on == true;

6 unit_cooling = hc_unit.cooler_on == true;

7 }

8 Assertion {

9 safety_prop1: !(sensedValue_over && !unit_heating);

10 safety_prop2: !(sensedValue_under && !unit_cooling);

11 safety_prop3: !(sensedValue_under || sensedValue_over);

12 }

13 }

Listing 5: The safety properties for the TCS case study.

32

6.4. TCS security analysis

Table 5 shows the results of the security analysis based on the model
checker outputs after performing attacks. We model 4301 number of at-
tacks during a predefined system execution period of 25 seconds using the
compromised sensor and controller. This duration corresponds to the com-
pletion time of one cycle for sensing, sending commands, and actuation that
is modeled for the control system. Among the total number of 269 attacks
(182 false sensor data and 87 faulty control commands), 270 attack scenarios
successfully violate the safety properties. We also perform combined attack
scenarios where the compromised sensor and controller are performed pair-
wise where each compromised component can not separately violate safety
properties. We found 74 successful violations of the safety properties out of
the 4032 combined attack scenarios.

As shown in Table 5, Compromised Sensor violates the safety properties
with higher numbers compared to Compromised Controller (highlighted in
pink). It indicates that attacks on the sensor can be more successful. We also
observe that the property safety prop3 has the highest number of violations
(highlighted in blue).

Table 5: The failure of properties for the compromised sensor and controller

safety prop1 safety prop2 safety prop3 total successful attacks

Compromised Controller 9 7 52 68
Compromised Sensor 33 50 45 128

CompSensor+CompController 16 27 31 74

total fails prop 58 84 128 270

6.5. TCS Tiny Digital Twin and Monitoring

In this case study, the actions getsense, activateh and switchoff are ob-
servable in the system behavior from the controller point of view, while
actions gettemp, sense, regulate, reqsensor, status and regulateTemp are non-
observable (i.e., silent transitions). The Tiny Digital Twin with 125 states
and 154 transitions is created by abstracting the states space which has 799
states and 1440 transitions.

We show a subset of the state transitions of the Tiny Digital Twin to
explain the system behavior at different states (see Figure 11). In the Tiny
Digital Twin of the temperature control system, we see branching states (e.g.,
S32 and S22) that present different control flow paths, where Controller de-
cides to activate/switch off HC Unit regarding the received sensor data. Also,

33

S32

S97

S102

S94

S13

controller.getsense[22].[]

S22

controller.getsense[21].[]

S90

controller.getsense[20].[]

S21

time +=2

S122

hc_unit.activateh[].[]

S29

time +=2

controller.getsense[22].[]

S87

controller.getsense[21].[]

S30

controller.getsense[20].[]

S112

time +=2

S28

hc_unit.activateh[].[]

S27

time +=2

S26

controller.getsense[20].[]

S25

time +=1

S24

time +=1

S23

controller.getsense[20].[]

S17

time +=2

S19

controller.getsense[20].[]

S20

time +=2

controller.getsense[22].[]S74

controller.getsense[21].[]

S15

controller.getsense[20].[]

S68

hc_unit.switchoff[].[] @[20>>10]

S16

time +=2

controller.getsense[22].[]

S47

controller.getsense[21].[]

S46

time +=2

S73

@[20>>10]

S45

hc_unit.switchoff[].[]

controller.getsense[21].[]S72

time +=2

controller.getsense[20].[]

S44

time +=2

controller.getsense[21].[]

S43

controller.getsense[21].[]

S41

controller.getsense[21].[]

S42

time +=1

S40

@[25>>10]

S39

time +=1

time +=1

S38

controller.getsense[21].[]

S36

S35

time +=2

@[20>>10]@[20>>10]

S31

controller.getsense[21].[]

S37

controller.getsense[21].[]

time +=2

@[20>>10]

S32

S97

S102

S94

S13

controller.getsense[22].[]

S22

controller.getsense[21].[]

S90

controller.getsense[20].[]

S21

time +=2

S122

hc_unit.activateh[].[]

S29

time +=2

controller.getsense[22].[]

S87

controller.getsense[21].[]

S30

controller.getsense[20].[]

S112

time +=2

S28

hc_unit.activateh[].[]

S27

time +=2

S26

controller.getsense[20].[]

S25

time +=1

S24

time +=1

S23

controller.getsense[20].[]

S17

time +=2

S19

controller.getsense[20].[]

S20

time +=2

controller.getsense[22].[]S74

controller.getsense[21].[]

S15

controller.getsense[20].[]

S68

hc_unit.switchoff[].[] @[20>>10]

S16

time +=2

controller.getsense[22].[]

S47

controller.getsense[21].[]

S46

time +=2

S73

@[20>>10]

S45

hc_unit.switchoff[].[]

controller.getsense[21].[]S72

time +=2

controller.getsense[20].[]

S44

time +=2

controller.getsense[21].[]

S43

controller.getsense[21].[]

S41

controller.getsense[21].[]

S42

time +=1

S40

@[25>>10]

S39

time +=1

time +=1

S38

controller.getsense[21].[]

S36

S35

time +=2

@[20>>10]@[20>>10]

S31

controller.getsense[21].[]

S37

controller.getsense[21].[]

time +=2

@[20>>10]

S32

S97

S102

S94

S13

controller.getsense[22].[]

S22

controller.getsense[21].[]

S90

controller.getsense[20].[]

S21

time +=2

S122

hc_unit.activateh[].[]

S29

time +=2

controller.getsense[22].[]

S87

controller.getsense[21].[]

S30

controller.getsense[20].[]

S112

time +=2

S28

hc_unit.activateh[].[]

S27

time +=2

S26

controller.getsense[20].[]

S25

time +=1

S24

time +=1

S23

controller.getsense[20].[]

S17

time +=2

S19

controller.getsense[20].[]

S20

time +=2

controller.getsense[22].[]S74

controller.getsense[21].[]

S15

controller.getsense[20].[]

S68

hc_unit.switchoff[].[] @[20>>10]

S16

time +=2

controller.getsense[22].[]

S47

controller.getsense[21].[]

S46

time +=2

S73

@[20>>10]

S45

hc_unit.switchoff[].[]

controller.getsense[21].[]S72

time +=2

controller.getsense[20].[]

S44

time +=2

controller.getsense[21].[]

S43

controller.getsense[21].[]

S41

controller.getsense[21].[]

S42

time +=1

S40

@[25>>10]

S39

time +=1

time +=1

S38

controller.getsense[21].[]

S36

S35

time +=2

@[20>>10]@[20>>10]

S31

controller.getsense[21].[]

S37

controller.getsense[21].[]

time +=2

@[20>>10]

Figure 11: A subset of the state transitions in the Tiny Digital Twin of the TCS case
study. It includes branching states and cycles.

34

there are some cycles of sensor data transmission and control commands,
where the same sensor data and control commands are repeated (e.g., a cir-
cle consisting of the states S28 to S20, S15, S122, S29 and back to S28).
The Tiny Digital Twin is used within Monitor to detect attacks on sensor
data and control commands. To prevent damage to the system, the monitor
drops control commands that are not consistent with the state transitions in
the Tiny Digital Twin. We evaluate the detection capability of Monitor by
simulating attacks in Lingua Franca code.

6.6. TCS Lingua Franca

The LF code implements all components of the TCS case study (List-
ing 6). Diagram 12 shows the connectivity between the components that
are defined as reactors. The input port getsense in the reactor Controller
(line 3) is defined to get a sensor value, and three output ports activateh,
activatec, and switchoff (lines 4-5) are defined to send values as commands
to the HC Unit. We set the value of activateh to 1 to trigger the heating
(line 15), the value of activatec to -1 to trigger the cooling (line 17) and the
value of switchoff to 0 to switch off the HC Unit (line 11).

