®

Check for
updates

Actors Upgraded for Variability,
Adaptability, and Determinism

Ramtin Khosravi'®™) | Ehsan Khamespanah!, Fatemeh Ghassemi!,
and Marjan Sirjani?

! School of ECE, University of Tehran, Tehran, Iran
{r.khosravi,e.khamespanah,fghassemi}@ut.ac.ir
2 School of IDT, Malardalen University, Visteras, Sweden
marjan.sirjani@mdu.se

Abstract. The Rebeca modeling language is designed as an imperative
actor-based language with the goal of providing an easy-to-use language
for modeling concurrent and distributed systems, with formal verification
support. Rebeca has been extended to support time and probability. We
extend Rebeca further with inheritance, polymorphism, interface decla-
ration, and annotation mechanisms. These features allow us to handle
variability within the model, support non-disruptive model evolution,
and define method priorities. This enables Rebeca to be used more effec-
tively in different domains, like in Software Product Lines, and holis-
tic analysis of Cyber-Physical Systems. We develop specialized analysis
techniques to support these extensions, partly integrated into Afra, the
model checking tool of Rebeca.

Keywords: Actor Languages - Variability Modeling - Cyber-Physical
Systems + Model Checking

1 Introduction

The Actor model of computation was first proposed by Carl Hewitt in the 1970s
[29], and further developed by Gul Agha [3], as a mathematical framework for
concurrent and distributed computing systems. The model describes computa-
tion as a collection of autonomous entities called actors that encapsulate their
states and communicate with each other by sending messages [30]. Actors have
been used as a framework for theoretical understanding of concurrent and dis-
tributed computation, as the basis for designing many modeling and program-
ming languages, and as a model for many practical implementations of concur-
rent systems [12,26].

Rebeca (standing for Reactive Objects Language) is an actor-based modeling
language with model checking support designed in 19992001 [65,66]. One of the
main design decisions in creating Rebeca is to keep the core language as simple as
possible. One can still use core Rebeca for modeling using a small set of features
for coding. However, Rebeca is extended to work for timed systems [40] and

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. de Boer et al. (Eds.): Active Object Languages: Current Research Trends,
LNCS 14360, pp. 226—260, 2024.

https://doi.org/10.1007/978-3-031-51060-1_9

Actors Upgraded for Variability, Adaptability, and Determinism 227

address probability [32]. Timed Rebeca is used for the modeling and analysis
of several applications [42,60,61,71]. In order to model complex systems the
language is evolved in different directions [12]. A brief overview of Timed Rebeca
language features is presented in Sect. 2. Rebeca is equipped with an integrated
modeling and analysis tool, Afra, which provides LTL model checking for Rebeca
as well as schedulability and deadlock-freedom analysis, and assertion check for
Timed Rebeca [41].

In the new era of digitalization, smart factories, and systems of cyber-physical
systems we are dealing with heterogeneous and dynamic systems. This introduces
different types of variability in behavior, including those arising from different
contexts in which the model is used (which is common in software product
lines [51]), the need to dynamically adapt to the changes in the environment
and in the system itself at runtime (like in self-adaptive and reconfigurable sys-
tems [70]), and the combination of these two types of variability (as in dynamic
software product lines [4,31]). Hence, for a modeling language to address these
requirements, it needs proper linguistic constructs to capture the variability in
the behavior in a structured way. Current trends in the research community of
software-intensive cyber-physical systems also confirm this [22,43,52].

When coping with systems of cyber-physical systems, we have to consider
aspects of embedded and real-time systems together with complexities in con-
current and distributed systems!. In distributed and concurrent systems we are
faced with uncertainties mainly caused by the network. The mainstream app-
roach in the concurrency theory community uses nondeterminism to model con-
currency. While the uncertainties in the environment may remain, we can aim
for a deterministic design for the behavior of the system itself which is crucial for
embedded and real-time systems communities. The recent work of Edward Lee
and his group on the coordination language, Lingua Franca, shows one direction
focusing on determinism [46,47] and PLC-like semantics [59].

Since its introduction, Rebeca has been used to model adaptive behavior
in various domains, such as self-adaptive systems [38,39] and flow management
systems [24]. Also, it has been used in [56] to model and analyze dynamic software
product lines. However, until recently, Rebeca has not been equipped with special
language features to support variable and adaptive behavior in a structured way.

The purpose of this paper is to demonstrate how the recent extensions of
Timed Rebeca can be used by a wider community to model and analyze real-
world applications, with a focus on how and where the language features can be
used. The language extensions presented in this paper are summarized below.

Feature annotations as an explicit variability handling mechanism which are
used to bind parts of the model to specific products in a software product
line. This language extension is presented in this paper for the first time.

! Cyber-physical systems are also hybrid systems, bringing together cyber and physical
components which are generally modeled differently. The interface between the cyber
and the physical parts is also a source of complexity and an important research area
that is not a topic of interest in this paper. This matter is addressed in Hybrid
Rebeca introduced in [34].

228 R. Khosravi et al.

Inheritance, Interfaces, and Polymorphism as language features that can
be used to support variability in model in a structured way. These features
have been added to Timed Rebeca in [71] and are used to support alternative
communication schemes among actors. In this paper, we present them as a
variability handling mechanism.

Priorities for actors and for message handlers to make the behavior of the
system more deterministic. This feature enables better modeling and verifi-
cation of different types of cyber-physical systems. Priority in Timed Rebeca
has been introduced in [64] which illustrates through a few examples how Lin-
gua Franca code can be naturally mapped to Timed Rebeca extended with
priorities.

We also provide three case studies to demonstrate the applicability of the above-
mentioned language extensions in modeling real-world systems in practice. We
have also verified the models for schedulability and deadlock-freedom and demon-
strated how the Afra toolset is capable of analyzing systems for relatively large
state spaces (with more than 37 million states) on a personal computer in a
reasonable time (Sect. 3.6).

After a brief overview of Timed Rebeca we review the upgrades to the lan-
guage (and the analysis tool) to support systematic variability management
(Sect. 3) and illustrates their applicability in a case study (Sect. 3.6). We explain
how Rebeca is extended to include priorities for actors and for message handlers
to address the need for determinism in the model (Sect.4) and demonstrate its
applicability using a case study (Sect.4.3). Afra provides complete support for
this feature in the modeling and analysis of Timed Rebeca models. In the last
section (Sect.5), we explain how we can put together both features supporting
variability and priority and hence support the possibility of a holistic analysis for
modern cyber-physical systems. We may then formally verify the model to check
safety properties as well as schedulability and end-to-end timing properties.

2 Rebeca Overview

Rebeca [62,67] is a class-based, imperative interpretation of the well-known actor
model of computation [3]. It describes the behavior of a system as a collection
of active objects with isolated states, communicating via asynchronous message
passing. Rebeca is a strongly typed modeling language with a Java-like syn-
tax to make it easy to learn and use by practitioners. It is equipped with an
LTL model checker integrated into Afra [2], an Eclipse-based development envi-
ronment. The core Rebeca modeling language is intentionally kept simple, but
for various purposes, several extensions have been proposed, including Timed
Rebeca [63] for the domain of real-time systems, Hybrid Rebeca [34] for the
domain of cyber-physical systems, pRebeca [69] for modeling and analysis of
probabilistic systems, and PTRebeca [32] for probabilistic timed systems.

Actors Upgraded for Variability, Adaptability, and Determinism 229

2.1 Running Example

To make our explanation of Rebeca and Timed Rebeca easier to follow, we
explain the language features over a simple running example. The example is
a highly simplified version of a Wireless Sensor LAN (WSLAN) system [42], in
which a sensor periodically gathers and sends data to a computation unit. The
computation unit buffers the received data and hands in a packet of data to a
network whenever the buffer is full. The network transmits the data according
to the TDMA network protocol [14].

2.2 Core Rebeca

A Rebeca model mainly consists of a number of reactive class definitions, which
define the behavior of the classes of the actors in the model, as well as a main
block that defines the instances of the actor classes. In the Rebeca model of the
running example listed in Fig. 1, there are three classes of actors: Sensor (lines
1-16), CompUnit (lines 18-30), and Network (lines 32-37). The main block in
lines 39-43 defines one instance of each class and specifies the arguments passed
to their constructors. An instance of a reactive class is an actor in the system
(which is also called a rebec).

The declaration of a reactive class starts with the keyword reactiveclass,
followed by the reactive class name. The size of the queue is specified in the
parentheses right after the reactive class name (e.g., line 1). A reactive class
has a number of state variables, representing the local state of the actors. They

1 | reactiveclass Sensor(3) { 23 | CompUnit(Network net) {
2 statevars{ 24 network = net;
3 CompUnit cu; 25 }
4| }

27| msgsrv receiveData(byte data) {
6 | Sensor(CompUnit cul) { 28 network.send(data) ;
7 cu = cul; 29 }
8 self.gatherData(); 30 |}
9| 1%

32 | reactiveclass Network (3) {
11 msgsrv gatherData() { 33| msgsrv send(byte data) {
12 byte data = 7(1,3); 34 // Send data according
13 cu.receiveData(data) ; 35 // to the TDMA protocol
14 self.gatherData(); 36|)
15 % 37|}
16 | }

39 |main {
18 | reactiveclass CompUnit(3) { 40 Sensor sensor():(cu);
19 statevars { 41 CompUnit cu(): (network) ;
20 Network network; 42 Network network():();
21 } 43 | ¥

Fig. 1. The Rebeca model of the running example (a simple sensor network)

230 R. Khosravi et al.

may contain variables of basic data types, including booleans, integers, arrays,
or references to other actors. The classes in the running example only contain
state variables of the reference types. For example, every instance of Sensor has
a reference to an instance of CompUnit (line 3). Each class can have a number
of constructors, which are used to initialize instances of the class by initializing
the state variables and possibly sending messages to other actors or themselves.
For example, the constructor of Sensor (lines 6-9) initializes a sensor by set-
ting its reference to CompUnit as well as sending itself a gatherData message.
Each reactive class accepts a number of message types which are handled using
message servers®. The message server gatherData of Sensor (lines 11-16) first
chooses a data value in the range 1 to 3 nondeterministically (line 12) and sends
a receiveData message to the associated CompUnit (denoted by the reference
variable cu), passing the value of data as the argument (line 13)3. The effect of
sending a message is appending the message to the message queue of the receiv-
ing actor (sometimes called its mailbox). Sending a gatherData to itself (line
14), the sensor exhibits a periodic behavior. In the definition of the message
servers, well-known program control structures can be used, including if-else
conditional statements, for and while loops, the definition of local variables,
and assigning expressions built using usual arithmetic, logic, and comparative
operators to local and state variables.