We use a timer to periodically invoke the reactions and model the periodic
events (similar to those message servers in Timed Rebeca that send messages
to themselves with after). Here, the reaction start in the reactors Room,
Sensor and HC Unit are defined for updating (line 26), sensing (line 36) and
regulation (line 46) the temperature which are triggered periodically. For
example, the timer start(0, 10 sec) indicates that updating temperature value
is triggered at the start of execution and then it repeats at intervals of 10
seconds (see line 36).

RoomTemp

Room

(0, 10sec)

3

2

1

reqsensor

regulate

sensedValue

Sensor

(0, 2sec)

2

1

sensedValue

sense

out

HC_Unit

(0, 5sec)

4

3

2

1

switchoff

activatec

activateh

regulationV

Controller

getsense

activateh

activatec

switchoff

monitor

3

2

1

switchoff

activatec

activateh

getsense
out_activateh

out_activatec

out_switchoff

out_getsense

Figure 12: The diagram of the reactors in LF code for TCS case study including monitor
reactor.

35

1 target Cpp {fast: false, threads: 1};

2 reactor Controller {

3 input getsense:int; //input and output ports

4 output activateh:int; // activates hc-unit by sending a value to output

5 output activatec:int; output switchoff:int;

6 state heating_active:bool(false); state cooling_active:bool(false);

7 reaction(getsense) -> activatec, activateh, switchoff {=

8 activatec, activateh, switchoff {=

9 if(*getsense.get() <= 23 && *getsense.get() >= 21){

10 if(heating_active == true || cooling_active == true){

11 switchoff.set(0);

12 heating_active = false; cooling_active = false;

13 }

14 } else if(*getsense.get() < 21) {

15 if(heating_active == false){ activateh.set(1); heating_active = true;}

16 } else if(*getsense.get() > 23) {

17 if(cooling_active == false){ activatec.set(-1); cooling_active = true;}

18 }

19 }

20 =}

21 }

22 reactor Room {

23 input regulate:int; input reqsensor:int;

24 output sensedValue:int; state temperature:int(22);

25 state cold_air_blowing:int(0); state regulation:int(0);

26 timer start(0, 10 sec); // triggers room to update temp in each 10 sec

27 reaction(start) {=

28 cold_air_blowing = rand() % 3 + (-1);

29 temperature = temperature - cold_air_blowing + regulation;

30 =}

31 reaction(reqsensor) -> sensedValue {= sensedValue.set(temperature); =}

32 reaction(regulate) {= regulation = *regulate.get(); =}

33 }

34 reactor Sensor {

35 input sensedValue:int; output sense:int; output out:int;

36 timer start(0, 2 sec); // triggers sensor in each 2 sec

37 reaction(start) -> sense{= sense.set(1); =}

38 reaction(sensedValue) -> out {= out.set(sensedValue.get()); =}

39 }

40 reactor HC_Unit {

41 input activateh:int; input activatec:int; input switchoff:int;

42 output regulationV:int; state regValue:int(0);

43 reaction(activateh) {= regValue = 1; =}

44 reaction(activatec) {= regValue = -1; =}

45 reaction(switchoff) {= regValue = 0; =}

46 timer start(0, 5 sec); // regulate temperature in each 5 sec

47 reaction(start) -> regulationV {= regulationV.set(regValue); =}

48 }

49 main reactor RoomTemp {

50 room = new Room(); sensor = new Sensor(); unit = new HC_Unit();

51 controller = new Controller();

52 room.sensedValue -> sensor.sensedValue;

53 sensor.sense -> room.reqsensor; sensor.out -> controller.getsense;

54 ...

55 }

Listing 6: LF code for the TCS case study.

36

6.7. Detection capability of the monitor in TCS

We develop Monitor in LF where it keeps the Tiny Digital Twin to track
the behavior of the system and detect attacks. Similar to the implemen-
tation of the attacks in LF code for PCS, we develop Compromised Sensor
and Compromised Controller to perform attack scenarios listed in Table 5.
We simulate 269 false sensor data and faulty control commands, and also
74 combined attack scenarios. As shown in Table 6, out of the 270 at-
tack scenarios (combined and single successful attacks), 119 attacks are not
directly detected by the monitor, therefore the detection rate is about 55
percent. The undetected attacks are related to the compromise of the sensor
where the sensor sends the false sensor data that matches to the data on the
branches in the Tiny Digital Twin.

Table 6: The detection capability of the monitor in TCS case study

attack types total successful attacks detection capability

Compromised Controller 68 68
Compromised Sensor 128 52

CompSensor+CompController 74 31

total detection rate 270 151 (%55)

In the following, we describe a few examples of attack scenarios using the
Tiny Digital Twin depicted in Figure 11 and explain how the Monitor detects
the attacks. Assume that the system is in the state S27 and Compromised
Sensor sends 21 as the temperature value to the Controller whereas the ac-
tual temperature that is sensed by the sensor is 20. Upon receiving this
false sensor data, Monitor produces an alarm and terminates the monitoring
process because the data sent by Compromised Sensor is not matched with
the data on the transition of the Tiny Digital Twin. As another example,
assume the system is in the state S90 and the Compromised Controller sends
activatec as a faulty control command. The Monitor drops the command
because it is not consistent with the outgoing transition of S90. A coor-
dinated attack can occur when Compromised Sensor sends false sensor data
and Compromised Controller alters the command to overwrite the controller
decision caused by the false sensor data.

From states S32, S21, S20, S35 and S16 there are multiple outgoing tran-
sitions. For instance, assume that 21 is sensed as the temperature value in
S32 but Compromised Sensor sends the value 24. According to the Tiny Dig-
ital Twin of the case study, the value for the next states can be either 20
(S90), 21 (S22), or 22 (S97), therefore Monitor detects the false sensor data.

37

Note that the controller should in principle sends activatec to activate the
cooling process by sensing 24. But this is where in modeling the behavior of
the environment, in the Timed Rebeca model, we do not model any jumps in
the temperature from 21 to 24. Therefore, this is captured as an unexpected
behavior. As another example, assume that the value 22 is sensed as the
temperature value in S32 but the Compromised Sensor sends a sensed value
21 or 20. In this case, Monitor can not detect the false sensor data. We are
able to use meta-rules to check if the paths between turning on the heating
(or cooling) unit(s) are taken too quickly, or if any of these processes stay
turned on for a time longer than expected. This is one of the ways in which
we will continue our research.

7. Secure Water Treatment System (SWaT)

The SWaT testbed [29] is a scaled-down version of an industrial water
treatment system. This testbed is used for several research and training
purposes in the iTrust research center [29]. We present the details of SWaT
architecture and its Timed Rebeca model (adapted from [1]). We explain
the definition of the priority for the message servers in the Timed Rebeca,
and then provide the Tiny Digital Twin and the attack detection using the
monitor.

The water treatment process in the SWaT system consists of three stages
as shown in Figure 13. These stages include supplying raw water into the
system, Ultra-Filtration (UF) and Reverse Osmosis (RO). In each stage,
there is a PLC responsible for controlling a water tank. The PLC is directly
connected to some actuators (i.e., valves or pumps) through a local network.
A simple password-based authentication is the only mechanism employed to
control access to the network, which makes the SWaT system vulnerable to
eavesdropping or packet injection attacks [30].