The general behavior of each actor is an infinite loop of taking a message from
the mailbox and executing the corresponding message server. The actor waits if
there is no message in the mailbox. The mailbox is a bounded FIFO queue. The
queue size is bounded to prevent infinite state spaces during model checking. If a
message is sent to an actor with a full mailbox, a queue overflow error happens
and the state space generation is terminated. As we will see shortly in more
detail, the model in Fig. 1 suffers from this problem when the sensor repeatedly
sends itself gatherData messages. To remedy this, the sensor can send the next
gatherData only after receiving some kind of acknowledgement message from
the computation unit. Another solution is to use timing constraints introduced
in Timed Rebeca.

It is important to note that in Rebeca there is no intra-actor concurrency,
meaning that the execution of a message server must complete before the exe-
cuting actor takes the next message from its mailbox. To make the behavior
of the models more deterministic, we assume that two messages sent from one
actor to another are delivered to the receiver’s mailbox in order. The order of
execution of enabled actors are arbitrary. An actor is enabled if it is not busy
handling a message and its message queue is not empty. This arbitrary ordering
of actors is a source of nondeterminism in the behavior of the model, requiring
the model checker to inspect all possible interleavings of the message processing
by different actors.

2 In this paper we use the words message server and method interchangeably.

3 Note that this data value has no effect on the behavior of the actors in this spe-
cific model and is only generated to demonstrate the use of nondeterministic choice
expression.

Actors Upgraded for Variability, Adaptability, and Determinism 231

2.3 Timed Rebeca

The models in core Rebeca are time abstract in the sense that the passage of time
is not modeled explicitly. The nondeterminism in the processing of messages by
different actors implicitly models the temporal ordering of events. For example,
upon execution of gatherData, the sensor sends two messages: a receiveData
to cu and another gatherData to itself. Now if the next message processed is
receiveData, this indicates that the sensor gathers data in a time period rela-
tively larger than the time needed by the computation unit to process the data
(including the time needed to receive the message from the sensor). Conversely, if
gatherData is processed first, it indicates that the sensor gathers data relatively
faster. If this case happens routinely, both the sensor’s and the computation
unit’s mailboxes quickly overflow.

To put constraints on the timings of delivering and processing of the mes-
sages, we can use an extension of Rebeca, named Timed Rebeca, which provides
features for this purpose. Rewriting the two mentioned message servers as below
fixes the queue overflow problem.

msgsrv gatherData() { msgsrv receiveData(byte data) {
byte data = 7(1,3); delay(1);
cu.receiveData(data); network.send(data) ;
self.gatherData() after(2); }

}

The clause after(2) after sending gatherData specifies the message needs
two units of time to be delivered to the mailbox of the sensor, hence specifying the
time period of two for gathering data. On the other hand, delay(1) statement
in receiveData indicates that the computation unit needs one unit of time to
process the message and send the data over the network. Timed Rebeca offers
the following features to model the timed behavior of actors.

delay is a statement used to model computation times. Timed Rebeca assumes
all statements other than delays are executed instantaneously. So, the com-
putation time must be specified by the modeler using the delay statement. A
statement delay(?) indicates the actor does not perform any action within
the next ¢ units of time.

after is a time tag attached to a message and defines the earliest time the
message can be served, relative to the time when the message was sent. A
clause after () may be added to a message send statement, indicating that
the receiver can take the message from its mailbox only after ¢ units of time.

deadline is a time tag attached to a message which determines the expiration
time of the messages, relative to the time when the message was sent. A clause
deadline(?) may be added to a message send statement, indicating that the
message remains only ¢ units of time in the receiver’s mailbox, and purged
afterward if its processing has not already started.

The same as Core Rebeca, the order of execution of enabled actors in Timed
Rebeca are arbitrary. In Timed Rebeca, an actor is enabled if it is not busy

232 R. Khosravi et al.

handling a message and its message bag has a message whose time tag is less
than the time tag of all the messages of other actors. This message is also called
an enabled message. Timed Rebeca is also supported by Afra toolset for schedu-
lability and deadlock freedom analysis. It makes use of special properties of the
Timed Rebeca semantics (isolated actor states and serial execution within a
single actor) to generate a data structure called floating time transition system
which enables a coarse grain discretization of the state space [40].

2.4 Inheritance and Polymorphism

Like most other object-oriented programming and modeling languages, Rebeca
provides mechanisms for reusing code through subclassing. A modeler is able to
define a new reactive class as a subclass of an existing reactive class, using an
inheritance mechanism. This is stated using the extends keyword followed by the
name of the base reactive class, prior to the queue size declaration. This way, the
new reactive class inherits all the state variables and message servers of the base
reactive class. Rebeca also supports polymorphism through dynamic binding of
the message servers. Since a subclass cannot remove any message server inherited
from its superclass, its type is compatible with that of the superclass. Hence, it
is possible to assign an instance of a subclass to a reference of the superclass.
The actual message server invoked when processing a message is determined by
the class of the receiving actor (not the type of the reference). This allows for
improving code organization and readability as well as the creation of extensible
programs [21]. An example of the usage of inheritance and dynamic binding in
Rebeca is demonstrated in the Elevator case study (Sect. 3.6, Fig. 7).

An abstract reactive class is defined when a modeler wants to manipulate a
set of classes through their common interface. Rebeca provides this by enabling
abstract message server definition. An abstract message server has only a dec-
laration and no implementation. A reactive class containing abstract message
servers is called an abstract reactive class. Inheriting from an abstract reactive
class requires providing definitions for all the abstract message servers in the
base reactive class. Otherwise, the derived reactive class is also abstract, and
the compiler forces the modeler to qualify that reactive class with the abstract
keyword.

In some cases, there is a need for defining a completely abstract reactive
class, i.e., a reactive class that provides no implementation at all. This is done
by defining interface instead of reactive classes. It allows the modeler to deter-
mine message server names and their argument lists, but no bodies and no state
variables. So, it provides only a type, not any implementation. In Rebeca, defin-
ing multiple interface implementation is allowed, which can be assumed as a
kind of multiple inheritances. More details about the inheritance mechanism and
polymorphism in Rebeca are presented in [71]. An example of using interfaces
in Rebeca is illustrated in Fig. 3, lines 62-78.

Actors Upgraded for Variability, Adaptability, and Determinism 233

3 Modeling Variability in Rebeca

In this section, we review the language features that can be used to capture
variability in Rebeca models. At the finer level of granularity, we have feature
annotations that can bind state variables, methods, and statements to feature
expressions. On the other hand, polymorphism allows reactive classes to act
as different implementations of abstract interfaces, hence providing a coarse-
grained variability handling mechanism at the component level. Before going
into the details of each language feature, we extend the running example with a
few variable features.

3.1 Running Example with Variability

To demonstrate how variability is handled in Rebeca, we extend the running
example with a few variable features. The feature diagram of the extended exam-
ple is illustrated in Fig. 2. The whole system (represented by WSAN) has three
sub-features Sensor, Computation Unit, and Network. The filled circle at the
top of these features indicates that they are mandatory sub-features of WSAN,
meaning that they must be included in every product configuration. There are
three variation points in this example. The sensor can gather data with a fixed
period, or sporadically. The arc between the edges to Periodic and Sporadic indi-
cates that these sub-features are mutually exclusive. The computation unit can
either immediately send the data received from the sensor, or decouple receiving
and sending data. In the latter case, it buffers the received data and periodically
sends a packet from the buffer (if available). Finally, the system can support
the network protocols TDMA, MACB, or both (as indicated by the filled arc
between the edges to the sub-features). The Timed Rebeca model of the extended
running example is listed in Fig. 3. We will explain the details of the variability
handling mechanisms in the following.

WSAN

/\

Sensor Compu.tatlon Network
Unit
- . Immediate Periodic
Periodic Sporadic Push Push TDMA MACB

Fig. 2. The feature diagram of the running example of a simple sensor network with
three variation points, periodic or sporadic for the sensor, immediate or periodic push
for the computation unit, and two different protocols, TDMA and MACB, for the
network

234

STk W N

o

9
10
11

13
14
15
16

18
19
20
21
22
23

24
25

27

29
30
31
32
33
34
35
36

38
39
40
41
42

44

R. Khosravi et al.

featurevar FT_PERIODIC_SENSOR;
featurevar FT_SPORADIC_SENSOR;
featurevar FT_IMMEDIATE_PUSH;
featurevar FT_PERIODIC_PUSH;
featurevar FT_SIMPLE_NETWORK;
featurevar FT_TDMA_NETWORK;

reactiveclass Sensor(3) {
statevars{
CompUnit cu;

}

Sensor (CompUnit cul) {
cu = cul;
self.gatherData();

}

msgsrv gatherData() {
cu.receiveData(0);
if (FT_PERIODIC_SENSOR)
self.gatherData() after(2);
else
self.gatherData()
after(?(1,2,3));

env int BUFFER_SIZE = 4;

reactiveclass CompUnit(3) {
statevars {
Network network;
@feature (FT_PERIODIC_PUSH)
int [BUFFER_SIZE] buffer;
@feature(FT_PERIODIC_PUSH)
int cnt;

CompUnit (Network net) {
network = net;
@feature (FT_PERIODIC_PUSH)
self.process();

}

@feature (FT_IMMEDIATE_PUSH)

45
46
47

49
50
51
52

54
55
56
57
58
59
60

62
63
64

66

67
68
69
70
71

73

74
75
76
77
78

80
81
82
83
84
85
86
87

msgsrv receiveData(byte data) {
network.send(data) ;

}

@feature (FT_PERIODIC_PUSH)

msgsrv receiveData(byte data) {
buffer[cnt++] = data;

}

@feature (FT_PERIODIC_PUSH)
msgsrv process() {
for (int i=cnt; cnt>0; cnt--)
network.send(buffer([i]);
self.process() after(1);
}
}

interface Network {
msgsrv send(byte data);
}

reactiveclass MACBNetwork
implements Network(3) {
msgsrv send(byte data) {
// Send data according
// to the MACB protocol
}
}

reactiveclass TDMANetwork
implements Network(3) {
msgsrv send(byte data) {
// Send data according
// to the TDMA protocol
}
}

main {
Sensor sensor():(cu);
CompUnit cu(): (network);
@feature(FT_SIMPLE_NETWORK)
MACBNetwork network():();
@feature (FT_TDMA_NETWORK)
TDMANetwork network():();

Fig. 3. The Timed Rebeca model of the running example extended by variability (the
sensor network example extended with the variation points of Fig. 2)

Actors Upgraded for Variability, Adaptability, and Determinism 235

3.2 Feature Annotations

In the context of software product line engineering, it is common to capture the
variabilities in a separate variability model. Some well-known models for this
purpose include the widely-used Feature Models [37], UML-based variability
models [9], and Common Variability Language (CVL) [28]. We assume that
the variability is captured in a feature model. The features are represented by
global boolean feature variables. A True (resp. False) value for a feature variable
indicates that the corresponding feature is included in (resp. excluded from) the
product under analysis. In the running example (Fig.3), the variables defined
in lines 1 to 6 represent the ‘leaf’ features in the feature model of Fig.2. Note
that it is not necessary to define variables for the mandatory features included
in every configuration.

We assume that the values for all feature variables are defined as parameters
of the analysis process. Hence, Afra is currently capable of analyzing one product
at a time. As we will see later, this limitation can be relaxed based on the
existing theories for model checking several products at a time. We also assume
that the values assigned to the feature variables are checked externally to satisfy
the validity of the feature model (e.g., not including two alternatives in the
configuration).

The feature variables can be used to define feature-specific behavior in two
ways. The first is to use a feature variable as an ordinary global variable. Line
20 of Fig. 3 is an example of this type. It is possible to mix feature variables with
state (or local) variables. The second way is to use feature annotations. The syn-
tax @feature (feature_expr) may come before various language constructs which
causes that construct to be included in the model only if feature_expr evaluates
to True. As an example, the state variable buffer is included in the reactive
class CompUnit only if the feature Periodic Push is present in the configuration
(represented by the feature expression FT_PERIODIC_PUSH in the feature annota-
tion of line 32). Note that the annotation only affects its immediately following
declaration. Hence, the variable cnt in line 35 must be annotated separately (line
34). Other model elements can be annotated as well, e.g., statements (line 41),
message servers (lines 44, 49, and 54), and actor instantiations (lines 83 and 85).
As the Timed Rebeca syntax allows grouping of statements into blocks, which
itself is a statement, one can annotate a group of statements within a message
server:

@feature (SOME_FEATURE_EXPR) {
statement 1;
statement 2;

statement n;

}

As illustrated by the feature annotations in lines 44 and 49, two alternative
implementations of the same message server may be provided. However, in case

236 R. Khosravi et al.

the feature expressions of the annotations are not mutually exclusive, a duplicate
definition error may be raised when compiling an individual product model which
includes more than one definition for the same message server. In the case of
verifying the whole product line without projecting the model onto an individual
product configuration (Sect.3.5), this check is more involved. Assuming that
there are two definitions for the same message server, one annotated with the
feature expression e; and another with es, an error must be raised if ey A es is
satisfiable*, which can be checked using a SAT solver.

3.3 Reactive Class Polymorphism

As stated in Sect. 2.4, the statically typed, class-based nature of Timed Rebeca
allows polymorphic modeling with respect to the interfaces of the reactive classes.
As an example, the Network interface defined in lines 62 to 64 of Fig.3 speci-
fies a single message server send (byte) without defining its behavior. Any class
implementing Network must implement the message server, as illustrated by the
classes MACBNetwork and TDMANetwork. To keep the running example as small as
possible, the interface is defined in its simplest form and the implementations are
omitted. However, the modeler can take advantage of more involved features of
interfaces, e.g., by making classes implement multiple interfaces, defining inher-
itance hierarchies among interfaces, etc.

An interface can be used as the type of state variables (line 31) or parameters
(line 38). An instance of any reactive class implementing that interface may be
assigned to such a state variable or parameter (line 82). This use of polymor-
phic modeling provides a coarser-grained variability implementation mechanism
(compared to feature annotations), where the variability is resolved by choosing
among several components implementing the same interface.

3.4 Handling Reconfiguration

If we allow feature variables to change during execution, it is possible to change
the configuration at runtime which allows the modeling of reconfigurable sys-
tems. The reconfiguration can take place using both variability mechanisms,
feature annotation, and polymorphism. As an example, executing the following
code will change the behavior of all sensors from periodic to sporadic®.

if (someCondition) {
FT_PERIODIC_SENSOR
FT_SPORADIC_SENSOR
}

false;
true;

4 More precisely, the satisfiability check must incorporate the constraints imposed by
the feature model too. To this end, a feature expression F' must be derived from
the feature model (as explained in [5]), and the satisfiability of e; A e2 A F' must be
checked.

® Of course, since the two features are mutually exclusive, this could have been done
using only one feature variable.

Actors Upgraded for Variability, Adaptability, and Determinism 237

Note that this code can be placed at any reactive class, possibly other than
Sensor. This allows the separation of reconfiguration logic from the actors’
behavior. There is a limitation in using this type of reconfiguration where the
feature variable is used to annotate some state variables or an entire reactive
class (as opposed to a message server or a part of it). Since this changes the
structure of the states of the system, it complicates the generation and analy-
sis of the state space and thus is forbidden. If a reconfiguration of this type is
required it is recommended to use polymorphism to handle the variability (as
illustrated shortly in an example).

Moreover, a number of semantic issues arise when using annotative reconfigu-
ration which are studied in [56]. The most important happens when a reconfigu-
ration eliminates a message server, while there are messages of that type in some
actor’s mailbox. The solution proposed is to make the receiver actor perform a
configuration check whenever it takes a message from its mailbox for execution
and drop the message in case it is excluded from the model with respect to
the configuration at the time of taking the message. In [56], a variability-aware
semantics has been proposed for Rebeca supporting reconfiguration.

When using reactive class polymorphism, the reconfiguration can happen
without the need to change the Rebeca semantics. As an example, the following
method can be used to change the network protocol at runtime.

// in CompUnit:
statevars {
Network defaultNet;
Network alternativeNet;
Network network;

}

CompUnit (Network def, Network alt) {
defaultNet = def;
alternativeNet = alt;
network = def;

}

msgsrv switchNetwork() {
network = alt;

}

// in reconfiguration logic (anywhere in the model):
if (someCondition) {
cu.switchNetwork;

}

// in the main block:
MACBNetwork macb():();
TDMANetwork tdma():();
CompUnit cu(): (macb, tdma);

Note that both network classes must be instantiated in the main block, as
Rebeca does not support the dynamic creation of actors. It is possible that in

238 R. Khosravi et al.

the implementation of the system the actors are instantiated just upon reconfig-
uration. In this case, special care must be taken during the implementation to
keep the verification results valid.

We also emphasize that the change of the network protocol happens whenever
the switchNetwork message is handled. So, the computation unit may work with
the default network for a while after the reconfiguration happens. If this makes
a problem, in Timed Rebeca, the reconfiguration logic should be given priority
over normal behavior using the technique explained in Sect. 4.

3.5 Model Checking in the Presence of Variability

When it comes to verification, one can derive the Rebeca model for each valid
configuration, and model check each model separately. However, this way we
cannot benefit from the commonalities among the behavior of the products. The
problem of model checking the whole product line at once has been the subject
of various studies, like [18]. In the context of Rebeca, [56] has addressed model
checking reconfigurable families of actor systems, based on a feature-annotated
state space generated for the whole product line.

One can statically analyze the product line model to detect the features whose
presence does not affect the satisfaction of a given property. For such features,
it suffices to verify the products that exclude those features. A similar technique
can be used regarding the alternative features (according to the feature model).
These improvements (as well as some others regarding evolving product lines)
have been studied in [57], using a variability-aware data and control dependency
graph generated from the model. The experimental results indicate a significant
reduction in the verification cost of the whole product line. Note that the model
checking of the whole product line at once has not been yet integrated into Afra
and is planned for future releases.

3.6 Case Study: Elevator Scheduling with Variability

To demonstrate how variability handling mechanisms can be used in practice to
enable an analysis of a real-time software product line, we studied an elevator
scheduling system which is originally defined in [55] and analyzed for schedu-
lability using a Timed Automata Family. The feature model of the case study
is depicted in Fig.4. The elevator system consists of three to five floors, as
indicated by the numeric feature Floors. A central controller is responsible for
scheduling the movement of the elevator. The time between two consecutive
requests on the same floor is assumed to be within a certain discrete range of
[LOW, HIGH]. The scheduling algorithm must guarantee a maximum waiting
time for each request (TIMEOUT). The system may support VIP floors (indi-
cated by the optional feature VIP Floor), where the maximum waiting time is
less than normal floors (TIMEOUT_-VIP). On the other hand, the time between
two consecutive requests on a VIP floor may be different from non-VIP floors and
is assumed to be within the discrete range of [VLOW, VHIGH]. The elevator
system may be equipped with a weight sensor (indicated by the optional feature

Actors Upgraded for Variability, Adaptability, and Determinism

239

Weight Sensor) which prevents the elevator from moving if the total weight in
the cabin exceeds a limit. This increases the time the elevator waits at a floor

in the worst case by LVL_DFELAY.

Elevator

— L T

Weight
Sensor

VIP Floor

Floors: [3,5]

Fig. 4. The elevator case study feature model [55]

The Timed Rebeca model for the case study with four floors is listed in the
Figs.5, 6 and 7. To save space, we have omitted a few less important parts.
The current implementation of Afra does not support the dynamic creation of
actors, so the variability in the number of floors must be handled manually, by
instantiating the desired number of actors in the main block (as in Fig. 7). The
other two features are modeled by FT_VIP and FT_WEIGHT _SENSOR.

\V]

0~ O Ut~

9
10
11
12
13
14
15
16
17
18

featurevar FT_VIP;
featurevar FT_WEIGHT_SENSOR;

reactiveclass Floor(5) {

knownrebecs {
Controller ctrl;

}

statevars {
int level;
boolean isWaiting;
@feature(FT_VIP)
boolean isVIP;

}

// constructor omitted

msgsrv makeReq() {
ctrl.requestFor(level);
isWaiting = true;
int timeout = TIMEOQOUT;

19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35

@feature (FT_VIP)
if (isVIP)
timeout = TIMEQOUT_VIP;
self.timeOut ()
after (timeout);
}
msgsrv timeOut() {
assertion(!isWaiting);
}
msgsrv served() {
isWaiting = false;
int rqDly = 7(LOW, HIGH);
@feature (FT_VIP)
if (isVIP)
rqDly = ?(VLOW, VHIGH);
self .makeReq() after(rqDly);

Fig. 5. The elevator scheduling case study - Timed Rebeca model of the floors

Each floor actor, an instance of Floor reactive class (Fig. 5), knows its level,
whether it is waiting for its request to be served, and if it is a VIP floor (only
if VIP feature is on), modeled by the corresponding state variables (lines 9-12).
Upon construction, a floor makes a request for the elevator. The body of the
constructors are omitted to save space. When receiving a makeReq message (lines