At any stage during the execution of the water treatment process, each
pump can be in on or off state, and respectively each valve can be in one
of the two states open or close. Also, three states are considered for the big
tanks (i.e., Tank 1 and Tank 2): Low(l), Medium(m), and High(h), and two
states for the small tank (Tank 3): Low(l) and High(h). During the system
operation, whenever the water level of a tank changes to h, the associated
sensor reports the change to the responsible PLC. That PLC will close the
valve or turn off the pump that is pouring water into the tank. Also, the
PLC may open a valve, turn a pump on, or send open/on requests to other

38

Tank1

Raw water

Pump1

UltraFiltration
(UF)

Tank2

Reverse
Osmosis
(RO) unit

Tank3

Pump2
Clean water

Valve

Sensor1 Sensor2

Sensor3

l2	,	m2	,	h2

On2	,	Off2

l3	,	m3	,	h3

PLC1

PLC2

PLC3

Stage1 Stage2

Stage3

PLCs
Cabinet

l1	,	m1	,	h1

On1	,	Off1

Open,	Close

On	Req	

Open	Req	,	

Close	Req	

Water flow direction.
Communication links between PLCs and corresponding actuator/sensor,
Communication links between PLCs,

Figure 13: An abstract architecture of the SWaT system (adapted from [31]).

PLCs when the water level in the tank is either l or m. The PLC 1, PLC 2
and PLC 3 are configured to interact with each other to manage the SWaT
system.

7.1. SWaT Timed Rebeca model

The PLCs communicate with each other through a separate protected net-
work. For example, the open Req/close Req or the on Req messages passed in
the secured channel between the PLCs may not be the target of any attacker.
However, the messages (l, m, and h) which are transmitted from the sensors
to the PLCs may be tampered by an attacker to affect the decisions made
by the PLCs. The blue points represent the components that may behave
maliciously. Typically, the malicious behavior of the component leads to a
faulty data transmission. For instance, whenever a pump is compromised, it
may push the water to the connected tank once it receives the command off
from the corresponding PLC.

In the SWaT Timed Rebeca model, we assume that the water level in
each tank is low in the initial state. Also, the water treatment process begins
by pumping raw water to Tank 1 and it ends when the cleaned water flows
out of Tank 2. During the process execution, each sensor sends water level
information to the corresponding PLC periodically.

In the following, we provide a detailed explanation of the Rebeca model
(see Listing 7) developed for the SWaT system. The complete model is

39

available in [32]. The main block includes the declarations of all rebecs
together with an attacker rebec (line 45 to 50). In addition to the main block,
the Rebeca model includes the reactive classes defining the behavior of the
SWaT actors. For example, the PLC 1 reactive class has two known rebecs
which are instances of reactive classes Pump 1 and Valve. The reactive class
PLC 1 includes a boolean state variable openReqPlc2 whose value indicates
whether a water request is received from PLC 2 or not (i.e. request for
opening the valve). This variable is initialized to false in the constructor of
PLC 1.

Two boolean state variables pump1On and valveOpen indicate the current
status of Pump 1 and Valve respectively. The definition of PLC 1 includes
three message servers i.e., plc1 getsense, plc1 openReq and plc1 closeReq (see
listing 7 line 5 to 14). The message server plc1 getsense processes the sensor
data and issues commands on or off to Pump 1 and open or close to Valve ac-
cordingly. The message servers plc1 openReq and plc1 closeReq are activated
once a message is received from PLC 2. The definition of priority depends
on the programming language and the techniques in the controllers such as
PLCs. For example, in ladder logic programming for PLCs, the priority of
incoming messages can be defined using timers or counters. We can use
@priority before the definition of message servers in a reactive class to specify
the sequence in which messages received by the actor are executed. In this
model, the message server plc1 closeReq has higher priority than the message
servers plc1 openReq and plc1 getsense. In order to have correct function-
ally when messages arrive at the same time, we set the priority of the mes-
sage server plc1 closeReq to 1 using @priority(1). The reactive class Tank 1
contains two message servers, tank1 waterIncrease and tank1 waterDecrease,
which are used to change the level of water in the tank. We model in a way
where the messages corresponding to water decrease are executed before the
messages related to water increase. The reactive class Pump 1 includes four
message servers on, off and KeepOnpumping (lines 31 to 50). The message
servers on and off update the value of the state variable On based on the
commands received from PLC 1. The message server KeepOnpumping calls
waterIncrease and increases the level of water for one level in the tank. This
continues until the message server off receives the turn off message. The main
block includes the declarations of the reactive classes in the model including
the priority for each reactive class.

40

1 env int chl = 1; env int malMsg = 0; env int attackTime = 0; ... //env variables

2 reactiveclass PLC_1(5){ knownrebecs{ Pump_1 pump1; Valve valve;}

3 statevars{ boolean openReqPlc2, pump1On, valveOpen; int waterLevelTank1;}

4 PLC_1(){openReqPlc2 = false; sensedTank1WaterLevel = 1; pump1On = false; ...}

5 @priority(3) msgsrv plc1_getsense(int waterLevel){

6 if (waterLevel == 1 && pump1On == false) {

7 pump1.pump1_on(); pump1On = true;

8 } else if (waterLevel == 2) {

9 if(!valveOpen && openReqPlc2) {

10 valve.valve_open(); valveOpen = true;

11 } else if(valveOpen && openReqPlc2) {valve.valve_keepOnWaterFlow(); } ...

12 } else {... }

13 @priority(2) msgsrv plc1_openReq(){openReqPlc2 = true;}

14 @priority(1) msgsrv plc1_closeReq(){

15 openReqPlc2 = false; valve.valve_close(); valveOpen = false; }

16 }

17 reactiveclass PLC_2(5){...} reactiveclass PLC_2(5){...}

18 reactiveclass Tank_1(10){ knownrebecs{ sensorTank1 sensor; ...}

19 statevars{ boolean underFlow,low,medium,high,overFlow;}

20 Tank_1(){ underFlow = false; overFlow = false; low = true; ...}

21 msgsrv tank1_status(){ if (underFlow){sensor.sensor1_reportStatus(0);} else {...}

22 @priority(1) msgsrv tank1_waterIncrease(){ ... //changes water level status

23 if (low == true) { medium = true; low = false; high = false;

24 } else if (medium == true) {...}}

25 @priority(2) msgsrv tank1_waterDecrease(){...

26 if (medium){ tank2.tank2_waterIncrease();}}

27 }

28 reactiveclass Tank_2(10){...}

29 reactiveclass Tank_3(10){... msgsrv tank3_waterDecrease(){

30 if (high) {... tank2.tank2_waterIncrease(); } else if (low) {...}}

31 reactiveclass Pump_1(10){ knownrebecs{ Tank_1 tank1;}

32 statevars{ boolean pump1_on;}

33 Pump1(boolean compromised, int compTime, int msg){ pump1_on = false;

34 if (compromised == true) {

35 if(msg == 1){self.pump1_on();} else {self.pump1_off();}}

36 msgsrv pump1_on(){

37 pump1_on = true; tank1.tank1_waterIncrease(); }

38 @priority(2) msgsrv pump1_keepOnpumping(){

39 if (pump1_on) {tank1.tank1_waterIncrease(); }}

40 @priority(1) msgsrv pump1_off(){...}

41 }

42 reactiveclass Pump_2(10){...} reactiveclass Valve(10){...}

43 reactiveclass sensorTank1(10){...} reactiveclass sensorTank2(10){...}

44 reactiveclass sensorTank3(10){...} reactiveclass reverseOsmosisUnit(5){...}

45 reactiveclass Attacker(3){ knownrebecs{ PLC_1 plc1; PLC_2 plc2; ...}

46 Attacker(boolean inj, int channel, int maliciousMsg, int attackTime){

47 if (inj && chl == 1) { self.channelPlc1S(maliciousMsg, attackTime);

48 } else if (inj && chl == 2) {...}}

49 msgsrv channelPlc1S(int msg, int attackTime){

50 plc1.plc1_getsense(msg) after(attackTime);} ... } //message servers

51 main{

52 @priority(2) PLC_1 plc1(pump1, valve):();

53 @priority(3) sensorTank1 sensor1(tank1, plc1):(s1Comp,s1Comp_time,s1malMsg);

54 ...