240

R. Khosravi et al.

15-23), the floor sends the controller a requestFor message along with its level
number and sets itself in the waiting mode. To check the schedulability of the
model, the floor schedules a timeOut message for either TIMEQUT or TIMEQUT_VIP
to be sent to itself. Upon the timeout (lines 24-26), an assertion fails if the floor
is still waiting. If the elevator arrives on a waiting floor (lines 27-35), the floor
exits the waiting state and schedules the subsequent request for some time in
the range [LOW, HIGH] (or [VLOW, VHIGH] for a VIP floor). To avoid the complexity
of handling recurrent requests at a floor (i.e., a second request is made before
the first one is served), we assume that TIMEOUT is reasonably smaller than

LOW.
1 | reactiveclass Controller(20) {
2 statevars {
3 Floor[LVL_CNT] floor;
4 boolean[LVL_CNT] requested;
5 int dir;
6 int atLevel;
7 boolean stopped;
8 }
9 // constructor omitted
10 | msgsrv requestFor(int dest) {
11 requested[dest] = true;
12 if (dir == NOT_MOVING)
13 if (atLevel < dest)
14 move (UP) ;
15 else if (atLevel > dest)
16 move (DOWN) ;
17 else
18 serve(dest);
19 }
20 | msgsrv arrive(int level) {
21 handleArrival(level);
22 reschedule(level);
23 }
24 void move(int direction) {
25 dir = direction;
26 int next_arrival =
TIME_FOR_ONE_LEVEL;
27 @feature (FT_WEIGHT_SENSOR)
28 if (stopped)
29 next_arrival += LVL_DELAY;
30 if (direction == UP)
31 self.arrive(atLevel + 1)
after (next_arrival);
32 else if (direction == DOWN)
33 self.arrive(atLevel - 1)
after (next_arrival);
34 ¥

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

void stop() {
dir = NOT_MOVING;
}
void handleArrival(int level) {
atLevel = level;
stopped = false;
if (requested[levell]) {
serve(level);
stopped = true;
}
}
void serve(int level) {
requested[level] = false;
floor[level] .served();
}
boolean higherLevelsRq()
boolean lowerLevelsRq()
void reschedule(int level) {
if (dir == UP)
if (higherLevelsRq())
move (UP) ;
else
if (lowerLevelsRq())
move (DOWN) ;
else
stop(O;
else if (dir == DOWN)
if (lowerLevelsRq())
move (DOWN) ;
else
if (higherLevelsRq())
move (UP) ;
else
stop();

Fig. 6. The elevator scheduling case study - the model of the controller in a non-VIP
setting.

Actors Upgraded for Variability, Adaptability, and Determinism 241

As its state variables, the (non-VIP) Controller (Fig.6) knows the floors,
whether there is a request for each floor, its direction (NOT_MOVING, UP, or DOWN),
the level at which it just arrived, and whether it has stopped at that level (or just
passed by). Upon receiving a request for a destination level (lines 10-19), the
controller marks the floor as requested and starts to move the elevator toward the
destination if it is not moving already. When the elevator arrives at a level (either
as a destination or just passing by), it notifies the controller via arrive message
(lines 20-23). The controller first handles the arrival, and then reschedules the
elevator’s movement if necessary. The movement (for one level) is handled in
move method, whose function is to schedule an arrive message at the next
visited floor (determined according to the current level and the direction). The
time the elevator arrives on the next floor is TIME_FOR_ONE_LEVEL, plus the extra
time needed to wait a the level if the weight sensor feature is included. This
extra time is needed only if the elevator has been stopped to serve a request
(hence the conditional statement in line 64). The functions of handleArrival
and server are straightforward. After arrival, a rescheduling must happen if
necessary (lines 52-69). If the elevator has been going up, and there are requests
for upper levels, it continues in that direction. Otherwise, if there are requests
for the lower directions, it changes direction downwards. If there are no other
requests, it stops. A similar logic is followed if the elevator has been going down.
The bodies of the two boolean methods higherLevelsRq and lowerLevelsRq
are omitted to save space.

The weight sensor variability can be resolved in just a few annotations. To
support VIP floors, special care must be taken when rescheduling to be able to
meet the shorter waiting deadline of such floors. Hence, the basic controller is
extended by VIPController to support VIP scheduling (Fig. 7). It inherits all
members of the basic Controller and additionally knows which floors are of
VIP type (line 4). The message server arrive is overridden in the way that it
first determines its next direction considering only the requests for VIP floors. If
no such request exists, the ordinary rescheduling algorithm is used by calling the
(inherited) reschedule method. Again, the bodies of the two boolean methods
higherVIPLv1Rq and lowerVIPLv1Rq are omitted to save space.

Each configuration of the model can be analyzed for schedulability using
Afra. The results of the verification of a few products is reported in Table 1.
To keep the size of the table small, we have only reported the configurations
with four floors, and two configuration with five floors. For the configurations
including VIP floors, only the topmost floor is considered as VIP.

The complexity of the analysis is greatly affected by the size of the intervals
specifying the minimum and maximum amount of times between two consecutive
requests for each floor (shown in the Rq.Int. column), as Afra checks for each
value within the interval systematically. For the first four configurations, we set
this parameter to three (LOW = 20, HIGH = 22, VLOW = 22, VHIGH =
24). The last two configurations have five floors, one with an interval of size two
and the other with size three. The models are analyzed for schedulability and

deadlock-freedom on a single core from a 3.6 GHz Core-i7 machine with 16 GB
of RAM.

242 R. Khosravi et al.

1 | @feature(FT_VIP)
2 | reactiveclass VIPController 25 boolean higherVIPLvlRq() ...
extends Controller(20) { 26 boolean lowerVIPLv1Rq() ...

3 statevars { 27 | }

4 boolean[LVL_CNT] isVIP;

5 } 29 |main {

§) // constructor omitted 30 @feature('FT_VIP) {

7 msgsrv arrive(int level) { 31 Controller ctrl():(f0, f1,
8 handleArrival(level); f2, £3);

9 if (dir == UP) 32 Floor £f0(ctrl):(0);

10 if (higherVIPLv1Rq()) 33 Floor fi(ctrl):(1);

11 move (UP) ; 34 Floor f2(ctrl):(2);

12 else if (lowerVIPLvl1Rq(Q)) 35 Floor £f3(ctrl):(3);

13 move (DOWN) ; 36 }

14 else 37 0feature(FT_VIP) {

15 reschedule(level); 38 VIPController ctrl(): (f0,
16 else if (dir == DOWN) f1, f2, £3, false,

17 if (lowerVIPLv1Rq()) false, false, false);
18 move (DOWN) ; 39 Floor fO(ctrl): (0, false);
19 else if (higherVIPLv1Rq()) 40 Floor fi(ctrl): (1, false);
20 move (UP) ; 41 Floor f2(ctrl):(2, false);
21 else 42 Floor £f3(ctrl):(3, false);
22 reschedule(level); 43 }
23 } 44 | '}

Fig. 7. The elevator scheduling case study - the model of the VIP controller and the
instantiation of the actors.

Table 1. The number of states and transitions, and the time required to model check
a few configurations of the elevator product line. Each row specifies a configuration
by assigning values to the features Weight Sensor (WS), VIP Floor (VIP), and the
number of floors (Floors). The parameter Rq.Int. specifies the size of the time interval
between two consecutive requests ([LOW, HIGH]).

Config. | WS | VIP | Floors | Rq.Int | States Transitions | Time (sec.)
1 v 4 3 106,234 165,326 1

2 v v 4 3 185,145 196,939 2

3 4 3 380,794 491,662 3

4 v 4 3 1,221,333 | 1,543,755 |10

5 v |5 2 1,435,246 | 1,818,949 |14

6 v) 3 37,178,658 | 48,576,931 | 384

Assuming the elevator waits for one time unit at each floor, and adds another
time unit if it has a weight sensor, having the mentioned intervals between two
consecutive requests yields in the smallest values for time outs as shown in
Table2. In case the time out values are infeasible to satisfy, Afra reports a
schedulability violation and provides a counterexample trace as illustrated in
Fig. 8.

Actors Upgraded for Variability, Adaptability, and Determinism
Table 2. The smallest possible time out values for different configurations
Config. | WS | VIP | Floors | Rq.Int | TIMEOUT | TIMEOUT_VIP
1 v 4 3 16 N/A
2 v v 4 3 16 10
3 4 3 11 N/A
4 v 4 3 11 8
5) v 5 2 13 10
6 v) 3 13 10
Rebeca IDE B @
File Edit Navigate Project Window Help
HNE@ #0 Q
= |R *elevator.rebeca = B | Counter Example S (=]
L =] T e
boolean higherLevelsRequested() { 1220
for (int i = atlLevel + 1; i < LEVEL COUNT; i++ fO.TIMEOUT from f0 @(94)
if (requested[i]) 1230
return true; f1.SERVED frpm ctrl @(94)
return false; 124 0
¥ Time progress py 3 units @(97)
1250
boolean lowerLevelsRequested() { ctrl.REACH frpm ctrl @(97)
for (int i = 0; i < atLevel; i++) 126 0
if (requested[il) £2.SERVED frpm ctrl @(97)
return true;
return false; v
! Time progress Hy 3 units @(100)
f3.TIMEOUT fpm f3 @(100)
void reschedule(int level) { assertion failed
if (movingState == UP) {
if (higherLevelsRequested()) {
move (UP) ; v ctrl
} else {)
if (lowerLevelsRequested()) vistats Yariables
move (DOWN) ; Controller.requested [false, false, false, true,]
else Controller.movingState 1
} StoP()i Controller.atLevel 2
} else if (movingState == DOWN) { Controller.floor [fo, f1,f2,f3,]
if (lowerLevelsRequested()) { Controller.hasWeightSensor true
move (DOWN) ;
} else { Controller.stayed true
if (higherLevelsRequested()) VIPController.isVIP [false, false, false, true,]
1 move (UP) ; ~ Queue Content
else
stop(); reach(3) arrival(100) deadline(infinity) from ctrl
e Writable Inse;tn" 141:24: 2557

Fig. 8. The counterexample provided by Afra when a time out happens

4 More Deterministic Models Using Priorities

243

e

oo

In concurrency theory, nondeterminism is used to model concurrency. Hewitt
actors are designed for building distributed and network systems. There is a trend
to add more determinism to the language models inspired from synchronous
languages. Edward Lee and his team are proposing deterministic concurrency
n [49]. Apart from that, in many applications, there is a predefined priority
used for ordering the tasks in hand. Here we explain how priorities are added as
annotations to Timed Rebeca to better support such applications.