55 Attacker attacker(plc1,plc2,plc3,pump1,pump2,valve):(inj_attk,chl,malMsg,attTime)}

Listing 7: An abstract version of the SWaT system Timed Rebeca model augmented with
attacks.

41

7.2. SWaT attack modeling in Timed Rebeca

In this experiment we use model checking to detect the undesirable events
that might happen while attackers tamper the channels (e.g., by injecting
packets) and compromise sensors/actuators by altering their functionality.

In the Timed Rebeca model, we model compromised actors using param-
eters that are passed to them (see Listing 7). For example, the reactive class
Pump 1 includes a variable compromised that can be set to change the sta-
tus of the component to be compromised or not compromised (line 33). If
this variable is set to be compromised then although the pump receives a
message to turn its status to on, it turns it to off. For changing the vari-
able compromised at different times we use the parameter compTime. Similar
to the compromised mode of Pump 1, whenever the value of the input pa-
rameter compromised is true for Valve, then both message servers open and
close behave maliciously (for example the message server open changes the
state variable Open of Value to false). In addition to the reactive classes
that define the normal and compromised behavior of SWaT components, the
Rebeca model includes a reactive class named Attacker (line 45) that models
the behavior of potential attackers targeting channels to inject messages.

7.3. SWaT safety properties

The goal of attacks on the SWaT system is to cause overflow or underflow
in one of the tanks. An overflow may harm some of the critical units such
as the UF or RO and lead to flow out unclean water, and an underflow may
damage a valve or a pump. Accordingly, the safety properties presented in
Listing 8 are considered to be verified on the Timed Rebeca model of SWaT
system. These properties ensure that each tank has no overflow or underflow.

7.4. SWaT security analysis

The outcome of the security analysis includes the attack scenarios which
lead the system to the property violation. We write a Python script to put
different values for the input parameters of the attacker and the compromised
components, and verify the model for each combination.

As described in the previous work [1], we modeled 105 communication
attacks and 84 attacks on components, and also the combination of these
attacks (resulting in 8820 attack scenarios). Totally, out of all above possible
attack scenarios 29 cases successfully violate the system security.

The analysis results in Table 7 indicate Combined attacks, such collabo-
rative attacks can be easily detected. For example assume that the system

42

1 property {

2 define {

3 t1_overFlow = tank1.overFlow; t1_underFlow = tank1.underFlow;

4 t2_overFlow = tank2.overFlow; t2_underFlow = tank2.underFlow;

5 t3_overFlow = tank3.overFlow; t3_underFlow = tank3.underFlow;

6 }

7 Assertion {

8 safety_tank1_overflow: !(t1_overFlow);

9 safety_tank1_underflow: !(t1_underFlow);

10 safety_tank2_overflow: !(t2_overFlow);

11 safety_tank2_underflow: !(t2_underFlow);

12 safety_tank3_overflow: !(t3_overFlow);

13 safety_tank3_underflow: !(t3_underFlow);

14 }

15 }

Listing 8: The safety properties for the SWaT system.

is executing and an attacker injects message Open Valve into the communi-
cation link between PLC 1 and Valve, and at the same time another attacker
compromises Pump 1 to be turned off, then Tank 1 will underflow (line 1
in Table 7). As another example, Sensor 2 is compromised and a malicious
message of high water level for Tank 3 is injected into the channel between
Sensor 3 and PLC 3, then Sensor 3 will underflow (line 3 in Table 7).

Note that the scenarios presented in Table 7 are those in which the single
attacks (message injection or the compromised component) do not cause a
security failure separately, but the combination leads to the security violation.
If we assume that the system is robust against the single attack scenarios,
the system may still be vulnerable against the collaborative attacks.

Table 7: The failure of properties in Combined Attack.

Property Injected message Communication channel Compromised component Malicious behavior

1 safety tank1 underflow Open Valve (PLC 1 to Valve) Pump 1 (Turn Off)

2 safety tank3 underflow Water level inTank 2 is medium (Sensor 2 to PLC 2) Sensor 3 (Water level in Tank 3 is high)

3 safety tank3 underflow Water level in Tank 3 is high (Sensor 3 to PLC 3) Sensor 2 (Water level in Tank 2 is medium)

7.5. SWaT Tiny Digital Twin and Monitoring

The actions getsense for the sensor data, on/off/keepOnpumping for the
pumps and open/close for the valve are observable in the SWaT system be-
havior from the controller point of view. We use ltsconvert tool to create the
Tiny Digital Twin with 187 states and 303 transitions, which has abstracted
the states space with 543 states and 728 transitions.

43

We show a subset of the state transitions of the Tiny Digital Twin to
explain the system behavior at different states (see Figure 14). In the Tiny
Digital Twin of the SWaT system, we observe that PLCs take decision to
turn on/off pumps and open/close valve based on the received sensor data.
As shown in the diagram, the water level for each tank is sent by the cor-
responding sensors, and the water level in Tank 1, Tank 2 and Tank 3 is low
at the beginning (the outgoing transitions from S0 to S207). The order of
the events for sensor data can be different which are indicated in the state
transitions. Regarding the status of the system, PLC 1 turns on Pump 1
and increases the water level in Tank 1 (S207). PLC 2 sends openReq to ask
PLC 1 to open Valve if the water level in Tank 1 is medium (S233). PLC 3
turns off Pump 2 because the water level in Tank 3 is low (S136). The water
level in Tank 1 reaches medium after 10 units of time and causes PLC 1 opens
Valve while Pump 1 is on and increases the water level in Tank 1 (S119). The
sensor data are sent by the sensors to the PLCs and report the water level
in each tank (S37).

The Tiny Digital Twin is used within Monitor to detect attacks that com-
promise the actions getsense for the sensor data, on/off/keepOnpumping for
the pumps and open/close for the valve. We evaluate the detection capability
of Monitor by simulating attacks in Lingua Franca.

7.6. SWaT Lingua Franca

There are two restrictions when connecting reactors and writing reactions
in LF code. Firstly, each input port in a reactor can have at most one
incoming connection, while each output port can have multiple outgoing
connections. Secondly, all reactions within a reactor are executed in the
order they are presented.