244 R. Khosravi et al.

In Rebeca, the semantics of the language is defined to order the execution of
enabled actors nondeterministically. An actor is enabled if the actor is not busy
handling a message and its message queue is not empty. Each actor has a message
queue and the messages sent to an actor from another actor are put in the
receiver’s message queue with the same order that the messages are sent. So, in
Rebeca, we have a point-to-point in-order message delivery, but we cannot have
any assumptions about messages sent by different actors. For Timed Rebeca, the
order of handling messages of an actor depends on the time tags of the messages.
If there is more than one message with the same time tag then these messages
are handled in a nondeterministic order (see [53] for a formal definition of the
semantics). To make the behavior of actors in Rebeca models more deterministic,
which is required for real-time and embedded systems, Rebeca allows associating
priority to message servers and actors. The messages with the same time tag are
handled in the order which is defined by the priorities of their corresponding
message servers. Priorities for the actors are defined in the main part of the code
where we instantiate actors from the reactive classes. This way, the execution of
enabled actors takes place considering the associated priorities.

4.1 Incorporating Priorities into the Running Example

In the extended version of the running example in Fig. 10, we want to make sure
that in each round of execution, all of the gathered data by Sensor is processed
by CompUnit. So, there is a need for Sensor to have a higher priority in the
execution in comparison with CompUnit. Figure 9 shows a diagram representing
the program model of the running example, inspired from Lingua Franca [27].
The program is assembled from three actors, Sensor, CompUnit, and Network,
shown as light gray boxes. The numbers in the top-left side of the boxes show
the priorities of actors. Black triangles in the diagram show communication
ports. In this model, both Sensor and CompUnit have output ports that are
connected to corresponding input ports. In the diagram, methods are represented
by dark gray chevrons. The order of defining methods in the figure shows the
execution priority of methods, e.g., receiveData has a higher execution priority
compared to process in the CompUnit actor. In Fig.9, Sensor and CompUnit
define methods that are triggered periodically.

As depicted in lines 50 to 55, of Fig. 10, three different priority levels are
associated with instances of reactive classes using priority annotations. Having

C Unit
@ Sensor @ ompUni QNetwork

(O T —s-—- -3
(2 sec)
O =

(1 sec)

Fig. 9. A diagrammatic representation of the program model of the running example
of sensor network with priorities, inspired with the Lingua Franca diagram notation

Actors Upgraded for Variability, Adaptability, and Determinism 245

a smaller value for priority annotations means that the actor has a higher exe-
cution priority. Note that associating the same priority level with actors results
in the nondeterministic choice among the actors when more than one of them
are enabled.

In addition to the cases mentioned above, each reactive class is allowed to
prioritize the execution of its message servers. It means that in the case of
receiving two messages with the same time tag, the message server which is
annotated with a higher priority will be executed first. In Fig. 10, we make sure
that the method for receiving data from Sensor has a higher priority than the
method for processing data in CompUnit. This decision is because CompUnit has
to receive the data prior to processing it. This way, the priority among reactions
1 and 2 in Fig.9 is addressed.

1 | reactiveclass Sensor(3) { 29 | @priority(1)

2 statevarsq{ 30 | msgsrv receiveData(byte data) {

3 CompUnit cu; 31 buffer[cnt++] = data;

41 % 321 }

6 | Sensor(CompUnit cul) { 34| O@priority(2)

7 cu = cul; 35| msgsrv process() {

8 self.gatherData(1); 36 for (int i=cnt; cnt>0; cnt--)

9 } 37 network.send (buffer[i]);
38 self.process() after(1);

11 | msgsrv gatherData(byte data) { 39 1}

12 cu.receiveData(1); 40 | ¥

13 self.gatherData(l) after(2);

14 } 42 | reactiveclass Network (3) {

15|} 43 | msgsrv send(byte data) {
44 // Send data according

17 | reactiveclass CompUnit(3) { 45 // to a protocol

18 statevars { 46 }

19 Network network; 47 | ¥}

20 byte[4] buffer;

21 int cnt; 49 |main {

22| } 50 | G@priority(1)
51 Sensor sensor():(cu);

24 CompUnit (Network net) { 52 @priority(2)

25 network = net; 53 CompUnit cu(): (network) ;

26 self.process(); 54 @priority(3)

27 } 55 Network network():();
56 | ¥

Fig. 10. The Timed Rebeca model of the running example with priorities (the sensor
network example with priorities for the actors and for the message servers)

In some cases, associating priorities to actors and methods within classes does
not give us the order of execution of methods we are looking for. Hence, we also
added another feature to Timed Rebeca, by which we can associate priorities
with each method. This is a flat type of priority throughout the whole model

246 R. Khosravi et al.

which we call Global Priority (and is not shown in the examples). Note that
using both GlobalPriority and Priority in one model is not allowed.

4.2 Analysis of Rebeca Models with Priorities

The model checking engine of Afra assumes that in the given model all of the
actors and methods have priorities, if there is no priority associated to an actor
or a method, then Afra assumes the lowest priority for it. At each step of the
state space generation, Afra selects the highest priority enabled message from the
enabled actor with the highest priority. In the case of having methods or actors
with the same priority level, one of them is selected nondeterministically. During
model checking, Afra generates the state space for all possible combinations.

Figure 11 compares the transition systems of the model of Fig. 10. As men-
tioned before, including priorities eliminates some nondeterministic choices
which results in smaller transition systems. Two outgoing transitions of S1.0
of Fig. 11(a) illustrates nondeterministic choice between executing the messages
of sensor and cu. This nondeterminism is resolved by associating priorities to
actor instances in S1_0 of Fig. 11(b). Another kind of nondeterminism is depicted
in S2_0 for executing receiveData or process of the actor cu. In its corre-
sponding state in Fig. 11(b), receiveData has a higher priority and there is no
nondeterministic choice.

4.3 Case Study: Anti-lock Braking System, with Priority

We demonstrate the applicability of the priority feature of Rebeca on a simplified
Brake-by-Wire (BBW) system with Anti-lock Braking System (ABS) [23,36,48].
To prevent uncontrolled skidding, ABS releases the brakes based on the slip rate,
computed in terms of the torque and speed of wheels read by the wheel sensors.
We previously specified and analyzed this case study within Hybrid Rebeca
[33], an extension of Rebeca with continuous real variables that change over
time, specified by ordinary differential equations (ODEs). Due to the absence
of the priority feature, we handled the required priorities among the actors in
the semantic model (this priority was hard-coded in the semantics). We revisit
this example by replacing ODEs with simple expressions updating real-valued
variables at discrete time intervals.

In this system, there is a wheel controller (WheelCtrl) for each wheel and a
global brake controller (BrakeCtrl). Each wheel and the brake pedal are equipped
with a sensor. The brake pedal sensor calculates the brake percentage based on
the brake pedal’s position and sends this value to BrakeCtrl. Each wheel sensor
sends the speed of its wheel to its corresponding WheelCtrl which sends this
value to BrakeCtrl. Then, BrakeCtrl computes the desired brake torque and the
speed of all wheels and sends these values to each WheelCtrl to apply them.
Depending on the slip rate, computed based on the current and desired speed,
WheelCtrl releases the brake if the slip rate is greater than a specified value to
prevent skidding.

Actors Upgraded for Variability, Adaptability, and Determinism 247

cuPROCESS
@0

cu.RECEIVEDATA
@0

cuPROCESS
@0

sensor. GATHERDATA
@0

S1_0:
sensor GATHERDATA
@0
A
cu RECEIVEDATA
@2 -> shift(+2)
cu.RECEIVEDATA
@0

cu.RECEIVEDATA

@0
sensor. GATHERDATA
sensor. GATHERDATA /cu.PROCESS
@2 @2
lcu RECEIVEDATA
inetwork SEND @2 -> shift(+2)
u RECEIVEDATA
@2 -> shift(+2)
sensor GATHERDATA
@2
(a) The transition system without priorities (b) The transition system

with priorities

Fig. 11. Comparing transition systems of the model of Fig. 10 without priorities (a)
and with priorities (b).

248 R. Khosravi et al.

Each pair of a sensor and its corresponding controller are connected directly
by a pair-to-pair link. All other communications are managed through a shared
Controller Area Network (CAN) [50] which is a dominant networking protocol
in the automotive industry. CAN is a serial bus network where nodes can send
messages anytime. Upon multiple simultaneous send requests, only the message
with the highest priority is accepted and sent through the network. After a mes-
sage is sent, the network chooses another message from the requested messages.
A CAN bus can be conceived as a single global priority-based queue [20] that
deterministically dispatches messages based on their arrival times and for those
messages arrived at the same time based on their priorities. Thus, we model the
CAN network as a Rebeca class, called CANBusNetwork, with a message server
for each message priority. We define an abstract class called Ent as the supertype
for connected entities, e.g., ECUs in this example, over the CAN bus. Connected
entities send their messages to CANBusNetwork by calling the appropriate mes-
sage server corresponding to the message priority. Then, CANBusNetwork will
transfer the message to the target entity by sending a rcv message. We assume
that entities communicate by sending a pair of type and value, modeled as the
parameters of rcv messages. We have considered three message priorities by
defining three message servers sndH, sndM, and sndL as given in Fig.12. For
simplicity, we have considered two wheels in the model. The model consists of
four other classes shown in Fig. 12: WheelSensor, WheelCtrl, BrakeSensor, and
BrakeCtrl.

The WheelSensor class models the sensors and actuators of the wheel. The
class has one known rebec of WheelCtrl. This class periodically updates the
speed of the wheel and then sends the new value to the wheel controller (lines 33—
35), specified by the message server sndSpeed. As each wheel sensor is connected
via a pair-to-pair link to its wheel controller, we model this communication by
directly sending a message setWspd to the wheel controller. Upon handling a
message setTrq, it applies the effect of braking on the wheel speed (line 31).

The WheelCtrl class defines the behavior of the wheel controller which com-
municates via CAN bus by the global brake controller and via pair-to-pair link
with its wheel sensors. So, this class has three known rebecs of WheelSensor,
BrakeCtrl, and CANBusNetwork. Upon receiving the speed of the wheel through
setWspd messages from the wheel sensor, it will send the speed to the brake con-
troller via the CAN network (line 56). It receives the desired speed and torque
from the brake controller via CAN bus through rcv messages (lines 46-52).
We assume that the brake controller first sends the desired speed and then the
torque. After receiving the torque, it computes the slip rate of the wheel and
then decides to apply the brake by sending the appropriate torque to the wheel
(lines 49-51).

The BrakeSensor class defines the behavior of the brake pedal sensor. The
class has one known rebec BrakeCtrl which is the global brake controller. It
has the state variable bpcnt which is the brake percentage and increased up
to the value defined by the state variable max. This class sends the value of
bpent periodically to BrakeCtrl via sndBrake message (lines 65—67). In the

[\]

)

© 00

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50

Actors Upgraded for Variability, Adaptability, and Determinism 249

env int TORQUE = 0;
env int SPEED = 1;
env int PERIOD = 1;

interface Ent{
msgsrv rcv(Ent entity,int
type, float value);
}
reactiveclass CANBusNetwork(4){
CANBusNetwork () {}
@priority(1) //high
msgsrv sndH(Ent n,int t,float v)
{n.rcv((Ent)sender,t,v);}
@priority(2) //medium
msgsrv sndM(Ent n,int t,float v)
{n.rcv((Ent)sender,t,v) ;}
@priority(3) //low
msgsrv sndL(Ent n,int t,float v)
{n.rcv((Ent)sender,t,v) ;}
}
reactiveclass WheelSensor(1){
knownrebecs {
WheelCtrl wCtrl;}
statevars {
float spd; float trq;}
WheelSensor(float _s){
spd = _s;
self.sndSpeed();}
msgsrv setTrq(float _trq){
trq = _trq;}
msgsrv sndSpeed () {
spd = (float)spd-trq-0.1 ;
wCtrl.setWspd(spd) ;
if (spd>0)
self.sndSpeed() after(PERIOD);
i3
reactiveclass WheelCtrl
implements Ent(2){
knownrebecs {
WheelSensor w;
BrakeCtrl bCtrl;
CANBusNetwork CAN;}
statevars {
float vspd;float wspd;}
WheelCtrl O){}
@priority(2)
msgsrv rcv(Ent n,int t,float v){
if (t==SPEED) vspd = v;
elseq{
if (((vspd-wspd*0.74) /vspd)>0.2)
w.setTrq(0);
else w.setTrq(v);

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
30
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

3
@priority(1)
msgsrv setWspd(float spd){
wspd = spd;
CAN.sndM(bCtrl, SPEED, spd) ; }
}
reactiveclass BrakeSensor(1){
knownrebecs {
BrakeCtrl bCtrl;}
statevars {
float bpcnt;float max;}
BrakeSensor (float b,float m){
bpcnt = b; max = m;
self .Braking();}
msgsrv Braking(){
bpcnt = bpent + 1
bCtrl.setBpcnt (bpent) ;
if (bpcnt<max)
self .Braking() after (PERIOD);
i3
reactiveclass BrakeCtrl
implements Ent(4){
knownrebecs {
WheelCtrl wCtrlL;
WheelCtrl wCtrlR;
CANBusNetwork CAN;}
statevars {
float spdR;float rtrq;
float spdL;float rspd;
float bpecnt;}
BrakeCtrl(){
self.control();}
@priority(1)
msgsrv rcv(Ent n,int t,float v){
if (((WheelCtrl)n)==wCtrlR)
spdR = v;
else spdL = v;}
@priority(2)
msgsrv control(){
rtrq = bpcnt;
rspd = (spdR + spdl) / 2;
CAN.sndH(wCtrlR,SPEED, rspd) ;
CAN.sndH(wCtrlR,TORQUE,rtrq) ;
CAN.sndH(wCtrlL,SPEED,rspd) ;
CAN.sndH(wCtrlL,TORQUE,rtrq);
self.control() after(PERIOD;}
@priority (1)
msgsrv setBpcnt(float b){
bpent = b ;}
}
// main block in the next figure

Fig. 12. The specification of Brake-by-Wire system with Anti-lock Braking System

250 R. Khosravi et al.

constructor, the actor sends a sndBrake message to itself to start the periodic
communication.

The BrakeCtrl class is responsible for delegating the brake torque to wheel
controllers. It defines three known rebecs, two for each wheel controller named
wCtrlL, wCtrlR, and one for the network called CAN. This class has three state
variables for the right and left wheels’ speed and the brake pedal’s brake percent-
age (bpent). It also has two auxiliary state variables for computing the desired
speed and torque. The message server control is executed periodically to cal-
culate the desired brake torque, calculated based on the brake percentage (lines
89-96). It also estimates the speed based on the speed of the wheels. Then, the
estimated speed and global torque are sent to each wheel controller via the CAN
network. The message server setBpcnt updates bpcnt based on the received
value. The constructor sends a control message to itself to start the periodic
execution.

The main block of the model is listed in Fig.13. Figure 14 shows the LF’s
diagrammatic representation of the program model of the Brake-by-Wire sys-
tem. As we considered two wheels in the system, the program is assembled from
two instances of WheelSensor and WheelCtrl, one instance of BrakeSensor,
BrakeCtrl, and CANBusNetwork. As depicted in Fig. 14, the values are received
from WheelCtrl and BrakeSensor by BrakeCtrl to compute the desired brake
torque and speed. WheelCtrl also receives its value from WheelSensor. To
correctly compute the desired values in each period, we must guarantee that
BrakeCtrl has received the most recent sensed values from the sensors. So, we
assign the highest priority to the instances of BrakeSensor and WheelSensors.
We assign the next priorities to the components over the path from WheelSensor
to BrakeCtrl, i.e., instances of WheelCtrls and then CANBusNetwork. We also
assign a lower priority to the message server control than rcv to be sure that it
updates the values sensed for this period before its computation. If none of the
priorities are considered, WheelCtrl may make the computation using stale val-
ues. This is in line with the policy of the order of execution of components “from
upstream to downstream” in the design of CPS and used in Lingua Franca. We
will explain this through a scenario in the following.

Consider the property that states “whenever the slip rate of a wheel exceeds
0.2, the brake actuator of that wheel must be immediately released”. We
imply from this property that at the end of each period if (rspd — WSL.spd X
0.75)/rspd > 0.2 then WSL.trq must immediately become 0, where rspd =
(WSL.spd + WSR.spd)/2. Suppose that initially, the speed of the left and right
wheels are 15 and 13, respectively and the initial brake percentage is 60. As only
WSL, WSR, and brake sensor BS have messages in their queue, they first send the
speed of wheels (i.e., 15 and 13) and brake percentage (i.e., 60) to their corre-
sponding controllers upon handling their messages. Then, the wheel controllers
and the brake controller handle setWspd and setBpcnt messages, respectively,
to update their values. The wheel controllers send their speed values to the brake
controller via CAN by sending a sndM message. Then, CAN handles its two sndM
messages from the wheel controllers by sending rcv messages to the brake con-

Actors Upgraded for Variability, Adaptability, and Determinism 251

93 main {

94 @priority(1)

95 WheelSensor WSL(WCL):(10,12);
96 @priority(2)

97 WheelCtrl WCL(WSL,BC,CAN):();
98 @priority(1)

99 WheelSensor WSR(WCR):(11,12);
100 @priority(2)

101 WheelCtrl WCR(WSR,BC,CAN): ();
102 @priority(1)

103 BrakeSensor BS(BC):();

104 @priority(4)

105 BrakeCtrl BC(WCL,WCR,CAN):();
106 @priority(3)

107 CANBusNetwork CANQ):();

108 }

Fig.13. Actor instantiations for the Brake-by-Wire system with Anti-lock Braking
System

@ BrakeSensor @ Brakectrl

@ =9 sendSpeed r———— P LI setBpent
(BRAKE_PERIOD sec)
@ control >

(CONTROL_PERIOD sec)

|—> ------- receive

@CANBusNetwork

@ WheelSensor @ WheelCtrl m

(SPEED_PERIOD sec)

e »--‘--7

Fig. 14. A diagrammatic representation of the program model of the Brake-by-Wire
system presented in Fig. 12, inspired from the Lingua Franca diagram notation

troller BC. Please note that CAN has a higher priority than the brake controller, so
the brake controller BC first gets two rcv messages before handing its messages.
BC has the next priority to be executed. It has three messages in its queue: two
rcv messages and one control message. As the priority for handling rcv mes-
sages is higher than the control message, it first handles the rcv messages and
updates the value speed of wheels, and then by handling the control message
computes the desired torque and speed as 60 and 14 and sends them via two
sequential rcv messages through CAN to each wheel controllers. The wheel con-
trollers handle their rcv messages and compute the slip rate as 0.207 and 0.312
for the left and right wheels which indicates that the brake should be released

252 R. Khosravi et al.

by sending setTrq(0) to the wheels. This scenario satisfies the given property.
Assume that no priority is defined for the message servers of the brake controller
or the priority of the brake controller is not less than the others. So, the brake
controller may handle control first while it has not received any values for the
speeds (which are initially 0). Thus, the given property is wrongly violated.

The size of the state space generated by Afra has 10,088 states and 12,732
transitions. If we remove the priorities defined for the instances of actors, the
resulting size is increased to 1,659,463 states and 6,326, 764 transitions. If we
also remove the priorities for the message servers within the BrackCtrl and
CANBusNetwork classes, the resulting state space will have 2,523,309 states
and 10,313,561 transitions. The priorities among the actors implicitly model
a scheduling policy for executing actors to resolve nondeterminism due to their
concurrent execution while the priorities among the message servers model a
scheduling policy to resolve the nondeterminism caused by messages arriving at
the same time.

5 Holistic Analysis of Cyber-Physical Systems

The two orthogonal features of variability handling mechanisms and priority
can be used together. This combination of usage makes it possible to specify
variability in the domain of embedded and cyber-physical systems. Using the
features of upgraded Timed Rebeca, we may define different communication
mechanisms, like broadcast or specific protocols like in a CAN bus in a more
structured way and hence more usable and understandable for the engineers. We
can model periodic and sporadic events and order their handling where necessary.
This allows us to model different configurations for cyber-physical systems and
perform a holistic analysis of safety and timing features. We revise our running
example in Fig.3 to extend its domain application, inspired from [11] in the
automotive domain.

The extension to the Timed Rebeca model in Fig.3 is brought by three
modifications: 1) replacing the feature annotation by polymorphism and mak-
ing Sensor and ComptUnit abstract classes, 2) adding another network type
CANBusNetwork, similar to our case study in Sect. 4.3, and 3) adding variability
to the abstract class CompUnit to communicate with entities over a CAN bus.
As we need all the instances of CompUnit variations to either communicate over
CAN or not, we add this variability by using a feature annotation (instead of
defining two subclasses for each variant). The resulting model is shown in Fig. 15,
with its main block listed in Fig. 16. We explain each modification in detail.