In the Timed Rebeca model of SWaT case study, we have priority for the
execution of the messages by using the @priority notation for message servers
such as tank1 waterIncrease and tank1 waterDecrease (see Listing 7 line 25
and 22). Additionally, some message servers execute messages that are sent
from different reactive classes, for example, tank2 waterIncrease in Tank 2
execute the messages sent from the reactive classes Tank 1 and Tank 3 (see
Listing 7 line 26 and 30). In the mapping between Timed Rebeca and LF,
we write the reactions within a reactor with the order defined in the timed
Rebeca model based on the priority. For example, we present the reaction
close Req before the reactions open Req and getsense within the reactor PLC1
(see Listing 9 line 6, 7 and 8). Also, those message servers that receive

44

S0

S222

plc1.plc1_getsense[1].[]

S1

plc2.plc2_getsense[1].[]

S2

plc3.plc3_getsense[1].[]

S233

plc2.plc2_getsense[1].[]

S4

plc1.plc1_openreq[].[]

S5

plc2.plc2_getsense[1].[]

S69

plc1.plc1_getsense[1].[]

S6

plc3.plc3_getsense[1].[]

S207

plc3.plc3_getsense[1].[] plc1.plc1_getsense[1].[]

plc1.plc1_openreq[].[] plc1.plc1_openreq[].[]

S145

pump1.pump1_on[].[]

S108

pump2.pump2_off[].[]

S144

pump2.pump2_off[].[]

S141

S139

plc1.plc1_openreq[].[]

S136

plc1.plc1_getsense[2].[]

S142

plc2.plc2_getsense[1].[]

S219

plc1.plc1_getsense[2].[]

S138

plc2.plc2_getsense[1].[]

S143

plc3.plc3_getsense[1].[]

S217

plc2.plc2_getsense[1].[]

S220

plc1.plc1_getsense[2].[]

S140

plc1.plc1_openreq[].[]

S226

plc2.plc2_getsense[1].[]

time +=10

plc3.plc3_getsense[1].[]

S137

plc1.plc1_getsense[2].[]

plc3.plc3_getsense[1].[]

plc1.plc1_openreq[].[]

plc1.plc1_openreq[].[]

S162

pump2.pump2_off[].[]

S134

pump1.pump1_keeponpumping[].[]

S152

valve.valve_open[].[]

S128

pump1.pump1_keeponpumping[].[]

S242

valve.valve_open[].[]

pump2.pump2_off[].[]

S120

valve.valve_open[].[]

pump2.pump2_off[].[]

S241

pump1.pump1_keeponpumping[].[]

S119

valve.valve_open[].[]

S52

pump1.pump1_keeponpumping[].[]

pump2.pump2_off[].[]

S37

time +=10

S216

plc2.plc2_getsense[1].[]

S3

plc3.plc3_getsense[1].[]

S127

plc1.plc1_getsense[2].[]

S131

@[20>>10]

S86

plc1.plc1_openreq[].[]

S126

plc1.plc1_getsense[2].[]

S118

plc2.plc2_getsense[1].[]

S156

plc2.plc2_getsense[1].[]plc3.plc3_getsense[1].[]

S83

plc1.plc1_openreq[].[]

S105

plc2.plc2_getsense[1].[] plc1.plc1_getsense[2].[]

S116

plc1.plc1_openreq[].[]

S113

plc3.plc3_getsense[1].[]

S212

valve.valve_keeponwaterflow[].[]

S133

pump2.pump2_off[].[]

S130

pump1.pump1_keeponpumping[].[]

@[20>>10]

S132

pump1.pump1_keeponpumping[].[]

S196

valve.valve_keeponwaterflow[].[]

valve.valve_keeponwaterflow[].[] @[20>>10]

pump2.pump2_off[].[]

S135

valve.valve_keeponwaterflow[].[]

@[20>>10]

pump2.pump2_off[].[]

time +=10

S0

S222

plc1.plc1_getsense[1].[]

S1

plc2.plc2_getsense[1].[]

S2

plc3.plc3_getsense[1].[]

S233

plc2.plc2_getsense[1].[]

S4

plc1.plc1_openreq[].[]

S5

plc2.plc2_getsense[1].[]

S69

plc1.plc1_getsense[1].[]

S6

plc3.plc3_getsense[1].[]

S207

plc3.plc3_getsense[1].[] plc1.plc1_getsense[1].[]

plc1.plc1_openreq[].[] plc1.plc1_openreq[].[]

S145

pump1.pump1_on[].[]

S108

pump2.pump2_off[].[]

S144

pump2.pump2_off[].[]

S141

S139

plc1.plc1_openreq[].[]

S136

plc1.plc1_getsense[2].[]

S142

plc2.plc2_getsense[1].[]

S219

plc1.plc1_getsense[2].[]

S138

plc2.plc2_getsense[1].[]

S143

plc3.plc3_getsense[1].[]

S217

plc2.plc2_getsense[1].[]

S220

plc1.plc1_getsense[2].[]

S140

plc1.plc1_openreq[].[]

S226

plc2.plc2_getsense[1].[]

time +=10

plc3.plc3_getsense[1].[]

S137

plc1.plc1_getsense[2].[]

plc3.plc3_getsense[1].[]

plc1.plc1_openreq[].[]

plc1.plc1_openreq[].[]

S162

pump2.pump2_off[].[]

S134

pump1.pump1_keeponpumping[].[]

S152

valve.valve_open[].[]

S128

pump1.pump1_keeponpumping[].[]

S242

valve.valve_open[].[]

pump2.pump2_off[].[]

S120

valve.valve_open[].[]

pump2.pump2_off[].[]

S241

pump1.pump1_keeponpumping[].[]

S119

valve.valve_open[].[]

S52

pump1.pump1_keeponpumping[].[]

pump2.pump2_off[].[]

S37

time +=10

S216

plc2.plc2_getsense[1].[]

S3

plc3.plc3_getsense[1].[]

S127

plc1.plc1_getsense[2].[]

S131

@[20>>10]

S86

plc1.plc1_openreq[].[]

S126

plc1.plc1_getsense[2].[]

S118

plc2.plc2_getsense[1].[]

S156

plc2.plc2_getsense[1].[]plc3.plc3_getsense[1].[]

S83

plc1.plc1_openreq[].[]

S105

plc2.plc2_getsense[1].[] plc1.plc1_getsense[2].[]

S116

plc1.plc1_openreq[].[]

S113

plc3.plc3_getsense[1].[]

S212

valve.valve_keeponwaterflow[].[]

S133

pump2.pump2_off[].[]

S130

pump1.pump1_keeponpumping[].[]

@[20>>10]

S132

pump1.pump1_keeponpumping[].[]

S196

valve.valve_keeponwaterflow[].[]

valve.valve_keeponwaterflow[].[] @[20>>10]

pump2.pump2_off[].[]

S135

valve.valve_keeponwaterflow[].[]

@[20>>10]

pump2.pump2_off[].[]

time +=10

S0

S222

plc1.plc1_getsense[1].[]

S1

plc2.plc2_getsense[1].[]

S2

plc3.plc3_getsense[1].[]

S233

plc2.plc2_getsense[1].[]

S4

plc1.plc1_openreq[].[]

S5

plc2.plc2_getsense[1].[]

S69

plc1.plc1_getsense[1].[]

S6

plc3.plc3_getsense[1].[]

S207

plc3.plc3_getsense[1].[] plc1.plc1_getsense[1].[]

plc1.plc1_openreq[].[] plc1.plc1_openreq[].[]

S145

pump1.pump1_on[].[]

S108

pump2.pump2_off[].[]

S144

pump2.pump2_off[].[]

S141

S139

plc1.plc1_openreq[].[]

S136

plc1.plc1_getsense[2].[]

S142

plc2.plc2_getsense[1].[]

S219

plc1.plc1_getsense[2].[]

S138

plc2.plc2_getsense[1].[]

S143

plc3.plc3_getsense[1].[]

S217

plc2.plc2_getsense[1].[]

S220

plc1.plc1_getsense[2].[]

S140

plc1.plc1_openreq[].[]

S226

plc2.plc2_getsense[1].[]

time +=10

plc3.plc3_getsense[1].[]

S137

plc1.plc1_getsense[2].[]

plc3.plc3_getsense[1].[]

plc1.plc1_openreq[].[]

plc1.plc1_openreq[].[]

S162

pump2.pump2_off[].[]

S134

pump1.pump1_keeponpumping[].[]

S152

valve.valve_open[].[]

S128

pump1.pump1_keeponpumping[].[]

S242

valve.valve_open[].[]

pump2.pump2_off[].[]

S120

valve.valve_open[].[]

pump2.pump2_off[].[]

S241

pump1.pump1_keeponpumping[].[]

S119

valve.valve_open[].[]

S52

pump1.pump1_keeponpumping[].[]

pump2.pump2_off[].[]

S37

time +=10

S216

plc2.plc2_getsense[1].[]

S3

plc3.plc3_getsense[1].[]

S127

plc1.plc1_getsense[2].[]

S131

@[20>>10]

S86

plc1.plc1_openreq[].[]

S126

plc1.plc1_getsense[2].[]

S118

plc2.plc2_getsense[1].[]

S156

plc2.plc2_getsense[1].[]plc3.plc3_getsense[1].[]

S83

plc1.plc1_openreq[].[]

S105

plc2.plc2_getsense[1].[] plc1.plc1_getsense[2].[]

S116

plc1.plc1_openreq[].[]

S113

plc3.plc3_getsense[1].[]

S212

valve.valve_keeponwaterflow[].[]

S133

pump2.pump2_off[].[]

S130

pump1.pump1_keeponpumping[].[]

@[20>>10]

S132

pump1.pump1_keeponpumping[].[]

S196

valve.valve_keeponwaterflow[].[]

valve.valve_keeponwaterflow[].[] @[20>>10]

pump2.pump2_off[].[]

S135

valve.valve_keeponwaterflow[].[]

@[20>>10]

pump2.pump2_off[].[]

time +=10

Figure 14: A subset of the state transitions in the Tiny Digital Twin of the SWaT case
study.

45

messages from different reactive classes are defined with the separate input
ports in the reactor (see Listing 9 line 28).

7.6.1. Detection capability of the monitor in SWaT

We use Compromised version of the sensors, pumps and valve, and Attacker
component to create false data and faulty commands at different times during
execution. Among the attacks that violate the properties (i.e., 29 cases from
the security analysis), Monitor directly detects the attacks that involve false
sensor data. The attacks on actuators (i.e., pumps and valve) is detected
when the sensor data is reported to the Monitor. Therefore, as shown in
Table 8, the detection rate of the monitor is about 51 percent in this system.

Table 8: The detection capability of the monitor in SWaT case study

attack types total successful attacks detection capability

Attacks on Communication 15 7
Attacks on Components 11 6

Combined Attacks 3 2

total detection rate 29 15 (%51)

In the following, we explain a combined attack scenario and the detection
of the attack by Monitor. In Figure 15, we assume that the system is under
a combined attack CompSensor2 + injection. At the time of the attack, the
water level in Tank 1, Tank 2, and Tank 3 is low, and Sensor 1 and Sensor 3
send the message l to the PLC 1 and PLC 3, respectively. However, (1)
Sensor 2 is compromised, and it sends false sensor data m to PLC 2, even
though the water level it senses is l. Based on the received false sensor
data, (2) PLC 2 sends an on Req command to PLC 3. At the same time, (3)
Attacker injects false sensor data h into the communication channel between
Sensor 3 and PLC 3. As a result, when PLC 3 receives the on Req command,
(4) it decides to issue a command to turn on Pump 2 because the water level
in Tank 3 is high as reported. (5) The faulty command causes Pump 2 to
turn on, which decreases the water level in Tank 3 even though the actual
water level is low. It is important to note that the compromised sensor and
the command injection by the attacker cannot violate the system separately
because PLC 3 needs both the on Req and the the sensor data indicating h
to turn on Pump 2.

According to the Tiny Digital Twin of the SWaT system in Figure 14,
the Monitor can detect false sensor data transmissions and injections in the
combined attack scenario. As highlighted in the state transition diagram, it

46

1 target Cpp {fast: false, threads: 1};

2 import Monitor.lf;

3 reactor PLC1 {

4 input close_Req:int; input getsense:int; input open_Req:int; //input ports

5 output pump_on:int; output pump_off:int; output pump_keepOnpumping:int; ...

6 reaction(close_Req) {= openReqPlc2 = false; valveOpen = false; =}

7 reaction(open_Req) {= openReqPlc2 = true; =}

8 reaction(getsense) -> pump_on, pump_off, pump_keepOnpumping, ... {=

9 if(getsense.is_present() && close_Req.is_present()){ //priority of close_Req

10 openReqPlc2 = false; valve_close.set(1); valveOpen = false; }

11 if(*getsense.get() == 1 && !pump1On) { pump_on.set(1); pump1On = true;

12 } else if(*getsense.get() == 2) { ...

13 } else if(*getsense.get() == 3) {... =}

14 }

15 reactor PLC2 {...}reactor PLC3 {...}

16 reactor Tank1 { output reportStatus:int; output waterFlows:int;

17 input status:int; input status_V:int; input status_T:int;

18 input waterIncrease:int; input waterDecrease:int; state waterLevel:int(1);

19 timer start(0, 10 sec);

20 reaction(start, status, status_V, status_T) -> reportStatus {=

21 reportStatus.set(waterLevel);

22 =}

23 reaction(waterIncrease) {= waterLevel = waterLevel + 1;=}

24 reaction(waterDecrease) -> waterFlows {=

25 if(waterLevel == 2){ waterFlows.set(1); // water flows into tank2

26 } else {waterLevel = waterLevel - 1;}=}

27 }

28 reactor Tank2 {... input waterIncrease_T1:int; input waterIncrease_T3:int;

29 reaction(waterIncrease_T1) -> waterFlows{=...=}

30 reaction(waterIncrease_T3) -> unit,status_t1,reportStatus {=...=}}

31 }

32 reactor Tank3 {...} reactor sensorTank1 {...}

33 reactor sensorTank2 {...} reactor sensorTank3 {...}

34 reactor Pump1 {...} reactor Pump2 {...}

35 reactor reverseUnit {...}

36 reactor Valve { input open:int; input close:int; input keepOnWaterFlow:int;

37 output out:int; output status:int;

38 reaction(open) -> out {= out.set(1); =}

39 reaction(keepOnWaterFlow) {= out.set(1); =}

40 reaction(close) -> status {= status.set(1); =}

41 }

42

43 main reactor SWaT {

44 monitor = new monitor();

45 Tank1 = new Tank1();

46 valve = new Valve();

47 PLC1 = new PLC1();

48 PLC1.pump_on -> pump1.on;

49 PLC1.pump_off -> pump1.off;

50 PLC1.pump_keepOnpumping -> pump1.keepOnpumping;

51 PLC1.valve_open -> valve.open;

52 PLC1.valve_close -> valve.close;

53 PLC1.valve_keepOnWaterFlow -> valve.keepOnWaterFlow;

54 monitor.out_valve_open -> valve.open;

55

56 }

Listing 9: LF code for the SWaT case study.

47

expects to see the water level reported as low for each tank between state S0
and S144. Monitor observes the sensor data transmitted into the network. If
it detects any false sensor data or faulty commands, it will drops them to
mitigate any potential system failures.

Pump1

PLC1

Sensor1Tank1
Valve

l
On

Close

l

Sense

PLC2

Sensor2Tank2

 m

l

Sense

RO

Decrease

Increase

Increase

Pump2

PLC3

Sensor3Tank3

h
On

l

Sense

Increase

Increase

Decrease

open_Req on_Req

clean
water

raw
water

Stage_1 Stage_2 Stage_3

Decrease

Inject
malicious

msgCompromised
sensor

safety_tank3_underflow

1
2

3
4

5

Figure 15: The sequence of events for the combined attack CompSensor 2+ injection where
the attack successfully turns on Pump 2 while the water level in Tank 3 is low. The
attack causes the system to subsequently generate on Req and On where violate the safety
property for Tank 3.