We remove the variables FT_PERIODIC_SENSOR and FT_SPORADIC_SENSOR and
instead define PeriodicSensor and SporadicSensor as the subclasses of the
abstract class Sensor. By making the superclass Sensor an abstract class,
we can specify the common behavior between the two variant subclasses in
the superclass as much as possible like the constructor. Substituting polymor-
phism for feature annotation allows having two variants of Sensor class within
a model simultaneously. With the same discussion, we also remove the vari-
ables FT_PERIODIC_PUSH and FT_IMMEDIATE PUSH and define CompUnitPeriodic

w N

© 0 N O Ot

10

12

13
14
15
16

17
18

19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43

Actors Upgraded for Variability, Adaptability, and Determinism

featurevar FT_SIMPLE_NETWORK;
featurevar FT_CAN_NETWORK;
featurevar FT_TDMA_NETWORK;

abstract Sensor{
statevars{CompUnit cu;}
Sensor (CompUnit cul) {
cu = cul;
self.gatherData() ;}
abstract msgsrv gatherData();
}
reactiveclass PeriodicSensor
extends Sensor(3){
// constructor omitted
msgsrv gatherData() {
cu.receiveData(0);
self.gatherData()
after(2);}
}
reactiveclass SporadicSensor
extends Sensor(3){
// constructor omitted
msgsrv gatherData() {
cu.receiveData(0);
self.gatherData()
after(?(1,2,3));}
}
abstract CompUnit {

statevars {
Network network;
@feature (FT_CAN_NETWORK)
int priority}
CompUnit (Network net, int pr){
network = net;
@feature (FT_CAN_NETWORK)
priority = pr;
init();}
abstract msgsrv
receiveData(byte d);
abstract void init();
void transfer(byte data){
@feature (FT_CAN_NETWORK)
if (priority==1)
network.sendHigh(data) ;
else if (priority==2)
network.sendMedium(data) ;
network.send(data) ; }
}

45
46

47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76

T
78
79
80

81
82
83
84
85
86
87
88

253

env int BUFFER_SIZE = 4;
reactiveclass CompUnitPeriodic
extends CompUnit(3){

statevars {
int [BUFFER_SIZE] buffer;
int cnt;}
// constructor omitted
void init(){self.process();}
msgsrv receiveData(byte d) {
buffer[cnt++] = d;}
msgsrv process() {
for(int i=cnt;cnt>0;cnt--)
transfer (buffer([i]);
self.process() after(1);}
}
reactiveclass CompUnitImmediate
extends CompUnit(2){
// constructor omitted
void init(O{}
msgsrv receiveData(byte d){
transfer(data) ;}
}
interface Network {
@feature (FT_CAN_NETWORK)
msgsrv sendHigh(byte data);
@feature (FT_CAN_NETWORK)
msgsrv sendMedium(data) ;
msgsrv send(byte data);
}
reactiveclass MACBNetwork
implements Network(3) {
// constructor omitted
msgsrv send(byte data) { }
}
reactiveclass TDMANetwork
implements Network(3) {
// constructor omitted
msgsrv send(byte data) { }
}
reactiveclass CANBusNetwork
implements Network(3) {
// constructor omitted
@priority(1)
msgsrv sendHigh(byte data){}
@priority(2)
msgsrv sendMedium(data){}
@priority(3) //low
msgsrv send(byte data){}

Fig. 15. Extending the domain application of the sensor network running example
shown in Fig.3 by adding a CAN Bus and using the features of upgraded Timed
Rebeca

254 R. Khosravi et al.

82 | main {
83 @priority(1);
84 PeriodicSensor sri():(cul);

85 @priority(2);

86 CompUnitPeriodic cul(): (network, FT_CAN_NETWORK?2:0);
87 @priority(1);

88 SporadicSensor sr2():(cu2);

89 @priority(2);

90 CompUnitImmediate cu2():(network, FT_CAN_NETWORK?1:0);
91 @priority(3);

92 @feature (FT_SIMPLE_NETWORK)

93 MACBNetwork network():();

94 @feature (FT_TDMA_NETWORK)

95 TDMANetwork network():();

96 @feature (FT_CAN_NETWORK)

97 CANBusNetwork network():();

98 | }

Fig. 16. Actor instantiations for the upgraded sensor network running example shown
in Fig. 15

and CompUnitImmediate as the subclasses of the abstract class CompUnit. The
superclass CompUnit has one abstract function init which is called in the con-
structor. This abstract method contains the specific initialization needed for
each variant subclass. In CompUnitPeriodic, this method must send a mes-
sage to itself to start periodic execution while no initialization is required in
CompUnitImmediate.

Thanks to the priority feature, we add another network type CANBusNetwork,
suitable for modeling the network in the automotive domain. By using the fea-
ture expression @feature (FT_CAN_NETWORK), we add variability to the abstract
class CompUnit. This feature adds a priority state variable to the class. As
messages are transmitted over a CAN bus based on their priorities, we define
a message server for each message priority in CANBusNetwork and assign a pri-
ority to each message server using the priority feature. The priority variable
of CompUnit indicates the priority of messages (received from the sensors). The
method transfer of CompUnit sends messages to the network. If the network
is a CAN bus, when the variable FT_CAN_NETWORK is set, then it calls the corre-
sponding message server of CANBusNetwork based on the value of priority.

A configuration of the model where only the feature FT_CAN_NETWORK is
present gives the model of two connected ECUs communicating over a CAN
bus in a car. The first sensor instance sr1 models the wheel sensor which peri-
odically sends the speed of the wheel to its wheel controller, represented by cul.
The second sensor instance sr2 is the gear sensor which sends the level of gear
upon any change to its controller, represented by cu2.

Actors Upgraded for Variability, Adaptability, and Determinism 255

6 Related Work

Apart from variability-aware extensions of modeling notations based on tran-
sition systems and process algebras (comprehensively surveyed in [10]), several
formal modeling languages have been extended to support variability, including
fPromela [16], fSMV [17], and an extension of Event-B [68]. Having our focus
on formal modeling of asynchronously communicating distributed systems, the
most notable language is Abstract Behavioral Specification (ABS) [1,35], which
follows the concurrent object-oriented style of the actor model, and enables vari-
ability modeling using a delta-oriented approach [15,19,58]. Unlike ABS, our
way to handle variability in Rebeca family of languages is through feature anno-
tation and polymorphism which models the entire family behavior in one place.
Verification of software product lines has a relatively long history. This includes
the works based on modal I/O automata [45], PL-CCS [25], and early results
based on Featured Transition Systems [18]. More recent advances on the verifi-
cation of SPLs include a wide range of techniques such as static analysis [6,8],
parity games [7], proof plans [44], and correct-by-construction approach [13].

Lee et.al. proposed Lingua Franca as a language for developing deterministic
actors [46]. Lingua Franca resolve nondeterminisitc execution among actors using
predefined order of executions for actors. The idea of associating priority to
actors in Rebeca to make the model more deterministic is inspired from Lingua
Franca. In comparison with [46], although actors can be deterministic in Rebeca,
they are allowed to have nondeterministic behavior. This means that modelers
are allowed to express the required level of nondeterminism in models.

7 Conclusion

In this paper, we presented an overview of the language features of Timed Rebeca
to support variability management and modeling determinism. The approach to
variability management is feature-oriented and is done using feature variables.
By annotating parts of the model source code with feature expressions, we can
bind model parts to a number of product configurations. Moreover, class poly-
morphism can be used to manage variability by providing alternative implemen-
tations of model components. This way, the whole product line can be modeled
in a single artifact which explicitly models the variability in structure and behav-
ior of the model. This enables the opportunity to analyze the whole product line
model at once as opposed to analyzing every product individually. The theory
behind verification of the whole product line has been developed and partially
implemented and is a future step in the development of Afra, the Timed Rebeca
model checker. Currently, Afra supports feature variables and verification of the
individual products specified through a valuation of the feature variables. As
a future work, we plan to study the feasibility of applying variability encod-
ing [54] to defer the variability resolution time from compile-time to state-space
generation time, which may increase the efficiency of whole-family verification.

We also showed how Timed Rebeca models can be made more deterministic
by assigning priorities to message servers and actors. This enables the modelers

256 R. Khosravi et al.

to bring in assumptions about the execution environment or outside entities. In
addition to making the model closer to a set of real world applications, this may
result in (possibly significant) reduction in the size of the state space and make it
more practical to analyze more complex systems. Both of these aspects enhance
the practicality of the Timed Rebeca toolset to be used in industrial settings.

References

1. The ABS language. https://abs-models.org/

2. Afra toolset homepage. https://rebeca-lang.org/alltools/Afra

3. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

4. Ayala, 1., Papadopoulos, A.V., Amor, M., Fuentes, L.: ProDSPL: proactive self-
adaptation based on dynamic software product lines. J. Syst. Softw. 175, 110909
2021

9. éator)y, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7-20. Springer, Heidelberg
(2005). https://doi.org/10.1007/11554844_3

6. ter Beek, M.H., Damiani, F., Lienhardt, M., Mazzanti, F., Paolini, L.: Efficient
static analysis and verification of featured transition systems. Empir. Softw. Eng.
27(1), 10 (2022)

7. ter Beek, M.H., van Loo, S., de Vink, E.P., Willemse, T.A.: Family-based SPL
model checking using parity games with variability. In: FASE, vol. 20, pp. 245265
2020

8.](3eek,)M.H.T., Damiani, F., Lienhardt, M., Mazzanti, F., Paolini, L.: Static analysis
of featured transition systems. In: Proceedings of the 23rd International Systems
and Software Product Line Conference-Volume A, pp. 39-51 (2019)

9. Behjati, R., Yue, T., Briand, L., Selic, B.: SimPL: a product-line modeling method-
ology for families of integrated control systems. Inf. Softw. Technol. 55(3), 607-629
2013

10. I(Bend1)1hn, F., Thiim, T., Lochau, M., Leich, T., Saake, G.: A survey on modeling
techniques for formal behavioral verification of software product lines. In: Proceed-
ings of the Ninth International Workshop on Variability Modelling of Software-
Intensive Systems, pp. 80-87 (2015)

11. Bengtsson, H.H., Hiller, M., Mattsson, F., Bengtsson, J.: Holistic analysis of task
scheduling and message scheduling in automotive centralised E/E architecture. In:
IEEE/SA Ethernet/IP@Automotive Techonology Day (2020)

12. Boer, F.D., et al.: A survey of active object languages. ACM Comput. Surv.
(CSUR) 50(5), 1-39 (2017)

13. Bordis, T., Runge, T., Schaefer, I.: Correctness-by-construction for feature-oriented
software product lines. In: Proceedings of the 19th ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences, pp. 22-34
(2020)

14. Cionca, V., Newe, T., Dadarlat, V.: TDMA protocol requirements for wireless
sensor networks. In: 2008 Second International Conference on Sensor Technologies
and Applications (sensorcomm 2008), pp. 30-35. IEEE (2008)

15. Clarke, D., Muschevici, R., Proenca, J., Schaefer, 1., Schlatte, R.: Variability mod-
elling in the ABS language. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 204-224. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25271-6_11

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Actors Upgraded for Variability, Adaptability, and Determinism 257

Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.: Model checking
software product lines with SNIP. Int. J. Softw. Tools Technol. Transf. 14, 589612
(2012)

Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.: Formal seman-
tics, modular specification, and symbolic verification of product-line behaviour.
Sci. Comput. Program. 80, 416-439 (2014)

Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model check-
ing lots of systems: efficient verification of temporal properties in software product
lines. In: Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering, vol. 1, pp. 335-344 (2010)

Damiani, F., Hahnle, R., Kamburjan, E., Lienhardt, M., Paolini, L.: Variability
modules. J. Syst. Softw. 195, 111510 (2023)

Davis, R.I., Burns, A., Bril, R.J., Lukkien, J.J.: Controller area network (CAN)
schedulability analysis: refuted, revisited and revised. Real-Time Syst. 35(3), 239—
272 (2007)

Eckel, B.: Thinking in Java, 4th edn. Prentice Hall (2006)

Fadhlillah, H.S., Feichtinger, K., Meixner, K., Sonnleithner, L., Rabiser, R., Zoitl,
A.: Towards multidisciplinary delta-oriented variability management in cyber-
physical production systems. In: Proceedings of the 16th International Working
Conference on Variability Modelling of Software-Intensive Systems, pp. 1-10 (2022)
Filipovikj, P., Mahmud, N., Marinescu, R., Seceleanu, C., Ljungkrantz, O., Lonn,
H.: Simulink to UPPA AL statistical model checker: analyzing automotive industrial
systems. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016.
LNCS, vol. 9995, pp. 748-756. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48989-6_46

Forcina, G., et al.: Safe design of flow management systems using Rebeca. J. Inf.
Process. 28, 588-598 (2020)

Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol.
5051, pp. 113-131. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-68863-1_8

Haller, P.: On the integration of the actor model in mainstream technologies: the
scala perspective. In: Proceedings of the 2nd Edition on Programming Systems,
Languages and Applications Based on Actors, Agents, and Decentralized Control
Abstractions, pp. 1-6 (2012)

von Hanxleden, R., et al.: Pragmatics twelve years later: a report on lingua franca.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2022, Part II. LNCS, vol. 13702, pp.
60-89. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19756-7_5
Haugen, ., Wasowski, A., Czarnecki, K.: CVL: common variability language. In:
Kishi, T., Jarzabek, S., Gnesi, S. (eds.) 17th International Software Product Line
Conference, SPLC 2013, Tokyo, Japan, 26-30 August 2013, p. 277. ACM (2013)
Hewitt, C.: Viewing control structures as patterns of passing messages. Artif. Intell.
8(3), 323-364 (1977)

Hewitt, C.: Actor model of computation: scalable robust information systems.
arXiv preprint arXiv:1008.1459 (2010)

Hinchey, M., Park, S., Schmid, K.: Building dynamic software product lines. Com-
puter 45(10), 2226 (2012)

Jafari, A., Khamespanah, E., Sirjani, M., Hermanns, H., Cimini, M.: PTRebeca:
modeling and analysis of distributed and asynchronous systems. Sci. Comput. Pro-
gram. 128, 22-50 (2016)

258

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

R. Khosravi et al.

Jahandideh, I., Ghassemi, F., Sirjani, M.: An actor-based framework for asyn-
chronous event-based cyber-physical systems. Softw. Syst. Model. 20(3), 641-665
(2021)

Jahandideh, I., Ghassemi, F., Sirjani, M.: Hybrid Rebeca: modeling and analyzing
of cyber-physical systems. In: Chamberlain, R., Taha, W., Térngren, M. (eds.)
CyPhy/WESE -2018. LNCS, vol. 11615, pp. 3-27. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-23703-5_1

Johnsen, E.B., Hahnle, R., Schéfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142-164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6_8

Kang, E., Enoiu, E.P.; Marinescu, R., Seceleanu, C.C., Schobbens, P., Petters-
son, P.: A methodology for formal analysis and verification of EAST-ADL models.
Reliab. Eng. Syst. Saf. 120, 127-138 (2013)

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report, Carnegie-Mellon Uni-
versity, Pittsburgh, PA, Software Engineering Institute (1990)

Khakpour, N., Jalili, S., Talcott, C., Sirjani, M., Mousavi, M.: Formal modeling of
evolving self-adaptive systems. Sci. Comput. Program. 78(1), 3-26 (2012)
Khakpour, N., Khosravi, R., Sirjani, M., Jalili, S.: Formal analysis of policy-based
self-adaptive systems. In: Proceedings of the 2010 ACM Symposium on Applied
Computing, pp. 2536-2543 (2010)

Khamespanah, E., Sirjani, M., Kaviani, Z.S., Khosravi, R., Izadi, M.J.: Timed
Rebeca schedulability and deadlock freedom analysis using bounded floating time
transition system. Sci. Comput. Program. 98, 184-204 (2015)

Khamespanah, E., Sirjani, M., Khosravi, R.: Afra: an eclipse-based tool with exten-
sible architecture for modeling and model checking of Rebeca family models. In:
Hojjat, H., Abrahdm, E. (eds.) FSEN 2023. LNCS, vol. 14155, pp. 72-87. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-42441-0_6

Khamespanah, E., Sirjani, M., Mechitov, K., Agha, G.: Modeling and analyzing
real-time wireless sensor and actuator networks using actors and model checking.
Int. J. Softw. Tools Technol. Transf. 20, 547-561 (2018)

Kriiger, J., et al.: Beyond software product lines: variability modeling in cyber-
physical systems. In: Proceedings of the 21st International Systems and Software
Product Line Conference, vol. A, pp. 237-241 (2017)

Kuiter, E., Kniippel, A., Bordis, T., Runge, T., Schaefer, I.: Verification strategies
for feature-oriented software product lines. In: Proceedings of the 16th Interna-
tional Working Conference on Variability Modelling of Software-Intensive Systems,
pp. 1-9 (2022)

Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64-79. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6_6
Lohstroh, M., Menard, C., Bateni, S., Lee, E.A.: Toward a lingua franca for deter-
ministic concurrent systems. ACM Trans. Embed. Comput. Syst. 20(4), 36:1-36:27
(2021). https://doi.org/10.1145/3448128

Lohstroh, M., et al.: Actors revisited for time-critical systems. In: Proceedings of
the 56th Annual Design Automation Conference 2019, DAC 2019, Las Vegas, NV,
USA, 02-06 June 2019, p. 152. ACM (2019)

Marinescu, R., Mubeen, S., Seceleanu, C.: Pruning architectural models of automo-
tive embedded systems via dependency analysis. In: 42th Euromicro Conference on

49.

50.

51.

52.

53.

54.

55.

56.

o7.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

Actors Upgraded for Variability, Adaptability, and Determinism 259

Software Engineering and Advanced Applications, pp. 293-302. IEEE Computer
Society (2016)

Menard, C., et al.: High-performance deterministic concurrency using lingua
franca. CoRR abs/2301.02444 (2023)

Pfeiffer, O., Ayre, A., Keydel, C.: Embedded Networking with CAN and CANopen,
1st edn. Copperhill Media Corporation (2008)

Pohl, K., Bockle, G., Van Der Linden, F.: Software Product Line Engineering, vol.
10. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-28901-1

Rabiser, R., Zoitl, A.: Towards mastering variability in software-intensive cyber-
physical production systems. Procedia Comput. Sci. 180, 50-59 (2021)
Reynisson, A.H., et al.: Modelling and simulation of asynchronous real-time sys-
tems using timed Rebeca. Sci. Comput. Program. 89, 41-68 (2014)

von Rhein, A., Thiim, T., Schaefer, 1., Liebig, J., Apel, S.: Variability encoding:
From compile-time to load-time variability. J. Log. Algebraic Methods Program.
85(1), 125-145 (2016)

Sabouri, H., Jaghoori, M.M., de Boer, F., Khosravi, R.: Scheduling and analysis
of real-time software families. In: 2012 IEEE 36th Annual Computer Software and
Applications Conference, pp. 680-689. IEEE (2012)

Sabouri, H., Khosravi, R.: Modeling and verification of reconfigurable actor fami-
lies. J. Univers. Comput. Sci. 19(2), 207-232 (2013)

Sabouri, H., Khosravi, R.: Reducing the verification cost of evolving product fam-
ilies using static analysis techniques. Sci. Comput. Program. 83, 35-55 (2014)
Schaefer, 1., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77-91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15579-6_6

Sehr, M.A., et al.: Programmable logic controllers in the context of industry 4.0.
IEEE Trans. Industr. Inform. 17(5), 3523-3533 (2021)

Sharifi, Z., Khosravi, R.., Sirjani, M., Khamespanah, E.: Towards formal analysis of
vehicle platoons using actor model. In: 2020 25th TEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), vol. 1, pp. 1820-1827.
IEEE (2020)

Sharifi, Z., Mosaffa, M., Mohammadi, S., Sirjani, M.: Functional and performance
analysis of network-on-chips using actor-based modeling and formal verification.
Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 66, 1-16 (2013)

Sirjani, M., Jaghoori, M.M.: Ten years of analyzing actors: Rebeca experience.
In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Sys-
tems, Biological Systems. LNCS, vol. 7000, pp. 20-56. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24933-4_3

Sirjani, M., Khamespanah, E.: On time actors. In: Abrahém, E., Bonsangue, M.,
Johnsen, E.B. (eds.) Theory and Practice of Formal Methods. LNCS, vol. 9660, pp.
373-392. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30734-3_25
Sirjani, M., Lee, E.A., Khamespanah, E.: Verification of cyberphysical systems.
Mathematics 8(7), 1068 (2020)

Sirjani, M., Movaghar, A.: An actor-based model for formal modelling of reactive
systems: Rebeca. Technical report CS-TR-80-01, Tehran, Iran (2001)

Sirjani, M., Movaghar, A., Mousavi, M.: Compositional verification of an object-
based reactive system. In: Workshop on Automated Verification of Critical Systems
(AVoCS 2001) (2001)

Sirjani, M., Movaghar, A., Shali, A., De Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fund. Inform. 63(4), 385-410 (2004)

260 R. Khosravi et al.

68. Sorge, J., Poppleton, M., Butler, M.: A basis for feature-oriented modelling in
event-B. In: Frappier, M., Glasser, U., Khurshid, S., Laleau, R., Reeves, S. (eds.)
ABZ 2010. LNCS, vol. 5977, p. 409. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-11811-1_42

69. Varshosaz, M., Khosravi, R.: Modeling and verification of probabilistic actor sys-
tems using pRebeca. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol.
7635, pp. 135-150. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34281-3_12

70. Weyns, D.: Software engineering of self-adaptive systems. In: Handbook of Software
Engineering, pp. 399-443. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-00262-6_11

71. Yousefi, F., Khamespanah, E., Gharib, M., Sirjani, M., Movaghar, A.: VeriVANca
framework: verification of VANETSs by property-based message passing of actors
in Rebeca with inheritance. Int. J. Softw. Tools Technol. Transf. 22(5), 617-633
(2020)