8. Related Work

There are various techniques for improving the security of industrial con-
trol systems. Some of these techniques include deploying security patches,
tracking and monitoring critical areas of the system. One approach in the
security engineering is to create frameworks that facilitate the design, build-
ing, and deployment of secure systems, as well as the analysis and evaluation
of the security of existing systems. Following this line of research several
modeling and simulation methods are proposed for analyzing the security of
cyber-physical systems (CPSs).

Wasicek et al. [33] propose an aspect-oriented technique to model at-
tacks against CPSs. They use Ptolemy [34] as the modeling and simulation
framework, and demonstrate the practicality of their technique through mod-
eling four types of attacks on an automotive control system. Taormina et
al. [35] propose another simulation-based approach that is implemented in
a MATLAB toolbox to analyze the risk of cyber-physical attacks on water
distribution systems. In [36, 37], the authors rely on simulation to perform
their analyses. They propose a new metric to quantify the impact of attacks
on components of the target CPS and perform a cost-benefit analysis on
security investments.

48

In [30], Kang et al. use Alloy to model a scaled-down version of a Secure
Water Treatment (SWaT) system behavior and potential attackers. They can
discover the undetected attacks which cause safety failure (e.g., water tank
overflow). Rocchetto and Tippenhauer [38] use ASLan++ tool for modeling
the physical layer interactions and CL-AtSe tool for analyzing the state space.
They succeed to find eight attack scenarios on SWaT. Nigam and Talcott [39]
use Maude [40] to automate security analysis of the protocols in Industry
4.0 applications. They formalize networked sets of devices and a symbolic
intruder model in rewriting logic. Fritz and Zhang [41] consider CPSs as
discrete-event systems and model them using a variant of Petri nets. They
propose a method based on permutation matrices to detect deception attacks.
In particular, they can detect attacks by changing the input and output
behavior of the system and analyzing its effect on the system behavior.

The authors in [42] propose monitors expressed as automaton models [43]
to detect injection attacks against a system. Their automaton models rep-
resent parametric specifications that need to be checked at runtime. Their
monitors support event duplication to protect the system against attacks.
They validate the approach by implementing the monitors and performing
attack examples on a program taken from the FISSC benchmark [44].

9. Conclusion and Future Work

The CRYSTAL framework provides tools for modeling and testing the
resilience of cyber-physical systems against cyberattacks. The case studies
presented in the paper provide evidence of the effectiveness of CRYSTAL
in detecting different types of attacks. We conduct security tests through
model checking at design-time and implements the system to simulate and
evaluate the detection system at runtime. The cornerstones of the framework
are actor-based modeling of the system, defining attack models, abstracting
the model and creating Tiny Digital Twin, and finally developing a monitor
to detect cyberattacks.

The monitor may not immediately detect attacks on actuators as it must
first receive notice from the sensor data and compare it to the Tiny Digital
Twin. The delay in detecting attacks can be problematic in systems where
each control command can have a significant impact on the physical process,
such as fast-moving arms in robotics. In systems where there is enough time
to stop the system after successful attacks, the monitor can effectively detect
attacks and mitigate the impact of attacks before the significant damage.

49

For example in TCS, the temperature is changed slowly over time. When an
attacker compromises the heating/cooling process, the monitor has enough
time to stop the temperature changes by dropping faulty commands.

As a future direction, we plan to provide a module for writing policies and
rules within the monitor to catch abnormal behavior of the system and detect
attacks that force the system into undesirable states. By embedding these
policies and rules into the monitor, the system can become more resilient to
cyberattacks, even those attacks that the monitor may not be able to detect
immediately.

Acknowledgment

This research is partly supported by Swedish Foundation for Strategic Re-
search (SSF) via the Serendipity project, and KKS SACSys Synergy project
(Safe and Secure Adaptive Collaborative Systems).

References

[1] F. Moradi, S. A. Asadollah, A. Sedaghatbaf, A. Čaušević, M. Sirjani, C. Tal-
cott, An actor-based approach for security analysis of cyber-physical systems,
in: International Conference on Formal Methods for Industrial Critical Sys-
tems, Springer, 2020, pp. 130–147.

[2] F. Moradi, M. Bagheri, H. Rahmati, H. Yazdi, S. A. Asadollah, M. Sirjani,
Monitoring cyber-physical systems using a tiny twin to prevent cyber-attacks,
in: International Symposium on Model Checking Software, Springer, 2022, pp.
24–43.

[3] J. Kephart, D. Chess, The vision of autonomic computing, Computer 36
(2003) 41–50.

[4] E. A. Lee, M. Sirjani, What good are models?, in: International Conference
on Formal Aspects of Component Software, Springer, 2018, pp. 3–31.

[5] M. Sirjani, Power is overrated, go for friendliness! expressiveness, faithfulness,
and usability in modeling: the actor experience, in: Principles of Modeling,
Springer, 2018, pp. 423–448.

[6] M. Sirjani, L. Provenzano, S. A. Asadollah, M. H. Moghadam, From require-
ments to verifiable executablemodels using rebeca, in: International Work-
shop on Automated and verifiable Software sYstem DEvelopment, 2019. URL:
http://www.es.mdh.se/publications/5645-.

50

http://www.es.mdh.se/publications/5645-

[7] M. Sirjani, E. Khamespanah, On time actors, in: Theory and Practice of
Formal Methods, Springer, 2016, pp. 373–392.

[8] E. Khamespanah, M. Sirjani, Z. Sabahi-Kaviani, R. Khosravi, M. Izadi,
Timed Rebeca schedulability and deadlock freedom analysis using bounded
floating time transition system, Sci. Comput. Program. 98 (2015) 184–204.

[9] M. Lohstroh, Í. Í. Romeo, A. Goens, P. Derler, J. Castrillon, E. A. Lee,
A. Sangiovanni-Vincentelli, Reactors: A deterministic model for composable
reactive systems, in: Cyber Physical Systems. Model-Based Design, Springer,
2019, pp. 59–85.

[10] M. Lohstroh, M. Schoeberl, A. Goens, A. Wasicek, C. Gill, M. Sirjani, E. A.
Lee, Invited: Actors revisited for time-critical systems, in: DAC, 2019.

[11] Afra, An integrated environment for modeling and verifying Rebeca family de-
signs, [Online; accessed Dec 09, 2022] (2022). URL: https://rebeca-lang.
org/alltools/Afra.

[12] A. Shostack, Threat modeling: Designing for security, Wiley, 2014.

[13] F. Moradi, B. Pourvatan, S. A. Asadollah, M. Sirjani, Tiny twins for de-
tecting cyber-attacks at runtime using concise rebeca time transition system,
Submitted to Journal of Parallel and Distributed Computing (2023).

[14] D. N. Jansen, J. F. Groote, J. J. Keiren, A. Wijs, An O (m log n) algorithm
for branching bisimilarity on labelled transition systems, in: International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, Springer, 2020, pp. 3–20.

[15] A. H. Reynisson, M. Sirjani, L. Aceto, M. Cimini, A. Jafari, A. Ingólfsdóttir,
S. H. Sigurdarson, Modelling and simulation of asynchronous real-time sys-
tems using timed rebeca, Sci. Comput. Program. 89 (2014) 41–68. URL:
https://doi.org/10.1016/j.scico.2014.01.008. doi:10.1016/j.scico.
2014.01.008.

[16] M. Sirjani, L. Provenzano, S. A. Asadollah, M. H. Moghadam, M. Saadat-
mand, Towards a verification-driven iterative development of software for
safety-critical cyber-physical systems, Journal of Internet Services and Ap-
plications 12 (2021) 2.

[17] M. Sirjani, E. A. Lee, E. Khamespanah, Verification of cyberphysical systems,
Mathematics 8 (2020) 1068.

51

https://rebeca-lang.org/alltools/Afra
https://rebeca-lang.org/alltools/Afra
https://doi.org/10.1016/j.scico.2014.01.008
http://dx.doi.org/10.1016/j.scico.2014.01.008
http://dx.doi.org/10.1016/j.scico.2014.01.008

[18] M. Lohstroh, C. Menard, A. Schulz-Rosengarten, M. Weber, J. Castrillon,
E. A. Lee, A language for deterministic coordination across multiple timelines,
in: 2020 Forum for Specification and Design Languages (FDL), IEEE, 2020,
pp. 1–8.

[19] M. Sirjani, M. M. Jaghoori, Ten years of analyzing actors: Rebeca experience,
in: Formal Modeling: Actors, Open Systems, Biological Systems, Springer,
2011, pp. 20–56.

[20] M. Lohstroh, C. Menard, S. Bateni, E. A. Lee, Toward a lingua franca for de-
terministic concurrent systems, ACM Transactions on Embedded Computing
Systems (TECS) 20 (2021) 1–27.

[21] M. Sirjani, E. Khamespanah, E. Lee, Model checking software in cyberphys-
ical systems, in: COMPSAC 2020, 2020.

[22] T. A. Henzinger, The theory of hybrid automata, in: Proceedings, 11th
Annual IEEE Symposium on Logic in Computer Science, New Brunswick,
New Jersey, USA, July 27-30, 1996, IEEE Computer Society, 1996, pp. 278–
292.

[23] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N. O.
Tippenhauer, H. Sandberg, R. Candell, A survey of physics-based attack
detection in cyber-physical systems, ACM Computing Surveys (CSUR) 51
(2018) 1–36.

[24] S. Choi, J.-H. Yun, S.-K. Kim, A comparison of ics datasets for security
research based on attack paths, in: International Conference on Critical
Information Infrastructures Security, Springer, 2018.

[25] J.-M. Flaus, Cybersecurity of industrial systems, J. Wiley & Sons, 2019.

[26] Z. Jakovljevic, V. Lesi, M. Pajic, Attacks on distributed sequential control in
manufacturing automation, IEEE Transactions on Industrial Informatics 17
(2020) 775–786.

[27] Pneumatic control system case study, https://github.com/

fereidoun-moradi/Reconfigurable-Pneumatic-System, 2023. [Online;
accessed Apr 24, 2023].

[28] Temperature control system case study, https://github.com/

fereidoun-moradi/RoomTemp, 2023. [Online; accessed Apr 24, 2023].

52

https://github.com/fereidoun-moradi/Reconfigurable-Pneumatic-System
https://github.com/fereidoun-moradi/Reconfigurable-Pneumatic-System
https://github.com/fereidoun-moradi/RoomTemp
https://github.com/fereidoun-moradi/RoomTemp

[29] A. P. Mathur, N. O. Tippenhauer, Swat: a water treatment testbed for
research and training on ics security, in: Cyber-physical Systems for Smart
Water Networks (CySWater), IEEE, 2016, pp. 31–36.

[30] E. Kang, S. Adepu, D. Jackson, A. P. Mathur, Model-based security analysis
of a water treatment system, in: Proceedings of Software Engineering for
Smart Cyber-Physical Systems, ACM, 2016, pp. 22–28.

[31] R. Lanotte, M. Merro, A. Munteanu, Runtime enforcement for control system
security, in: 2020 IEEE 33rd Computer Security Foundations Symposium
(CSF), IEEE, 2020, pp. 246–261.

[32] Rebeca homepage, http://rebeca-lang.org/allprojects/CRYSTAL, 2020.

[33] A. Wasicek, P. Derler, E. A. Lee, Aspect-oriented modeling of attacks in au-
tomotive cyber-physical systems, in: ACM/EDAC/IEEE Design Automation
Conference (DAC), 2014.

[34] J. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, Ptolemy: A Framework
for Simulating and Prototyping Heterogeneous Systems, Kluwer Academic
Publishers, 2001, p. 527–543.

[35] R. Taormina, S. Galelli, N. O. Tippenhauer, E. Salomons, A. Ostfeld, Char-
acterizing cyber-physical attacks on water distribution systems, Journal of
Water Resources Planning and Management (2017).

[36] R. Lanotte, M. Merro, R. Muradore, L. Viganò, A formal approach to cyber-
physical attacks, in: IEEE 30th Computer Security Foundations Symposium
(CSF), IEEE, 2017, pp. 436–450.

[37] R. Lanotte, M. Merro, A. Munteanu, L. Viganò, A formal approach to physics-
based attacks in cyber-physical systems, TOPS 23 (2020) 1–41.

[38] M. Rocchetto, N. O. Tippenhauer, Towards formal security analysis of indus-
trial control systems, in: ACM Asia Conference on Computer and Commu-
nications Security, ACM, 2017, pp. 114–126.

[39] V. Nigam, C. Talcott, Formal security verification of industry 4.0 applica-
tions, in: 24th IEEE International Conference on Emerging Technologies and
Factory Automation, 2019.

[40] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
C. Talcott, All About Maude-A High-Performance Logical Framework: How

53

http://rebeca-lang.org/allprojects/CRYSTAL

to Specify, Program, and Verify Systems in Rewriting Logic, volume 4350,
Springer, 2007.

[41] R. Fritz, P. Zhang, Modeling and detection of cyber attacks on discrete event
systems, IFAC-PapersOnLine 51 (2018) 285–290.

[42] A. Kassem, Y. Falcone, Detecting fault injection attacks with runtime veri-
fication, in: Proceedings of the 3rd ACM Workshop on Software Protection,
2019, pp. 65–76.

[43] H. Barringer, Y. Falcone, K. Havelund, G. Reger, D. Rydeheard, Quanti-
fied event automata: Towards expressive and efficient runtime monitors, in:
International Symposium on Formal Methods, Springer, 2012, pp. 68–84.

[44] L. Dureuil, G. Petiot, M.-L. Potet, T.-H. Le, A. Crohen, P. de Choudens,
Fissc: A fault injection and simulation secure collection, in: International
Conference on Computer Safety, Reliability, and Security, Springer, 2016, pp.
3–11.

54

	Introduction
	The Framework
	Background: Timed Rebeca and Lingua Franca
	Building the Rebeca Models and Attacks
	Attack Modeling
	Attack Classification

	Pneumatic Control System (PCS)
	PCS Timed Rebeca model
	PCS attack modeling in Timed Rebeca
	PCS safety properties
	PCS security analysis
	PCS Tiny Digital Twin and Monitoring
	PCS Lingua Franca
	Detection capability of the monitor in PCS

	Temperature Control System (TCS)
	TCS Timed Rebeca model
	TCS attack modeling in Timed Rebeca
	TCS safety properties
	TCS security analysis
	TCS Tiny Digital Twin and Monitoring
	TCS Lingua Franca
	Detection capability of the monitor in TCS

	Secure Water Treatment System (SWaT)
	SWaT Timed Rebeca model
	SWaT attack modeling in Timed Rebeca
	SWaT safety properties
	SWaT security analysis
	SWaT Tiny Digital Twin and Monitoring
	SWaT Lingua Franca
	Detection capability of the monitor in SWaT

	Related Work
	Conclusion and Future Work

